Epidote spherulites and radial euhedral epidote aggregates in a metavolcanic breccia in the Dabie UHP metamorphic belt (China): implication for dynamic metamorphism

An-Ping Chen1,2, Jian-Jun Yang1,2,*, Da-Lai Zhong1,2, Yong-Hong Shi3 and Jing-Bo Liu1,2

1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beitucheng Xilu 19, P.O. Box 9825, Beijing 100029, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Resources and Environment Engineering, Hefei University of Technology, Tunxi Lu 193, Hefei 230009, China

*Corresponding author: jjyang@mail.igcas.ac.cn

Running title: Epidote spherulites and radial euhedral epidote aggregates
ABSTRACT

Epidote spherulites are identified in a greenschist facies metavolcanic breccia enclosing a body of coesite-bearing eclogite at Ganghe in the Dabie ultrahigh-pressure metamorphic belt, east-central China. The epidote spherulites are formed by fibrous, radially arranged, and rare earth element (REE)-rich epidote crystals (REE = 0.13–0.36 (or slightly higher) cations per formula unit, cpfu) and interfibrillar REE-poor epidote (REE ≤0.10 cpfu). Some of the epidote spherulites are overgrown by radially arranged euhedral epidote crystals, which also form aggregates around preexisting quartz, plagioclase, and/or epidote. The epidote grains in such aggregates display oscillatory zoning, with REE content varying from a negligible amount to about 0.44 cpfu. Epidote also occurs as REE-poor individual euhedral crystals about the radial epidote aggregates or form loose clusters of randomly oriented crystals.

Thermodynamic modeling of the mineral assemblages in the plagioclase pseudomorphs and in the matrix shows that they formed at greenschist facies metamorphic conditions (435–515 °C and 5–7 kbar). The spherulites and radial euhedral crystal aggregates, however, do not belong to these assemblages and are non-equilibrium textures. They imply crystal growth under large degrees of supersaturation, with relatively low ratios of the diffusion rate (D) to the crystal growth rate (G). At low D/G ratios, spiky interfaces are favourable for diffusion-controlled growth and the resultant texture is a collection of spikes around a growth center, forming a spherulite. The change of epidote texture from spherulite to radial euhedral crystal aggregates implies a decrease of supersaturation and an increase of D/G, such that the crystal morphology was controlled by its crystallographic structure. The crystallization of the individual epidote grains corresponds to a further drop of supersaturation and a further
increase of the D/G ratio, approaching to the equilibrium conditions. Transiently higher $P-T$ conditions are inferred from the spherulite-forming reactions, relative to the $P-T$ estimates for the equilibrium assemblages. The fibrous crystals in the spherulites having relatively large interfacial energies would inevitably adjust their shapes to equilibrium ones with low interfacial energies if the $P-T$-H_2O conditions were maintained for a sufficiently long period of time. The non-equilibrium epidote aggregates likely formed in response to $P-T$ and fluid pulses, possibly related to seismicity.

Key words: Dabieshan, epidote, non-equilibrium, radial euhedral crystal aggregates, spherulite, supersaturation
Spherulite is a radial aggregate of fibrous crystals (Vernon 2004). It can be formed by silicates, metal alloys, elements, organic molecules and synthetic polymers, crystallized from melts, solids, solutions or gels (Shtukenberg et al. 2011). The driving force of crystallization, which measures the distance from equilibrium, is an important factor in controlling the crystal morphology. It is well known that crystal shape changes from polyhedral, skeletal, dendritic to spherulitic with an increasing driving force (e.g., Lofgren 1974; Oaki and Imai 2003; Jones 2017). Such a relationship is also supported by theoretical modeling (Saito and Ueta 1989; Sunagawa 1999; Wilbur and Ague 2006; Gránásy et al. 2014). It is therefore established that no matter what materials and physical states are involved, the conditions required by the crystallization of spherulites are highly non-equilibrium.

In crystalline rocks, spherulites can be formed by the same or different minerals and are known to crystallize from supercooled volcanic or frictional melts, devitrifying glasses, or supercooled fluids (e.g., Lofgren 1971a, 1971b; Vernon 2004; Xu and Scott 2005; Lin 2008; Watkins et al. 2009; Gardner et al. 2012; Melinger-Cohen et al. 2015; Jones 2017). Spherulitic epidote aggregates have been described in pseudomorphs after plagioclase in altered rhyolites (Hudson 1937), quartz-feldspar porphyry clasts in conglomerates (McCann and Kennedy 1974), high-pressure pseudotachylytes (Austrheim and Andersen 2004; Petley-Ragan et al. 2018), and in schists (Misch, 1965). Van Staal et al. (1990) mentioned epidote spherulites in pseudomorphs after pumpellyite in a blueschist.

