1	Revision 2
2	
3	
4	Goldschmidtite, (K,REE,Sr)(Nb,Cr)O3: a new perovskite supergroup mineral
5	found in diamond from Koffiefontein, South Africa
6	
7	Nicole A. Meyer* ¹ , Michelle D. Wenz ² , James P. S. Walsh ³ , Steven D. Jacobsen ² ,
8	Andrew J. Locock ¹ , and Jeffrey W. Harris ⁴
9	
10	*corresponding author email: nameyer@ualberta.ca
11	

- ¹Department of Earth and Atmospheric Sciences
- 13 1-26 Earth Sciences Building
- 14 University of Alberta
- 15 Edmonton, Alberta, Canada, T6G 2E3
- 16
- 17 ²Department of Earth and Planetary Sciences
- 18 Northwestern University
- 19 2145 Sheridan Road
- 20 Technological Institute
- 21 Evanston, Illinois, USA, 60208
- 22
- ³Department of Chemistry
- 24 Northwestern University
- 25 2145 Sheridan Road
- 26 Evanston, Illinois, USA, 60208
- 27
- 28 ⁴School of Geographical and Earth Sciences
- 29 University of Glasgow
- 30 The Gregory Building
- 31 Lilybank Gardens
- 32 Glasgow, Scotland, United Kingdom, G12 8QQ
- 33
- 34

35 Abstract

36 Goldschmidtite is a new perovskite-group mineral (IMA No. 2018-034) with ideal formula 37 $(K.REE.Sr)(Nb.Cr)O_3$. A single grain of goldschmidtite with maximum dimension of ~100 µm 38 was found as an inclusion in a diamond from the Koffiefontein pipe in South Africa. In addition 39 to the dark green and opaque goldschmidtite, the diamond contained a Cr-rich augite (websteritic 40 paragenesis) and an intergrowth of chromite, Mg-silicate, and unidentified K-Sr-REE-Nb-oxide. 41 Geothermobarometry of the augite indicates the depth of formation was ~170 km. The chemical 42 composition of goldschmidtite determined by electron microprobe analysis (n = 11, WDS, wt%) 43 is: Nb₂O₅ 44.82, TiO₂ 0.44, ThO₂ 0.10, Al₂O₃ 0.35, Cr₂O₃ 7.07, La₂O₃ 11.85, Ce₂O₃ 6.18, Fe₂O₃ 44 1.96 MgO 0.70, CaO 0.04, SrO 6.67, BaO 6.82, K₂O 11.53, total 98.53. The empirical formula 45 (expressed to two decimal places) is 46 $(K_{0.50}La_{0.15}Sr_{0.13}Ba_{0.09}Ce_{0.08})_{\Sigma_{0.95}}(Nb_{0.70}Cr_{0.19}Fe_{0.05}Al_{0.01}Mg_{0.04}Ti_{0.01})_{\Sigma_{1.00}}O_3$. Goldschmidtite is cubic, space group Pm-3m, with unit-cell parameters: a = 3.9876(1) Å, V = 63.404(6) Å³, Z = 1, 47 resulting in a calculated density of 5.32(3) g/cm³. Goldschmidtite is the K-analogue of 48 49 isolueshite, (Na,La)NbO₃. Raman spectra of goldschmidtite exhibit many second-order broad bands at 100 to 700 cm⁻¹ as well as a pronounced peak at 815 cm⁻¹, which is possibly a result of 50 51 local ordering of Nb and Cr at the B site. The name goldschmidtite is in honor of the eminent 52 geochemist Victor Moritz Goldschmidt (1888 – 1947), who formalized perovskite crystal 53 chemistry and identified KNbO3 as a perovskite-structured compound. 54 55 **Keywords**: perovskite, niobium, mantle, diamond inclusion, new mineral, Koffiefontein,

56 Kaapvaal

58

INTRODUCTION

59	Diamonds are carriers of minerals from the lithospheric mantle underpinning cratons (Harris
60	and Gurney 1979; Meyer 1987; Helmstaedt et al. 2010), the mantle transition zone (Pearson et al.
61	2014; Kiseeva et al. 2015; Tschauner et al. 2018), and the lower mantle (Harte et al. 1999;
62	Tschauner et al. 2014; Palot et al. 2016; Nestola et al. 2018). As a chemically inert and rigid
63	host, diamond can preserve included minerals for billions of years, and thus provide a snapshot
64	of ancient chemical conditions in cratonic keels or deep-mantle regions.
65	The Kaapvaal craton in South Africa is host to many diamondiferous kimberlites that have
66	been intensively mined and studied since the 1970s (e.g., the International Kimberlite
67	Conferences held since 1973). Large-scale mining, large inclusion-bearing diamonds, and the
68	efforts of geochemists globally, have made the it the most-studied craton from the perspective of
69	diamond formation.
70	We report the first natural occurrence of (K,REE,Sr)(Nb,Cr)O ₃ , now named goldschmidtite
71	(IMA No. 2018-034), included in a websteritic diamond from the Koffiefontein kimberlite,
72	Kaapvaal craton, South Africa. The holotype specimen is deposited in the Royal Ontario
73	Museum, accession number M58208. It is the fifth perovskite-structured mineral to occur in
74	Earth's mantle, along with perovskite sensu stricto (CaTiO ₃), bridgmanite (Harte et al. 1999;
75	Tschauner et al. 2014), CaSiO ₃ -perovskite (Nestola et al. 2018), and K-REE-Cr-rich tausonite,
76	which previously recorded the highest Nb- and K-content in a perovskite mineral-inclusion from
77	diamond (Kopylova et al., 1997).
78	Goldschmidtite is the natural analogue of the well-known ferroelectric material KNbO ₃ ,
79	which has the perovskite structure type with orthorhombic symmetry at room temperature

80 (coexisting with a metastable monoclinic phase: Lummen et al. 2017), and whose symmetry

