1

Revision 1

A new (Mg_{0.5}Fe³⁺_{0.5})(Si_{0.5}Al³⁺_{0.5})O₃ LiNbO₃-type phase synthesized at lower mantle conditions

4 Zhaodong Liu^{1, 2*}, Leonid Dubrovinsky¹, Catherine McCammon¹, Sergey V. Ovsyannikov¹,

5 Iuliia Koemets¹, Luyao Chen², Qi Cui³, Na Su³, Jinguang Cheng^{3, 4}, Tian Cui², Bingbing Liu²,
6 Tomoo Katsura^{1,5}

⁷ ¹Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany.

8 ² State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

³Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of
 Sciences, Beijing 100190, China.

⁴Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.

⁵Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, P.R. China

13 * Corresponding author: Zhaodong Liu (<u>liu_zhaodong@jlu.edu.cn</u>)

14 Abstract

15 A new $(Mg_{0.5}Fe^{3+}_{0.5})(Si_{0.5}Al^{3+}_{0.5})O_3$ LiNbO₃-type phase was synthesized at 27 GPa and 2000 K

16 under highly oxidized conditions using an advanced multi-anvil apparatus. Single crystals for this phase are 0.2-0.3 mm in dimension and maroon in color. They crystallize in a 17 noncentrosymmetric structure with space group R3c and lattice parameters of a = b = 4.8720 (6) 18 Å, c = 12.898 (2) Å, and V = 265.14 (8) Å³. Fe³⁺ and Al³⁺ cations substitute into A (Mg²⁺) and B 19 (Si⁴⁺) sites through charge-coupled substitution mechanism, respectively. The distortion of BO₆ 20 $(B = Si_{0.5}Al^{3+}_{0.5})$ octahedra is 1.6 times higher than that of AO₆ (A = Mg_{0.5}Fe³⁺_{0.5}) octahedra. 21 22 This phase is probably recovered from bridgmanite at lower-mantle conditions by a diffusionless 23 transition because of the displacement of A cations and distortion of BO_6 octahedra on releasing 24 pressure. Bridgmanite can thus contain the FeAlO₃ component (50 mol%) beyond previously reported solubility limit (37 mol%). The present study shows that the Earth's most abundant 25 elements form a new Fe³⁺- and Al³⁺-rich LiNbO₃-type compound from bridgmanite at lower 26 27 mantle conditions. This new compound provides a new insight into the complicated crystal chemistry of LiNbO3-type phase/bridgmanite and constrains the pressure and temperature 28 29 conditions for shocked meteorites.

30 Keywords: LiNbO₃-type, single crystals, bridgmanite, crystal chemistry, lower mantle

31 INTRODUCTION

32 Phase compositions of ABO₃ compounds are of great significance in physics, chemistry, and geoscience. Among ABO_3 compounds, LiNbO₃ (LN)-type compounds exhibit remarkable 33 34 physical properties because of their noncentrosymmetric structure (space group: R3c) and 35 capacity to adopt a multitude of distortions between BO_6 and AO_6 octahedra (Navrotsky et al., 36 1998). Some LN-type oxides such as LiNbO₃ and LiTaO₃ can be prepared at ambient conditions (Megaw, 1968; Abrahams and Bernstein, 1967), whereas the majority of LN-type oxides have been 37 38 regarded as a metastable quench phase formed from high-pressure stable orthorhombic 39 perovskite by a diffusionless transformation upon decompression (e.g., Ross et al., 1989; 40 Leinenweber, 1991; Navrotsky et al., 1998; Ishii et al. 2017). Natural LN-type FeTiO₃ was also discovered in shocked gneiss from the Ries impact crater, southern Germany (Dubrovinsky et al., 41 42 2009), and can be used an indicator for shock conditions (Akaogi et al., 2016). Consequently, synthesis of new LN-type compounds and exploration of the novel functionalities related to their 43 structures are important in Earth and planetary science as well as and physics and material 44 45 science.