Radial epidote aggregates other than spherulitic forms are described in hydrothermally altered rocks (Blattner 1976; Carpenter and Walker 1992; Harper 1995; Torres-Alvarado 2002; Minakawa et al. 2008; Melinger-Cohen et al. 2015; Owens and Dymek 2016), pegmatites or...
veins (Ross 1941; Halcrow 1956; Nehlig and Juteau 1988), teschenites (Kitchen 1985) and
various types of metamorphic rock (Heinrich 1964; Stout 1964; Misch 1965; Stuart-Smith
1990; Barriga and Fyfe 1997; Brunsmann et al. 2000; Rebay and Messiga 2007; Pascual et al.
2013). The morphology of individual epidote crystals constituting these aggregates is diverse,
including acicular, skeletal and prismatic. Misch (1965) described epidote aggregates with
crystal shapes varying from radial fibrous through radial tapering to non-radial lumpy in a suit
of crossite schists and actinolitic greenschists. Melinger-Cohen et al. (2015) reported both
epidote spherulites and radial euhedral epidote aggregates growing in two adjacent zones of
amygdules in an epidotized basalt.

Although the epidote spherulites in pseudotachylytes can be readily accepted to be
evidence for quenching, in the other reports of epidote spherulites in metamorphic rocks the
growth mechanisms and kinetic implications of the texture have been barely discussed. The
present study describes a sequence of epidote textures including spherulites, radial euhedral
crystal aggregates, and individual euhedral crystals in a metavolcanic breccia enclosing a
coesite-bearing eclogite body at Ganghe in Dabieshan, east-central China. The growth
mechanisms of these epidote textures and their implication for a possible dynamic and
non-equilibrium metamorphic process are discussed. The data presented may form part of a
basis for the eventual understanding of the hosting of the Triassic coesite-bearing eclogite by
the Neo-Proterozoic greenschist facies metavolcanic breccia.

GEOLOGICAL SETTING AND FIELD OCCURRENCE

The Ganghe locality is in central Dabieshan, known as an ultrahigh-pressure (UHP)
metamorphic terrane (Zhang et al. 2009). The main rock types at Ganghe are UHP gneisses,
eclogites, metagranitoid, marble, jadeite-quartzite, a suite of low-grade metamorphic rocks
(LGMRs), crosscut by late granitoid and lamprophyre dykes (Schmid et al. 2003; Guo et al. 2012). The LGMRs are considered to be a part of a cover unit that was tectonically juxtaposed against the UHP gneisses of Yangtze basement (Schmid et al. 2003). Zircon dating and Sm-Nd whole-rock analysis of the LGMRs yielded an $^{207}\text{Pb} - ^{206}\text{Pb}$ age of 745–802 Ma and an isochron age of 790.9 ± 18.6 Ma, respectively (Dong et al. 2002). Zircon in a volcanic breccia yielded an $^{206}\text{Pb} - ^{238}\text{U}$ age of 761 ± 33 Ma (Schmid et al. 2003). Both results are interpreted to be the protolith age. Whole-rock oxygen isotope analysis shows that they have a low δ18O range of −0.4‰ to 4.6‰, suggesting meteoric-hydrothermal alteration prior to metamorphism (Zhou et al. 2001; Zheng et al. 2003). The protolith ages and oxygen isotope characteristics of the LGMRs are generally comparable with those of UHP metamorphic rocks, with which they together form an integral part of the Dabie orogen (Zheng et al. 2005).

The epidote textures described here are observed in one type of the LGMRs, a greenschist facies metavolcanic breccia. The rock is well exposed with a foliation dipping 25° to 45° toward 105° to 145° in a length of about 40 m near the Ganghe Bridge. It is separated from a nearby granitic gneiss by a shear zone and is intruded by several unmetamorphosed lamprophyre dykes. A thin wedge-shaped coesite-bearing eclogite body (7 m × 50 cm) is enclosed in the metavolcanic breccia (Fig. 1a). The eclogite body shows increasing retrogression outward from fresh eclogite in the core to biotite-epidote-amphibolite and then to a schistose layer (<5 cm) of biotite + epidote + plagioclase + quartz at the contact with the metavolcanic breccia. The foliation in the retrogressed eclogite is in accordance with that of the enclosing metavolcanic breccia.

