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ABSTRACT 35 

Goldschmidtite is a new perovskite-group mineral (IMA No. 2018-034) with ideal formula 36 

(K,REE,Sr)(Nb,Cr)O3. A single grain of goldschmidtite with maximum dimension of ~100 m 37 

was found as an inclusion in a diamond from the Koffiefontein pipe in South Africa. In addition 38 

to the dark green and opaque goldschmidtite, the diamond contained a Cr-rich augite (websteritic 39 

paragenesis) and an intergrowth of chromite, Mg-silicate, and unidentified K-Sr-REE-Nb-oxide. 40 

Geothermobarometry of the augite indicates the depth of formation was ~170 km. The chemical 41 

composition of goldschmidtite determined by electron microprobe analysis (n = 11, WDS, wt%) 42 

is: Nb2O5 44.82, TiO2 0.44, ThO2 0.10, Al2O3 0.35, Cr2O3 7.07, La2O3 11.85, Ce2O3 6.18, Fe2O3 43 

1.96 MgO 0.70, CaO 0.04, SrO 6.67, BaO 6.82, K2O 11.53, total 98.53. The empirical formula 44 

(expressed to two decimal places) is 45 

(K0.50La0.15Sr0.13Ba0.09Ce0.08)Σ0.95(Nb0.70Cr0.19Fe0.05Al0.01Mg0.04Ti0.01)Σ1.00O3. Goldschmidtite is 46 

cubic, space group Pm-3m, with unit-cell parameters: a = 3.9876(1) Å, V = 63.404(6) Å3, Z = 1, 47 

resulting in a calculated density of 5.32(3) g/cm3. Goldschmidtite is the K-analogue of 48 

isolueshite, (Na,La)NbO3. Raman spectra of goldschmidtite exhibit many second-order broad 49 

bands at 100 to 700 cm-1 as well as a pronounced peak at 815 cm-1, which is possibly a result of 50 

local ordering of Nb and Cr at the B site. The name goldschmidtite is in honor of the eminent 51 

geochemist Victor Moritz Goldschmidt (1888 – 1947), who formalized perovskite crystal 52 

chemistry and identified KNbO3 as a perovskite-structured compound. 53 

 54 

Keywords: perovskite, niobium, mantle, diamond inclusion, new mineral, Koffiefontein, 55 

Kaapvaal 56 
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INTRODUCTION 58 

Diamonds are carriers of minerals from the lithospheric mantle underpinning cratons (Harris 59 

and Gurney 1979; Meyer 1987; Helmstaedt et al. 2010), the mantle transition zone (Pearson et al. 60 

2014; Kiseeva et al. 2015; Tschauner et al. 2018), and the lower mantle (Harte et al. 1999; 61 

Tschauner et al. 2014; Palot et al. 2016; Nestola et al. 2018). As a chemically inert and rigid 62 

host, diamond can preserve included minerals for billions of years, and thus provide a snapshot 63 

of ancient chemical conditions in cratonic keels or deep-mantle regions.  64 

The Kaapvaal craton in South Africa is host to many diamondiferous kimberlites that have 65 

been intensively mined and studied since the 1970s (e.g., the International Kimberlite 66 

Conferences held since 1973). Large-scale mining, large inclusion-bearing diamonds, and the 67 

efforts of geochemists globally, have made the it the most-studied craton from the perspective of 68 

diamond formation.  69 

We report the first natural occurrence of (K,REE,Sr)(Nb,Cr)O3, now named goldschmidtite 70 

(IMA No. 2018-034), included in a websteritic diamond from the Koffiefontein kimberlite, 71 

Kaapvaal craton, South Africa. The holotype specimen is deposited in the Royal Ontario 72 

Museum, accession number M58208. It is the fifth perovskite-structured mineral to occur in 73 

Earth’s mantle, along with perovskite sensu stricto (CaTiO3), bridgmanite (Harte et al. 1999; 74 

Tschauner et al. 2014), CaSiO3-perovskite (Nestola et al. 2018), and K-REE-Cr-rich tausonite, 75 

which previously recorded the highest Nb- and K-content in a perovskite mineral-inclusion from 76 

diamond (Kopylova et al., 1997). 77 

Goldschmidtite is the natural analogue of the well-known ferroelectric material KNbO3, 78 

which has the perovskite structure type with orthorhombic symmetry at room temperature 79 