81	increases to cubic above ~400 °C (Skjærvø et al. 2018). Solid solution of LaFeO ₃ in KNbO ₃ , at
82	molar amounts of 20% or more, also has the effect of increasing the symmetry to cubic at room
83	temperature (Kakimoto et al. 2003).
84	End-member KNbO ₃ was first synthesized by Joly (1877), as discussed by Holmquist (1896).
85	Thomas F.W. Barth, a member of Victor Moritz Goldschmidt's research group, was the first to
86	determine the crystal structure of perovskite, CaTiO ₃ (Barth 1925). In the following year,
87	Goldschmidt and his group reported that KNbO3 was effectively isostructural, and
88	simultaneously introduced the famous tolerance factor for prediction of the perovskite structure
89	type (Goldschmidt 1926).
90	Goldschmidtite is named in honor of the eminent scientist Victor Moritz Goldschmidt (born
91	Zürich, 27 January 1888; died Oslo, 20 March 1947). Goldschmidt made very wide-reaching
92	contributions in geology, chemistry, mineralogy, crystallography, and petrology (Tilley 1948;
93	Bastiansen 1962; Suess 1988; Mason 1992; Kauffman 1997). He is widely recognized as the
94	"founder of modern geochemistry" (Bastiansen 1962; Kauffman 1997), and as stated by Laves
95	(1962): "The influences of V. M. Goldschmidt's work on the development of mineralogy and
96	crystallography cannot be overestimated."
97	The name goldschmidtite was briefly used (Hobbs 1899) for a supposed gold-silver telluride,
98	Au ₂ AgTe ₆ , that was shown later to be sylvanite (Palache 1900). Similarly, goldschmidtine was
99	used (Peacock 1939) for a supposed antimonide of silver, Ag ₂ Sb, that was shown subsequently to
100	be stephanite (Peacock 1940). Both of these names had been intended to honor the celebrated
101	crystallographer Victor Mordechai Goldschmidt (born 10 February 10, 1853; died 8 May 1933).

102	Following the recently revised nomenclature for minerals of the perovskite supergroup
103	(Mitchell et al. 2017), goldschmidtite is a member of the perovskite subgroup and is the
104	potassium-analogue of isolueshite, (Na,La)NbO ₃ (Chakhmouradian et al. 1997).
105	
106	OCCURRENCE
107	The 90.4 Ma Koffiefontein kimberlite pipe is located about 80 km SSE of Kimberley, South
108	Africa and was emplaced in the Archean basement of the Kaapvaal craton and overlying
109	Phanerozoic sediments of the Karoo basin (Davis 1978; Clement 1982; Naidoo et al. 2004; Field
110	et al. 2008). This diamondiferous kimberlite was discovered in 1870 (Field et al. 2008) and has
111	been mined for diamonds intermittently.
112	The diamonds from Koffiefontein are dominantly peridotitic (determined from silicate
113	inclusions: Harris and Gurney, 1979; Rickard et al. 1989). Goldschmidtite was found in a
114	websteritic assemblage in association, but not in direct contact, with Cr-rich augite, and an
115	intergrowth of chromite, Mg-silicate, and an unidentified K-Sr-REE-Nb-oxide. In this region of
116	the diamond surface there was both green and brown radiation damage (Figure 1). The Cr-
117	content (1.19 wt% Cr_2O_3) and Mg# (86) of the included augite suggests that the host diamond
118	formed in websterite (Gurney et al. 1984). From single-clinopyroxene geothermobarometry
119	(Nimis and Taylor 2000), an equilibration pressure of 53 kbar (about 170 km depth) and
120	temperature of formation of 1190 °C can be calculated.

121

122	EXPERIMENTAL DETAILS
123	The goldschmidtite inclusion was released from its host diamond by mechanical
124	fracturing of the diamond with a steel diamond cracker. The released mineral was mounted in
125	epoxy, roughly ground with corundum paper, and polished with 1 μ m diamond suspension on a
126	nylon cloth.
127	A Cameca SX100 electron microprobe at the University of Alberta was used to examine a
128	polished and carbon-coated (25 nm thickness) epoxy mount of goldschmidtite. In addition to
129	secondary-electron and back-scattered electron images, quantitative spot analyses were acquired
130	using wavelength-dispersive spectrometry and Probe for EPMA software (Donovan et al. 2015).
131	Nineteen elements were measured (Na, Mg, Al, Si, K, Ca, Ti, Cr, Fe, Sr, Zr, Nb, Ba, La, Ce, Nd,
132	Pr, Sm, and Th) with the following conditions: 20 kV accelerating voltage, 30 nA probe current,
133	and <1 μ m beam diameter (5 μ m was used for the standards). Total count times of 40 seconds
134	were used for both peaks and backgrounds. The X-ray lines, diffraction crystals, and standards
135	were: Na $K\alpha$, TAP (thallium hydrogen phthalate), albite; Mg $K\alpha$, TAP, pyrope; Al $K\alpha$, TAP,
136	Gore Mountain garnet; Si Kα, TAP, diopside; K Kα, PET (pentaerythritol), sanidine; Ca Kα,
137	PET, diopside; Ti Kα, PET, SrTiO ₃ ; Cr Kα, LIF, Cr ₂ O ₃ ; Fe Kα, LIF (lithium fluoride), fayalite;
138	Sr $L\alpha$, PET, SrTiO ₃ ; Zr $L\alpha$, PET, zircon; Nb $L\alpha$, PET, niobium metal; Ba $L\gamma$, PET, sanbornite; La
139	$L\alpha$, LIF, LaPO ₄ ; Ce $L\alpha$, LIF, CePO ₄ ; Nd $L\beta$, LIF, NdPO ₄ ; Pr $L\beta$, LIF, PrPO ₄ ; Sm $L\beta$, LIF,
140	SmPO ₄ ; Th $M\alpha$, PET, ThO ₂ . The X-ray intensity data were reduced following Armstrong (1995)
141	with the mass-absorption coefficients of Chantler et al. (2005). For elements found above the
142	detection limits interference corrections (Donovan et al. 2011) were applied to: Al for
143	interference by Th; Ti for interference by Ba; Cr for interference by La; Fe for interference by
144	Th; Sr for interference by Cr; Ce for interference by Ba; and Th for interference by Cr. The