PETROGRAPHY

The host rock
The metavolcanic breccia contains both crystal and lithic fragments (>60 vol%) immersed in a fine-grained matrix (Fig. 1b). The foliation of the breccia is defined by oriented phengite flakes which wraps around the slightly elongated volcanic fragments. The matrix (grain size generally <100 μm) is composed of quartz, plagioclase, phengite, K-feldspar, epidote, Fe-Ti oxide, with minor biotite, garnet, chlorite, titanite and apatite. The crystal fragments are quartz (1 mm–1 cm), plagioclase (generally >1 mm) and hematite (1–5 mm). The quartz fragments consist of fine-grained (<100–500 μm) polygonal quartz aggregates. Plagioclase fragments are pseudomorphosed by Na-Pl + Ep + Ph ± Kfs ± Qz (mineral abbreviations after Whitney and Evans, 2010). In the plagioclase pseudomorphs some grains of phengite and epidote appear acicular. Skeletal garnet is frequently observed where hematite is present nearby. Some of the plagioclase fragments are partially replaced along their grain boundaries and fractures by a more Na-rich and fine-grained plagioclase or K-feldspar. Hematite fragments are commonly altered to rutile and/or titanite and are surrounded by garnet coronas. Oriented lamellae are frequently observed in hematite fragments.

The lithic fragments are angular to subrounded with their longest dimension in the range of <5 mm to 8 cm (Fig. 1b). They are subrounded, irregularly-shaped or elongated, commonly oriented to the foliation. The most common type of lithic fragments is albitophyre, whose porphyritic texture can well be recognized despite the metamorphic alteration. The phenocrysts (plagioclase, quartz and hematite) are replaced as in the case of crystal fragments. The cryptocrystalline matrix of the albitophyre fragment is composed of plagioclase, quartz and hematite, with minor amounts of phengite, K-feldspar, epidote (often with small REE-rich cores), garnet, titanite and apatite. Some lithic fragments consist entirely of fine-grained (<100 μm) minerals and are relatively rich in plagioclase, K-feldspar, Fe-Ti oxide or quartz.
compared with the matrix. Some fragments (1 mm–2 cm) rich in fine-grained phengite and epidote are heterogeneously distributed in the matrix (Fig. 1c). Fine-grained aggregates of REE-rich epidote + apatite are occasionally found in the matrix. In places, epidote is observed in fine-grained plagioclase and/or quartz aggregates.

The epidote textures

The description of the epidote textures below is based on photomicrographs (Figs. 2a and 2f) and backscattered electron images from a field emission scanning electron microscope (other images in Fig. 2, and Figs. 1c and 3). Epidote spherulites are observed both in the matrix and in the lithic fragments, which is formed by fine-grained (<100 μm) garnet, phengite, biotite, plagioclase, K-feldspar, epidote, quartz and Fe-Ti oxide. The spherulites are commonly fan-shaped (Figs. 2a, 2b, 2d and 2e), some having irregular shapes (Fig. 2c). Their sizes range from 20 μm × 20 μm to 200 μm × 400 μm. They consist of radiating brighter REE-rich epidote fibers, with the spaces in between filled by darker REE-poor epidote (Figs. 2b–2e). The fibers in the spherulites show extinctions at slightly different angles and in places display sweeping extinctions (Fig. 2a). Some of the spherulites include or emanate from quartz and relatively coarser REE-poor epidote grains (Figs. 2b, 2d, 3b, 3d, S1a and S1b). The width of the epidote fibers is variable from one spherulite to another (e.g., ~5 μm in Fig. 2d and <2 μm in Figs. 2e and S1c) and within a single spherulite, in which they are coarser in the core and become increasingly finer outward (Figs. 2b, 2d and S1b). The fibers branch outward, with new fibers splitting from a parent fiber (Figs. 2e and S1c). In some cases, finer epidote fibers grew nearly perpendicular to the thicker ones, forming a feathery dendrite-like texture (lower part of Fig. 3d, enlarged in Fig. S1d). Relatively coarse grains of epidote, K-feldspar and quartz and fine rounded particles of hematite and zircon are found to be included in the...
spherulites (Figs. 2d, 3b, S1b and S2c). Almost all of the radiating points of the observed
spherulites are characterized by randomly oriented bits of the bright epidote (REE-richer)
being separated by coarser dark (REE-poorer) epidote (Figs. 2b–2d and S1b). In one of the
several epidote aggregates at a boundary between a lithic fragment and the matrix, the epidote
spherulite cores appear to have broken into small bits, which are cemented by REE-poor
epidote (Fig. 3d). The REE-poor epidote are further overgrown by fan-shaped epidote
spherulites and dendrites in the outer parts of the texture.