(coexisting with a metastable monoclinic phase: Lummen et al. 2017), and whose symmetry 80 
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increases to cubic above ~400 °C (Skjærvø et al. 2018). Solid solution of LaFeO3 in KNbO3, at 81 

molar amounts of 20% or more, also has the effect of increasing the symmetry to cubic at room 82 

temperature (Kakimoto et al. 2003). 83 

End-member KNbO3 was first synthesized by Joly (1877), as discussed by Holmquist (1896). 84 

Thomas F.W. Barth, a member of Victor Moritz Goldschmidt’s research group, was the first to 85 

determine the crystal structure of perovskite, CaTiO3 (Barth 1925). In the following year, 86 

Goldschmidt and his group reported that KNbO3 was effectively isostructural, and 87 

simultaneously introduced the famous tolerance factor for prediction of the perovskite structure 88 

type (Goldschmidt 1926). 89 

Goldschmidtite is named in honor of the eminent scientist Victor Moritz Goldschmidt (born 90 

Zürich, 27 January 1888; died Oslo, 20 March 1947). Goldschmidt made very wide-reaching 91 

contributions in geology, chemistry, mineralogy, crystallography, and petrology (Tilley 1948; 92 

Bastiansen 1962; Suess 1988; Mason 1992; Kauffman 1997). He is widely recognized as the 93 

“founder of modern geochemistry” (Bastiansen 1962; Kauffman 1997), and as stated by Laves 94 

(1962): “The influences of V. M. Goldschmidt's work on the development of mineralogy and 95 

crystallography cannot be overestimated.” 96 

The name goldschmidtite was briefly used (Hobbs 1899) for a supposed gold-silver telluride, 97 

Au2AgTe6, that was shown later to be sylvanite (Palache 1900). Similarly, goldschmidtine was 98 

used (Peacock 1939) for a supposed antimonide of silver, Ag2Sb, that was shown subsequently to 99 

be stephanite (Peacock 1940). Both of these names had been intended to honor the celebrated 100 

crystallographer Victor Mordechai Goldschmidt (born 10 February 10, 1853; died 8 May 1933). 101 
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Following the recently revised nomenclature for minerals of the perovskite supergroup 102 

(Mitchell et al. 2017), goldschmidtite is a member of the perovskite subgroup and is the 103 

potassium-analogue of isolueshite, (Na,La)NbO3 (Chakhmouradian et al. 1997).  104 

 105 

OCCURRENCE 106 

The 90.4 Ma Koffiefontein kimberlite pipe is located about 80 km SSE of Kimberley, South 107 

Africa and was emplaced in the Archean basement of the Kaapvaal craton and overlying 108 

Phanerozoic sediments of the Karoo basin (Davis 1978; Clement 1982; Naidoo et al. 2004; Field 109 

et al. 2008). This diamondiferous kimberlite was discovered in 1870 (Field et al. 2008) and has 110 

been mined for diamonds intermittently.  111 

The diamonds from Koffiefontein are dominantly peridotitic (determined from silicate 112 

inclusions: Harris and Gurney, 1979; Rickard et al. 1989). Goldschmidtite was found in a 113 

websteritic assemblage in association, but not in direct contact, with Cr-rich augite, and an 114 

intergrowth of chromite, Mg-silicate, and an unidentified K-Sr-REE-Nb-oxide. In this region of 115 

the diamond surface there was both green and brown radiation damage (Figure 1). The Cr-116 

content (1.19 wt% Cr2O3) and Mg# (86) of the included augite suggests that the host diamond 117 

formed in websterite (Gurney et al. 1984). From single-clinopyroxene geothermobarometry 118 

(Nimis and Taylor 2000), an equilibration pressure of 53 kbar (about 170 km depth) and 119 

temperature of formation of 1190 °C can be calculated.  120 

  121 
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EXPERIMENTAL DETAILS 122 

 The goldschmidtite inclusion was released from its host diamond by mechanical 123 

fracturing of the diamond with a steel diamond cracker.  The released mineral was mounted in 124 

epoxy, roughly ground with corundum paper, and polished with 1 µm diamond suspension on a 125 

nylon cloth. 126 

A Cameca SX100 electron microprobe at the University of Alberta was used to examine a 127 

polished and carbon-coated (25 nm thickness) epoxy mount of goldschmidtite. In addition to 128 

secondary-electron and back-scattered electron images, quantitative spot analyses were acquired 129 

using wavelength-dispersive spectrometry and Probe for EPMA software (Donovan et al. 2015). 130 