145	following elements were not found above the limits of detection (as element in weight percent in
146	parentheses): Na (0.01), Si (0.01), Zr (0.04), Pr (0.08), Nd (0.05), and Sm (0.05).
147	The crystal of goldschmidtite was extracted from the epoxy block and mounted on to a glass
148	fiber with isocyanoacrylate adhesive. High-precision unit-cell parameters were determined by
149	single-crystal X-ray diffraction by the eight-position centering method (King and Finger 1979)
150	on the Huber four-circle diffractometer at Northwestern University equipped with an SMC9300
151	controller and sealed-tube Mo $K\alpha$ radiation source. A 360° phi-rotation image was collected on a
152	MAR345 image plate detector. Full-profile peak fitting was performed with the software
153	package SINGLE (Angel and Finger 2011). In total, 46 reflections were centered using omega
154	scans (rocking curves) in their eight-equivalent positions with a point detector 40 cm from the
155	crystal at 20 angles between $\pm 30^{\circ}$. Intensity data used to produce a crystallographic information
156	file (.cif) were collected from -15 to +60 degrees 2θ also using the point detector on the four-
157	circle diffraction system at Northwestern University.
158	Confocal Raman spectroscopy was carried out at Northwestern University using a custom-
159	built system with an Olympus BX microscope with a Mitutoyo 100X objective. A Melles-Griot
160	(Model 85-BLS-601) solid-state, diode-pumped laser with 200 mW output and wavelength of
161	458.5 nm was used as the excitation source. The output power was reduced with neutral density
162	filters to achieve an ~8 mW focused beam of ~1-2 μ m diameter at the sample surface.
163	Unpolarized Raman spectra were collected in back-scatter geometry through a confocal aperture
164	into a 0.5 m focal-length Andor Shamrock 303i spectrograph with 1200 lines-per-mm diffraction
165	grating. Spectra were collected on an Andor Newton DU970 CCD camera cooled to -90 °C with
166	a thermoelectric cooler. Spectra were obtained for 10 seconds, averaged over 12 accumulations
167	for a total of two minutes per spectrum.

168

RESULTS AND DISCUSSION

169 **Physical and properties**

170	Only a single grain of goldschmidtite, about 100 μ m in maximum dimension, was
171	recovered. The mineral is dark green with an adamantine luster, non-fluorescent under longwave
172	UV illumination, and is not cathodoluminescent. The small size of the solitary mineral grain
173	precluded determination of its streak and hardness, and the tenacity, fracture, and cleavage were
174	not observed. From the average chemical composition determined by EPMA and the unit cell
175	parameters, the calculated density is $5.32(3)$ g/cm ³ . The refractive index was calculated to be:
176	n_{calc} 2.16(2), with the use of the Gladstone-Dale constants of Mandarino (1976), the calculated
177	density, and the average chemical composition. Stacked optical images of goldschmidtite
178	acquired with a Tagarno Prestige FHD digital microscope are shown in Figure 2.
179	
180	Chemical composition
181	The average composition of goldschmidtite, for elements above detection, is given in Table
182	1; the iron content is reported as total Fe ₂ O ₃ by analogy with latrappite, (Ca,Na)(Nb,Ti,Fe)O ₃
183	(Mitchell et al. 1998). The empirical formula, calculated on the basis of three anions, is:
184	$(K_{0.504}La_{0.150}Sr_{0.133}Ba_{0.092}Ce_{0.078}Ca_{0.002}Th_{0.001})_{\Sigma 0.960}$
185	$(Nb_{0.695}Cr_{0.192}Fe_{0.051}Al_{0.014}Mg_{0.036}Ti_{0.011})_{\Sigma 0.999}O_3$, which can be simplified to:
186	(K,REE,Sr)(Nb,Cr)O ₃ . The various elements were assigned to the two cation sites (Wyckoff
187	positions $1b$ and $1a$, respectively) in the aristotypic perovskite formula based on size
188	considerations and following the IMA nomenclature (Mitchell et al. 2017). A back-scattered-
189	electron image of goldschmidtite is shown in Figure 3.
190	

192 Crystal structure

193 The method of eight-position centering on a Huber four-circle diffractometer was used to 194 center 46 reflections from $\pm 30^{\circ} 2\theta$, resulting in 368 total rocking curves. The diffraction spots 195 can be described as very sharp, with a full-width at half-maximum averaging 0.07° in the final 196 omega scan. Unconstrained least-squares fitting to all 46 reflections gives unit-cell parameters: a = 3.98757(20) Å, b = 3.98751(22) Å, c = 3.98756(20) Å, $\alpha = 89.999(4)^{\circ}$, $\beta = 89.997(4)^{\circ}$, and $\gamma =$ 197 198 89.999(4)°, indicating that goldschmidtite is cubic. Cubic-constrained least squares refinement gives a = 3.98755(12) Å and V = 63.404(6) Å³. 199 200 Single-crystal intensity data were collected in the range of -15 to +60 degrees 2θ , 201 resulting in 753 total reflections in a sphere of reciprocal space from $\pm 5 h$, $\pm 5 k$ and $\pm 5 l$, of 202 which 33 are unique with a merging R-factor (R_{int}) of 0.0636. From the intensity data, the space 203 group was determined to be *Pm-3m* (No. 221 in the International Tables for Crystallography), 204 being the only space group with zero observed symmetry violations. Although all atoms are on 205 special positions in *Pm*-3*m* (Figure 4), a refinement was carried out to produce anisotropic 206 displacement parameters and a list of reflections and structure factors provided in the 207 crystallographic information file (CIF), yielding a final R-factor of 0.0181. In addition, the 208 powder diffraction pattern was calculated using PowderCell version 2.4 for Windows (Kraus and 209 Nolze 1996) for Cu $K\alpha_1$, 1.540598 Å, and is presented in Table 2. The atom assignments for the 210 powder diffraction calculation were: Wyckoff $1b - (K_{0.504}La_{0.15}Sr_{0.133}Ba_{0.092}Ce_{0.078})_{\Sigma 0.957}$; 211 Wyckoff 1*a* (Nb_{0.695}Cr_{0.201}Fe_{0.051}Mg_{0.038}Al_{0.014}Ti_{0.011}) $\Sigma_{0.999}$; Wyckoff 3*d* – O. Figure 5 shows an 212 unfiltered X-ray diffraction image taken with a MAR345 image plate, demonstrating sharp 213 diffraction spots and the absence of twinning. Goldschmidtite is most similar to isolueshite,

- 214 (Na,La,Ca)(Nb,Ti)O₃ (Krivovichev et al. 2000), which has the identical space group and similar
- cell dimensions (in the range 3.90-3.91 Å).
- 216 Although synthetic KNbO₃ is orthorhombic at room temperature, goldschmidtite is cubic.
- 217 This may be a result of the cation occupancies: the A-site is only 50% filled by K and the B-site
- 218 is 70% filled by Nb atoms. The balance is filled by smaller-sized cations (e.g., La on the A-site,
- 219 Cr on the B-site), which results in goldschmidtite adopting a cubic structure as shown for the
- analogous synthetic system by Kakimoto et al. (2003).
- 221

