1	Revision 3
2	Compressional behavior and spin state of δ -(Al,Fe) OOH at high pressures
3	
4	Itaru Ohira ^{1,a*} , Jennifer M. Jackson ² , Natalia V. Solomatova ^{2,b} , Wolfgang
5	Sturhahn ² , Gregory J. Finkelstein ^{2,c} , Seiji Kamada ^{1,3} , Takaaki Kawazoe ^{4,5} , Fumiya
6	Maeda ¹ , Naohisa Hirao ⁶ , Satoshi Nakano ⁷ , Thomas S. Toellner ⁸ , Akio Suzuki ¹ , Eiji
7	Ohtani ¹
8	¹ Department of Earth Science, Graduate School of Science, Tohoku University, Sendai
9	980-8578, Japan
10	² Seismological Laboratory, California Institute of Technology, Pasadena, California
11	91125, U.S.A.
12	³ Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai
13	980-8578, Japan
14	⁴ Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, 95440 Germany
15	⁵ Department of Earth and Planetary Systems Science, Graduate School of Science,
16	Hiroshima University, Higashi-Hiroshima 739-8526, Japan
17	⁶ Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan
18	⁷ National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
19	⁸ Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
20	^a Present address: HPCAT, Geophysical Laboratory, Carnegie Institution of Washington,
21	Argonne, Illinois 60439, U.S.A.
22	^b Present address: Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon,
23	Université Claude Bernard Lyon 1, CNRS UMR 5276, Lyon, France

^c Present address: Hawaii Institute of Geophysics and Planetology, School of Ocean and

25 Earth Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822, U.S.A.

- 26 * Corresponding author: itaru.ohira@gmail.com
- 27
- 28

ABSTRACT

29 Hydrogen transport from the surface to the deep interior and distribution in the mantle 30 are important in the evolution and dynamics of the Earth. An aluminum oxy-hydroxide, 31 δ -AlOOH, likely influences the hydrogen transport process in the deep mantle because of 32 its high stability extending to lower mantle conditions. The compressional behavior and spin states of δ -(Al,Fe³⁺)OOH phases were investigated with synchrotron X-ray 33 34 diffraction and Mössbauer spectroscopy under high pressure and room temperature. Pressure-volume (*P-V*) profiles of the δ -(Al_{0.908(9)}⁵⁷Fe_{0.045(1)})OOH_{1.14(3)} (Fe/(Al+Fe) = 35 0.047(10), δ -Fe5) and the δ -(Al_{0.832(5)}⁵⁷Fe_{0.117(1)})OOH_{1.15(3)} (Fe/(Al+Fe) = 0.123(2), δ -36 37 Fe12) show that these hydrous phases undergo two distinct structural transitions 38 involving changes in hydrogen bonding environments and a high- to low-spin crossover 39 in Fe^{3+} . A change of axial compressibility accompanied by a transition from ordered-40 $(P2_1nm)$ to disordered-hydrogen bond (Pnnm) occurs near 10 GPa for both δ -Fe5 and δ -41 Fe12 samples. Through this transition, the crystallographic a and b axes become stiffer, 42 whereas the c axis does not show such a change, as observed in pure δ -AlOOH. A volume collapse due to a transition from high- to low-spin states in the Fe^{3+} ions is 43 44 complete below 32–40 GPa in δ -Fe5 and δ -Fe12, which is ~10 GPa lower than that reported for pure ε-FeOOH. Evaluation of the Mössbauer spectra of δ-45 $(Al_{0.824(10)}^{57}Fe_{0.126(4)})OOH_{1.15(4)}$ (Fe/(Al+Fe) = 0.133(3), δ -Fe13) also indicate a spin 46

47	transition between 32–45 GPa. Phases in the δ -(Al,Fe)OOH solid solution with similar
48	iron concentrations as those studied here could cause an anomalously high $ ho/v_{\Phi}$ ratio
49	(bulk sound velocity, defined as $\sqrt{K/\rho}$) at depths corresponding to the spin crossover
50	region (~900 to ~1000 km depth), whereas outside the spin crossover region a low ρ/v_{Φ}
51	anomaly would be expected. These results suggest that δ -(Al,Fe)OOH solid solution may
52	be important in understanding the heterogeneous structure of the deep Earth.
53	
54	Keywords: δ-AlOOH, δ-(Al,Fe)OOH, hydrous mineral, high-pressure, X-ray diffraction,
55	Mössbauer spectroscopy, diamond anvil cell, synchrotron, water transport in the deep
56	mantle
57	
58 59	INTRODUCTION
60	Valatile transport in particular hydrogen in the forms of water and hydrogyal from the
	volatile transport, in particular hydrogen in the forms of water and hydroxyr, from the
61	surface to the deep interior and distribution in the mantle are important in understanding
61 62	surface to the deep interior and distribution in the mantle are important in understanding the evolution and dynamics of the Earth. Important hosts of hydrogen in the deep mantle
61 62 63	surface to the deep interior and distribution in the mantle are important in understanding the evolution and dynamics of the Earth. Important hosts of hydrogen in the deep mantle are hydrous and nominally-anhydrous minerals (e.g., Bell and Rossman 1992; Smyth and
61 62 63 64	volatile transport, in particular hydrogen in the forms of water and hydroxyl, from the surface to the deep interior and distribution in the mantle are important in understanding the evolution and dynamics of the Earth. Important hosts of hydrogen in the deep mantle are hydrous and nominally-anhydrous minerals (e.g., Bell and Rossman 1992; Smyth and Jacobsen 2006; Ohtani 2005, 2015, Ohtani et al. 2016; Wirth et al. 2007; Pearson et al.
61 62 63 64 65	surface to the deep interior and distribution in the norms of water and hydroxyl, from the surface to the deep interior and distribution in the mantle are important in understanding the evolution and dynamics of the Earth. Important hosts of hydrogen in the deep mantle are hydrous and nominally-anhydrous minerals (e.g., Bell and Rossman 1992; Smyth and Jacobsen 2006; Ohtani 2005, 2015, Ohtani et al. 2016; Wirth et al. 2007; Pearson et al. 2014; Kaminsky 2017; Tschauner et al. 2018). A dense aluminum oxy-hydroxide, δ -
61 62 63 64 65 66	surface to the deep interior and distribution in the nantle are important in understanding the evolution and dynamics of the Earth. Important hosts of hydrogen in the deep mantle are hydrous and nominally-anhydrous minerals (e.g., Bell and Rossman 1992; Smyth and Jacobsen 2006; Ohtani 2005, 2015, Ohtani et al. 2016; Wirth et al. 2007; Pearson et al. 2014; Kaminsky 2017; Tschauner et al. 2018). A dense aluminum oxy-hydroxide, δ - AlOOH, likely plays a key role in hydrogen transport in the mantle transition zone and
61 62 63 64 65 66 67	volatile transport, in particular hydrogen in the forms of water and hydroxyl, from the surface to the deep interior and distribution in the mantle are important in understanding the evolution and dynamics of the Earth. Important hosts of hydrogen in the deep mantle are hydrous and nominally-anhydrous minerals (e.g., Bell and Rossman 1992; Smyth and Jacobsen 2006; Ohtani 2005, 2015, Ohtani et al. 2016; Wirth et al. 2007; Pearson et al. 2014; Kaminsky 2017; Tschauner et al. 2018). A dense aluminum oxy-hydroxide, δ -AlOOH, likely plays a key role in hydrogen transport in the mantle transition zone and the lower mantle (e.g., Ohtani et al. 2016). This hydrous phase is a high-pressure
 61 62 63 64 65 66 67 68 	volatile transport, in particular hydrogen in the forms of water and hydroxyl, from the surface to the deep interior and distribution in the mantle are important in understanding the evolution and dynamics of the Earth. Important hosts of hydrogen in the deep mantle are hydrous and nominally-anhydrous minerals (e.g., Bell and Rossman 1992; Smyth and Jacobsen 2006; Ohtani 2005, 2015, Ohtani et al. 2016; Wirth et al. 2007; Pearson et al. 2014; Kaminsky 2017; Tschauner et al. 2018). A dense aluminum oxy-hydroxide, δ -AlOOH, likely plays a key role in hydrogen transport in the mantle transition zone and the lower mantle (e.g., Ohtani et al. 2016). This hydrous phase is a high-pressure polymorph of diaspore (α -AlOOH) and boehmite (γ -AlOOH), and was first synthesized
 61 62 63 64 65 66 67 68 69 	volatile transport, in particular hydrogen in the forms of water and hydroxyr, from the surface to the deep interior and distribution in the mantle are important in understanding the evolution and dynamics of the Earth. Important hosts of hydrogen in the deep mantle are hydrous and nominally-anhydrous minerals (e.g., Bell and Rossman 1992; Smyth and Jacobsen 2006; Ohtani 2005, 2015, Ohtani et al. 2016; Wirth et al. 2007; Pearson et al. 2014; Kaminsky 2017; Tschauner et al. 2018). A dense aluminum oxy-hydroxide, δ -AlOOH, likely plays a key role in hydrogen transport in the mantle transition zone and the lower mantle (e.g., Ohtani et al. 2016). This hydrous phase is a high-pressure polymorph of diaspore (α -AlOOH) and boehmite (γ -AlOOH), and was first synthesized by Suzuki et al. (2000) at 21 GPa and 1273 K in a multi-anvil apparatus. High pressure

diamond anvil cell (DAC) combined with in situ X-ray diffraction (XRD) have demonstrated the stability of δ -AlOOH at 21–142 GPa and 973–2410 K, corresponding to the conditions of the regions deeper than the lower transition zone (Sano et al. 2004, 2008; Pamato et al. 2015; Fukuyama et al. 2017; Abe et al. 2018; Duan et al. 2018). This high stability implies that δ -AlOOH has the potential to transport hydrogen to the coremantle boundary (CMB) region.

77 The structure and physical properties of δ -AlOOH at ambient and high pressure 78 conditions have also been investigated. At ambient conditions, δ -AlOOH has a distorted 79 rutile-type structure with ordered (asymmetric) hydrogen bond ($P2_1nm$, off-centered 80 hydrogen positions termed "HOC-I") (Suzuki et al. 2000; Komatsu et al. 2006; Sano-81 Furukawa et al. 2009; Kuribayashi et al. 2014; Xue and Kanzaki 2007). During 82 compression, the O···O distance (d_{OO}) of δ -AlOOH decreases, and this phase transforms 83 from HOC-I to a proton-disordered symmetric structure characterized by proton 84 tunneling (*Pnnm*, HOC-III) when the d_{OO} reaches the critical distance (2.439(6) Å) at 8 85 GPa (Kuribayashi et al. 2014). High-pressure powder and single-crystal XRD 86 measurements showed that this transition involves changes in axial compressibility 87 (Sano-Furukawa et al. 2009; Kuribayashi et al. 2014), which are also supported by the 88 recent computational studies (Cortona 2017; Kang et al. 2017; Pillai et al. 2018).

Further compression decreases the d_{00} , and δ -AlOOH adopts a proton-centered structure in which the d_{00} is below ~2.366 Å (*Pnnm*, HC) (Tsuchiya and Tsuchiya 2009). In our paper, the term of symmetrization indicates the transition to a proton-centered structure (i.e. the transition from HOC-III to HC). Because this symmetrization may cause a further increase in the bulk modulus, the determination of this transition pressure

94 is important to discuss the effect of δ -phase on the seismic velocity in the lower mantle. 95 However, computational studies using different approximations have shown conflicting 96 pressure conditions for the symmetrization of δ -AlOOH, ranging from 0 to 50 GPa 97 (Cortona 2017; Panero and Stixrude 2004; Tsuchiya and Tsuchiya 2009; Tsuchiya et al. 98 2002; Li et al. 2006; Cedillo et al. 2016; Bronstein et al. 2017; Kang et al. 2017; Pillai et 99 al. 2018). On the other hand, sound wave velocity measurements using Brillouin 100 spectroscopy demonstrated a precipitous increase by ~14% in the sound velocities of δ -101 AlOOH from 6 to 15 GPa (Mashino et al. 2016), and Raman spectroscopy results showed 102 that the B_2 mode peaks of $P2_1nm$ broaden and disappear and the new peaks assigned to 103 the A_{g} mode of *Pnnm* appear above 5.6 GPa (Mashino et al. 2016). Infrared spectra 104 obtained from δ -AlOOH also demonstrated the change of pressure dependence of 105 hydrogen-based vibrational modes at 10 GPa (Kagi et al. 2010). The pressure conditions 106 of symmetrization determined from the spectroscopic measurements are in the pressure 107 range where changes in axial compressibility due to the occurrence of the order-disorder 108 (P2₁nm HOC-I to Pnnm HOC-III) transition (Sano-Furukawa et al. 2009; Kuribayashi et 109 al. 2014). Although the pressure conditions of hydrogen bond symmetrization remains 110 unclear from the computational studies, the experimental data suggest that it would be 111 completed at shallow lower mantle pressures (Sano-Furukawa et al. 2009; Kuribayashi et 112 al. 2014; Mashino et al. 2016; Kagi et al. 2010). The recent neutron diffraction (ND) 113 study on δ -AlOOH by Sano-Furukawa et al. (2018) observed the order-disorder 114 transition of the hydrogen bond at 9.0 GPa and the symmetrization at 18.1 GPa, and 115 concluded that the discrepancy of symmetrization pressure between the experimental and

several computational studies is due to quantum and temperature effects, which was also

117 suggested in the computational studies by Bronstein et al. (2017).