46 MgSiO₃ perovskite (bridgmanite) is one of the most common ABO_3 phases in the Earth's mantle, and can contain a large amount of Fe³⁺ in the presence of Al³⁺ (McCammon, 1997; Frost 47 and Langenhorst, 2002). The incorporation of Fe³⁺ and Al³⁺ would great change the physical and 48 chemical properties of bridgmanite such as elasticity (e.g., Boffa Ballaran et al., 2012), electrical 49 50 conductivity (e.g., Yoshino et al., 2016), and Mg-Fe partitioning in the lower-mantle phases (Frost and Langenhorst, 2002). Several studies have found that MgSiO₃ bridgmanite with the 51 Al_2O_3 contents above 25 mol% would transform to the LN-type phase upon releasing pressure 52 53 (Funamori et al., 1997; Miyajima et al., 1999; Liu et al., 2016, 2017a; Ishii et al., 2017). The

presence of Al³⁺ can also enhance the incorporation of Fe³⁺ to form the charge-coupled FeAlO₃ 54 component in bridgmanite through the following reaction: $Al_2O_3 + 3Fe^{2+}O = 2Fe^{3+}AlO_3 + Fe^{0}$ 55 (Frost and Langenhorst, 2002). The effective ionic radius of Fe³⁺ (0.645 Å) in six-fold 56 coordination is significantly larger than that of Al³⁺ (0.535 Å) and Si⁴⁺ (0.40 Å) but close to that 57 of Mg²⁺ (0.72 Å) (Shannon, 1976). In principle, Fe^{3+} preferentially substitutes on the A (Mg²⁺) 58 59 site rather than the B (Si⁴⁺) site due to comparable cation sizes. It is thus expected that FeAlO₃-60 bearing LN-type phases can be synthesized at lower mantle conditions and exhibit similar or distinct physical and chemical properties with only Al-bearing LN-type phases. However, such 61 62 issues remain poorly understood.

Here, we report a new *LN*-type compound $(Mg_{0.5}Fe^{3+}_{0.5})(Si_{0.5}Al^{3+}_{0.5})O_3$ with *R3c* symmetry synthesized at 27 GPa and 2000 K in a multi-anvil press. We investigate the crystal structure of the *LN*-type phase by means of single crystal X-ray diffraction, electron probe microanalyzer, and Mössbauer spectroscopy. Finally, we discuss the crystal chemistry of the *LN*type phase and its implications for the mineralogy of the lower mantle and the pressure and temperature conditions of shocked meteorites.

69

70 EXPERIMENTAL METHODS

A fine-grained oxide mixture with a bulk composition 50 mol% MgSiO₃ plus 50 mol% FeAlO₃ was used as the starting material, which was prepared from reagent-grade oxide powders of MgO, SiO₂, Al₂O₃, and Fe₂O₃ with a grain size smaller than 1 μ m. The starting material was loaded into a platinum capsule, heated at 800 K for one hour, and then welded. This procedure is expected to maintain Fe³⁺/ Σ Fe = 100% and minimize absorbed water. Quench experiments were performed at 27 GPa and 2000 K for 20 hours using a Cr₂O₃-doped MgO octahedron with a 7mm edge length and LaCrO₃ sleeve for heating in combination with tungsten carbide cubes with 3-mm truncated edge lengths in a Kawai-type multi-anvil apparatus (IRIS-15) with a press load of 15 MN at the Bayerisches Geoinstitut, University of Bayreuth (Ishii et al., 2016; Liu et al. 2017b).