In many cases, the fibers of the epidote spherulites are continued by euhedral epidote laths
(2 μm × 5 μm to 20 μm × 100 μm) outwards in the same directions (Figs. 2a–2d, 3b and S1b). Similar to the spherulites, such radial epidote laths are also variable in brightness, reflecting
variable REE contents (Figs. 2b–2d, 3b and S1b). Euhedral epidote crystals (10 μm × 40 μm
to 50 μm × 120 μm) also form radial aggregates around plagioclase, quartz or epidote (Figs.
1c and 2f–2h), some having minute bright dots in their cores (Fig. 2g). These aggregates
occur both in the matrix and in the lithic fragments (Figs. 1c, 2g and 2h). Many of the radial
epidote aggregates on the border of the fragment are cut off and only parts of them are
preserved in the fragment (Fig. 1c). The epidote grains in such a texture commonly display
compositional zoning, with alternating bright and dark zones mimicking the euhedral shapes
of the crystals (Figs. 2g, 2h and S1b). Fine-grained garnet, phengite and biotite are commonly
included in the radial epidote crystals overgrowing the spherulites (Figs. 2c and 3b). Where
foliation is conspicuous, it is at large angles to or crosscut by some fibers of the epidote
spherulites or the overgrowing radial euhedral epidote laths (Figs. 3a–3d and S2a–S2d).
Randomly oriented individual euhedral epidote grains (3 μm × 10 μm to 100 μm × 200 μm)
are scattered around the epidote spherulites and the radial epidote aggregates (Figs. 1c, 2d, 2f
and 2h), or form loose epidote clusters in the matrix (Fig. S1e).

MINERAL COMPOSITIONS

Epidote compositions were analyzed by using a wavelength-dispersive electron microprobe analyser (JEOL JXA-8100) at the State Key Laboratory for Mineral Deposits Research, Nanjing University. Accelerating voltage and beam current were maintained at 15 kV and 20 nA, respectively. The electron beam diameter was 1 μm. As the accelerated electrons were scattered by the sample, the interaction volume between the electron beam and the sample (thus the sample volume analyzed) has an overall dimension somewhat larger than the ideal incident beam diameter. Due to this effect, the fine epidote fibers (<1–3 μm) cannot be analyzed precisely but for each analysis only an average of the fiber and the interfibrillar epidote is yielded. Therefore, the chemical formulae of the analyses (e.g., No. 5 in Fig. S1a, No. 6 and No. 7 in Fig. S1c) are only approximations and provide lower values for the REE content. All standards used in the analysis are from the American National Standards Institute (ANSI) except for thorianite, which is from the Université de Toulouse. Amphibole is used for the standards of Si, Ti, Fe, Mg, Ca, Na and K. Topaz and Fe-carpholite are used for the standards of Al and Mn, respectively. REE-1 is used for the standard of Eu and Gd, REE-2 for Sm and Nd, REE-3 for La, Ce, Pr and Y, and thorianite for Th. Detection limits (1σ level) for the elements are: La (0.1%), Ce (0.1%), Pr (0.07%), Nd (0.06%), Sm (0.12%), Eu (0.09%), Gd (0.08%), Y (0.02%) and Th (0.02%). The ZAF method was applied for the matrix corrections. Other minerals were analyzed by an electron microprobe analyzer (JOEL-8100) at the Institute of Geology and Geophysics, Chinese Academy of Sciences. Analytical conditions are the same, except for a larger beam diameter (1–5 μm) used in some cases. Diopside is used for the standard of Si, Mg and Ca, rutile for Ti, hematite for Fe, bustamite for
Mn, albite for Na, and potassium feldspar for K. Synthetic oxides Al₂O₃ and Cr₂O₃ are used for the standards of Al and Cr, respectively. All standards are from SPI Supplies except for potassium feldspar, which is from P&H Developments Ltd. Detection limits (1σ level) for the elements are: Si (0.01%), Ti (0.015%), Al (0.01%), Cr (0.015%), Fe (0.015%), Mn (0.01%), Ni (0.02%), Mg (0.01%), Ca (0.01%), Na (0.01%) and K (0.01%). Mineral formulae were calculated assuming stoichiometry and charge balance and the Fe³⁺/Fe²⁺ ratios were estimated according to Droop (1987).