118 δ -AlOOH forms a solid solution with hydrous MgSiO₄H₂ Phase H and ϵ -FeOOH (a 119 polymorph of goethite (α -FeOOH)) phases because they also have $P2_1nm$ and Pnnm120 structures. Phase H has a proton-disordered symmetric structure (*Pnnm*, HOC-III) even at 121 ambient conditions (Bindi et al. 2014), and it transforms to a proton-centered structure 122 (Pnnm, HC) at around 30 GPa (Tsuchiya and Mookherjee 2015; Nishi et al. 2018). E-123 FeOOH phase has a proton-ordered asymmetric structure ($P2_1nm$, HOC-I) at ambient 124 conditions (Pernet et al. 1975). Density functional theory (DFT) calculations on ε -125 FeOOH predicted that hydrogen bond symmetrization (i.e., the transition to HC-structure) 126 occurs at ~10 GPa (Thompson et al. 2017) or ~43 GPa (Gleason et al. 2013), and the 127 high-spin to low-spin (HS-LS) spin transition occurs at 56.5 GPa (Otte et al. 2009) or 128 64.8 GPa (Gleason et al. 2013). Hydrogen symmetrization pressure in ε -FeOOH is higher 129 than that in δ -AlOOH predicted from DFT calculations (~30 GPa; Tsuchiya and Tsuchiya 130 2009). However, it should be noted that the possible occurrence of a proton-disordered 131 symmetric structure (HOC-III), which could appear at pressures lower than a proton-132 centered structure (HC), has not been evaluated in E-FeOOH. The HS-LS transition 133 pressures in ε -FeOOH predicted by theory are close to those determined with X-ray 134 emission spectroscopy (40-60 GPa) and estimated from the volume collapse (~46-54 135 GPa) measured with XRD (Gleason et al. 2013).

The stability of hydrous δ -phase– ϵ -FeOOH–Phase H solid solution has been confirmed up to at least 128 GPa and 2190 K in the MgO–Al₂O₃–SiO₂–H₂O system (Ohira et al. 2014; Walter et al. 2015). Ohira et al. (2014) reported the coexistence of bridgmanite 139 with minor Al (MgSiO₃–6 mol% Al₂O₃) and Al-rich δ -phase–Phase H solid solution 140 containing about 40 mol% of a phase H component at 68 GPa and 2010 K. At 128 GPa 141 and 2190 K, hydrous δ -H solid solution coexisting with post-perovskite with minor Al 142 (MgSiO₃-5 mol% Al₂O₃) contains only 20 mol% of hydrous Phase H component (Ohira 143 et al. 2014). A recent experimental study has shown a continuous chain of hydrous phases 144 in cold oceanic crusts subducted from the Earth's surface to the top of the lower mantle 145 (Liu et al. 2019). In the hydrous basalt system, ε -phase is formed as ε -FeOOH–TiO₂ solid 146 solution (Liu et al. 2019; Okamoto and Maruyama 2004), which is stable at 8–17 GPa 147 and the cold slab temperatures (Liu et al. 2019; Okamoto and Maruyama 2004; Nishihara 148 and Matsukage 2016). Then, the hydrous δ -AlOOH– ϵ -FeOOH–phase H solid solution 149 (referred to as "Al-rich Phase H" in Liu et al. 2019) is formed, and it coexists with 150 bridgmanite, CaSiO₃-perovskite, stishovite, ferropericlase, and fluid at 25–26 GPa and 151 1273–1473 K, comparable to the condition of cold slabs at the top of the lower mantle 152 (Liu et al. 2019).

153 The composition of this hydrous phase formed in the hydrous basalt system is 154 \sim Mg_{0.11}Si_{0.20}Al_{0.63}Fe_{0.03}O₂H, (Liu et al. 2019), which is close to AlOOH end-member. 155 Although the incorporation of ε -FeOOH is limited, it might influence the physical 156 properties of hydrous solid solution because Fe has large mass and might undergo the 157 spin transition at lower mantle pressures. Therefore, the physical properties of δ -AlOOH– 158 ϵ -FeOOH (δ -(Al,Fe)OOH) solid solution are important to understand the behavior of this 159 hydrous solid solution under lower mantle conditions. However, the physical properties 160 of δ -(Al,Fe)OOH under lower mantle conditions have not been examined. To address 161 these issues, we have conducted a set of high-pressure XRD and synchrotron Mössbauer

162 spectroscopy (SMS) experiments for δ -(Al,Fe)OOH.

163

164 165

EXPERIMENTAL METHODS

166 δ-(Al,Fe)OOH crystals

167 The samples are selected from aggregates of single crystals of δ -(Al,Fe)OOH phases 168 synthesized with a hydrothermal method using a 1000-ton Kawai-type multi anvil 169 apparatus installed at Bayerisches Geoinstitut, University of Bayreuth. The details of the 170 synthesis and characterization of δ -(Al,Fe)OOH under ambient conditions have been 171 reported by Kawazoe et al. (2017). Therefore, we provide only a brief description here. 172 The single crystals of δ -(Al, ⁵⁷Fe)OOH were synthesized at 21 GPa and 1470 K from a mixture of reagent-grade Al(OH)₃ (Rare Metallic Co., Ltd.) and Fe₂O₃ (96.64% ⁵⁷Fe, 173 174 ISOFLEX) using a Kawai-type multi-anvil apparatus. The initial dimensions of the 175 recovered crystals were in the range of 0.1-0.5 mm. The chemical compositions and 176 homogeneity of the δ -(Al,Fe)OOH crystals were confirmed using an electron microprobe 177 operating at 15 kV and 10 nA in the wavelength-dispersive mode (JEOL, JXA-8800, 178 installed at Tohoku University). The oxide mass deficits of the synthesized samples were 179 2-3 wt% greater than H₂O contents which would be expected based on the H₂O contents 180 in their ideal chemical formulas, suggesting the incorporation of additional water 181 (Kawazoe et al. 2017). In this study, δ -(Al_{0.908(9)}⁵⁷Fe_{0.045(1)})OOH_{1.14(3)} (Fe/(Al+Fe) = 0.047(10)) synthesized and δ -(Al_{0.832(5)}⁵⁷Fe_{0.117(1)})OOH_{1.15(3)} (Fe/(Al+Fe) = 0.123(2)) were 182 183 investigated with synchrotron XRD, and δ -(Al_{0.824(10)}⁵⁷Fe_{0.126(4)})OOH_{1.15(4)} (Fe/(Al+Fe) = 184 (0.133(3)) with synchrotron Mössbauer spectroscopy (SMS) experiments. Hereafter, the

185 three samples are referred to as δ -Fe5, δ -Fe12, and δ -Fe13, respectively. While δ -Fe5 was 186 selected from the crystals synthesized in the run H4473 in Kawazoe et al. (2017), δ -Fe12 187 and δ -Fe13 were from the crystals synthesized in the run H4468 in that study. The 188 additional sample for the single crystal XRD measurement at ambient conditions (δ -189 $(Al_{0.807(7)}^{57}Fe_{0.117(4)})OOH_{1.15(3)}$ (Fe/(Al+Fe) = 0.127(3), identical ratio to δ -Fe12 within 190 error) was also from the run H4468 (Kawazoe et al. 2017). The Fe/(Al+Fe) ratios for the 191 Fe-poor sample (δ -Fe5) and the Fe-rich samples (δ -Fe12 and δ -Fe13) are identical to or 192 slightly higher than that of δ -phase formed at 25–26 GPa and 1273–1473 K in a hydrous 193 oceanic crust (~Mg_{0 11}Si_{0 20}Al_{0 63}Fe_{0 03}O₂H, Liu et al. 2019). 194

195 XRD experiments

196 The compression behavior of the δ -(Al,Fe)OOH samples were examined with a

197 membrane-type DAC (mDAC). This apparatus allowed the pressure in the sample 198 chamber to be increased without unloading it from the X-ray path, thus reducing time 199 interval between each measurement. Experimental pressure could be set precisely using 200 the gas control system. Flat 300 and 250 µm-culet diamonds were used as the anvils. 201 Rhenium plates pre-indented to thicknesses of 50 and 47 um were used for the 300 and 202 250 μ m-culet anvils, respectively, as gaskets. Crystals of δ -(Al,Fe)OOH were powdered 203 and then loaded into the sample hole in the gasket together with tungsten powder. One or 204 two ruby spheres were placed proximal to the sample. Compressed helium gas was 205 loaded into the sample chamber as the pressure medium at the National Institute for 206 Materials Science (NIMS), Japan (Takemura et al. 2001).

207	Two sets of compression experiments were performed, using δ -Fe12 (Run# DAF01)
208	and δ -Fe5 (Run# DAF02). In each run, XRD patterns were collected with the X-rays
209	focused on the tungsten powder before and after each XRD pattern of the sample was
210	collected. The pressure was determined using the equation of state (EoS) for tungsten
211	(Dorogokupets and Oganov 2006), and the ruby fluorescence method (Dewaele et al.
212	2008) was used to compare the pressure determined with the EoS for tungsten and to
213	ensure quasi-hydrostatic conditions in the sample chamber. To avoid the overlapping of
214	tungsten and δ -(Al,Fe)OOH peaks, tungsten patterns were collected without the δ -phase
215	before and after each XRD measurement on the samples. The average pressure drift was
216	0.3 GPa. The difference between the calculated pressures obtained using the EoS for
217	tungsten and the ruby fluorescence method was less than 0.9 GPa in each case. The
218	experimental pressures were increased up to 38 and 35 GPa in runs DAF01 and DAF02,
219	respectively, by tightening the four screws on the mDAC. The pressure was subsequently
220	increased to the maximum desired value by supplying helium gas to the unit. During the
221	decompression process, the gas was first released followed by loosening of the screws. In
222	the DAF02 experimental run, the ambient XRD pattern of δ -Fe5 was collected after
223	decompression. The ambient XRD patterns of the additional sample, the $\delta\text{-}$
224	$(Al_{0.807(7)}^{57}Fe_{0.117(4)})OOH_{1.15(3)}$ (Fe/(Al+Fe) = 0.127(3), identical ratio to δ -Fe12 within
225	error), were also collected at the X-ray Crystallography Facility in the Beckman Institute
226	at the California Institute of Technology, where a Mo target ($\lambda = 0.7107$ Å) was employed.
227	The single crystal XRD analysis for the δ -(Al _{0.807(7)} ⁵⁷ Fe _{0.117(4)})OOH _{1.15(3)} under
228	ambient conditions confirmed the structure of δ -AlOOH under ambient conditions (e.g.,
229	Suzuki et al. 2000) (space group as $P2_1nm$, the CIF file is in the deposit).

230	Angle dispersive powder XRD patterns were collected at the BL10XU beamline
231	(Ohishi et al. 2008). An imaging plate (Rigaku, R-AXIS IV ⁺⁺) was used for acquiring the
232	XRD patterns, and the exposure time was 8 min. The X-ray wavelength was 0.4141(1) A°
233	(for compression and decompression in run# DAF01), 0.4152(2) A° (compression in run#
234	DAF02) and 0.4143(1) A° (decompression in run# DAF02). One dimensional diffraction
235	profiles were fitted with a pseudo-Voigt function using the PDIndexer software (Seto et
236	al. 2010). The 110, 101, 011, 111, 210, 211, 121, 220, 310, 002, 301, and 112 reflections
237	were employed to calculate the lattice parameters. The 101, 002, 211, 121, 220, 310, 301,
238	and 112 reflections were excluded from the calculations when they overlapped with
239	helium reflections. The 110, 211, and 220 reflections of tungsten were used for pressure
240	determination (Dorogokupets and Oganov 2006). The determination method of lattice
241	constants follows the previous study on Fe-free δ -AlOOH (Sano-Furukawa et al. 2009) to
242	compare the compressional behaviors of Fe-bearing and Fe-free δ -phases. Pressure vs.
243	unit cell volume (P-V) profiles obtained from the XRD experiments were fitted using a
244	spin crossover EoS with version 2.1.0 of the MINUTI software (Sturhahn 2018).

245

246 Synchrotron Mössbauer spectroscopy experiments

A wide-angled piston-cylinder DAC with 300 μ m-culet/370 μ m-beveled anvils was used to generate high pressure conditions for the SMS experiments. A piece of δ -Fe13 with dimensions of 40 × 50 × 20 μ m was cut from a larger crystallite in the same synthesis run described above. A beryllium disk pre-indented to a thickness of 38 μ m was used as a gasket. The diameter of the sample hole in the gasket was 165 μ m for 300 μ mculet anvils. A mixture of 10–20 μ m thick boron epoxy (amorphous boron powder:epoxy = 4:1 by weight; Lin et al. 2003) was put on the side of a beryllium gasket hole. Two
ruby spheres were positioned beside the sample as pressure markers (Dewaele et al.
2008). Compressed neon gas was loaded into the sample chamber as a pressure medium
at the California Institute of Technology.

257 Time-domain SMS measurements were conducted on a single crystal of δ -Fe13 at 258 Sector 3-ID-B at the Advanced Photon Source (APS). The storage ring was operated in 259 top-up mode with 24 bunches separated by 153 ns. A high-resolution monochromator was tuned to the 14.4125 keV nuclear transition energy of ⁵⁷Fe with a FWHM of about 1 260 meV (Toellner 2000). The beam was focused to an area of 10 by 14 μ m² using a 261 262 Kirkpatrick-Baez mirror system. The time spectra were measured with an avalanche 263 photodiode detector positioned about 0.5 m downstream from the sample. A 10 um thick stainless steel (SS) foil with a natural abundance of ⁵⁷Fe was placed in the downstream 264 265 direction as a reference absorber for isomer shift measurements. At each compression 266 point, a spectrum was collected of the sample with and without the SS reference foil. The isomer shift between the SS foil and α -iron metal was measured at the APS using a 267 268 radioactive source and found to be -0.100(3) mm/s with a corresponding FWHM (due to 269 the effect of site distribution) of 0.445(9) mm/s (Solomatova et al. 2017).

Synchrotron Mössbauer spectra were fitted with version 2.1.1 of the CONUSS software (Sturhahn 2000, 2016), which implements a least-square algorithm to fit iron's hyperfine parameters and material properties. The spectrum of the sample and sample with SS were fitted simultaneously. For a single crystal, the orientation of the electric field gradient tensor of each iron site must be specified with respect to the direction and polarization of the X-ray using three Euler angles (α , β and γ). The orientation of the 276 crystal was determined through careful analysis of the reduced χ^2 and Monte Carlo 277 searches. The Euler angles of the high-spin site were calculated using the CONUSS 278 module, "kvzz" using the lattice parameters and atomic positions of δ -Fe13. The Euler 279 angles for the low-spin sites were determine through a Monte Carlo search and were 280 fixed with pressure.