222 Raman spectrum

- 223 Goldschmidtite possesses cubic symmetry, space group *Pm-3m*, with A site (K, REE, Sr), B
- site (Nb, Cr), and O all lying on inversion centers with site symmetry O_h , O_h , and D_{4h} ,
- respectively. Consequently, by selection rules, there are no Raman-active modes. As shown in
- Figure 6A, the as-measured (uncorrected) Raman spectrum of goldschmidtite exhibits many
- weak, broad bands from 100-700 cm⁻¹ and a large peak at \sim 815 cm⁻¹, similar to a spectrum of
- 228 natural perovskite in the RRUFF database (sample R050456) from Magnet Cove, Arkansas,
- 229 USA, with composition $(Ca_{0.82}Fe_{0.09}Na_{0.07}Ce_{0.01}La_{0.01})(Ti_{0.95}Nb_{0.05})O_3$. In CaTiO₃ solid solutions
- 230 with Sr(Mg,Nb)O₃ and NdAlO₃, a strong, broad Raman band at ~820 cm⁻¹ has been attributed to
- partial and local ordering of multiple cations on the B site (Zheng et al. 2003; Zheng et al. 2004),
- suggesting that the 815 cm⁻¹ band in goldschmidtite and some CaTiO₃ perovskites results from
- 233 non-random B-site ordering, characteristic of complex perovskites. The broad nature of the
- 234 815 cm⁻¹ band in goldschmidtite suggests that ordering is short range and weak, which would
- therefore not be detectable in the single-crystal X-ray diffraction data.

236	In Figure 6A, the Raman spectrum of goldschmidtite is also compared with natural tausonite
237	from the type locality and synthetic, cubic SrTiO ₃ from the RRUFF database (sample X090004).
238	Since SrTiO ₃ also has the <i>Pm-3m</i> space group, no first-order Raman is expected and the
239	observed bands are second-order features (Schaufele and Weber 1967; Nilsen and Skinner 1968).
240	Second-order Stokes Raman scattering involves the addition or difference combination of
241	phonons from different longitudinal-optical (LO), transverse-optical (TO), or transverse-acoustic
242	(TA) modes (Nilsen and Skinner 1968). In Table 3, the second-order Raman band positions and
243	assignments in SrTiO ₃ from Nilsen and Skinner (1968) are listed along with the observed bands
244	in goldschmidite from a deconvolution of the baseline-corrected spectrum, shown in Figure 6B.
245	Thus, most of the features in the measured Raman spectrum of goldschmidtite are either
246	attributed to weak, local cation ordering or second-order Raman scattering.

248	IMPLICATIONS
249	Potassium and niobium are not common elements in the typical suite of mantle-derived
250	minerals included in diamonds but indicate mantle metasomatism (Erlank and Rickard 1977;
251	Dawson 1982). Several Nb-rich minerals were found in the heavy mineral concentrate from
252	Jagersfontein and from a metasomatic vein in a peridotite from Bultfontein (both kimberlite
253	pipes are in close proximity and age to the Koffiefontein pipe): Nb-rich perovskite (21-28 wt%
254	Nb ₂ O ₅), Nb-rich rutile (~13 wt% Nb ₂ O ₅), Nb-rich titanite (11.9 wt% Nb ₂ O ₅); and were believed
255	form by the interaction of metasomatic fluids with peridotite at 20 to 30 kbar and 900 to 1000 $^{\circ}$ C
256	(Haggerty et al. 1983). The existence of goldschmidtite indicates that perovskite-structure oxides
257	have the potential to be significant hosts for K and Nb in the mantle, along with other lithophile
258	elements such as La and Ce, and high-field-strength elements such as Ti and Ta. However, the
259	precipitation of a mineral with such high concentrations of LILE (K, Ba) and strongly
260	incompatible HFSE (Sr, LREE, Nb) requires an extremely fractionated metasomatic fluid that is
261	much more enriched in incompatible elements than has been observed for "normal" mantle
262	metasomatism (Hoffman 1988, Allègre et al. 1995). To stabilize such a phase would require that
263	these incompatible elements become major components in the fractionating fluid. Thus, this
264	would likely result from the last drops of an initially much larger volume of metasomatic melt or
265	fluid.
266	The presence of edgarite, FeNb ₃ S ₆ , in an unusually reduced fenite (Barkov et al. 2000) has
267	been interpreted recently to indicate that niobium may occur in the trivalent or tetravalent states
268	in the mantle (Bindi and Martin 2018). However, the occurrence of goldschmidtite in diamond

suggests that niobium is more likely in the pentavalent state in the mantle, at least in diamond-

270 forming environments.

271

ACKNOWLEDGEMENTS

272	The authors thank T. Stachel and D.G. Pearson for their comments and suggestions, which
273	improved the quality of the manuscript. This research was supported in part by the National
274	Research Foundation of South Africa, grant 94626 (N.A. Meyer) and a Natural Sciences and
275	Engineering Research Council (NSERC) Discovery Grant (T. Stachel). S.D. Jacobsen
276	acknowledges support from US National Science Foundation, grant EAR-1853521. JWH thanks
277	the Diamond Trading Company (a member of the DeBeers Group of Companies) for the
278	donation of the diamond used in this study.