Epidote

The structural formula of the epidote-group minerals can be expressed by A₂M₃Si₃O₁₂(OH) (Dollase 1971), in which A = Ca, Sr, Pb²⁺, Mn²⁺, Th, REE³⁺ and U, and M = Al, Fe³⁺, Fe²⁺, Mn³⁺, Mn²⁺, Mg, Cr³⁺ and V³⁺ (Deer et al, 1986). The main cations in the epidote analyzed here are Ca, REE, Mn²⁺, Al, Fe²⁺, Fe³⁺, Mg and Si, among which Ca, Mn²⁺ and REE are assigned to the A sites, and Al, Mg, Fe²⁺ and Fe³⁺ are assigned to the M sites. The substitution of Ca by REE on the A sites is charge balanced by equal amounts of substitution of trivalent cations (Al, Fe³⁺) by divalent cations (Fe²⁺, Mg) on the M sites, expressed as the exchange vector REE(Mg, Fe²⁺)Ca−1(Fe³⁺, Al)−1. The sums of the cations on the A sites of several analyses are slightly less than 2 (Table 1), probably caused by the presence of minor amounts of other elements not analyzed (e.g., Sr, Pb and U) on the A sites. The REE-Al diagram shows that the epidote analyses are variable in allanite component (Fig. 4). The term epidote is used here in a broad sense.

The epidote crystals in different textures have variable concentrations of REE, which is dominated by La, Ce, Pr, Nd, Sm, Eu and Gd, with minor amount of Y detected in some cases (Fig. 4; Table 1). The ThO₂ contents in all of the analyses are below detection limit and are
omitted in Table 1. The analyses of the REE-rich fibrous epidote in the spherulites are represented by \((\text{Ca}_{1.56-1.82}\text{Na}_{0.00-0.01}\text{REE}_{0.13-0.38}\text{Mn}_{0.03-0.06})(\text{Mg}_{0.01-0.05}\text{Fe}^{2+}_{0.14-0.36}\text{Fe}^{3+}_{0.53-0.71})\text{Al}_{2.03-2.25}\text{Si}_{2.98-3.02}\text{Ti}_{0.00-0.01}\text{O}_{12}(\text{OH})\). The relatively wide interfibrillar epidote in the spherulites is lower in REE content \((\text{Ca}_{1.84-1.96}\text{REE}_{0.02-0.10}\text{Mn}_{0.02-0.06})(\text{Mg}_{0.00-0.01}\text{Fe}^{2+}_{0.00-0.14}\text{Fe}^{3+}_{0.60-0.77})\text{Al}_{2.13-2.23}\text{Si}_{2.99-3.03}\text{O}_{12}(\text{OH})\), accompanied by lower Mg and Fe\(^{2+}\) and higher Ca and Fe\(^{3+}\) contents (Table 1). The round epidote inclusions in the center of the spherulites are similar in REE contents with the interfibrillar epidote.

The euhedral epidote overgrowing the spherulites is similar in Al content to the interfibrillar epidote but is lower in REE and Fe\(^{2+}\) and higher in Ca and Fe\(^{3+}\) contents \((\text{Ca}_{1.90-1.99}\text{REE}_{0.01-0.05}\text{Mn}_{0.01-0.06})(\text{Mg}_{0.00-0.07}\text{Fe}^{2+}_{0.00-0.34}\text{Fe}^{3+}_{0.75-0.85})\text{Al}_{1.23-2.25}\text{Si}_{2.97-3.02}\text{O}_{12}(\text{OH})\), Fig. 4). The darker euhedral epidote in the radial aggregates is poor in REE and shows slight variations in Fe\(^{3+}/(\text{Fe}^{3+} + \text{Al})\) ratio from 0.25 to 0.28 (Figs. 2h and 4; Table 1). The epidote displaying oscillatory zoning in the radial euhedral crystal aggregates is variable in REE content \((\text{Ca}_{1.38-1.90}\text{Na}_{0.00-0.02}\text{REE}_{0.01-0.44}\text{Mn}_{0.03-0.11})(\text{Mg}_{0.00-0.07}\text{Fe}^{2+}_{0.00-0.34}\text{Fe}^{3+}_{0.43-0.75})\text{Al}_{2.06-2.27}\text{Si}_{3.00-3.02}\text{Ti}_{0.00-0.01}\text{O}_{12}(\text{OH})\), from negligible in the dark zones to about 0.44 cations per formula unit in some of the bright zones (Figs. 2g and 4; Table 1). The randomly oriented individual euhedral epidote grains have the similar range in Fe\(^{3+}/(\text{Fe}^{3+} + \text{Al})\) ratio with the REE-poor epidote grains in the radial euhedral epidote (Table 1).