Nineteen elements were measured (Na, Mg, Al, Si, K, Ca, Ti, Cr, Fe, Sr, Zr, Nb, Ba, La, Ce, Nd, 131 

Pr, Sm, and Th) with the following conditions: 20 kV accelerating voltage, 30 nA probe current, 132 

and <1 μm beam diameter (5 μm was used for the standards). Total count times of 40 seconds 133 

were used for both peaks and backgrounds. The X-ray lines, diffraction crystals, and standards 134 

were: Na Kα, TAP (thallium hydrogen phthalate), albite; Mg Kα, TAP, pyrope; Al Kα, TAP, 135 

Gore Mountain garnet; Si Kα, TAP, diopside; K Kα, PET (pentaerythritol), sanidine; Ca Kα, 136 

PET, diopside; Ti Kα, PET, SrTiO3; Cr Kα, LIF, Cr2O3; Fe Kα, LIF (lithium fluoride), fayalite; 137 

Sr Lα, PET, SrTiO3; Zr Lα, PET, zircon; Nb Lα, PET, niobium metal; Ba Lγ, PET, sanbornite; La 138 

Lα, LIF, LaPO4; Ce Lα, LIF, CePO4; Nd Lβ, LIF, NdPO4; Pr Lβ, LIF, PrPO4; Sm Lβ, LIF, 139 

SmPO4; Th Mα, PET, ThO2. The X-ray intensity data were reduced following Armstrong (1995) 140 

with the mass-absorption coefficients of Chantler et al. (2005). For elements found above the 141 

detection limits interference corrections (Donovan et al. 2011) were applied to: Al for 142 

interference by Th; Ti for interference by Ba; Cr for interference by La; Fe for interference by 143 

Th; Sr for interference by Cr; Ce for interference by Ba; and Th for interference by Cr. The 144 
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following elements were not found above the limits of detection (as element in weight percent in 145 

parentheses): Na (0.01), Si (0.01), Zr (0.04), Pr (0.08), Nd (0.05), and Sm (0.05). 146 

The crystal of goldschmidtite was extracted from the epoxy block and mounted on to a glass 147 

fiber with isocyanoacrylate adhesive. High-precision unit-cell parameters were determined by 148 

single-crystal X-ray diffraction by the eight-position centering method (King and Finger 1979) 149 

on the Huber four-circle diffractometer at Northwestern University equipped with an SMC9300 150 

controller and sealed-tube Mo Kα radiation source. A 360° phi-rotation image was collected on a 151 

MAR345 image plate detector. Full-profile peak fitting was performed with the software 152 

package SINGLE (Angel and Finger 2011). In total, 46 reflections were centered using omega 153 

scans (rocking curves) in their eight-equivalent positions with a point detector 40 cm from the 154 

crystal at 2θ angles between ±30°. Intensity data used to produce a crystallographic information 155 

file (.cif) were collected from -15 to +60 degrees 2 also using the point detector on the four-156 

circle diffraction system at Northwestern University.   157 

Confocal Raman spectroscopy was carried out at Northwestern University using a custom-158 

built system with an Olympus BX microscope with a Mitutoyo 100X objective. A Melles-Griot 159 

(Model 85-BLS-601) solid-state, diode-pumped laser with 200 mW output and wavelength of 160 

458.5 nm was used as the excitation source. The output power was reduced with neutral density 161 

filters to achieve an ~8 mW focused beam of ~1-2 µm diameter at the sample surface. 162 

Unpolarized Raman spectra were collected in back-scatter geometry through a confocal aperture 163 

into a 0.5 m focal-length Andor Shamrock 303i spectrograph with 1200 lines-per-mm diffraction 164 

grating. Spectra were collected on an Andor Newton DU970 CCD camera cooled to -90 °C with 165 

a thermoelectric cooler. Spectra were obtained for 10 seconds, averaged over 12 accumulations 166 

for a total of two minutes per spectrum.  167 
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RESULTS AND DISCUSSION 168 

Physical and properties 169 

 Only a single grain of goldschmidtite, about 100 μm in maximum dimension, was 170 

recovered. The mineral is dark green with an adamantine luster, non-fluorescent under longwave 171 