281

282 283

RESULTS

284 XRD experiments

 $(\delta - (Al_{0,832(5)})^{57} Fe_{0,117(1)})OOH_{1,15(3)},$ 285 δ-Fe12 Run# DAF01) and δ-Fe5 (δ- $(Al_{0.908(9)}^{57}Fe_{0.045(1)})OOH_{1.14(3)}$, Run# DAF02) were compressed to 65 and 56 GPa, 286 287 respectively. The representative one-dimensional XRD patterns of the samples converted 288 from two-dimensional patterns are shown in Figure 1. The lattice constants (a, b, and c)289 and unit cell volumes determined from the XRD data for δ -Fe12 and δ -Fe5 are 290 summarized in Tables 1 and 2, respectively. It should be noted that the tungsten pressure 291 scale does not include the errors of EoS parameters (V_0 , K_0 , K'), and therefore the 292 experimentally determined pressures in this study might be relatively smaller than the 293 other experimental studies (e.g., Duan et al. 2018). A potential pressure error might be up 294 to $\sim 2\%$, as presumed in Sano-Furukawa et al. (2009).

Figure 2 shows the *P-V* profiles of the two samples during compression and decompression. The unit cell volume obtained during decompression is plotted along with the compressional profiles (Fig. 2). The *P-V* profiles of δ -Fe12 and δ -Fe5 show that both δ -(Al,Fe)OOH phases undergo multiple structural transitions over the experimental pressure ranges, related to the change of the hydrogen bonds (e.g., Sano-Furukawa et al.

- 2008, 2009, 2018; Kuribayashi et al. 2014) and spin transition in Fe³⁺ (Gleason et al.
- 301 2013; Otte et al. 2009). The associated characteristics are:
- 302 (1) asymmetric (ordered) hydrogen bonds + high-spin state (HOC-I-HS, space group
 303 P21nm)
- 304 (2) symmetric hydrogen bonds + high-spin state (HS, *Pnnm*)
- 305 (2a) symmetric (disordered) hydrogen bonds + high-spin state (HOC-III-HS, *Pnnm*)
- 306 (2b) symmetric (proton-centered) hydrogen bonds + high-spin state (HC-HS, *Pnnm*)
- 307 (3) symmetric hydrogen bonds + low-spin state (LS, *Pnnm*).

308 It should be noted that the HOC-III-HS (2a) and HC-HS (2b) states cannot be 309 distinguished in the XRD data, as discussed in the previous studies regarding pure δ -310 AlOOH. This is because the former structure (2a) has two crystallographically equivalent 311 hydrogen sites characterized by proton tunneling and further transition to (2b) does not 312 involve a detectable change in compressibility. For example, the recent ND experiment 313 on δ -AlOOH provided direct evidence that the order–disorder transition of the hydrogen 314 bond and the symmetrization occur at different pressure conditions (9.0 and 18.1 GPa, 315 respectively), and argued the importance of the hydrogen bond disorder as a precursor of 316 the symmetrization in understanding the physical properties of minerals under high 317 pressures (Sano-Furukawa et al. 2018). Therefore, the possible transition from HOC-III-318 HS to HC-HS before the onset of HS–LS transition is not evaluated in this study.

The $P2_1nm$ (HOC-I)-HS (1) and Pnnm(HOC-III)-HS (2a) states are separated by the subtle kinks in the *P-V* profiles (Fig. 2) and the inversion of axial compressibility at ~10 GPa (Fig. 3). *Pnnm*-HS (2) and *Pnnm*-LS (3) are distinguished by a volume collapse at ~32–40 GPa (Fig. 2). Profiles of normalized pressure (*F*) against Eulerian strain (*f*) also demonstrate changes in compressibility that occur through the symmetrization ofhydrogen bonds and spin crossover (Fig. 4).

325 A second-order Birch-Murnaghan (BM) EoS was fitted to the P-V profiles of δ -Fe12 326 and δ -Fe5 with the $P2_1nm$ structure, while a third-order Birch-Murnaghan spin crossover 327 EoS (hereafter, spin crossover EoS) was fitted to the *P-V* profiles of δ -Fe12 and δ -Fe5 328 with the *Pnnm* structure using the MINUTI software (Sturhahn 2018) (Fig. 5 and Table 329 3). We consider the elastic and spin state (i.e., 3d electrons of the Fe atoms) contributions 330 to the free energy of the sample. For the elastic contribution, we adopt an expression 331 corresponding to the commonly-used third-order Birch-Murnaghan EoS (3rd-order BM 332 EoS)

333
$$F_{\text{elastic}} = \frac{9}{2} V_{T0} K_{T0} f^2 \{ 1 + (K_{T0} - 4) f \},$$
(1)

where the Eulerian strain is given by $f = \{(V_0/V)^{2/3} - 1\}/2$, and V_0 , K_{T0} , and K'_{T0} are the unit cell volume, isothermal bulk modulus, and the pressure derivative of K_{T0} at room temperature, respectively. The Eq. 1 with a fixed K'_{T0} of 4 is called as 2nd-order BM EoS. For the spin contribution, we assume a set of spin states described by the number of unpaired electron, volume-dependent energy, and orbital degeneracy. For a given pressure *P*, the volume at room temperature is calculated by solving the spin crossover EoS

341
$$P(V,300 \text{ K}) = P_{\text{elastic}}(V, 300 \text{ K}) + P_{\text{spin}}(V, 300 \text{ K}).$$
(2)

For more details of the spin crossover EoS, we refer the reader to Chen et al. (2012) andSturhahn (2018).

344 A spin crossover EoS reproduces the behavior of δ -Fe12 and δ -Fe5 in the crossover 345 region (Fig. 5 and Table 3). The pressure condition where the unit cell volume changes

346 due to the HS–LS transition is 50% complete is determined for δ -Fe12 at 36.1 ± 0.7 GPa, 347 which is defined as the spin transition pressure. Although the volume collapse of δ -Fe5 is very small due to the low Fe³⁺ content in the sample, it was nonetheless possible to 348 349 determine the spin transition pressure of 34.9 ± 1.1 GPa. The values of F were found to 350 decrease with increasing f through the spin crossover, which is seen clearly in both the 351 Fe-rich δ -Fe12 and the Fe-poor δ -Fe5 samples (Fig. 4). The isothermal bulk modulus (K_T) 352 and bulk sound velocity (v_{Φ}) of δ -Fe12 and δ -Fe5 also decrease in the spin crossover 353 (Fig. 6).

354

355 SMS experiments

356 Synchrotron Mössbauer spectra of δ -Fe13 were collected at 21.1(2), 31.8(8), 45(2), 357 59(2), 67.5(5), and 78.6(5) GPa (Fig. 7). The results of SMS experiments demonstrate 358 that the HS–LS transition in δ -Fe13 is completed by 45 GPa (Fig. 8), which is similar to 359 the pressure conditions at which volume collapse is completed in the *P*-V profiles of δ -Fe12 and δ -Fe5. At 21.1 and 31.8 GPa, one high-spin Fe³⁺-like site was required to fit the 360 361 spectra with a quadrupole splitting value of ~ 0.4 mm/s and isomer shift of 0.2 mm/s, thus we find that 100% of the iron in this phase is Fe^{3+} (see Figs. 7 and 8, and Table 4, which 362 363 include reported uncertainties).

We attempted to fit the spectra above 32 GPa with one low-spin site, but the best model with one low-spin site resulted in a reduced χ^2 of 5. Although δ -Fe13 is characterized by one crystallographic Fe site, the Mössbauer spectra above 32 GPa require two distinct nuclear sites. It is possible that the crystal quality decreased and/or next nearest neighbor interactions explain the additional Mössbauer-site. At pressures of

369 45 GPa and higher, the two low-spin Fe³⁺-like sites are characterized as follows: one with 370 a quadrupole splitting value of $\sim 1.14-1.32$ mm/s and a second site with a quadrupole 371 splitting value of 1.73–2.01 mm/s with weight fractions of 67% and 33%, respectively 372 (Figs. 7 and 8, and Table 4). The isomer shifts with values 0.107–0.249 mm/s follow a 373 negative trend with pressure indicating an increase of the s-electron density at the iron 374 sites that is probably caused by volume decrease.

For all evaluations of the time spectra, we assumed axial symmetry of the electric field gradient tensor at the iron sites. Therefore, only two Euler angles, α and β , need to be considered. For the HS site, these Euler angles were calculated from the lattice parameters and atomic positions of this phase (Table 5). For the LS sites α and β were determined from a Monte Carlo search resulting in values of 296° and 261° for one of the LS sites and 22° and 253° for the other site, respectively.

381

382

DISCUSSION

383 Subtle kinks in the *P-V* profiles for δ -Fe12 and δ -Fe5 are observed at approximately 10 384 GPa (Fig. 2), which may be a result of a structural transition from ordered ($P2_1nm$ (HOC-385 I)-HS) to disordered hydrogen bonds (*Pnnm*(HOC-III)-HS), as observed in XRD and ND 386 measurements on pure δ -AlOOH (Sano-Furukawa et al. 2009, 2018; Kuribayashi et al. 387 2014). The a/c and b/c values decrease rapidly with increasing pressure below ~10 GPa, 388 whereas the a/b values increase up to ~10 GPa. The trend in the axial compressibility is 389 reversed above 10 GPa such that the a and b axes are less compressible than the c axis 390 (Fig. 3). Our finding that the a and b axes are less compressible than the c-axis above 10 391 GPa are corroborated by computational studies for pure δ -AlOOH showing that the

392 hydrogen bonds in the *Pnnm* structure are stronger than those in the $P2_1nm$ phase 393 (Cortona 2017; Tsuchiya and Tsuchiya 2009; Tsuchiya et al. 2002; Kang et al. 2017; 394 Pillai et al. 2018). Such an inversion of the compressibility is also observed in δ -AlOOH 395 at 8–10 GPa (Sano-Furukawa et al. 2009, 2018; Kuribayashi et al. 2014). The hydrogen 396 bonds in the *Pnnm* structures are almost parallel to the $\langle 120 \rangle$ direction, so the effects of 397 these hydrogen bonds on structures and physical properties are stronger along the b axis 398 than the a axis (Kuribayashi et al. 2014), while the compressibility of the c axis is 399 unlikely to be modified. The pressure conditions of inversions of compressibility in δ -400 Fe12 and δ -Fe5 are very close to that of pure δ -AlOOH (Sano-Furukawa et al. 2009, 401 2018; Kuribayashi et al. 2014). Our data demonstrates that Fe incorporation into the δ -402 phase is insensitive to the pressure condition of $P2_1nm$ (ordered-hydrogen bond)–Pnnm403 (disordered hydrogen bond) transition.

The SMS experiments show that octahedrally-coordinated Fe^{3+} in δ -Fe13 undergoes a 404 405 HS-LS transition at the pressure range of 32-45 GPa. Collapse in unit cell volume is also 406 observed in the δ -Fe12 and δ -Fe5 samples within this pressure range, likely as a result of 407 the Fe^{3+} spin transition. The spin-crossover pressures estimated from the *P*-*V* profiles of 408 δ -Fe12 and δ -Fe5 are within the pressure range of ~32–40 GPa, which is ~10 GPa lower 409 than that of E-FeOOH examined with XRD experiments (46-54 GPa, Gleason et al. 410 2013), suggesting that the LS state would be stabilized at lower pressures with decreasing 411 FeOOH concentration in the solid solution. The positive correlation between Fe content 412 and spin-transition pressure has also been reported for the MgO (periclase)-FeO (wüstite) solid solution. The spin-transition pressure of Fe^{2+} in (Mg,Fe)O is reduced with 413 414 decreasing FeO content (e.g., Lin et al. 2005; Fei et al. 2007; Solomatova et al. 2016).

415 Our results demonstrate that this relationship also applies to the δ -AlOOH- ϵ -FeOOH 416 solid solution.

The spin transition in Fe^{3+} is also observed in the new hexagonal aluminous phase 417 (NAL phase). NAL phase has the chemical formula of $AB_2C_6O_{12}$ (A = Na⁺, K⁺, Ca²⁺; B = 418 Mg^{2+} , Fe^{2+} , Fe^{3+} ; $C = Al^{3+}$, Si^{4+} , Fe^{3+}) with the space group of $P6_3/m$ (Gasparik et al. 419 420 2000; Miura et al. 2000; Miyajima et al. 2001), and is considered to exist in a basaltic 421 layer of the slab subducted to the upper region of the lower mantle (e.g., Irifune and 422 Ringwood 1993). The recent experimental study under room temperature reported that the Fe-bearing $(Na_{0.71}Mg_{2.05} Fe^{2+}_{0.09}Al_{4.62}Fe^{3+}_{0.17}Si_{1.16}O_{12})$ NAL phase showed 1.0% 423 424 volume reduction at 33–47GPa associated with the Fe spin transition (Wu et al. 2016). In the NAL phase, only Fe^{3+} in the octahedral C site undergoes the spin transition at the 425 pressure conditions of the upper region of lower mantle, while Fe^{2+} and Fe^{3+} in the 426 427 trigonal-prismatic B site maintain high-spin states up to at least 80 GPa (Wu et al. 2016; Hsu 2017). Therefore, only Fe^{3+} in the octahedral site contributes to the spin transition in 428 429 NAL phase at that pressure range, which could explain why the width of the spin 430 crossover where the softening occurs is slightly narrower in δ -(Al,Fe)OOH samples (Fig. 431 9).

It should be noted that a HOC-III–HC transition without an observable change in the *P-V* compression trend may occur in the δ -(Al,Fe)OOH samples before or concurrently with the spin crossover, because the HOC-III–HC transition pressure of δ -AlOOH is ~20 GPa (Sano-Furukawa et al. 2018) and for ϵ -FeOOH it ranges from ~10 to ~43 GPa (Thompson et al. 2017; Gleason et al. 2013), respectively. Further studies are required to

437 investigate the relationship between hydrogen symmetrization and spin state in the δ438 AlOOH-ε-FeOOH solid solution.