280	R EFERENCES CITED
281	Allègre, C.J., Poirier, J., Humler, E., and Hofmann, A.W. (1995) The chemical composition of
282	the Earth. Earth and Planetary Science Letters, 134, 515–526.
283	Angel, R.J. and Finger, L.W. (2011) SINGLE: a program to control single-crystal
284	diffractometers. Journal of Applied Crystallography, 44, 247-251.
285	Armstrong, J.T. (1995) CITZAF: A package of correction programs for the quantitative electron
286	microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam
287	Analysis, 4, 177–200.
288	Barkov, A.Y., Martin, R.F., Men'shikov, Y.P., Savchenko, Y.E., Thibault, Y., and Laajoki,
289	K.V.O. (2000) Edgarite, FeNb $_3S_6$, first natural niobium-rich sulfide from the Khibina
290	alkaline complex, Russian Far North: evidence for chalcophile behavior of Nb in a fenite.
291	Contributions to Mineralogy and Petrology, 138, 229–236.
292	Barth, T. (1925) Die Kristallstruktur von Perowskit und Verwandten Verbindungen. Norsk
293	Geologisk Tidsskrift, 8, 201–216 (in German).
294	Bastiansen, O.C.A. (1962) Victor Moritz Goldschmidt 1888–1947. In P.P. Ewald, Ed., Fifty
295	Years of X-Ray Diffraction, pp. 364–365. Springer, Boston, MA.
296	Bindi, L., and Martin, R.F. (2018) Edgarite, FeNb ₃ S ₆ , from the Khibina alkaline complex,
297	Russia: solution of the crystal structure. Canadian Mineralogist, 56, 259–264.
298	Chakhmouradian, A., Yakovenchuk, V., Mitchell, R.H., and Bogdanova, A. (1997) Isolueshite: a
299	new mineral of the perovskite group from the Khibina alkaline complex. European Journal of
300	Mineralogy, 9, 483–490.
301	Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A. and
302	Zucker, D.S. (2005) X-ray form factor, attenuation and scattering tables, NIST Standard

- 303 Reference Database 66 (version 2.1). [Online] Available: http://physics.nist.gov/ffast [2018,
- August 22]. National Institute of Standards and Technology, Gaithersburg, MD.
- 305 Clement, C.R. (1982) A comparative geological study of some major kimberlite pipes in the
- 306 Northern Cape and Orange Free State. Doctoral dissertation, University of Cape Town.
- 307 Davis, G.L. (1978) Zircons from the mantle. Short papers of the Fourth International Conference,
- 308 Geochronology, Cosmochronology, Isotope Geology. Geological Survey Open-File Report,
- 309 78, 86–88.
- 310 Dawson, J.B. (1982) Contrasting types of mantle metasomatism. In International Kimberlite
- 311 Conference: Extended Abstracts, Vol. 3, 232–233.
- 312 Donovan, J.J., Kremser, D., Fournelle, J.H., and Goemann, K. (2015) Probe for EPMA:
- 313 Acquisition, automation and analysis, version 11: Eugene, Oregon, Probe Software, Inc.
- 314 Donovan, J.J., Lowers, H.A., and Rusk, B.G. (2011) Improved electron probe microanalysis of
- trace elements in quartz. American Mineralogist, 96, 274–282.
- 316 Erlank, A.J., and Rickard, R.S. (1977) Potassic richterite bearing peridotites from kimberlite and
- 317 the evidence they provide for upper mantle metasomatism. In International Kimberlite
- 318 Conference: Extended Abstracts, Vol. 2, 93–95.
- 319 Field, M., Stiefenhofer, J., Robey, J., and Kurszlaukis, S. (2008) Kimberlite-hosted diamond
- deposits of southern Africa: A review. Ore Geology Reviews, 34, 33–75.
- 321 Goldschmidt, V.M. (1926) Geochemische Verteilungsgesetze Der Elemente VII. Die Gesetze der
- 322 Krystallochemie nach Untersuchungen gemeinsam mit T. Barth, G. Lunde, W. Zacharisasen.
- 323 Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo 1: Matematisk- Naturvidenskapelig
- 324 Klasse, 1–117 (in German).

- 325 Gurney, J.J., Harris, J.W., and Rickard, R.S. (1984) Silicate and oxide inclusions in diamonds
- from the Orapa Mine, Botswana. In J. Kornprobst, Ed., Kimberlites: II: The Mantle and
- 327 Crust-Mantle Relationships, 11, p. 3–9. Developments in Petrology, Elsevier, Amsterdam.
- 328 Gurney, J.J., Moore, R.O., Otter, M.L., Kirkley, M.B., Hops, J.J., and McCandless, T.E. (1991)
- 329 Southern African kimberlites and their xenoliths. In: A.B. Kampunza and R.T. Lubala (Eds.),
- 330 Magmatism in Extensional Structural Settings, pp. 495–536. Springer.
- 331 Haggerty, S.E. (1983) The mineral chemistry of new titanates from the Jagersfontein kimberlite,
- 332 South Africa: implications for metasomatism in the upper mantle. Geochimica et
- 333 Cosmochimica Acta, 47, 1833–1854.
- Harris, J.W., and Gurney, J.J. (1979) Inclusions in Diamond. In J.E. Field, Ed., The Properties of
- 335 Diamond, pp. 555–591. Academic Press London, London.
- Harte, B., Harris, J.W., Hutchison, M.T., Watt, G.R., and Wilding, M.C. (1999). Lower mantle
- 337 mineral associations in diamonds from Sao Luiz, Brazil. In Y. Fei, C.M. Bertka, and B.O.
- 338 Mysen, Eds., Mantle Petrology: Field Observations and High-Pressure Experimentation: A
- 339 Tribute to Francis R. (Joe) Boyd. Geochemical Society Special Publication 6, 125–153.
- 340 Helmstaedt, H.H., Gurney, J.J., and Richardson, S.H. (2010) Ages of cratonic diamond and
- 341 lithosphere evolution: Constraints on Precambrian tectonics and diamond exploration.
- Canadian Mineralogist, 48, 1385–1408.
- Hobbs, W.H. (1899) Goldschmidtite, a new mineral. American Journal of Science, 357–364.
- Hofmann, A.W. (1988) Chemical differentiation of the Earth: the relationship between mantle,
- 345 continental crust, and oceanic crust. Earth and Planetary Science Letters, 90, 297–314.
- Holmquist, P.J. (1896) Synthetische Studien über die Perowskit- und Pyrochlormineralien.
- Bulletin of the Geological Institution of the University of Upsala, 3, 181–268 (in German).