UV illumination, and is not cathodoluminescent. The small size of the solitary mineral grain 172 

precluded determination of its streak and hardness, and the tenacity, fracture, and cleavage were 173 

not observed. From the average chemical composition determined by EPMA and the unit cell 174 

parameters, the calculated density is 5.32(3) g/cm3. The refractive index was calculated to be: 175 

ncalc 2.16(2), with the use of the Gladstone-Dale constants of Mandarino (1976), the calculated 176 

density, and the average chemical composition. Stacked optical images of goldschmidtite 177 

acquired with a Tagarno Prestige FHD digital microscope are shown in Figure 2.  178 

 179 

Chemical composition 180 

The average composition of goldschmidtite, for elements above detection, is given in Table 181 

1; the iron content is reported as total Fe2O3 by analogy with latrappite, (Ca,Na)(Nb,Ti,Fe)O3 182 

(Mitchell et al. 1998). The empirical formula, calculated on the basis of three anions, is: 183 

(K0.504La0.150Sr0.133Ba0.092Ce0.078Ca0.002Th0.001)Σ0.960 184 

(Nb0.695Cr0.192Fe0.051Al0.014Mg0.036Ti0.011)Σ0.999O3, which can be simplified to: 185 

(K,REE,Sr)(Nb,Cr)O3. The various elements were assigned to the two cation sites (Wyckoff 186 

positions 1b and 1a, respectively) in the aristotypic perovskite formula based on size 187 

considerations and following the IMA nomenclature (Mitchell et al. 2017). A back-scattered-188 

electron image of goldschmidtite is shown in Figure 3. 189 

 190 
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 191 

Crystal structure 192 

 The method of eight-position centering on a Huber four-circle diffractometer was used to 193 

center 46 reflections from ± 30° 2θ, resulting in 368 total rocking curves. The diffraction spots 194 

can be described as very sharp, with a full-width at half-maximum averaging 0.07° in the final 195 

omega scan. Unconstrained least-squares fitting to all 46 reflections gives unit-cell parameters: a 196 

= 3.98757(20) Å, b = 3.98751(22) Å, c = 3.98756(20) Å,  = 89.999(4)°,  = 89.997(4)°, and  = 197 

89.999(4)°, indicating that goldschmidtite is cubic. Cubic-constrained least squares refinement 198 

gives a = 3.98755(12) Å and V = 63.404(6) Å3.  199 

 Single-crystal intensity data were collected in the range of -15 to +60 degrees 2θ, 200 

resulting in 753 total reflections in a sphere of reciprocal space from ±5 h, ±5 k and ±5 l, of 201 

which 33 are unique with a merging R-factor (Rint) of 0.0636. From the intensity data, the space 202 

group was determined to be Pm-3m (No. 221 in the International Tables for Crystallography), 203 

being the only space group with zero observed symmetry violations. Although all atoms are on 204 

special positions in Pm-3m (Figure 4), a refinement was carried out to produce anisotropic 205 

displacement parameters and a list of reflections and structure factors provided in the 206 

crystallographic information file (CIF), yielding a final R-factor of 0.0181.  In addition, the 207 

powder diffraction pattern was calculated using PowderCell version 2.4 for Windows (Kraus and 208 

Nolze 1996) for Cu Kα1, 1.540598 Å, and is presented in Table 2. The atom assignments for the 209 

powder diffraction calculation were: Wyckoff 1b – (K0.504La0.15Sr0.133Ba0.092Ce0.078)Σ0.957; 210 

Wyckoff 1a (Nb0.695Cr0.201Fe0.051Mg0.038Al0.014Ti0.011)Σ0.999; Wyckoff 3d – O. Figure 5 shows an 211 

unfiltered X-ray diffraction image taken with a MAR345 image plate, demonstrating sharp 212 

diffraction spots and the absence of twinning. Goldschmidtite is most similar to isolueshite, 213 
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(Na,La,Ca)(Nb,Ti)O3 (Krivovichev et al. 2000), which has the identical space group and similar 214 

cell dimensions (in the range 3.90-3.91 Å). 215 

Although synthetic KNbO3 is orthorhombic at room temperature, goldschmidtite is cubic. 216 

This may be a result of the cation occupancies: the A-site is only 50% filled by K and the B-site 217 

is 70% filled by Nb atoms. The balance is filled by smaller-sized cations (e.g., La on the A-site, 218 

Cr on the B-site), which results in goldschmidtite adopting a cubic structure as shown for the 219 

analogous synthetic system by Kakimoto et al. (2003). 220 

 221 

Raman spectrum 222 

Goldschmidtite possesses cubic symmetry, space group Pm-3m, with A site (K, REE, Sr), B 223 

site (Nb, Cr), and O all lying on inversion centers with site symmetry Oh, Oh, and D4h, 224 

respectively. Consequently, by selection rules, there are no Raman-active modes. As shown in 225 