439

440

IMPLICATIONS

441 In hydrous rock systems, δ -AlOOH may form a solid solution with isostructural 442 MgSiO₄H₂ Phase H (Suzuki et al. 2000; Ohtani et al. 2001; Nishi et al. 2014, 2015; Ohira 443 et al. 2014; Walter et al. 2015; Panero and Caracas 2017; Liu et al. 2019) and ε-FeOOH 444 components (Nishi et al. 2015, 2017; Kawazoe et al. 2017; Liu et al. 2019). Therefore, 445 the incorporation of MgSi- and Fe-endmember components into the δ -phase would need 446 to be considered in interpretations of lower mantle seismic observations. However, Nishi 447 et al. (2018) found that the incorporation of a Phase H component into the δ -phase has 448 little effect on the density of the δ -phase because the differences of volume and mole 449 weight between δ -AlOOH and MgSiO₄H₂ Phase H are only 1.0–1.2% and 1.3% at the 450 pressure condition from top- to mid-lower mantle. Therefore, the physical properties of 451 binary δ -AlOOH– ϵ -FeOOH solid solution, investigated in this study, are important to 452 understand the behavior of ternary δ -AlOOH– ϵ -FeOOH–phase H solid solution under 453 lower mantle conditions.

Figure 9 shows the isothermal bulk modulus, density, bulk sound velocity, and the ratio of density to bulk sound velocity for δ -Fe12, δ -Fe5, several hydrous phases, and Febearing NAL phase at pressures between the top- and mid-lower mantle. Our results show that the isothermal bulk modulus of low-spin δ -Fe12 is larger than those of δ -AlOOH, MgSiO₄H₂ Phase H, and ϵ -FeOOH, and that of low-spin δ -Fe5 is comparable to that reported for δ -AlOOH and ϵ -FeOOH, except for the pressure conditions of the spin 460 crossover (Fig. 9a). DFT calculations suggest that the bulk modulus of low-spin ε -461 FeOOH is 4–8 % higher than the bulk modulus of δ -AlOOH at pressures of the entire 462 lower mantle and 0 K (Thompson et al. 2017). Interestingly, although the bulk modulus 463 trends of δ -Fe12 and δ -Fe5 overlap within error (see Fig. 6), the values for the Fe-rich δ -464 Fe12 sample are systematically 2–3 % higher than those of the Fe-poor δ -Fe5 sample 465 above 45 GPa in spite of an only \sim 7 at% difference in Fe content. Therefore, our results 466 suggest that the bulk modulus of low spin δ -(Al,Fe)OOH may be sensitive to smaller 467 amounts of Fe incorporation than the computational study predicted (Thompson et al. 468 2017). This sensitive relationship between the bulk modulus and Fe content δ -469 (Al,Fe)OOH may influence in understanding the origin of seismic anomalies in the lower 470 mantle. The ρ , v_{ϕ} , and their ratio (ρ/v_{ϕ}) of pure δ -AlOOH were calculated along a mantle 471 geotherm (Brown and Shankland, 1981) to be 11–12% lower, 5–8% higher, and 16–18% 472 lower than those of PREM, respectively, implying that the low ρ/v_{Φ} ratio of pure δ -473 AlOOH can help identify its potential presence in the lower mantle (Duan et al. 2018). 474 The incorporation of Fe into δ -(Al,Fe)OOH decreases the gaps of these properties 475 between δ -phase and PREM, due to the relatively large mass of Fe. Nevertheless, δ -Fe12 476 and δ -Fe5 samples still exhibit higher v_{Φ} and lower ρ and ρ/v_{Φ} ratio, compared to PREM. 477 Therefore, a low ρ/v_{Φ} anomaly caused by the presence of an iron-bearing δ -phase likely 478 occurs in the lower mantle, with the exception of the spin crossover region.

If subducting materials including the hydrous solid solution are transported to the lower mantle, this hydrous phase might accumulate in deep lower mantle regions over geologic time. Continuous transport of subducted slab material to the deep lower mantle has been supported by geophysical simulations and geochemical studies (e.g., Tackley

483 2011; Bower et al. 2011; van der Meer et al. 2010). One of the possible contributions of 484 the hydrous δ -AlOOH– ϵ -FeOOH–phase H solid solution is a high- v_{Φ} anomaly in the lower mantle. For example, the approximately 0.3% v_{Φ} increase is observed at the 485 486 boundary regions of large low shear velocity provinces (Masters et al. 2000). Those 487 provinces are located at a depth of $\sim 2,000-2,890$ km beneath the Pacific Ocean and the 488 Atlantic Ocean-the western and southern part of the African continent, and are adjacent 489 to the path of a subducting slab. If we apply the thermal parameters of δ -AlOOH reported 490 by Duan et al. (2018) to δ -Fe5 or δ -Fe12, this anomaly can be explained by the 491 accumulation of $\sim 6-8$ wt% δ -Fe5 or δ -Fe12, which is $\sim 9\%$ lower than the proportion of 492 hydrous δ-AlOOH–ε-FeOOH–phase H solid solution (δ-(Mg_{0.11}Fe_{0.03}Si_{0.2}Al_{0.63})OOH, 493 termed as "Al-rich Phase H" in Liu et al. 2019) formed in the oceanic basalt + 3.5 wt.% 494 H₂O system (Liu et al. 2019). The accumulation of \sim 6–8 wt% δ -Fe5 or δ -Fe12 is 495 equivalent to the presence of only $\sim 1 \text{ wt}\% \text{ H}_2\text{O}$.

496 The low ρ/v_{Φ} character of δ -(Al,Fe)OOH becomes inverted to a high ρ/v_{Φ} within the 497 spin crossover due to the softening of the bulk modulus (Figs. 6 and 9). Although the spin transition of Fe³⁺ in the octahedral site is also observed in the Fe-bearing NAL phase, the 498 499 transition pressure is lower and the width of spin crossover is slightly narrower in the δ -500 (Al,Fe)OOH samples than the Fe-bearing NAL phase (Wu et al. 2016). The spin 501 crossover and resultant softening are influenced by temperature and valance of Fe. For 502 example, the onset pressure for the LS state in (Mg_{0.75}Fe_{0.25})O ferropericlase increases 503 from \sim 50 GPa at 300 K to 65 GPa at 1200 K, with an appreciable increase in the width of 504 the spin crossover region (e.g., Mao et al. 2011). On the other hand, a computational study by Hsu (2017) showed that the spin transition pressure of Fe^{3+} in the octahedral site 505

506 of the NAL phase (~40 GPa) remains mostly invariant to temperature and the width 507 moderately increases with temperature. This would imply that for δ -(Al,Fe)OOH at 1200 508 K, the estimated temperature of a subducted slab at the top of the lower mantle (Ricard et 509 al. 2005; Kirby et al. 1996), the spin transition pressure will likely be unchanged from 510 that measured at 300 K and the softening of bulk modulus remains appreciable. The spin 511 transition pressure and the width of spin crossover are slightly lower and narrower in the 512 δ -(Al,Fe)OOH samples than the Fe-bearing NAL phase (Fig. 9). Therefore, the high ρ/v_{Φ} 513 of δ -(Al,Fe)OOH in the spin crossover region would be observable at the pressure 514 conditions of the uppermost lower mantle, especially under relatively cooler 515 temperatures, such as those calculated for a subducted slab. Seismological studies have 516 reported the laterally heterogeneous ρ and v_{Φ} in the upper region of the lower mantle 517 (Masters et al. 2000; Trampert et al. 2004), and the presence of δ -(Al,Fe)OOH may 518 explain these anomalies.

519 In this section, we have focused on drawing comparisons of our results for the δ -520 (Al,Fe)OOH solid solution across the spin transition, with those of endmember phases (δ -521 AlOOH, ε -FeOOH, and MgSiO₄H₂ Phase H), the Fe-bearing NAL phase, and PREM. We 522 have also suggested that δ -(Al,Fe)OOH could cause low ρ/v_{Φ} anomaly in the lower 523 mantle, except for the conditions where the spin crossover occurs. Specifically, δ -524 (Al,Fe)OOH has high ρ/v_{Φ} ratio due to the spin crossover, which occurs under uppermost 525 lower mantle conditions. These anomalies in geophysical properties of δ -(Al,Fe)OOH 526 suggest that the presence of δ -(Al,Fe)OOH could be detectable and provide new insight 527 for understanding the heterogeneity in the lower mantle.

529 530	ACKNOWLEDGMENTS		
531	We thank Y. Ito for his help with polishing or the EPMA-analyzing for the crystals		
532	used in this work. We also thank R. Njul for his help with polishing for a part of the		
533	samples. We are grateful to the editor D. Hummer and two anonymous reviewers for		
534	comments that helped to improve the manuscript. This work was supported by a Grant-		
535	in-Aid for Scientific Research from the Ministry of Education, Culture, Science, Sport		
536	and Technology of the Japanese Government to I.O. (JSPS KAKENHI Grant Number:		
537	JP16J04690), to E.O. (Number: JP15H05748), to S.K. (Number: 26247089, 15H05831,		
538	and 16K13902), to A.S. (Number: JP15H05828 and JP19H01985). This work and I.O.		
539	were supported by the International Research and Training Group "Deep Earth Volatile		
540	Cycles" funded by the German Science Foundation (grant number: GRK 2156/1), the		
541	JSPS Japanese-German Graduate Externship, and the International Joint Graduate		
542	Program in Earth and Environmental Science (GP-EES), Tohoku University. This work		
543	was also partially supported by a grant from the W.M. Keck Institute for Space Studies		
544	and the National Science Foundation (NSF-CSEDI-EAR-1600956) awarded to J.M.J.		
545	N.V.S. was partly funded by the European Research Council (ERC) under the European		
546	Union's Horizon 2020 research and innovation program (grant agreement number		
547	681818 - IMPACT). XRD measurements were performed at the BL10XU, SPring-8,		
548	Japan (proposal number: 2017A1650 to I.O., 2017A1251 to S.K., 2017A1673 to F.M.,		
549	and 2015B0104, 2016A0104, and 2017B1514 to E.O.). SMS experiments were		
550	conducted at 3-ID-B, Advanced Photon Source, the United States, which is partially		
551	supported by COMPRES.		

554	REFERENCES CITED
555 556	Abe, R., Shibazaki, Y., Ozawa, S., Ohira, I., Tobe, H., and Suzuki, A. (2018) In situ X-
557	ray diffraction studies of hydrous aluminosilicate at high pressure and
558	temperature. Journal of Mineralogical and Petrological Sciences, 113, 106-111.
559	Bell, D.R., and Rossman, G.R. (1992) Water in Earth's mantle: the role of nominally
560	anhydrous minerals. Science, 255, 1391–1397.
561	Bindi, L., Nishi, M., Tsuchiya, J., and Irifune, T. (2014) Crystal chemistry of dense
562	hydrous magnesium silicates: The structure of Phase H, MgSiH ₂ O ₄ synthesized at
563	45 GPa and 1000 °C. American Mineralogist, 99, 1802–1805.
564	Bower, D.J., Gurnis, M., and Seton, M. (2011) Lower mantle structure from
565	paleogeographically constrained dynamic Earth models. Geochemistry
566	Geophysics Geosystems, 14, 44–63.
567	Bronstein, Y., Depondt, P., and Finocchi F. (2017) Thermal and nuclear quantum effects
568	in the hydrogen bond dynamical symmetrization phase transition of δ -AlOOH.
569	European Journal of Mineralogy, 29, 385–395.
570	Brown, J.M., and Shankland, T.J. (1981) Thermodynamic parameters in the Earth as
571	determined from seismic profiles. Geophysical Journal of the Royal Astronomical
572	Society, 66, 579–596.
573	Cedillo, A., Torrent, M., and Cortona, P. (2016) Stability of the different AlOOH phases
574	under pressure. Journal of Physics: Condensed Matter, 28, 185401.
575	Chen, B., Jackson, J.M., Sturhahn, W., Zhang, D., Zhao, J., Wicks, J.K., and Murphy,
576	C.A. (2012) Spin crossover equation of state and sound velocities of

577 (Mg_{0.65}Fe_{0.35})O ferropericlase to 140 GPa. Journal of Geophysical Research, 117,

578 B08208.

579 Cortona, P. (2017) Hydrogen bond symmetrization and elastic constants under pressure

580 of δ -AlOOH. Journal of Physics: Condensed Matter, 29, 325505.

- 581 Dewaele A., Torrent, M., Loubeyre, P., and Mezouar, M. (2008) Compression curves of
- transition metals in the Mbar range: Experiments and projector augmented-wavecalculations. Physical Review B, 78, 104102.
- 584 Dorogokupets, P.I., and Oganov, A.R. (2006) Equations of state of Al, Au, Cu, Pt, Ta,
- and W and revised ruby pressure scale. Doklady Earth Sciences, 410, 1091–1095.
- 586 Duan, Y., Sun, N., Wang, S., Li, X., Guo, X., Ni, H., Prakapenka, V.B., and Mao, Z.
- 587 (2018) Phase stability and thermal equation of state of δ -AlOOH: Implication for
- 588 water transportation to the Deep Lower Mantle. Earth and Planetary Science
 589 Letters, 494, 92–98.
- 590 Dziewonski, A.M., and Anderson, D. L. (1981) Preliminary reference Earth model.

591 Physics of the Earth and Planetary Interiors, 25, 297–356.

- 592 Fei, Y., Zhang, L., Corgne, A., Watson, H., Ricolleau, A., Meng, Y., and Prakapenka, V.
- 593 (2007) Spin transition and equations of state of (Mg, Fe)O solid solutions.
- 594 Geophysical Research Letters, 34, L17307.

595 Fukuyama, K., Ohtani, E., Shibazaki, Y., Kagi, H., and Suzuki, A. (2017) Stability field

596 of phase Egg, AlSiO₃OH at high pressure and high temperature: possible water

- 597 reservoir in mantle transition zone. Journal of Mineralogical and Petrological
- 598 Sciences, 112, 31–35.