81 Phases in recovered samples were initially identified using a micro-focused X-ray 82 diffraction (MXRD) with a Co anode operated at 40 kV and 500 mA. Back-scattered electron 83 (BSE) images were obtained using a LEO1530 scanning electron microscope (SEM). Phase compositions were analyzed using a JEOL JXA-8200 electron probe microanalyzer (EPMA) 84 operating at an acceleration voltage of 15 kV and a beam current of 5 nA with standards of 85 86 enstatite for Mg and Si and corundum for Al. A high-quality single crystal of ~ 0.04 mm in 87 diameter was selected for single crystal X-ray diffraction (SXRD) and the data were collected at 88 ambient conditions using a three-circle diffractometer equipped with a SMART APEX CCD 89 detector and a high-brilliance Iµs 3.0 microfocus anode (Ag radiation). The exposure time was 90 10 s per frame. Lorentz and polarization corrections as well as an analytical absorption 91 correction based on the crystal shape were taken into account for the correction of the reflection 92 intensities using the CrysAlis package (Oxford Diffraction 2017). All crystallographic data 93 refinements were performed based on F^2 using the SHELX97 program package (Sheldrick, 2008) 94 in the WinGX System (Farrugia, 1999). The Fe³⁺/ Σ Fe ratio was measured using Mössbauer 95 spectroscopy on one the same single crystal, which was conducted in transmission mode on a constant acceleration Mössbauer spectrometer with a nominal 370 MBq ⁵⁷Co point source in a 12 96 97 mm Rh matrix. The velocity scale was calibrated relative to α -Fe. Detailed information can be 98 found in McCammon (1994).

99

100 **RESULTS AND DISCUSSIONS**

101 The MXRD pattern of the recovered sample indicates that all diffraction peaks can be matched to those of an LN-type phase (Fig. 1a). A BSE image further confirms that the run 102 103 product consists of only a single phase with grain sizes on the order of 0.2-0.3 mm (Fig. 1b). 104 Optical microscope observations show that the crystals are translucent, maroon in color, and free 105 of visible imperfections (Fig. 1c). The room temperature Mössbauer spectrum of the sample (Fig. 106 1d) can be fit to one doublet. The hyperfine parameters, center shift (CS) and quadruple splitting 107 (QS), are 0.34 ± 0.01 and 0.91 ± 0.01 mm/s, respectively. These values are in good agreement with Fe^{3+} in silicate perovskite with CS of ~0.3 mm/s and OS of 0.73–0.94 mm/s (McCammon, 108 1997; Lauterbach et al. 2000). However, a doublet with high CS and QS characteristic of Fe²⁺ in 109 silicate perovskite is not observed. The Fe³⁺/ Σ Fe value is thus 100% within analytical uncertainty, 110 suggesting a pure Fe^{3+} -bearing LN phase. EPMA shows that the LN-type phase has a 111 composition of $(Mg_{0.49 \pm 0.01}Fe^{3+}_{0.49 \pm 0.01}Al^{3+}_{0.02 \pm 0.01})(Si_{0.50 \pm 0.01}Al^{3+}_{0.50 \pm 0.01})O_{3.01 \pm 0.01}$. Because 112 the effective ionic radius of Fe^{3+} (0.645 Å) in six-fold coordination is closer to that of Mg^{2+} (0.72 113 Å) rather than to that of Si^{4+} (0. 40 Å), and the radius of Al^{3+} (0.535 Å) is closer to that of Si^{4+} , 114 Fe^{3+} , and Al^{3+} are expected to substitute for Mg^{2+} (A site) and Si^{4+} (B site), respectively, through 115 a charge-coupled substitution (Fe³⁺ (A) + Al³⁺ (B) = Mg²⁺ (A)+ Si⁴⁺ (B)). But we note that a small 116 fraction of Al^{3+} may be present on the A site (within the uncertainty of the measurements) due to 117 118 an excess of Al. These results will be discussed below based on the results of SXRD refinement.