- Joly, A. (1877) Recherches sur les composés du niobium et du tantale. Annales Scientifiques de
- 349 L'École Normal Supérieure, 6, 125–186 (in French).
- 350 Kakimoto, K.-I., Masuda, I., and Ohsato, H. (2003) Ferroelectric and piezoelectric properties of
- 351 KNbO₃ ceramics containing small amounts of LaFeO₃. Japanese Journal of Applied Physics,
- 352 42, 6102–6105.
- 353 Kauffman, G.B. (1997) Victor Moritz Goldschmidt (1888–1947): A tribute to the founder of
- 354 modern geochemistry on the fiftieth anniversary of his death. The Chemical Educator, 2, 1–
- 355 26.
- 356 King, H.E. and Finger, L.W. (1979) Diffracted beam crystal centering and its application to high-
- 357 pressure crystallography. Journal of Applied Crystallography, 12, 374–378.
- 358 Kiseeva, E.S., Wood, B.J., Ghosh, S., and Stachel, T. (2016) The pyroxenite-diamond
- 359 connection. Geochemical Perspectives Letters, 2, 1–9.
- 360 Kopylova, M.G., Gurney, J.J., and Daniels, L.R.M. (1997) Mineral inclusions in diamonds from
- the River Ranch kimberlite, Zimbabwe. Contributions to Mineralogy and Petrology, 129,
- 362 366–384.
- 363 Kraus, W., and Nolze, G. (1996) POWDER CELL a program for the representation and
- 364 manipulation of crystal structures and calculation of the resulting X-ray powder patterns.
- Journal of Applied Crystallography, 29, 301–303.
- 366 Laves, F. (1962) The growing field of mineral structures. In P.P. Ewald, Ed., Fifty Years of X-
- 367 Ray Diffraction, pp. 174–189. Springer, Boston, MA.
- Lummen, T.T.A., Leung, J., Kumar, A., Wu, X., Ren, Y., VanLeeuwen, B.K., Haislmaier, R.C.,
- 369 Holt, M., Lai, K., Kalinin, S.V., and Gopalan, V. (2017) Emergent low-symmetry phases and

- 370 large property enhancements in ferroelectric KNbO₃ bulk crystals. Advanced Materials, 29,
- 371 1700530, 1–7.
- 372 Mandarino, J.A. (1976) The Gladstone-Dale relationship Part I: Derivation of new constants.
- 373 Canadian Mineralogist, 14, 498–502.
- Mason, B.H. (1992) Victor Moritz Goldschmidt: Father of Modern Geochemistry, 184 p.
- 375 Geochemical Society, Special Publication No. 4, San Antonio.
- 376 Meyer, H.O.A. (1987) Inclusions in diamond. In P.H. Nixon, Ed., Mantle Xenoliths, pp. 501-
- 377 522. John Wiley and Sons.
- 378 Mitchell, R.H., Choi, J.B., Hawthorne, F.C., and Burns, P.C. (1998) Latrappite: A re-
- investigation. Canadian Mineralogist, 36, 107–116.
- 380 Mitchell, R.H., Welch, M.D., and Chakhmouradian, A.R. (2017) Nomenclature of the perovskite
- 381 supergroup: A hierarchical system of classification based on crystal structure and
- 382 composition. Mineralogical Magazine, 81, 411–461.
- 383 Naidoo, P., Stiefenhofer, J., Field, M., and Dobbe, R. (2004) Recent advances in the geology of
- 384 Koffiefontein Mine, Free State Province, South Africa. Lithos, 76, 161–182.
- 385 Nestola, F., Korolev, N., Kopylova, M., Rotiroti, N., Pearson, D.G., Pamato, M.G., Alvaro, M.,
- 386 Peruzzo, L., Gurney, J.J., Moore, A.E., and Davidson, J. (2018) CaSiO₃ perovskite in
- diamond indicates the recycling of oceanic crust into the lower mantle. Nature, 555, 237–
- 388 241.
- 389 Nilsen, W.G., and Skinner, J.G. (1968) Raman spectrum of strontium titanate. Journal of
- 390 Chemical Physics, 48, 2240–2248.

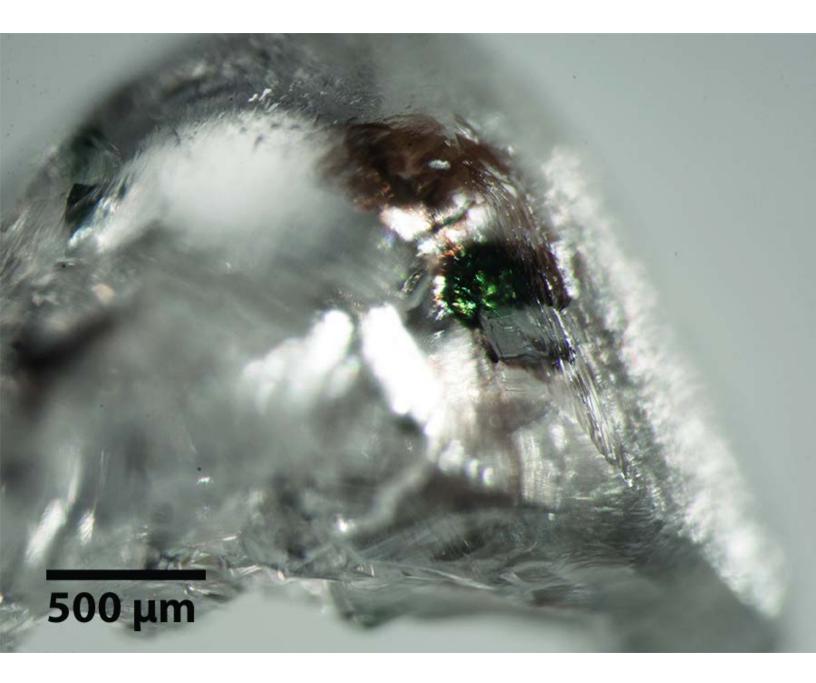
- 391 Nimis, P., and Taylor, W.R. (2000) Single clinopyroxene thermobarometry for garnet peridotites.
- 392 Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer.
- 393 Contributions to Mineralogy and Petrology, 139, 541–554.
- Palache, C. (1900) Notes on tellurides from Colorado. American Journal of Science, 419–427.
- 395 Palot, M., Jacobsen, S.D., Townsend, J.P., Nestola, F., Marquardt, K., Miyajima, N., Harris,
- J.W., Stachel, T., McCammon, C.A., and Pearson, D.G. (2016) Evidence for H₂O-bearing
- fluids in the lower mantle from diamond inclusion. Lithos, 265, 237–243.
- 398 Peacock, M.A. (1939) Goldschmidtine, a newly recognized antimonide of silver. American
- 399 Mineralogist, 24, 227–241.
- 400 (1940) Goldschmidtine identical with stephanite. American Mineralogist, 25, 372–373.
- 401 Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev,
- 402 S., Mather, K.A., Silversmit, G., Schmitz, S., and others (2014) Hydrous mantle transition
- zone indicated by ringwoodite included within diamond. Nature, 507, 221–4.
- 404 Rickard, R.S., Harris, J.W., Gurney, J.J., and Cardoso, P., (1989) Mineral inclusions in diamonds
- 405 from Koffiefontein Mine. In Kimberlites and Related Rocks, 2, 1054–1062.
- 406 Schaufele, R.F., and Weber, M.J. (1967) First- and second-order Raman scattering of SrTiO₃.
- 407 The Journal of Chemical Physics, 46, 2859–2861.
- 408 Skjærvø, S.L., Høydalsvik, K., Blichfeld, A.B., Einarsrud, M.-A., and Grande, T. (2018)
- 409 Thermal evolution of the crystal structure and phase transitions of KNbO₃. Royal Society
- 410 Open Science, 5, 180368, 1–5.
- 411 Suess, H.E. (1988) V.M Goldschmidt and the origin of the elements. Applied Geochemistry, 3,
- 412 385–391.