- 599 Gasparik, T., Tripathi, A., and J.B. Parise. (2000) Structure of a new Al-rich phase, [K,
- 600 Na]_{0.9}[Mg, Fe]₂[Mg, Fe, Al, Si]₆O₁₂, synthesized at 24 GPa. American
- 601 Mineralogist, 85, 613–618.
- Gleason, A.E., Quiroga, C.E., Suzuki, A., Pentcheva, R., and Mao, W.L. (2013)
- 603 Symmetrization driven spin transition in ε-FeOOH at high pressure. Earth and
- 604 Planetary Science Letters, 379, 49–55.
- Hsu, H. (2017) First-principles study of iron spin crossover in the new hexagonal
- aluminous phase. Physical Review B, 95, 020406.
- 607 Irifune, T. and Ringwood, A.E. (1993) Phase transformations in subducted oceanic crust
- and buoyancy relationships at depths of 600–800 km in the mantle. Earth and
- 609Planetary Science Letters, 117, 101–110.
- 610 Kagi, H., Ushijima, D., Sano-Furukawa, A., Komatsu, K., Iizuka, R., Nagai, T., and
- 611 Nakano, S. (2010) Infrared absorption spectra of δ -AlOOH and its deuteride at
- high pressure and implication to pressure response of the hydrogen bonds. Journal
- of Physics: Conference Series, 215, 012052.
- 614 Kaminsky, F.V. (2017) The Earth's Lower Mantle, Composition and Structure, 331 p.
- 615 Springer International Publishing AG, Switzerland.
- 616 Kang, D., Feng, Y.-X., Yuan, Y., Ye, Q.-J., Zhu, F., Huo, H.-Y., Li, X.-Z., and Wu, X.
- 617 (2017) Hydrogen-bond symmetrization of δ-AlOOH. Chinese Physics Letters, 34,
 618 108301.
- 619 Kawazoe, T., Ohira, I., Ishii, T., Boffa Ballaran, T., McCammon, C., Suzuki, A., and
- 620 Ohtani, E. (2017), Single crystal synthesis of δ -(Al,Fe)OOH. American
- 621 Mineralogist, 102, 1953–1956.

- 622 Kirby, S.H., Stein, S., Okal, E.A., and Rubie, D.C. (1996) Metastable mantle phase
- transformations and deep earthquakes in subducting oceanic lithosphere. Reviewsof Geophysics, 34, 261–306.
- 625 Komatsu, K., Kuribayashi, T., Sano, A., Ohtani, E., and Kudoh, Y. (2006)
- Redetermination of the high-pressure modification of AlOOH from single-crystal
 synchrotron data. Acta Crystallographica Section E, 62, i216–218.
- 628 Kuribayashi, T., Sano-Furukawa, A., and Nagase, T. (2014) Observation of pressure-
- 629 induced phase transition of δ-AlOOH by using single-crystal synchrotron X-ray
 630 diffraction method. Physics and Chemistry of Minerals, 41, 303–312.
- Li, S., Ahuja, R., and Johansson, B. (2006) The elastic and optical properties of the high-
- 632 pressure hydrous phase δ -AlOOH. Solid State Communications, 137, 101–106.
- Lin, J.F., Shu, J., Mao, H.K., Hemley, R.J., and Shen, G. (2003) Amorphous boron gasket
- 634 in diamond anvil cell research. Review of Scientific Instruments, 74, 4732–4736.
- 635 Lin, J.F., Struzhkin, V.V., Jacobsen, S.D., Hu, M.Y., Chow, P., Kung, J., Liu, H., Mao,
- H.-k., and Hemley, R. J. (2005) Spin transition of iron in magnesiowüstite in the
 Earth's lower mantle. Nature, 436, 377–380.
- 638 Liu, X., Matsukage, K.N., Nishihara, Y., Suzuki, T., and Takahashi, E. (2019) Stability of
- the hydrous phases of Al-rich Phase D and Al-rich Phase H in deep subducted
 oceanic crust. American Mineralogist, 104, 64–72.
- 641 Mao, Z., Lin, J.-F., Liu, J., and Prakapenka, V.B. (2011) Thermal equation of state of
- lower-mantle ferropericlase across the spin crossover. Geophysical Research
 Letters, 38, L23308.

644	Mashino, I., Murakami, M., and Ohtani, E. (2016) Sound velocities of δ -AlOOH up to
645	core-mantle boundary pressures with implications for the seismic anomalies in the
646	deep mantle. Journal of Geophysical Research: Solid Earth, 121, 595-609.
647	Masters, G., Laske, G., Bolton, H., and Dziewonski, A. (2000) The relative behavior of
648	shear velocity, bulk sound speed, and compressional velocity in the mantle:
649	Implications for chemical and thermal structure. In SI. Karato, A. Forte, R.
650	Liebermann, G. Masters, and L. Stixrude, Eds., Earth's deep interior: Mineral
651	physics and tomography from the atomic to the global scale, Geophysical
652	Monograph 117, p. 63-87. the American Geophysical Union, U.S.A
653	Miura, H., Hamada, Y., Suzuki, T., Akaogi, M., Miyajima, N., and Fujino, K. (2000)
654	Crystal structure of $CaMg_2Al_6O_{12}$, a new Al-rich high pressure form. American
655	Mineralogist, 85, 1799–1803.
656	Miyajima, N., Yagi, T., Hirose, K., Kondo, T., Fujino, K., and Miura, H. (2001) Potential
657	host phase of aluminum and potassium in the Earth's lower mantle. American
658	Mineralogist, 86, 740–746.
659	Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., Higo, Y. (2014)
660	Stability of hydrous silicate at high pressures and water transport to the deep
661	lower mantle. Nature Geoscience, 7, 224-227.
662	Nishi, M., Irifune, T., Gréaux, S., Tange, Y., Higo, Y. (2015) Phase transitions of
663	serpentine in the lower mantle. Physics of the Earth and Planetary Interiors, 245,
664	52–58.
665	Nishi, M., Kuwayama, Y., Tsuchiya, J., and Tsuchiya, T. (2017) The pyrite-type high-
666	pressure form of FeOOH. Nature, 547, 205–208.

667	Nishi, M.,	Tsuchiya, J.	, Arimoto, '	T., Kakizawa	S., Kunimoto	, Т.,	Tange,	Y., Higo,	Y.,
-----	------------	--------------	--------------	--------------	--------------	-------	--------	-----------	-----

- Irifune, T. (2018) Thermal equation of state of MgSiO₄H₂ phase H determined by
 in situ X-ray diffraction and a multianvil apparatus. Physics and Chemistry of
 Minerals, 45, 995–1001.
 Nishihara, Y., and Matsukage, K.N. (2016) Iron-titanium oxyhydroxides as water carriers
 in the Earth's deep mantle. American Mineralogist, 101, 919–927.
- 673 Ohira, I., Ohtani, E., Sakai, T., Miyahara, M., Ohishi, Y., Hirao, N., and Nishijima, M.
- 674 (2014) Stability of a hydrous δ-phase, AlOOH-MgSiO₂(OH)₂, and a mechanism
- 675 for water transport into the base of lower mantle. Earth and Planetary Science676 Letters, 401, 12–17.
- 677 Ohishi, Y., Hirao, N., Sata, N., Hirose, K., and Takata, M. (2008) Highly intense
- 678 monochromatic X-ray diffraction facility for high-pressure research at SPring-8.
- High Pressure Research, 28, 163–173.
- 680 Ohtani, E. (2005) Water in the mantle. Elements, 1, 25–30.
- 681 Ohtani, E. (2015) Hydrous minerals and the storage of water in the deep mantle.
- 682 Chemical Geology, 418, 6–15.
- 683 Ohtani, E., Amaike, Y., Kamada, S., Ohira, I., and Mashino, I. (2016) Stability of
- hydrous minerals and water reservoirs in the deep Earth interior. In H. Terasaki,
- and R. A. Fischer, Eds., Deep Earth: Physics and chemistry of the lower mantle
- and core, Geophysical Monograph 217, p. 265–275. the American Geophysical
- 687 Union, U.S.A.

- 688 Ohtani, E., Litasov, K., Suzuki, A., and Kondo, T. (2001) Stability field of new hydrous
- 689 phase, δ -AIOOH, with implications for water transport into the deep mantle.
- 690 Geophysical Research Letters, 28, 3991–3994.
- 691 Okamoto, K., and Maruyama, S. (2004) The Eclogite–Garnetite transformation in the
- $MORB + H_2O$ system. Physics of the Earth and Planetary Interiors, 146, 283–296.
- 693 Otte, K., Pentcheva, R., Schmahl, W.W., and Rustad, J.R. (2009) Pressure-induced
- 694 structural and electronic transitions in FeOOH from first principles. Physical
- 695 Review B, 80, 205116.
- Pamato, M.G., Myhill, R., Boffa Ballaran, T., Frost, D.J., Heidelbach, F., and Miyajima,
- N. (2015) Lower-mantle water reservoir implied by the extreme stability of a
 hvdrous aluminosilicate. Nature Geoscience, 8, 75–79.
- Panero, W.R., and Caracas, R. (2017) Stability of phase H in the MgSiO₄H₂-AlOOH-
- SiO₂ system. Earth and Planetary Science Letters, 463, 171–177.
- 701 Panero, W.R., and Stixrude, L.P. (2004) Hydrogen incorporation in stishovite at high
- pressure and symmetric hydrogen bonding in δ-AlOOH. Earth and Planetary
 Science Letters, 221, 421–431.
- 704 Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T.,
- 705 Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., and Vincze,
- 706L. (2014) Hydrous mantle transition zone indicated by ringwoodite included
- 707 within diamond. Nature, 507, 221–224.
- 708 Pernet, M., Joubert, J.C., and Berthet-Colominas, C. (1975) Etude par diffraction
- neutronique de la forme haute pression de FeOOH. Solid State Communications,
- 710 17, 1505–1510.

711	Pillai, S.B., Jha, P.K., Padmalal, A., Maurya, D.M., and Chamyal, L.S. (2018) First
712	principles study of hydrogen bond symmetrization in δ -AlOOH. Journal of
713	Applied Physics, 123, 115901.
714	Ricard, Y., Mattern, E., and Matas, J. (2005) Synthetic tomographic images of slabs from
715	mineral physics. In R. D. Van Der Hilst, J. D. Bass, J. Matas, and J. Trampert,
716	Eds., Earth's Deep Mantle: Structure, Composition, and Evolution, Geophysical
717	Monograph 160, p. 283–300. the American Geophysical Union, U.S.A
718	Sano, A., Ohtani, E., Kubo, T., and Funakoshi, K-i. (2004) In situ X-ray observation of
719	decomposition of hydrous aluminumsilicate AlSiO ₃ OH and aluminum oxide
720	hydroxide d-AlOOH at high pressure and temperature. Journal of Physics and
721	Chemistry of Solids, 65, 1547–1554.
722	Sano, A., Ohtani, E., Kondo, T., Hirao, N., Sakai, T., Sata, N., Ohishi, Y., and Kikegawa
723	T. (2008) Aluminous hydrous mineral δ -AlOOH as a carrier of hydrogen into the
724	core-mantle boundary. Geophysical Research Letters, 35, L03303.
725	Sano-Furukawa, A., Komatsu, K., Vanpeteghem, C.B., and Ohtani, E. (2008) Neutron
726	diffraction study of δ -AlOOD at high pressure and its implication for
727	symmetrization of the hydrogen bond. American Mineralogist, 93, 1558-1567.
728	Sano-Furukawa, A., Kagi, H., Nagai, T., Nakano, S., Fukura, S., Ushijima, D., Iizuka, R.,
729	Ohtani, E., and Yagi, T. (2009) Change in compressibility of δ -AlOOH and δ -
730	AlOOD at high pressure: A study of isotope effect and hydrogen-bond
731	symmetrization. American Mineralogist, 94, 1255–1261.
732	Sano-Furukawa, A., Hattori, T., Komatsu, K., Kagi, H., Nagai, T., Molaison, J.J., dos
733	Santos, A.M., and Tulk, C.A. (2018) Direct observation of symmetrization of

734	hydrogen bond in δ -AlOOH under mantle conditions using neutron diffraction.
735	Scientific Reports, 8, 15520.
736	Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N. (2010) Development of a software
737	suite on X-ray diffraction experiments. The Review of High Pressure Science and
738	Technology, 20, 269–276 (in Japanese).
739	Smyth, J.R., and Jacobsen, S.D. (2006) Nominally anhydrous minerals and Earth's deep
740	water cycle. In S.D. Jacobsen, and S. van der Lee Eds., Earth's Deep Water Cycle,
741	Geophysical Monograph Series 168, p. 1–11. the American Geophysical Union,
742	U.S.A
743	Solomatova, N.V., Jackson, J.M., Sturhahn, W., Wicks, J.K., Zhao, J., Toellner, T.S.,
744	Kalkan, B., and Steinhardt, W.M. (2016) Equation of state and spin crossover of
745	(Mg,Fe)O at high pressure, with implications for explaining topographic relief at
746	the core-mantle boundary. American Mineralogist, 101, 1084–1093.
747	Solomatova, N.V., Jackson, J.M., Sturhahn, W., Rossman, G.R., and Roskosz, M. (2017)
748	Electronic environments of ferrous iron in rhyolitic and basaltic glasses at high
749	pressure. Journal of Geophysical Research: Solid Earth, 122, 6306-6322.
750	Sturhahn, W. (2000) CONUSS and PHOENIX: Evaluation of nuclear resonant scattering
751	data. Hyperfine Interactions, 125, 149–172.
752	(2016) CONUSS (COherent NUclear resonant Scattering by Single crystals).
753	Open source software, http://www.nrixs.com.
754	——— (2018) MINUTI (MINeral physics UTIlities). Open source software,
755	http://www.nrixs.com.