Figure 6A, the as-measured (uncorrected) Raman spectrum of goldschmidtite exhibits many 226 

weak, broad bands from 100-700 cm-1 and a large peak at ~815 cm-1, similar to a spectrum of 227 

natural perovskite in the RRUFF database (sample R050456) from Magnet Cove, Arkansas, 228 

USA, with composition (Ca0.82Fe0.09Na0.07Ce0.01La0.01)(Ti0.95Nb0.05)O3. In CaTiO3 solid solutions 229 

with Sr(Mg,Nb)O3 and NdAlO3, a strong, broad Raman band at ~820 cm-1 has been attributed to 230 

partial and local ordering of multiple cations on the B site (Zheng et al. 2003; Zheng et al. 2004), 231 

suggesting that the 815 cm-1 band in goldschmidtite and some CaTiO3 perovskites results from 232 

non-random B-site ordering, characteristic of complex perovskites. The broad nature of the 233 

815 cm-1 band in goldschmidtite suggests that ordering is short range and weak, which would 234 

therefore not be detectable in the single-crystal X-ray diffraction data.  235 
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In Figure 6A, the Raman spectrum of goldschmidtite is also compared with natural tausonite 236 

from the type locality and synthetic, cubic SrTiO3 from the RRUFF database (sample X090004). 237 

Since SrTiO3 also has the Pm-3m space group, no first-order Raman is expected and the 238 

observed bands are second-order features (Schaufele and Weber 1967; Nilsen and Skinner 1968). 239 

Second-order Stokes Raman scattering involves the addition or difference combination of 240 

phonons from different longitudinal-optical (LO), transverse-optical (TO), or transverse-acoustic 241 

(TA) modes (Nilsen and Skinner 1968). In Table 3, the second-order Raman band positions and 242 

assignments in SrTiO3 from Nilsen and Skinner (1968) are listed along with the observed bands 243 

in goldschmidite from a deconvolution of the baseline-corrected spectrum, shown in Figure 6B. 244 

Thus, most of the features in the measured Raman spectrum of goldschmidtite are either 245 

attributed to weak, local cation ordering or second-order Raman scattering.  246 

  247 
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IMPLICATIONS 248 

Potassium and niobium are not common elements in the typical suite of mantle-derived 249 

minerals included in diamonds but indicate mantle metasomatism (Erlank and Rickard 1977; 250 

Dawson 1982). Several Nb-rich minerals were found in the heavy mineral concentrate from 251 

Jagersfontein and from a metasomatic vein in a peridotite from Bultfontein (both kimberlite 252 

pipes are in close proximity and age to the Koffiefontein pipe): Nb-rich perovskite (21-28 wt% 253 

Nb2O5), Nb-rich rutile (~13 wt% Nb2O5), Nb-rich titanite (11.9 wt% Nb2O5); and were believed 254 

form by the interaction of metasomatic fluids with peridotite at 20 to 30 kbar and 900 to 1000 °C 255 

(Haggerty et al. 1983). The existence of goldschmidtite indicates that perovskite-structure oxides 256 

have the potential to be significant hosts for K and Nb in the mantle, along with other lithophile 257 

elements such as La and Ce, and high-field-strength elements such as Ti and Ta. However, the 258 

precipitation of a mineral with such high concentrations of LILE (K, Ba) and strongly 259 

incompatible HFSE (Sr, LREE, Nb) requires an extremely fractionated metasomatic fluid that is 260 

much more enriched in incompatible elements than has been observed for “normal” mantle 261 

metasomatism (Hoffman 1988, Allègre et al. 1995). To stabilize such a phase would require that 262 

these incompatible elements become  major components in the fractionating fluid. Thus, this 263 

would likely result from the last drops of an initially much larger volume of metasomatic melt or 264 

fluid. 265 

The presence of edgarite, FeNb3S6, in an unusually reduced fenite (Barkov et al. 2000) has 266 

been interpreted recently to indicate that niobium may occur in the trivalent or tetravalent states 267 

in the mantle (Bindi and Martin 2018). However, the occurrence of goldschmidtite in diamond 268 

suggests that niobium is more likely in the pentavalent state in the mantle, at least in diamond-269 

forming environments.  270 
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LIST OF FIGURE CAPTIONS 427 