Other minerals

Garnet is variable but generally high in spessartine (15–50 mol%) and low in pyrope (2–8 mol%), with variable proportions of grossular and almandine (Prp\(_{2.8}\)Alm\(_{31-59}\)Grs\(_{10-45}\)Sps\(_{15-50}\), Table 2). Garnet composition is variable in the same texture and its compositional ranges for different textures are overlapped. The dark rims of the plagioclase are albite-rich (Ab = 95–98...
mol%) while its interior and the plagioclase in other textures are oligoclase (Ab = 83–92 mol%). K-feldspar is low in anorthite (<1 mol%) and albite (3–7 mol%) contents. The Si content in phengite ranges from 3.14 to 3.28, with a Fe\(^{2+}/\)Mg ratio varying from 1.5 to 2.3 (Table 2). Biotite has a Fe\(^{2+}/\)Mg ratio from 0.8 to 1.2 and an Al content from 1.30 to 1.42. The coarse hematite fragments (Hem\(_{64-85}\)Ilm\(_{15-31}\)Pph\(_{0.5-3}\)) are poorer in pyrophanite content and richer in hematite content compared with the oriented lamellae (Hem\(_{0.5}\)Ilm\(_{43-52}\)Pph\(_{47-53}\)) in them. Fine-grained hematite in the matrix is close to end-member composition (Hem\(_{80-}\)100Ilm\(_{0-20}\)Pph\(_{0-3}\)).

P-T-H\(_2\)O ESTIMATES

The *P-T-H\(_2\)O* estimates were carried out by thermodynamic calculations using THERMOCALC (Powell et al. 1998) and an internally consistent thermodynamic dataset (Holland and Powell 2011). The thermodynamic models of relevant minerals are as follows: garnet (White et al. 2007), clinopyroxene (Green et al. 2007), amphibole (Diener et al. 2007), epidote (Holland and Powell 1998), feldspars (Holland and Powell 2003), biotite (White et al. 2007), and muscovite (Coggon and Holland 2002). Quartz, kyanite and lawsonite are taken to be pure phases. Two approaches are used to constrain the *P-T-H\(_2\)O* conditions of the equilibrium assemblages. The first one is thermobarometry for the matrix assemblage of the metavolcanic breccia (Pl + Ph + Kfs + Ep + Bt + Grt + Hem + Sph + Qz, mineral compositions in Table 2). To avoid the problem of uncertainty in fluid composition, the equilibria used involve only the solid phases. Only a set of linearly independent equilibria is selected for the thermobarometry, according to their dependence on pressure and temperature. The intersections of the selected equilibria yield *P-T* estimates of 5.5–6 kbar and 475–485 °C (Fig. 5a). The oxygen fugacity for this matrix assemblage was estimated through the
intersections of the O_2-bearing equilibria in a T-$\log_{10}(fO_2)$ diagram ($P = 6$ kbar), which yield the $\log_{10}(fO_2)$ ranging from -22.7 to -22.4 (Fig. 5b).