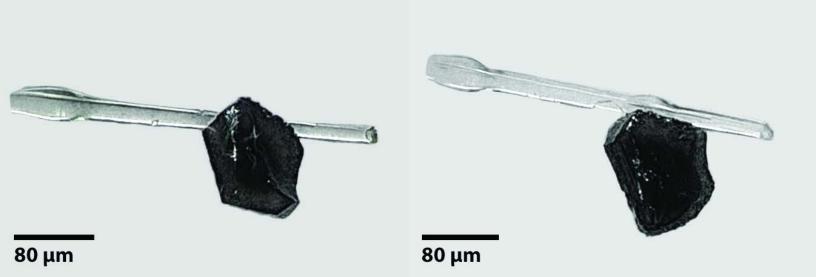
- 413 Tilley, C.E. (1948) Victor Moritz Goldschmidt. Biographical Memoirs of Fellows of the Royal
- 414 Society, 6, 51–66.
- 415 Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B., and Rossman, G.R. (2014)
- 416 Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite.
- 417 Science, 346, 1100–1102.
- 418 Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V.B., Ma, C., Rossman, G.R., Shen, A.H.,
- 419 Zhang, D., Newville, M., Lanzirotti, A., and others (2018) Ice-VII inclusions in diamonds:
- 420 Evidence for aqueous fluid in Earth's deep mantle. Science, 359, 1136–1139.
- 421 Zheng, H., Csete de Györgyfalva, G.D.C., Quimby, R., Bagshaw, H., Ubic, R., Reaney, I.M., and
- 422 Yarwood, J. (2003) Raman spectroscopy of B-site order-disorder in CaTiO₃-based
- 423 microwave ceramics. Journal of the European Ceramic Society, 23, 2653–2659.
- 424 Zheng, H., Reaney, I.M., and Gyo, G.D.C.C. De (2004) Raman spectroscopy of CaTiO₃-based
- 425 perovskite.

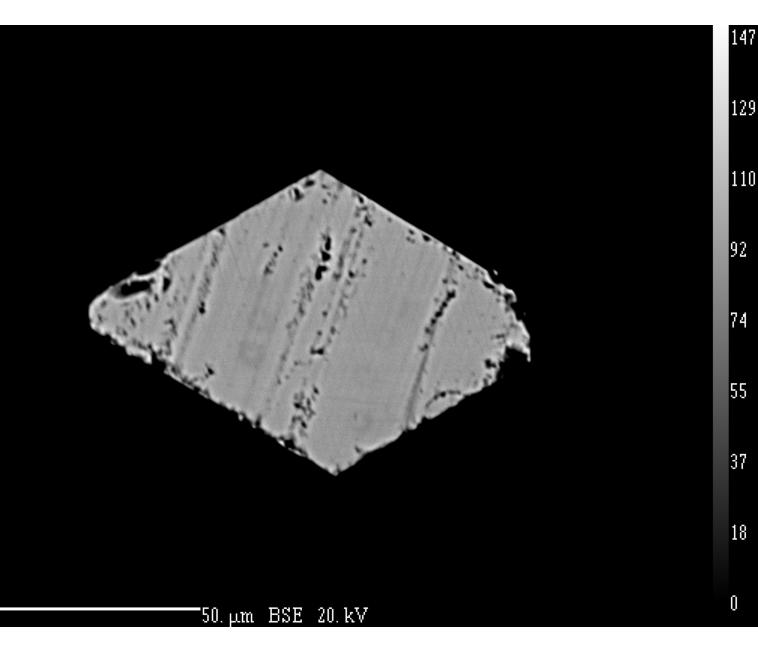
427	LIST OF FIGURE CAPTIONS
428	
429	FIGURE 1. Broken and rounded dodecahedral diamond from Koffiefontein that hosted
430	goldschmidtite (before breakage). Goldschmidtite is seen in green and radiation damage of
431	the diamond can be seen by the brown regions.
432	FIGURE 2. Two orientations of the crystal of goldschmidtite adhered to a glass fiber. Crystal
433	shape has been affected by polishing. Background noise due to the digital-image stacking has
434	been removed.
435	FIGURE 3. Back-scattered-electron image of goldschmidtite. The lamellar structure is probably a
436	result of polishing.
437	FIGURE 4. Clinographic view of the structure of goldschmidtite: Nb atoms are orange and in 6-
438	fold coordination, K is pale blue and in 12-fold coordination, O atoms are red, and the unit
439	cell is shown in black.
440	FIGURE 5. X-ray diffraction image (Mo $K\alpha$ radiation) taken with a MAR345 image plate
441	showing sharp, single diffraction spots and the absence of twinning.
442	FIGURE 6. (a) Uncorrected Raman spectrum of goldschmidtite (black) using a 458.5 nm
443	excitation laser, compared with natural tausonite (red curve) and perovskite (blue curve,
444	RRUFF sample R050456). Spectra are offset for clarity. Raman features in $SrTiO_3$ are
445	attributed to second-order Raman scattering (Nilsen and Skinner 1968). The strong band at
446	815 cm ⁻¹ is likely due to weak, local ordering of different cations on the B site (Zheng et al.
447	2003). (b) Deconvolved and baseline-corrected Raman spectrum of goldschmidtite below
448	1200 cm^{-1} .