56 Suzuki, A. (2009) Compressibility of the high-pressure polymorph of AlOOH to 17 GPa.

757	Mineralogical Magazine, 73, 479–485.
758	——— (2010) High-pressure X-ray diffraction study of ϵ -FeOOH. Physics and
759	Chemistry of Minerals, 37, 153–157
760	(2016) Pressure–volume–temperature equation of state of ε-FeOOH to 11 GPa
761	and 700 K. Journal of Mineralogical and petrological Science, 111, 420-424.
762	Suzuki, A., Ohtani, E., and Kamada, T. (2000) A new hydrous phase δ-AlOOH
763	synthesized at 21 GPa and 1000 °C. Physics and Chemistry of Minerals, 27, 689-
764	693.
765	Tackley, P.J. (2011) Living dead slabs in 3-D: The dynamics of compositionally-
766	stratified slabs entering a "slab graveyard" above the core-mantle boundary.
767	Physics of the Earth and Planetary Interiors, 188, 150–162.
768	Takemura, K., Sahu, P.Ch., Kunii, Y., and Toma, Y. (2001) Versatile gas-loading system
769	for diamond-anvil cells. Review of Scientific Instruments, 72, 3873-3876.
770	Thompson E.C., Campbell, A. J., and Tsuchiya, J. (2017) Elasticity of ε-FeOOH: Seismic
771	implications for Earth's lower mantle. Journal of Geophysical Research: Soild
772	Earth, 122, 5038–5047.
773	Toellner, T.S. (2000) Monochromatization of synchrotron radiation for nuclear resonant
774	scattering experiments. Hyperfine Interactions, 125, 3-28.
775	Trampert, J., Deschamps, F., Resovsky, J., and Yuen, D. (2004) Probabilistic tomography
776	maps chemical heterogeneities throughout the lower mantle. Science, 306, 853-
777	856.

778 Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V.B., Ma, C., Rossman, G.R.,

779	Shen, A.H., Zhang, D., Newville, M., Lanzirotti, A., and Tait, K. (2018) Ice-VII
780	inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle.
781	Science, 359, 1136–1139.
782	Tsuchiya, J. and Mookherjee, M. (2015) Crystal structure, equation of state, and
783	elasticity of phase H (MgSiO ₄ H ₂) at Earth's lower mantle pressures. Scientific
784	Reports, 5, 15534.
785	Tsuchiya, J. and Tsuchiya, T. (2009) Elastic properties of δ -AlOOH under pressure: First
786	principles investigation. Physics of the Earth and Planetary Interiors, 174, 122-
787	127.
788	Tsuchiya, J., Tsuchiya, T., Tsuneyuki, S., and Yamanaka T. (2002), First principles
789	calculation of a high-pressure hydrous phase, δ -AlOOH. Geophysical Research
790	Letters, 29, 1909.
791	van der Meer, D.G., Spakman, W., van Hinsbergen, D.J.J., Amaru, M.L., Torsvik, T.H.
792	(2010) Towards absolute plate motions constrained by lower-mantle slab
793	remnants. Nature Geoscience, 3, 36-40.
794	Vanpeteghem, C.B., Ohtani, E., and Kondo, T. (2002) Equation of state of the hydrous
795	phase δ -AlOOH at room temperature up to 22.5 GPa. Geophysical Research
796	Letters, 29, 1119.
797	Walter, M.J., Thomson, A.R., Wang, W., Lord, O.T., Ross, J., McMahon, S.C., Baron,
798	M.A., Melekhova, E., Kleppe, A.K., and Kohn, S.C. (2015) The stability of
799	hydrous silicates in Earth's lower mantle: experimental constraints from the

800	systems MgO–SiO ₂ –H ₂ O and MgO–Al ₂ O ₃ –SiO ₂ –H ₂ O. Chemcal Geology, 418,
801	16–29.
802	Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., and Kaminsky, F. (2007) Inclusions of
803	nanocrystalline hydrous aluminium silicate "Phase Egg" in superdeep diamonds
804	from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259,
805	384–399.
806	Wu, Y., Wu, X., Lin, LF., McCammon, C.A., Xiao, Y., Chow, P., Prakapenka, V.B.,

- Yoshino, T., Zhai, S., and Qin, S. (2016) Spin transition of ferric iron in the NAL 808 phase: Implications for the seismic heterogeneities of subducted slabs in the lower
- 809 mantle. Earth and Planetary Science Letters, 434, 91-100.
- 810 Xue, X., and Kanzaki, M. (2007) High-pressure δ-Al(OH)₃ and δ-AlOOH phases and
- 811 isostructural hydroxides/oxyhydroxides: New structural insights from high-
- resolution ¹H and ²⁷Al NMR. The Journal of physical Chemistry B, 111, 13156-812
- 813 13166.
- 814

807

815 **FIGURE CAPTIONS**

- 816 **Figure 1.** One dimensional XRD patterns of δ -Fe12 (Run# DAF01) acquired at 12.3 and 817 44.0 GPa. The patterns were obtained during compression. Legend: δ , δ -phase (δ -Fe12); 818 He, solid helium (pressure medium); Re, rhenium (gasket material). λ indicates the 819 wavelength of the X-rays. The uncertainty of λ is given in parenthesis for the last reported 820 significant digit.
- 821

822 **Figure 2.** *P-V* profiles of δ -(Al,Fe)OOH (δ -Fe12, δ -Fe5, Fe-free δ -AlOOH). Blue circles 823 and light blue diamonds indicate the data of δ -Fe12 and δ -Fe5, respectively. 824 Experimental data for Fe-free δ-AlOOH are cited from Sano-Furukawa et al. (2009) (Red 825 squares, S09) and Kuribayashi et al. (2014) (purple triangles, K14). Solid and open 826 symbols indicate the data acquired during compression and decompression, respectively. 827 The uncertainties of pressure and volume are smaller than the symbols. In the case of the 828 data of Fe-free δ -AlOOH, only the data obtained in which helium was used as the 829 pressure medium were selected.

830

831 Figure 3. Axial ratios (left figures) and normalized lattice constants (right figures) as a 832 function of pressure for δ -(Al,Fe)OOH (δ -Fe12, δ -Fe5, Fe-free δ -AlOOH). Blue circles 833 and light blue diamonds indicate the data of δ -Fe12 and δ -Fe5, respectively. The 834 experimental data for Fe-free δ -AlOOH are cited from Sano-Furukawa et al. (2009) (Red 835 squares, S09) and Kuribayashi et al. (2014) (purple triangles, K14). In the case of the data 836 of Fe-free δ -AlOOH, only the data obtained in which helium was used as the pressure 837 medium were selected. To calculate the normalized lattice constants of δ -Fe12 and δ -Fe5, the ambient pressure lattice constants of a δ -(Al_{0.807(7)}⁵⁷Fe_{0.117(4)})OOH_{1.15(3)} sample (the 838 839 CIF file is in the deposit), having an identical Fe/(Al+Fe) ratio to the δ -Fe12 sample 840 within error, were used for δ -Fe12 data ($a_0 = 4.7458(13)$ Å, $b_0 = 4.2564(11)$ Å, $c_0 =$ 841 2.8519(6) A), and those of δ -Fe5 which were measured at BL10XU after decompression were used for δ -Fe5 data ($a_0 = 4.7266(7)$ Å , $b_0 = 4.2389(10)$ Å, $c_0 = 2.8401(3)$ Å). 842

843

844 **Figure 4.** The *f-F* plots of δ -(Al,Fe)OOH (δ -Fe12, δ -Fe5, Fe-free δ -AlOOH) based on 845 data from this study, Sano-Furukawa et al. (2009) (S09), and Kuribayashi et al. (2014) 846 (K14). For δ -Fe12 and δ -Fe5, the V_0 obtained from 2nd BM EoS fits for the $P2_1nm$ 847 structures were used in their plots (Table 3). The decrease or constant value in F between 848 f = 0 and ~ 0.02 are observed in all the data. The kink at ~ 10 GPa ($f = \sim 0.02$) in the f-F 849 plots corresponds to the change in axial compressibility, suggesting that the δ -850 (Al,Fe)OOH phases could be classified into two structures with different compressibility 851 with boundary of 10 GPa. The decrease in F between 32 and 40 GPa (f = -0.05 - 0.06) is 852 seen only in the data for the Fe-bearing δ -phases, which results from the spin transition of Fe^{3+} . 853

854

Figure 5. *P-V* profiles with the fitted spin crossover EoS for δ -Fe12 (blue circles with a gray line) and δ -Fe5 (light blue diamonds with a light gray line). The lines are spin crossover EoS fitted with the MINUTI software (Sturhahn 2018). The inset indicates the normalized residuals of fitting with 1 σ error bars. The uncertainties of pressure and volume are smaller than the symbols, and those of the spin transition pressure values are given in parentheses for the last reported significant digit.

861

Figure 6. Isothermal bulk modulus (K_T) , density (ρ) , bulk sound velocity (v_{Φ}) , the ratio of ρ and v_{Φ} , and their uncertainties as a function of pressure for δ -Fe12 and δ -Fe5, resulting from the spin crossover EoS fitted with MINUTI software (Sturhahn 2018). The EoS parameters and fitting curves are shown in Table 3 and Fig. 5, respectively. The error for each parameter is indicated by the gray area.

867

Figure 7. Synchrotron Mössbauer spectra of δ -Fe13 at six pressure conditions, without the stainless steel reference foil (blue) and with the stainless steel (SS) foil (orange) in the X-ray beam path, and their corresponding best fits (solid lines). The fitted hyperfine parameters are given in Table 4. The reduced χ^2 for each dual fit is shown in the lower left corner. The uncertainties of pressure are given in parentheses for the last reported significant digit.

874

Figure 8. Quadrupole splitting and isomer shift (relative to α-Fe) of δ-Fe13. Orange squares correspond to a high-spin Fe^{3+} -like site, dark blue circles are a low-spin Fe^{3+}_{A} site with a low quadrupole splitting, and light blue diamonds are a low-spin Fe^{3+}_{B} site with an intermediate quadrupole splitting. See Table 4 for tabulated hyperfine parameters.

879

880 Figure 9. (a) Isothermal bulk modulus, (b) density, (c) bulk sound velocity, and (d) the 881 ratio of density and bulk sound velocity as a function of pressure for δ -Fe12 (blue solid 882 line), δ -Fe5 (light blue solid line), δ -AlOOH (red dash-dot line), MgSiO₄H₂ Phase H 883 (green dash-dot line), E-FeOOH (brown dotted line), and Fe-bearing NAL phase having a 884 chemical composition of $Na_{0.71}Mg_{2.05}Al_{4.62}Si_{1.16}Fe^{2+}_{0.09}Fe^{3+}_{0.17}O_{12}$ (orange dash-dot line). 885 PREM (Dziewonski and Anderson 1981) values are also shown for reference in (b)-(d) 886 (black dash line). The red dash-dot lines for δ-AlOOH with Pnnm structure are obtained 887 from the 3rd-order BM EoS fitting with MINUTI software (Sturhahn 2018), using the 888 pressure-volume dataset at the room temperature and pressures higher than 20 GPa 889 reported in both Sano-Furukawa et al. (2009) and Duan et al. (2018). The green dash-dot

890	lines for Phase H and the brown dotted lines for ϵ -FeOOH are reproduced with the 2nd or
891	3rd EoS parameters reported in Nishi et al. (2018) and Thompson et al. (2017),
892	respectively. The orange dash-dot lines indicate the data of Fe-bearing NAL phase, which
893	are determined by re-fitting for the P - V data of this phase (Wu et al. 2016) using MINUTI
894	software to obtain fit parameter error correlations and a consistency in the comparison of
895	trends. Solid and dash-dot lines are based on the experimental data at 300 K reported in
896	this study and the previous studies, while the dotted lines are based on theory at 0 K. The
897	errors for the data of $\delta\text{-Fe12}$ and $\delta\text{-Fe5}$ are only shown in Figure 6 to prevent the error
898	bars from overlapping with the other lines in this figure.
899	

900 **Table 1.** Lattice constants and unit cell volumes determined for δ -Fe12, δ -

P _W (GPa)	$P_{\rm ruby}$	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$
Compressi	(GPa)	•	-	•	
1 07(1)	<u>511</u>	4 7401(4)	4 2488(8)	2,8522(2)	57 44(3)
2.01(5)	1.62(8)	4.7301(3)	4.2376(5)	2.8486(1)	57.10(2)
4.65(3)	4.18(11)	4.7048(4)	4.2062(6)	2.8379(2)	56.16(2)
6.00(2)	5.54(15)	4.6919(3)	4.1920(5)	2.8321(2)	55.70(2)
7.71(5)		4.6781(4)	4.1725(5)	2.8256(2)	55.15(3)
7.83(2)		4.6762(5)	4.1711(6)	2.8248(2)	55.10(3)
10.13(6)	9.49(25)	4.6591(2)	4.1520(4)	2.8154(1)	54.46(2)
12.29(11)	11.86(1)	4.6456(4)	4.1403(6)	2.8075(2)	54.00(3)
17.38(5)	16.57(33)	4.6148(2)	4.1147(3)	2.7884(1)	52.95(1)
20.96(6)		4.5951(4)	4.0971(7)	2.7753(2)	52.24(3)
24.47(4)	23.76(30)	4.5763(2)	4.0832(3)	2.7637(1)	51.64(1)
28.62(3)	27.79(29)	4.5565(2)	4.0662(4)	2.7503(1)	50.96(2)
32.67(9)	31.73(22)	4.5373(4)	4.0532(8)	2.7379(3)	50.35(3)
37.93(15)		4.4967(5)	4.0170(8)	2.7104(3)	48.96(3)
40.83(49)		4.4840(6)	4.0065(7)	2.7002(3)	48.51(3)
44.03(58)		4.4703(7)	3.9936(9)	2.6901(4)	48.02(4)
46.88(45)		4.4602(9)	3.9852(18)	2.6829(4)	47.69(7)
50.85(33)		4.4455(10)	3.9750(20)	2.6742(5)	47.26(8)

901
$$(Al_{0.832(5)}^{57}Fe_{0.117(1)})OOH_{1.15(3)} (Fe/(Al+Fe) = 0.123(2)).$$

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2019-6913

53.80(35)	4.4351(17)	3.9663(25)	2.6678(7)	46.93(11)
58.27(34)	4.4205(15)	3.9536(22)	2.6568(6)	46.43(9)
62.04(33)	4.4094(9)	3.9434(13)	2.6500(3)	46.08(5)
64.83(35)	4.4009(15)	3.9394(18)	2.6427(6)	45.82(8)
<u>Decompression</u>				
53.97(6)	4.4405(11)	3.9684(15)	2.6704(6)	47.06(7)
47.17(7)	4.4607(6)	3.9851(8)	2.6845(4)	47.72(4)
44.23(11)	4.4707(6)	3.9940(7)	2.6913(4)	48.06(4)
42.06(20)	4.4799(5)	4.0018(8)	2.6974(3)	48.36(3)
37.02(26)	4.5046(3)	4.0255(5)	2.7156(2)	49.24(2)
35.22(28)	4.5222(5)	4.0397(7)	2.7267(2)	49.81(3)
33.16(26)	4.5328(6)	4.0492(9)	2.7334(3)	50.17(4)
32.14(10)	4.5444(6)	4.0556(12)	2.7398(4)	50.50(5)
29.79(5)	4.5586(4)	4.0660(7)	2.7498(2)	50.97(3)

 $P_{\rm W}$ and $P_{\rm ruby}$ indicate the pressure values determined using the EoS for tungsten 904 (Dorogokupets and Oganov 2006) which are used as the experimental pressure, and the 905 ruby fluorescence method (Dewaele et al. 2008), respectively. Uncertainties are given in 906 parentheses for the last reported significant digit.