119 Crystallographic data for the *LN*-type $(Mg_{0.5}Fe^{3+}_{0.5})(Si_{0.5}Al^{3+}_{0.5})O_3$ phase from the SXRD 120 refinement can be found in the deposited CIF. The lattice parameters and volume are a = b =121 4.8720 (6) Å, c = 12.898 (2) Å, and V = 265.14 (8) Å³, which are substantially larger than those

reported for the Mg_{0.75}Al_{0.5}Si_{0.75}O₃ LN-type phase (a = b = 4.8194(3) Å, c = 12.6885(8) Å, V =122 255.23(3) Å³; Ishii et al., 2017). More than 900 unique reflections were collected and indexed in 123 124 the space group R3c (#161) with $R_{int} = 2.9\%$. A structure solution based on the single crystal data was further refined in an anisotropic approximation for all atoms to $R_1 = 5.9\%$. The scattering 125 factors of Mg, Al, and Si are similar, but very different to those of Fe. By assuming that both 126 cation sites are fully occupied, we found that Fe^{3+} is located only in A site together with Mg. 127 128 These results are in agreement with the Mössbauer spectroscopy data. Free refinement of the A-129 site occupancy yileds 0.48 (5) and 0.52 (5) for Mg and Fe^{3+} , respectively, which agrees with 130 results of the chemical analysis. These two occupancies are indistinguishable from 0.5 within the uncertainties of this method. In the final structural refinement, we fixed the occupancies of Fe³⁺ 131 132 and Mg in the A-site to 0.5. Since Si and Al in the B site cannot be distinguished by SXRD, their 133 occupancies were also fixed to 0.5 based on the composition.

As shown in Figure 2, the Mg_{0.5}Fe³⁺_{0.5} and Si_{0.5}Al³⁺_{0.5} atoms occupy six-coordinated A-134 135 and B-sites to form AO₆ and BO₆ octahedra, respectively, which are interpenetrated via edge-136 sharing octahedral dimers in the *ab*-plane and face-sharing octahedral pairs along the *c*-axis. The size of the AO₆ octahedron (~10.3 Å³) is significantly larger than that of the BO₆ octahedron 137 (~8.6 Å³) because AO_6 and BO_6 octahedra are occupied by larger (Mg²⁺ and Fe³⁺) and smaller 138 (Si⁴⁺ and Al³⁺) cations, respectively. Noticeable structural features include the distortions of AO₆ 139 140 and BO₆ octahedra as a result of shifts of A and B cations from the geometrical centers of face-141 sharing octahedra by 0.2 and 0.3 Å, respectively (see deposited CIF). The average bond lengths 142 of two types of $\langle Mg/Fe-O \rangle$ are 1.975 \pm 0.006 and 2.090 \pm 0.008 Å, which are significantly 143 larger than those of $\langle Si/Al-O \rangle$ (1.939 \pm 0.008 and 1.802 \pm 0.006 Å). We estimated the 144 octahedral distortion using the above bond lengths by the following equation:

145
$$\Delta = \frac{1}{6} \sum_{i} \left\{ \frac{(d_i - d_{ave})}{d_{ave}} \right\}^2, \qquad (1)$$

where d_i is the individual bond length and d_{ave} is the average bond length. Values of Δ are 8 ×10⁻⁴ and 13 ×10⁻⁴ for (Mg_{0.5}Fe³⁺_{0.5})O₆ and (Si_{0.5}Al³⁺_{0.5})O₆ octahedra, respectively, confirming a weaker distortion of AO_6 than BO_6 . Furthermore, the distortion of BO₆ octahedra in the present phase is significantly larger than that of MgSiO₃ bridgmanite (1.6 × 10⁻⁵) by a factor of 86.