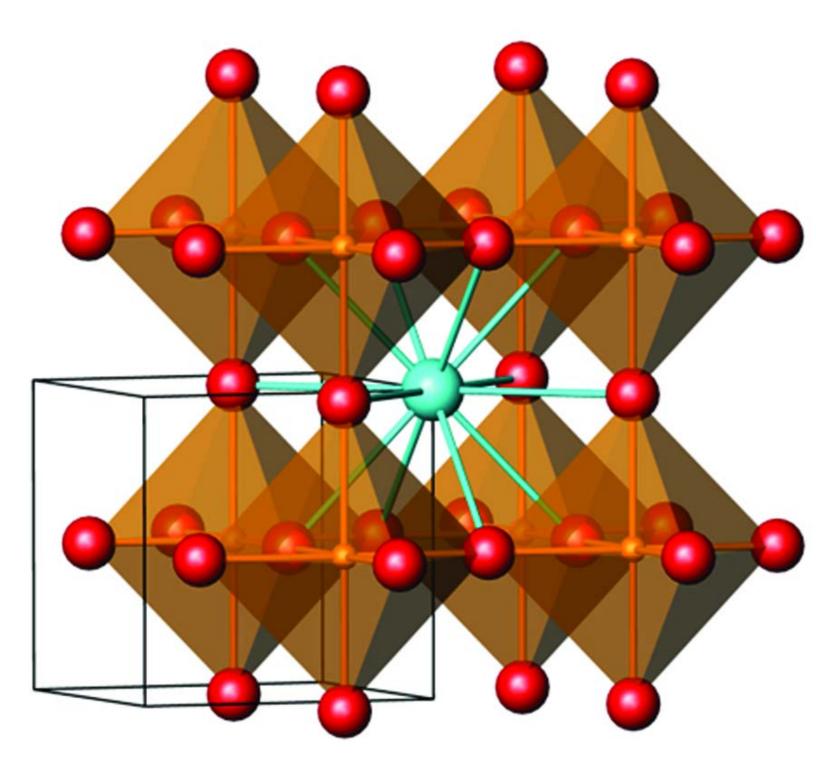
Constituent	wt%	Range (n=11)	Stand. dev.
Nb ₂ O ₅	44.82	43.97 - 46.04	0.69
TiO ₂	0.44	0.42 - 0.46	0.01
ThO ₂	0.1	0-0.16	0.06
Al_2O_3	0.35	0.32 - 0.39	0.02
Cr ₂ O ₃	7.07	6.80 - 7.15	0.11
La_2O_3	11.85	11.45 - 12.05	0.17
Ce ₂ O ₃	6.18	6.02 - 6.29	0.08
Fe ₂ O ₃	1.96	1.95 – 1.98	0.01
MgO	0.7	0.67 - 0.78	0.03
CaO	0.04	0.02 - 0.07	0.01
SrO	6.67	6.14 - 6.83	0.21
BaO	6.82	6.48 - 7.30	0.27
K ₂ O	11.53	11.16 – 11.67	0.14
Total	98.53	97.81 - 99.81	0.58

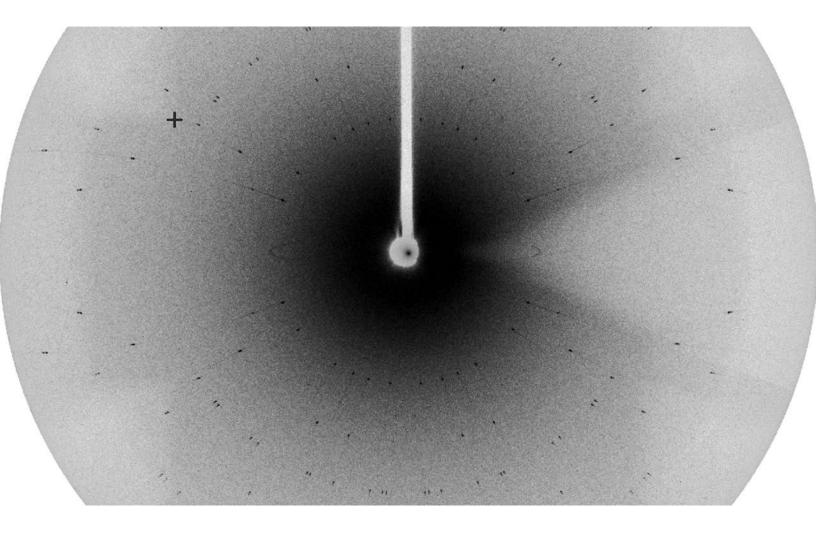
450	TABLE 1.	Electron	microprob	e analysis	of gol	dschmidtite.
-----	----------	----------	-----------	------------	--------	--------------


Relative intensity, I (%)	d _{calc.} (Å)	hkl	
0.61	3.9876	100	
100.00	2.8197	110	
6.89	2.3022	111	
49.93	1.9938	200	
0.22	1.7833	210	
57.80	1.6279	211	
35.82	1.4098	220	
0.01	1.3292	300	
0.05	1.3292	221	
28.15	1.2610	310	
2.11	1.2023	311	
12.89	1.1511	222	
0.02	1.1060	320	
37.95	1.0657	321	
7.30	0.9969	400	
0.02	0.9671	410	
0.02	0.9671	322	
8.63	0.9399	330	
17.25	0.9399	411	
1.13	0.9148	331	
29.88	0.8917	420	
0.03	0.8702	421	
20.86	0.8502	332	
43.24	0.8140	422	


453 TABLE 2 . Calculated powder diffraction data for gold
--


Goldschmidtite (cm ⁻¹)	SrTiO ₃ (cm ⁻¹) ^a	Assignments for SrTiO ₃ ⁴
	81	TO_2 -TA; TO_2 - TO_1
125		
160		
240	251	2TA; 2TO ₁ ; TO ₁ +TA
320	308	TO ₂ +TA; TO ₂ +TO ₁ ; TO ₄ - TO ₂
	369	TO_4 -TA; TO_4 -TO ₁ ; $2TO_2$
445		. ,
465		
580		
	629	TO_4+TA ; TO_4+TO_1
	684	$2TO_3$
715	727	TO_4+TO_2
750		
815		
850		
	1038	2LO ₂ ; 2TO ₄
	1325	LO_4+LO_2
1590	1618	$2LO_4$


456	TABLE 3. Raman s	pectral assignments	for second-order modes.


^a Synthetic, pure SrTiO₃ (Nilsen and Skinner 1968).