 428 

FIGURE 1. Broken and rounded dodecahedral diamond from Koffiefontein that hosted 429 

goldschmidtite (before breakage). Goldschmidtite is seen in green and radiation damage of 430 

the diamond can be seen by the brown regions.   431 

FIGURE 2. Two orientations of the crystal of goldschmidtite adhered to a glass fiber. Crystal 432 

shape has been affected by polishing. Background noise due to the digital-image stacking has 433 

been removed. 434 

FIGURE 3. Back-scattered-electron image of goldschmidtite. The lamellar structure is probably a 435 

result of polishing. 436 

FIGURE 4. Clinographic view of the structure of goldschmidtite: Nb atoms are orange and in 6-437 

fold coordination, K is pale blue and in 12-fold coordination, O atoms are red, and the unit 438 

cell is shown in black. 439 

FIGURE 5. X-ray diffraction image (Mo Kα radiation) taken with a MAR345 image plate 440 

showing sharp, single diffraction spots and the absence of twinning. 441 

FIGURE 6. (a) Uncorrected Raman spectrum of goldschmidtite (black) using a 458.5 nm 442 

excitation laser, compared with natural tausonite (red curve) and perovskite (blue curve, 443 

RRUFF sample R050456). Spectra are offset for clarity. Raman features in SrTiO3 are 444 

attributed to second-order Raman scattering (Nilsen and Skinner 1968). The strong band at 445 

815 cm-1 is likely due to weak, local ordering of different cations on the B site (Zheng et al. 446 

2003). (b) Deconvolved and baseline-corrected Raman spectrum of goldschmidtite below 447 

1200 cm-1. 448 

  449 
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TABLE 1. Electron microprobe analysis of goldschmidtite. 450 

Constituent wt% Range (n=11) Stand. dev. 

Nb2O5 44.82 43.97 – 46.04 0.69 

TiO2 0.44 0.42 – 0.46  0.01 

ThO2 0.1 0 – 0.16 0.06 

Al2O3 0.35 0.32 – 0.39 0.02 

Cr2O3 7.07 6.80 – 7.15 0.11 

La2O3 11.85 11.45 – 12.05 0.17 

Ce2O3 6.18 6.02 – 6.29 0.08 

Fe2O3 1.96 1.95 – 1.98 0.01 

MgO 0.7 0.67 – 0.78 0.03 

CaO 0.04 0.02 – 0.07 0.01 

SrO 6.67 6.14 – 6.83 0.21 

BaO 6.82 6.48 – 7.30 0.27 

K2O 11.53 11.16 – 11.67 0.14 

Total 98.53 97.81 – 99.81 0.58 

 451 

  452 
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TABLE 2. Calculated powder diffraction data for goldschmidtite.  453 

Relative intensity, I (%) dcalc. (Å) hkl 

0.61 3.9876 100 
100.00 2.8197 110 
6.89 2.3022 111 
49.93 1.9938 200 
0.22 1.7833 210 
57.80 1.6279 211 
35.82 1.4098 220 
0.01 1.3292 300 
0.05 1.3292 221 
28.15 1.2610 310 
2.11 1.2023 311 
12.89 1.1511 222 
0.02 1.1060 320 
37.95 1.0657 321 
7.30 0.9969 400 
0.02 0.9671 410 
0.02 0.9671 322 
8.63 0.9399 330 
17.25 0.9399 411 
1.13 0.9148 331 
29.88 0.8917 420 
0.03 0.8702 421 
20.86 0.8502 332 
43.24 0.8140 422 

 454 

  455 
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TABLE 3. Raman spectral assignments for second-order modes.  456 

Goldschmidtite 

(cm
-1

) 

SrTiO3 

(cm
-1

)
a
 

Assignments for SrTiO3
a
 

 81 TO2-TA; TO2-TO1 
125   
160   
240 251 2TA; 2TO1; TO1+TA 
320 308 TO2+TA; TO2+TO1; TO4-

TO2 
 369 TO4-TA; TO4-TO1; 2TO2 
445   
465   
580   
 629 TO4+TA; TO4+TO1 
 684 2TO3 
715 727 TO4+TO2 
750   
815   
850   
 1038 2LO2; 2TO4 
 1325 LO4+LO2 
1590 1618 2LO4 
a Synthetic, pure SrTiO3 (Nilsen and Skinner 1968). 457 

 458 
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