We also use the Goldschmidt tolerance factor (t) for LN-type or perovskite ABO_3 150 151 compounds to express the geometric stability and crystal structure distortions in terms of 152 constituent ionic packing (Goldschmidt, 1926). The parameter t is defined by the ratios of constituent ionic radii of A, B and O as $t = (r_A + r_O)/\sqrt{2}(r_B + r_O)$, where r_A , r_B , and r_O are 153 154 the ionic radii of A and B in six-fold coordination and O, respectively. As shown in Figure 3, we obtained t = 0.79 for $(Mg_{0.5}Fe^{3+}_{0.5})(Si_{0.5}Al^{3+}_{0.5})O_3$ $(r_{Mg2+} = 0.72 \text{ Å}; r_{Al3+} = 0.535 \text{ Å}; r_{Fe3+} = 0.645 \text{ K})$ 155 Å ; $r_0 = 1.4$ Å) in the present study, which is comparable with that of LN-type MnTiO₃ (t = 0.79, 156 Ross et al., 1989), Mg_{0.75}Al_{0.5}Si_{0.75}O₃ (t = 0.80, Liu et al., 2016, 2017a; Ishii et al., 2017) but 157 158 significantly higher than that of $FeTiO_3$ (t = 0.77, Leinenweber et al., 1991). All of these values are significantly lower than those for stable perovskite of $CaSiO_3$ (t = 0.95, Liu and Ringwood, 159 1975) and MgSiO₃ (t = 0.83, Ito and Matsui, 1978). In summary, t decreases with increasing B 160 cation radius relative to that of the A cation as a result of the increasing degree of cell distortion. 161

162

163 **IMPLICATIONS**

164 Most *LN*-type phases are generally accepted as a quenchable phase that back-transforms 165 from a high-pressure stable perovskite phase by a diffusionless transition because of the This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-7070

166 displacement of A cations and distortion of BO₆ octahedra resulting from cation substitution 167 upon decompression (e.g., Navrotsky et al., 1998; Ross et al., 1989; Leinenweber, 1991; Ishii et 168 al., 2017). It is noted that the charge-coupled FeAlO₃ component dominates in bridgmanite, especially Fe³⁺- and Al³⁺-rich bridgmanite, although trace amounts of the oxygen vacancy 169 substitution may exist in Fe³⁺- and Al³⁺-poor bridgmanite in the (Mg, Fe²⁺)O-Fe³⁺AlO₃-SiO₂ 170 171 ternary system (Fig. 4) (McCammon, 1997; Lauterbach et al. 2000; Frost and Langenhorst, 2002; 172 Nishio-Hamane et al., 2005; Saikia et al., 2009; Boffa Ballaran et al. 2012; Yoshino et al., 2016). 173 The Al₂O₃ content (25 mol%) in the present phase is also considerably higher than that in the Fe-174 free bridgmanite (12 mol%, Liu et al., 2016; 2017a). Therefore, the Al₂O₃ content in bridgmanite could be highly enhanced in the presence of Fe^{3+} because of the formation of the charge-coupled 175 Fe³⁺AlO₃ composition. In the present study, bridgmanite can incorporate the FeAlO₃ content up 176 177 to 50 mol% at 27 GPa and 2000 K, which is beyond solubility limit in both pyrolite (~ 6 mol%) and MORB (mid-ocean ridge basalt) (~25 mol%) and previously reported value (37 178 mol%, Boffa Ballaran et al., 2012). Bridgmanite would thus be the major phase for Fe^{3+} and 179 Al³⁺ for the pyrolite and MORB lower mantle. 180

Furthermore, the pressure at which the present phase forms (27 GPa) is significantly lower than that of the pyropic (Mg₃Al₂Si₃O₁₂ pyrope) *LN*-type phase (45 GPa, Liu et al., 2016; 2017a). This observation may be explained by a reduction of the ionic radius ratio between the A-site cation and oxygen because of the smaller Fe^{3+} in A (Mg) site and larger octahedral distortion than found in the pyropic *LN*-type phase. Our results together with that obtained by Boffa Ballaran et al. (2012) suggest that bridgmanite with the FeAlO₃ content above ~37 mol% would transform into the *LN*-type phase upon decompression from lower mantle conditions.

8

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-7070

188	The formation of the <i>LN</i> –type phase is a useful indicator for constraining the pressure and
189	temperature conditions for shocked meteorites (Sharp et al., 1997; Xie et al., 2006; Tomioka and
190	Fujino 1997; Ishii et al., 2016). Dubrovinsky et al. (2009) found a natural <i>LN</i> -type FeTiO ₃ phase
191	from the Ries Crater, Germany, which is considered to be recovered from perovskite at 15-28
192	GPa after shocking (Akaogi et al., 2016). The presence of the Fe ³⁺ -and Al ³⁺ -rich <i>LN</i> -type phase
193	can therefore be used to constrain the formation conditions of shocked meteorites.