Table 2. Lattice constants and unit cell volumes determined for δ -Fe5 (δ -

$P_{\rm W}({\rm GPa})$	P _{ruby} (GPa)	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$
Compressi	<u>on</u>		-		
2.04(4)		4.7105(3)	4.2200(5)	2.8343(2)	56.34(2)
3.44(14)		4.6946(2)	4.2021(3)	2.8279(1)	55.79(1)
5.50(11)		4.6778(2)	4.1816(4)	2.8207(1)	55.17(2)
8.36(11)	7.73(14)	4.6515(3)	4.1490(4)	2.8091(1)	54.21(2)
12.36(18)		4.6244(2)	4.1244(3)	2.7934(1)	53.28(1)
13.67(30)	12.96(6)	4.6163(2)	4.1171(3)	2.7883(1)	52.99(2)
18.57(11)		4.5873(1)	4.0932(1)	2.7702(0)	52.02(1)
20.82(31)		4.5758(2)	4.0838(3)	2.7628(1)	51.63(1)
22.76(17)		4.5647(3)	4.0751(5)	2.7558(2)	51.26(2)
24.35(25)		4.557(2)	4.0698(4)	2.7511(1)	51.03(2)
25.63(56)	25.68(32)	4.5487(2)	4.0615(4)	2.7458(1)	50.73(2)
34.99(22)		4.5044(4)	4.0248(6)	2.7173(2)	49.26(3)
35.46(9)		4.5030(5)	4.0243(8)	2.7161(3)	49.22(3)
35.80(23)		4.4987(4)	4.0207(7)	2.7135(2)	49.08(3)
37.10(10)		4.4919(4)	4.0149(7)	2.7089(2)	48.85(3)
37.62(34)		4.4893(5)	4.0116(7)	2.7065(2)	48.74(3)
39.51(29)		4.4799(6)	4.0048(9)	2.7003(3)	48.45(4)
40.34(29)		4.4767(6)	4.0016(10)	2.6982(3)	48.34(4)

 $(Al_{0.908(9)}^{57}Fe_{0.045(1)})OOH_{1.14(3)} (Fe/(Al+Fe) = 0.047(10)).$

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2019-6913

42.68(63)	4.4680(5)	3.9945(6)	2.6925(2)	48.05(3)
45.91(37)	4.4548(8)	3.9844(12)	2.6839(4)	47.64(5)
49.31(38)	4.4423(9)	3.9747(17)	2.6748(4)	47.23(7)
52.52(17)	4.4296(11)	3.9670(16)	2.6673(4)	46.87(7)
55.60(16)	4.4211(9)	3.9555(18)	2.6601(4)	46.52(7)
Decompression				
38.27(41)	4.4863(5)	4.0095(6)	2.7025(3)	48.61(3)
36.98(14)	4.4910(7)	4.0150(8)	2.7061(4)	48.80(4)
36.06(15)	4.4994(5)	4.0203(8)	2.7120(6)	49.06(4)
35.23(13)	4.5028(4)	4.0229(7)	2.7140(3)	49.16(3)
34.13(12)	4.5117(6)	4.0293(10)	2.7187(4)	49.42(4)
31.65(7)	4.5228(4)	4.0398(6)	2.7266(2)	49.82(3)
29.08(23)	4.5339(2)	4.0510(3)	2.7361(1)	50.25(2)
0.0001	4.7266(7)	4.2389(10)	2.8401(3)	56.90(5)

 P_{W} and P_{ruby} indicate the pressure values determined using the EoS for tungsten 932 (Dorogokupets and Oganov 2006) which are used as the experimental pressure, and the 933 ruby fluorescence method (Dewaele et al. 2008), respectively. Uncertainties are given in 934 parentheses for the last reported significant digit.

946		
947		
948		
949		
950		
951		
952		
953		
954		
955		

956 **Table 3.** EoS Parameters of δ -(Al,Fe)OOH phases.

Phase	V_0 (Å ³)	K ₀ (GPa)	K' (GPa)	EoS	P range	Details
This study			-	-		
$\delta\text{-}(Al_{0.832(5)}{}^{57}\text{Fe}_{0.117(1)})OOH_{1.15(3)}$	57.85(2)	147(1)	4 (fixed)	2nd BM	1.0–10.1 GPa	δ -Fe12 (Fe/(Al+Fe) = 0.123(2)), P2 ₁ nm, HS
$\delta\text{-}(Al_{0.832(5)}{}^{57}\text{Fe}_{0.117(1)})OOH_{1.15(3)}$	57.5(3)	155(22)	8(2)	Spin crossover EoS	10.1.64.9 CDa	δ-Fe12 (Fe/(Al+Fe) = 0.123(2)), Pnnm, HS
$\delta\text{-}(Al_{0.832(5)}{}^{57}\text{Fe}_{0.117(1)})OOH_{1.15(3)}$	55.2(4)	241(14)	4 (fixed)	Spin crossover EoS	10.1–04.8 GFa	δ-Fe12 (Fe/(Al+Fe) = 0.123(2)), <i>Pnnm</i> , LS
$\delta\text{-}(Al_{0.908(9)}{}^{57}\text{Fe}_{0.045(1)})OOH_{1.14(3)}$	57.03(7)	152(7)	4 (fixed)	2nd BM	0–8.4 GPa	δ-Fe5 (Fe/(Al+Fe) = $0.047(10)$), P2 ₁ nm, HS
$\delta\text{-}(Al_{0.908(9)}{}^{57}Fe_{0.045(1)})OOH_{1.14(3)}$	56.9(4)	149(25)	8(2)	Spin crossover EoS	12.4.55.6 CBa	δ-Fe5 (Fe/(Al+Fe) = $0.047(10)$), Pnnm, HS
$\delta\text{-}(Al_{0.908(9)}{}^{57}\text{Fe}_{0.045(1)})OOH_{1.14(3)}$	55.4(3)	223(11)	4 (fixed)	Spin crossover EoS	12.4–35.0 GPa	δ-Fe5 (Fe/(Al+Fe) = 0.047(10)), Pnnm, LS
Previous study						References
δ-ΑΙΟΟΗ	56.408(9)	152(2)	4 (fixed)	2nd BM	0–10 GPa	Sano-Furukawa et al. (2009)
δ-ΑΙΟΟΗ	55.47(8)	219(3)	4 (fixed)	2nd BM	10–63.5 GPa	Sano-Furukawa et al. (2009)
δ-ΑΙΟΟΗ	56.408(9)	191(1)	4 (fixed)	2nd BM	0–63.5 GPa	Sano-Furukawa et al. (2009)
δ-ΑΙΟΟΗ	56.408(9)	162(3)	5.9(2)	3rd BM	0–63.5 GPa	Sano-Furukawa et al. (2009)
δ-ΑΙΟΟΗ	56.54(9)	252(3)	4 (fixed)	3rd BM	0–22.5 GPa	Vanpeteghem et al. (2002)
δ-ΑΙΟΟΗ	56.35(2)	124(2)	13.5(7)	3rd BM	0–17.1 GPa	Suzuki (2009)
δ-AlOOH ^a	167	167	5.0	Vinet	0–28 GPa	Tsuchiya and Tsuchiya (2009)
δ -AlOOH ^b	57.57	205	4.3	Vinet	0–150 GPa	Tsuchiya and Tsuchiya (2009)
ε-FeOOH ^c	66.3(5)	158(5)	4 (fixed)	2nd BM	0–21 GPa	Gleason et al. (2008)
ε-FeOOH	66.20(3)	126(3)	10(1)	3rd BM	0–8.6 GPa	Suzuki (2010)
ε-FeOOH	66.278(6)	135(3)	6.1(9)	3rd BM	0–11.1 GPa	Suzuki (2016)

ε-FeOO	H ^d 58.62(2)	223(2)	4.07(3)	3rd BM	30–140 GPa	Thompson et al. (2017)
957						
958	Uncertainties are given by the second	ven in pai	entheses for	or the last report	ted significant	t digit.
959	HS, high-spin state;	LS, low-	spin state			
960	a, Theory, $P2_1 nm$ st	ructure.				
961	b, Theory, Pnnm (H	IC) struct	ure.			
962	c, Experimental data	a were ob	tained at 47	73–673 K.		
963	d, Theory, Pnnm (H	IC) struct	ure and low	-spin state.		
964						
965						
966	Table 4. Hyperfine	e paramet	ers for δ-F	e13 and the co	orresponding	reduced χ^2 produced
967	from fitting the spe	ectra of th	e sample v	with and without	it the stainles	s steel reference foil
968	simultaneously. Un	certaintie	s are giver	n in parenthese	s for the last	reported significant
969	digit. Isomer shifts	are relati	ve to α-Fe	metal. In low-s	spin δ-Fe13, I	$Fe^{3+}_{B}/(Fe^{3+}_{A} + Fe^{3+}_{B})$
970	was found to be $1/3$	through	Monte-Car	lo searches and	did not chang	ge with pressure, and
971	so was fixed to redu	ice param	eter correla	tions. See text	for more detai	ils.

Pressure (GPa)	QS (mm/s)	IS (mm/s)	FWHM (mm/s)	Thickness (µm)	reduced χ^2			
21.1(2)	0.414(7)	0.19(2)	0.12(1)	23.8(5)	1.36(6)			
31.8(8)	0.392(3)	0.18(2)	0.01(5)	26.4(2)	1.88(7)			
LS Pressure (GPa)	QS _A (mm/s)	IS _A (mm/s)	FWHM _A (mm/s)	$QS_{B} (mm/s)$	$IS_{B} (mm/s)$	FWHM _B (mm/s)	Thickness (µm)	reduced χ^2
45(2)	1.140(4)	0.209(7)	0.260(4)	1.73(1)	0.249(7)	0.16(1)	19.8(5)	1.23(5)
43(2)	()							
43(2) 59(2)	1.235(6)	0.135(8)	0.221(5)	1.864(7)	0.206(9)	0.22(1)	18.0(4)	1.12(5)
59(2) 67.5(5)	1.235(6) 1.291(6)	0.135(8) 0.107(6)	0.221(5) 0.215(4)	1.864(7) 1.88(1)	0.206(9) 0.172(9)	0.22(1) 0.28(2)	18.0(4) 16.9(2)	1.12(5) 1.50(6)

974 **Table 5.** Euler angles α and β for the electric field gradient orientation of high-spin (HS)

	α	β
HS Fe ³⁺	0°	0°
LS Fe ³⁺ _A	296°	261°
LS Fe ³⁺ _B	22°	253°

975 and low-spin (LS) ferric iron sites in δ -Fe13.

976

Figure 1

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Table 1. La			II volumes u		101012,0(1	10.832(5)	1 00.117(1)) 0 0111.15(3) (1 07)
$P_{\rm W}({\rm GPa})$	$P_{\rm ruby}$ (GPa)	a (Å)	b (Å)	c (Å)	V (Å ³)	-	
Compressio	<u>n</u>					1	
1.07(1)		4.7401(4)	4.2488(8)	2.8522(2)	57.44(3)		
2.01(5)	1.62(8)	4.7301(3)	4.2376(5)	2.8486(1)	57.10(2)		
4.65(3)	4.18(11)	4.7048(4)	4.2062(6)	2.8379(2)	56.16(2)		
6.00(2)	5.54(15)	4.6919(3)	4.1920(5)	2.8321(2)	55.70(2)		
7.71(5)		4.6781(4)	4.1725(5)	2.8256(2)	55.15(3)		
7.83(2)		4.6762(5)	4.1711(6)	2.8248(2)	55.10(3)		
10.13(6)	9.49(25)	4.6591(2)	4.1520(4)	2.8154(1)	54.46(2)		
12.29(11)	11.86(1)	4.6456(4)	4.1403(6)	2.8075(2)	54.00(3)		
17.38(5)	16.57(33)	4.6148(2)	4.1147(3)	2.7884(1)	52.95(1)		
20.96(6)		4.5951(4)	4.0971(7)	2.7753(2)	52.24(3)		
24.47(4)	23.76(30)	4.5763(2)	4.0832(3)	2.7637(1)	51.64(1)		
28.62(3)	27.79(29)	4.5565(2)	4.0662(4)	2.7503(1)	50.96(2)		
32.67(9)	31.73(22)	4.5373(4)	4.0532(8)	2.7379(3)	50.35(3)		
37.93(15)		4.4967(5)	4.0170(8)	2.7104(3)	48.96(3)		
40.83(49)		4.4840(6)	4.0065(7)	2.7002(3)	48.51(3)		
44.03(58)		4.4703(7)	3.9936(9)	2.6901(4)	48.02(4)		
46.88(45)		4.4602(9)	3.9852(18)	2.6829(4)	47.69(7)		
50.85(33)		4.4455(10)	3.9750(20)	2.6742(5)	47.26(8)		
53.80(35)		4.4351(17)	3.9663(25)	2.6678(7)	46.93(11)		
58.27(34)		4.4205(15)	3.9536(22)	2.6568(6)	46.43(9)		
62.04(33)		4.4094(9)	3.9434(13)	2.6500(3)	46.08(5)		
64.83(35)		4.4009(15)	3.9394(18)	2.6427(6)	45.82(8)		
Decompres	<u>sion</u>						
53.97(6)		4.4405(11)	3.9684(15)	2.6704(6)	47.06(7)		
47.17(7)		4.4607(6)	3.9851(8)	2.6845(4)	47.72(4)		
44.23(11)		4.4707(6)	3.9940(7)	2.6913(4)	48.06(4)		
42.06(20)		4.4799(5)	4.0018(8)	2.6974(3)	48.36(3)		
37.02(26)		4.5046(3)	4.0255(5)	2.7156(2)	49.24(2)		
35.22(28)		4.5222(5)	4.0397(7)	2.7267(2)	49.81(3)		
33.16(26)		4.5328(6)	4.0492(9)	2.7334(3)	50.17(4)		
32.14(10)		4.5444(6)	4.0556(12)	2.7398(4)	50.50(5)		
29.79(5)		4.5586(4)	4.0660(7)	2.7498(2)	50.97(3)	_	

Table 1. Lattice constants and unit cell volumes determined for δ -Fe12, δ -(Al_{0.832(5)}⁵⁷Fe_{0.117(1)})OOH_{1.15(3)} (Fe/(Al+Fe) = 0.123(2.832)) (Fe/(Al+Fe) = 0.123)

 $P_{\rm W}$ and $P_{\rm ruby}$ indicate the pressure values determined using the EoS for tungsten (Dorogokupets and Oganov 2006) which are used as the experimental pressure, and the ruby fluorescence method (Dewaele et al. 2008), respectively. Uncertainties are given in parentheses for the last reported significant digit.