194

195 Acknowledgements

The authors thank D. Krauße, H. Fischer, and S. Übelhack for their assistance with high-pressure 196 197 assembly preparation. We also thanks for the editor Ian Swainson for processing our manuscript 198 and four reviewers for constructive comments. Z. L. was financially supported by the 199 Bayerisches Geoinstitut Visitors' Program. This study was also supported by research grants to T. K. (BMBF: 05K13WC2, 05K16WC2; DFG: KA3434/3-1, KA3434/7-1, KA3434/8-1, 200 201 KA3434/9-1), L. D. (DU393/9-2, DU393/13-1), and C. M. (MC3/20-2). This project has 202 received funding from the European Research Council (ERC) under the European Union's 203 Horizon 2020 research and innovation programme (Proposal No. 787 527). J. G. C. is supported 204 by the National Key R&D Program of China (Grant No. 2018YFA0305700), the National 205 Science Foundation of China (Grant No. 11574377, 11874400), and the Key Research Program 206 of Frontier Sciences (Grant No. QYZDB-SSWSLH013).

207

208 References

- 209 Abrahams, S. C., and Bernstein, J. L. (1967) Ferroelectric lithium tantalate-1. single crystal X-ray
- 210 diffraction study at 24 C Journal of Physics and Chemistry of Solids, 28, 1685.
- Akaogi, M., Abe, K., Yusa, H., Ishii, T., Tajima, T., Kojitani, H., Mori, D., and Inaguma, Y. (2016) Highpressure high-temperature phase relations in FeTiO₃ up to 35 GPa and 1600°C. Physics and
 Chemistry of Minerals, 44, 63–73.
- 214 Dubrovinsky, L.S., El Goresy, A., Gillet, P., Wu, X., and Simionivici, A. (2009) A novel natural shock-
- 215 induced high-pressure polymorph of FeTiO₃ with the Liniobate structure from the Ries Crater,
- 216 Germany. Meteoritics and Planetary Science Supplement, 72, 5094.
- Frost, D. J., and Langenhorst, F., (2002) The effect of AlO_{1.5} on Fe–Mg partitioning between
 magnesiowüstite and magnesium silicate perovskite. Earth and Planetary Science Letters, 199,
 227–241.
- Funamori, N., Yagi, T., Miyajima, N., and Fujino, K. (1997) Transformation in garnet: from
 orthorhombic perovskite to LiNbO₃ phase on release of pressure. Science, 275, 513–515.
- 222 Goldschmidt, V. M. (1926) Naturwissenschaften, 14, 477.
- Ishii, T., et al. (2016) Generation of pressure over 40 GPa using Kawai–type multi–anvil press with
 tungsten carbide anvils. Review of Scientific Instruments, 87, 024501–1–024501–6.
- Ishii, T., Sinmyo, R., Komabayashi, T., Boffa-Ballaran, T., Kawazoe, T., Miyajima, N., and Katsura, T.
 (2017). Synthesis and crystal structure of LiNbO₃-type Mg₃Al₂Si₃O₁₂: A possible indicator of shock
 conditions of meteorites. American Mineralogist, 102(9), 1947–1952.
- Ito, E., and Matsui, Y. (1978) Synthesis and crystal-chemical characterization of MgSiO₃ perovskite.
 Earth and Planetary Science Letters, 38, 443-450.
- Ko, J., and Prewitt, C. T. (1988) High-pressure phase transition in MnTiO₃ from the ilmenite to the
 LiNbO₃ structure. Physics and Chemistry of Minerals, 15, 355–362.
- Lauterbach, S., McCammon, C. A., van Aken, P., Langenhorst, F., and Seifert, F., (2000) Mössbauer and
 ELNES spectroscopy of (Mg,Fe)(Si,Al)O₃ perovskite: a highly oxidised component of the lower
 mantle. Contributions to Mineralogy and Petrology, 138, 17–26.
- Leinenweber, K., Utsumi, W., Tsuchida, Y., Yagi, T., and Kurita, K. (1991) Unquenchable high-pressure
 perovskite polymorphs of MnSnO₃ and FeTiO₃. Physics and Chemistry of Minerals, 18, 244–250.

- Liu, L., and A. E. Ringwood (1975) Synthesis of a perovskite-type polymorph of CaSiO₃. Earth and
 Planetary Science Letter, 14, 209–211.
- Liu, Z. D., Irifune, T. Nishi. M., Tange, Y., Arimoto, and T., Shinmei, T. (2016) Phase relations in the
 system MgSiO₃- Al₂O₃ up to 52 GPa and 2000 K. Physics of the Earth and Planetary Interiors, 257,
 18–27.
- Liu, Z. D., Nishi. M., Ishii, T., Fei, H. Z., Miyajima, N., Boffa Ballaran, T., Ohfuji, H., Sakai, T., Wang,
 L., Shcheka, S., Arimoto, T., Tange, Y., Higo, Y., Irifune, T., and Katsura, T. (2017a) Phase
 relations in the system MgSiO₃–Al₂O₃ up to 2300 K at lower-mantle pressures, Journal Geophysics
 Research, 10, 7775-7788.
- Liu, Z. D., Ishii, T., and Katsura, T. (2017b) Rapid decrease of MgAlO_{2.5} component in bridgmanite with
 pressure, Geochemical Perspective Letters, 5, 12-18.
- McCammon, C.A. (1994) Mössbauer spectroscopy of quenched high-pressure phases: investigating the
 Earth's interior. Hyperfine Interact. 90, 89–105.
- McCammon, C. A. (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387,
 694–696.
- Megaw, H.D., 1968. A note on the structure of lithium niobate, LiNbO₃. Acta Crystallographica A 24,
 583e588.
- Miyajima, N., Fujino, K., Funamori, N., Kondo, T., and Yagi, T. (1999). Garnet-perovskite
 transformation under conditions of the Earth's lower mantle: An analytical transmission electron
 microscopy study. Physics of the Earth and Planetary Interiors, 116(1–4), 117–131.
- Navrotsky, A. (1998) Energetics and crystal chemical systematic among ilmenite, lithium niobate, and
 perovskite structures. Chemistry of Materials 10, 2787e2793.
- Nishio-Hamane, D., Nagai, T., Fujino, K., Seto, Y., and Takafuji, N. (2005) Fe³⁺ and Al³⁺ solubilities in
 MgSiO₃ perovskite: implication of the Fe³⁺ AlO₃substitution in MgSiO₃ perovskite at the lower
- 261 mantle condition. Geophysical Research Letter, 32, L16306.
- 262 Oxford Diffraction. CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, 2009, UK.
- 263 Sheldrick, G. M. A short history of SHELX, Acta Crystallographica, 2008, A64, 112–122
- Farrugia, L. J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied
 Crystallography.