$P_{\rm W}$ (GPa)	$P_{\rm ruby}$ (GPa)	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	V (Å ³)	0.900(9)	01010(1))	1.1 ((3) (Ì	,
Compressio	n					I				
2.04(4)		4.7105(3)	4.2200(5)	2.8343(2)	56.34(2)					
3.44(14)		4.6946(2)	4.2021(3)	2.8279(1)	55.79(1)					
5.50(11)		4.6778(2)	4.1816(4)	2.8207(1)	55.17(2)					
8.36(11)	7.73(14)	4.6515(3)	4.1490(4)	2.8091(1)	54.21(2)					
12.36(18)		4.6244(2)	4.1244(3)	2.7934(1)	53.28(1)					
13.67(30)	12.96(6)	4.6163(2)	4.1171(3)	2.7883(1)	52.99(2)					
18.57(11)		4.5873(1)	4.0932(1)	2.7702(0)	52.02(1)					
20.82(31)		4.5758(2)	4.0838(3)	2.7628(1)	51.63(1)					
22.76(17)		4.5647(3)	4.0751(5)	2.7558(2)	51.26(2)					
24.35(25)		4.557(2)	4.0698(4)	2.7511(1)	51.03(2)					
25.63(56)	25.68(32)	4.5487(2)	4.0615(4)	2.7458(1)	50.73(2)					
34.99(22)		4.5044(4)	4.0248(6)	2.7173(2)	49.26(3)					
35.46(9)		4.5030(5)	4.0243(8)	2.7161(3)	49.22(3)					
35.80(23)		4.4987(4)	4.0207(7)	2.7135(2)	49.08(3)					
37.10(10)		4.4919(4)	4.0149(7)	2.7089(2)	48.85(3)					
37.62(34)		4.4893(5)	4.0116(7)	2.7065(2)	48.74(3)					
39.51(29)		4.4799(6)	4.0048(9)	2.7003(3)	48.45(4)					
40.34(29)		4.4767(6)	4.0016(10)	2.6982(3)	48.34(4)					
42.68(63)		4.4680(5)	3.9945(6)	2.6925(2)	48.05(3)					
45.91(37)		4.4548(8)	3.9844(12)	2.6839(4)	47.64(5)					
49.31(38)		4.4423(9)	3.9747(17)	2.6748(4)	47.23(7)					
52.52(17)		4.4296(11)	3.9670(16)	2.6673(4)	46.87(7)					
55.60(16)		4.4211(9)	3.9555(18)	2.6601(4)	46.52(7)					
Decompress	<u>sion</u>									
38.27(41)		4.4863(5)	4.0095(6)	2.7025(3)	48.61(3)					
36.98(14)		4.4910(7)	4.0150(8)	2.7061(4)	48.80(4)					
36.06(15)		4.4994(5)	4.0203(8)	2.7120(6)	49.06(4)					
35.23(13)		4.5028(4)	4.0229(7)	2.7140(3)	49.16(3)					
34.13(12)		4.5117(6)	4.0293(10)	2.7187(4)	49.42(4)					
31.65(7)		4.5228(4)	4.0398(6)	2.7266(2)	49.82(3)					
29.08(23)		4.5339(2)	4.0510(3)	2.7361(1)	50.25(2)					
0.0001		4.7266(7)	4.2389(10)	2.8401(3)	56.90(5)					

Table 2. Lattice constants and unit cell volumes determined for δ -Fe5 (δ -(Al_{0.908(9)}⁵⁷Fe_{0.045(1)})OOH_{1.14(3)} (Fe/(Al+Fe) = 0.047(10.000) + 0.000)

 $P_{\rm W}$ and $P_{\rm ruby}$ indicate the pressure values determined using the EoS for tungsten (Dorogokupets and Oganov 2006) which are used as the experimental pressure, and the ruby fluorescence method (Dewaele et al. 2008), respectively. Uncertainties are given in parentheses for the last reported significant digit.

Table 3. EoS Parameters of δ -(Al,Fe)OOH phases.

Phase	V_0 (Å ³)	K_0 (GPa)	K'(GPa)	EoS	P range
This study					
δ -(Al _{0.832(5)} ⁵⁷ Fe _{0.117(1)})OOH _{1.15(3)}	57.85(2)	147(1)	4 (fixed)	2nd BM	1.0–10.1 GPa
δ -(Al _{0.832(5)} ⁵⁷ Fe _{0.117(1)})OOH _{1.15(3)}	57.5(3)	155(22)	8(2)	Spin crossover EoS	10.1.64.8 CDa
δ -(Al _{0.832(5)} ⁵⁷ Fe _{0.117(1)})OOH _{1.15(3)}	55.2(4)	241(14)	4 (fixed)	Spin crossover EoS	10.1–04.8 OF a
δ -(Al _{0.908(9)} ⁵⁷ Fe _{0.045(1)})OOH _{1.14(3)}	57.03(7)	152(7)	4 (fixed)	2nd BM	0-8.4 GPa
δ -(Al _{0.908(9)} ⁵⁷ Fe _{0.045(1)})OOH _{1.14(3)}	56.9(4)	149(25)	8(2)	Spin crossover EoS	12 / 55 6 GPa
δ -(Al _{0.908(9)} ⁵⁷ Fe _{0.045(1)})OOH _{1.14(3)}	55.4(3)	223(11)	4 (fixed)	Spin crossover EoS	12. 4 –55.0 GI a
Previous study					
δ-AlOOH	56.408(9)	152(2)	4 (fixed)	2nd BM	0–10 GPa
δ-AlOOH	55.47(8)	219(3)	4 (fixed)	2nd BM	10–63.5 GPa
δ-AlOOH	56.408(9)	191(1)	4 (fixed)	2nd BM	0–63.5 GPa
δ-AlOOH	56.408(9)	162(3)	5.9(2)	3rd BM	0–63.5 GPa
δ-AlOOH	56.54(9)	252(3)	4 (fixed)	3rd BM	0–22.5 GPa
δ-ΑΙΟΟΗ	56.35(2)	124(2)	13.5(7)	3rd BM	0–17.1 GPa
δ-AlOOH ^a	167	167	5.0	Vinet	0–28 GPa
δ -AlOOH ^b	57.57	205	4.3	Vinet	0–150 GPa
ε-FeOOH ^c	66.3(5)	158(5)	4 (fixed)	2nd BM	0–21 GPa
ε-FeOOH	66.20(3)	126(3)	10(1)	3rd BM	0-8.6 GPa
ε-FeOOH	66.278(6)	135(3)	6.1(9)	3rd BM	0–11.1 GPa
ε-FeOOH ^d	58.62(2)	223(2)	4.07(3)	3rd BM	30–140 GPa

Uncertainties are given in parentheses for the last reported significant digit.

HS, high-spin state; LS, low-spin state

a, Theory, $P2_1nm$ structure.

b, Theory, Pnnm (HC) structure.

c, Experimental data were obtained at 473-673 K.

d, Theory, Pnnm (HC) structure and LS state.

Details

δ -Fe12 (Fe/(Al+Fe) = 0.123(2)), $P2_1 nm$, H	S
δ-Fe12 (Fe/(Al+Fe) = 0.123(2)), Pnnm, HS	5
δ-Fe12 (Fe/(Al+Fe) = 0.123(2)), Pnnm, LS	
δ -Fe5 (Fe/(Al+Fe) = 0.047(10)), $P2_1nm$, H	S
δ -Fe5 (Fe/(Al+Fe) = 0.047(10)), <i>Pnnm</i> , HS	5
δ-Fe5 (Fe/(Al+Fe) = 0.047(10)), Pnnm, LS	

References

Sano-Furukawa et al. (2009) Sano-Furukawa et al. (2009) Sano-Furukawa et al. (2009) Sano-Furukawa et al. (2009) Vanpeteghem et al. (2002) Suzuki (2009) Tsuchiya and Tsuchiya (2009) Tsuchiya and Tsuchiya (2009) Gleason et al. (2008) Suzuki (2010) Suzuki (2016) Thompson et al. (2017)

Table 4. Hyperfine parameters for δ -Fe13 and the corresponding reduced χ^2 produced from fitting the spectra of the sample w reference foil simultaneously. Uncertainties are given in parentheses for the last reported significant digit. Isomer shifts are rel Fe13, Fe³⁺_B/(Fe³⁺_A + Fe³⁺_B) was found to be 1/3 through Monte-Carlo searches and did not change with pressure, and so was f correlations. See text for more details.

HS						
Pressure (GPa)	QS (mm/s)	IS (mm/s)	FWHM (mm/s)	Thickness (µm)	reduced χ^2	
21.1(2)	0.414(7)	0.19(2)	0.12(1)	23.8(5)	1.36(6)	_
31.8(8)	0.392(3)	0.18(2)	0.01(5)	26.4(2)	1.88(7)	_
LS						
		TA ())			\mathbf{IC} (\mathbf{I})	EWILL $(\dots, (n))$
Pressure (GPa)	$QS_A (mm/s)$	IS _A (mm/s)	$FWHM_A (mm/s)$	$QS_{B} (mm/s)$	$1S_{B} (mm/s)$	$FWHM_B (mm/s)$
Pressure (GPa) 45(2)	$QS_{A} (mm/s)$ 1.140(4)	$\frac{1S_{A} (mm/s)}{0.209(7)}$	$FWHM_{A} (mm/s)$ 0.260(4)	$QS_{\rm B} ({\rm mm/s})$ 1.73(1)	$1S_{\rm B} ({\rm mm/s})$ 0.249(7)	$\frac{FWHM_{B} (mm/s)}{0.16(1)}$
Pressure (GPa) 45(2) 59(2)	$\frac{QS_{A} \text{ (mm/s)}}{1.140(4)}$ 1.235(6)	IS _A (mm/s) 0.209(7) 0.135(8)	FWHM _A (mm/s) 0.260(4) 0.221(5)	$\frac{QS_{B} (mm/s)}{1.73(1)}$ 1.864(7)	$\frac{1S_{\rm B} ({\rm mm/s})}{0.249(7)}$ 0.206(9)	0.16(1) 0.22(1)
Pressure (GPa) 45(2) 59(2) 67.5(5)	QS _A (mm/s) 1.140(4) 1.235(6) 1.291(6)	$\frac{\text{IS}_{\text{A}} \text{ (mm/s)}}{0.209(7)}$ $0.135(8)$ $0.107(6)$	FWHM _A (mm/s) 0.260(4) 0.221(5) 0.215(4)	$ \begin{array}{r} QS_{\rm B} (\rm mm/s) \\ \hline 1.73(1) \\ 1.864(7) \\ 1.88(1) \end{array} $	$\begin{array}{c} 18_{\rm B} \ ({\rm mm/s}) \\ 0.249(7) \\ 0.206(9) \\ 0.172(9) \end{array}$	
Pressure (GPa) 45(2) 59(2) 67.5(5) 78.5(5)	$\frac{QS_A \text{ (mm/s)}}{1.140(4)}$ 1.235(6) 1.291(6) 1.320(6)	$\frac{IS_{A} \text{ (mm/s)}}{0.209(7)}$ $0.135(8)$ $0.107(6)$ $0.109(7)$	$\frac{FWHM_{A} (mm/s)}{0.260(4)}$ $0.221(5)$ $0.215(4)$ $0.227(4)$	$\frac{QS_{B} (mm/s)}{1.73(1)}$ 1.864(7) 1.88(1) 2.006(9)	$\begin{array}{c} 1S_{\rm B} \ ({\rm mm/s}) \\ 0.249(7) \\ 0.206(9) \\ 0.172(9) \\ 0.202(9) \end{array}$	$\begin{array}{c} 0.16(1) \\ 0.22(1) \\ 0.28(2) \\ 0.28(2) \end{array}$

vith and without the stainless steel lative to α -Fe metal. In low-spin δ -ixed to reduce parameter

Thickness (µm)	reduced χ^2
19.8(5)	1.23(5)
18.0(4)	1.12(5)
16.9(2)	1.50(6)
16.1(2)	1.61(6)

Table 5. Euler angles α and β for the electric field gradient orientation of high-spin (HS) and low-spin (LS) ferric iron sites

	α	β
HS Fe ³⁺	0°	0°
LS Fe ³⁺ _A	296°	261°
LS Fe ³⁺ _B	22°	253°

in δ -Fe13.