- Ross, N. L., Ko, J., and Prewvitt, C.T. (1989) A new phase transition in MnTiO₃.: LiNbO₃-perovskite
 structure. Physics and Chemistry of Minerals, 16, 621-629.
- Saikia, A., Boffa Ballaran, T., and Frost, D.J., 2009. The effect of Fe and Al substitution on the
 compressibility of MgSiO₃ perovskite determined through single-crystal X-ray diffraction. Physics
 of the Earth and Planetary Interiors, 173, 153–161.
- Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in
 halides and chalcogenides. Acta Crystallographica A, 32, 751–767.
- Sharp, T.G., Lingemann, C.M., Dupas, C., and Stöffler, D. (1997) Natural occurrence of MgSiO₃-ilmenite
 and evidence for MgSiO₃-perovskite in a shocked L chondrite. Science, 277, 352–355.
- Tomioka, N. and Fujino, K. (1997) Natural (Mg,Fe)SiO₃-ilmenite and-perovskite in the Tenham
 meteorite. Science, 277, 1084–1086.
- Xie, Z., Sharp, T. G. and DeCarlie, P. S. (2006) High-pressure phases in a shock-induced melt vein of the
 Tenham L6 chondrite: Constraints on shock pressure and duration, Geochimica et Cosmochimica
 Acta, 70, 504–515.
- Yoshino, T., kamada, S., Chengcheng, Z., Ohtani, E., and Hirao, N. (2016) Electrical conductivity model
 of Al-bearing bridgmanite with implications for the electrical structure of the Earth's lower mantle.
 Earth and Planetary Science Letters, 434, 208-219.
- 283
- 284
- 285
- 286
- 287
- _0/
- 288 289
- 207
- 290 291
- 271
- 292
- 293
- 294

295 Figures and Tables

296

FIGURE 1. Characteristics of the $(Mg_{0.5}Fe^{3+}_{0.5})(Si_{0.5}Al^{3+}_{0.5})O_3 LN$ -type phase: (a) MXRD profile, (b) BSE image, (c) photograph of selected single crystals, and (d) Mössbauer spectrum. Black dots indicate experimental data, while the red line shows the fitted curve. Red dots indicate the residual, i.e., the difference between calculated and experimental results. The small deviations in the residual are likely due to slight deviation from Lorentzian lineshape due to next-nearest-neighbor effects in the solid solution. Abbreviations: CS: center shift, QS: quadruple splitting, FWHM: Full width at half maximum.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-7070

304 305 FIGURE 2. Crystal structure of the $(Mg_{0.5}Fe^{3+}_{0.5})(Si_{0.5}Al^{3+}_{0.5})O_3$ LN-type phase and AO₆ (A=

 $Fe^{3+}_{0.5}Mg_{0.5}$) and BO_6 ($B = Al^{3+}_{0.5}Si_{0.5}$) octahedra. Yellow spheres are oxygen, blue spheres are Si/Al³⁺, and red spheres are Mg/Fe³⁺. 306 307

308

FIGURE 3. Goldschmidt diagram for selected ABO₃ perovskite and the *LN*-type compounds (yellow shading). Dotted lines are contours of the Goldschmit tolerance factor. Open symbols: perovskite-forming compounds (CaSiO₃: Liu and Ringwood, 1975; MgSiO₃: Ito and Matsui, 1978). Solid symbols: *LN*-type quenched products, $(Mg_{0.5}Fe^{3+}_{0.5})(Si_{0.5}Al^{3+}_{0.5})O_3$ (this study), $Mg_{0.75}Al_{0.5}Si_{0.75}O_3$ (Liu et al., 2016, 2017a; Ishii et al., 2017), FeTiO₃ (Akaogi e al., 2016), MnTiO₃ (Ko and Prewitt, 1988), and LiNbO₃ (Megaw, 1968).

FIGURE 4. Ternary phase diagram of the (Mg, Fe²⁺)O-Fe³⁺AlO₃-SiO₂ system for showing the compositions of Fe and Al-bearing bridgmanite in previous and present studies. The grey shadow is the magnified region from the whole ternary phase relations. The black star represents the composition of pyrolite by assuming the amount of Fe³⁺//2Fe of 50-60% under the reduced conditions (McCammon, 1997; Frost and Langenhorst, 2002), while the square represents that of MORB. Abbreviation: CCS, charge-coupled substitution (Mg²⁺ (A) + Si⁴⁺ (B) = M³⁺ (A) + M³⁺ (B), where M represent Fe³⁺ or Al³⁺); OVS, oxygen vacancy substitution (2 Si⁴⁺ (B) + O²= 2M³⁺ (B) + V_o, where V_o is the oxygen vacancy).