Another approach used is phase diagram modeling of the plagioclase pseudomorphs, which appear to contain equilibrium assemblages (Pl + Ph + Ep ± Kfs ± Qz). Garnet is not considered for this assemblage because it is closely associated with hematite inclusions in the plagioclase pseudomorphs. To take into account the compositions of all the minerals constituting the plagioclase pseudomorphs, the model system was chosen to be Na$_2$O-CaO-K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-H$_2$O-Fe$_2$O$_3$ (NCKFMASHO). The bulk composition used by THERMOCALC is estimated by using the relationship for each oxide:

$$M(R_mO_n) = \sum_{i=1}^{l} \left(p_i \left(\sum_{j=1}^{k} x_{ij} C_j(R_mO_n) \right) \right)$$

where $M(R_mO_n)$ is the molar percentage of the oxide R_mO_n in the bulk composition, p_i is the molar percentage of mineral i in the rock sample, x_{ij} is the mole fraction of the end-member j in the mineral i calculated using the mineral composition data (Table 3), $C_j(R_mO_n)$ is the stoichiometric coefficient of the oxide R_mO_n in the end-member j, k is the number of minerals considered and l is the number of end-members in the mineral i. The p_i is calculated by:

$$p_i = \left(v_i / V_i \right) / \sum_{i=1}^{k} \left(v_i / V_i \right)$$

where v_i is the volume percentage of mineral i in the rock sample, V_i is the molar volume of i and is estimated by:

$$V_i = \sum_{j=1}^{l} \left(x_{ij} V_{ij} \right)$$

where V_{ij} is the molar volume of the end-member j in the mineral i. The standard state molar volumes of the mineral end-members from Holland and Powell (2011) are used to

14
approximate \(V_i \), which are in reality not constants but are functions of \(P \) and \(T \). For each mineral, \(v_i \) is approximated by the area proportions occupied by the mineral on the backscattered electron (BSE) images of the plagioclase pseudomorphs. This method for estimating bulk composition is essentially the same as that of Lanari and Engi (2017) and Centrella et al (2018), who use weight percentages instead of molar percentages.

The average area proportions of the minerals in the plagioclase pseudomorphs are: Pl = 75.7%, Kfs = 10.6%, Ph = 8.7%, Ep = 3.8% and Qz = 1.2%. With these data and the relationships given above the bulk composition is estimated to be (in mol%): \(\text{SiO}_2 = 70.20, \text{Al}_2\text{O}_3 = 14.78, \text{CaO} = 3.03, \text{MgO} = 0.31, \text{FeO} = 0.98, \text{K}_2\text{O} = 2.03, \text{Na}_2\text{O} = 8.40, \text{and Fe}_2\text{O}_3 = 0.22. \)

The phase diagram calculated using this bulk composition contains biotite in addition to the observed minerals in the plagioclase pseudomorphs. Also, the calculated plagioclase composition is somewhat richer in albite component compared with the observed plagioclase composition. To reproduce the observed assemblage and plagioclase composition, the bulk composition was slightly adjusted by adding \(\text{Al}_2\text{O}_3 \) and \(\text{CaO} \) and subtracting \(\text{SiO}_2, \text{FeO} \) and \(\text{Na}_2\text{O} \) (by less than 10% for each oxide). The final bulk composition then becomes (in mol%): \(\text{SiO}_2 = 69.74, \text{Al}_2\text{O}_3 = 15.77, \text{CaO} = 3.27, \text{MgO} = 0.33, \text{FeO} = 0.91, \text{K}_2\text{O} = 2.17, \text{Na}_2\text{O} = 7.60, \text{and Fe}_2\text{O}_3 = 0.21. \) Such an adjustment may be warranted in view of the several factors that affect the accuracy of the estimated composition. For example, the use of area proportions to approximate volume proportions can cause up to 17% error in the estimated bulk composition, and the limited numbers of BSE images used for image processing can also be a source of significant error in the estimation (Lanari and Engi, 2017).

A \(P-T \) diagram with quartz, phengite and \(\text{H}_2\text{O} \) in excess shows that the observed assemblages (Pl + Ph + Ep ± Kfs ± Qz) in the plagioclase pseudomorphs are stable in a large...
P-T range of 400 °C to 650 °C and 4 kbar to 14 kbar (Fig. 5c). K-feldspar has a wide stability range in the diagram due to the fact that K$_2$O is much higher than MgO and FeO and only a small part of K$_2$O is combined with MgO and FeO to form phengite and biotite, with the rest amount of K$_2$O forming K-feldspar. To investigate the H$_2$O condition required by the stability of the assemblage, a P-M(H$_2$O) diagram (Fig. 5d) was calculated at 450 °C. The P-M(H$_2$O) diagram shows that the observed assemblages are confined to four adjacent regions by H$_2$O-saturation and Kfs and Omp/Jd-absent lines (Fig. 5d). The assemblage Pl + Ph + Ep + Kfs + Qz is restricted within a very narrow region at about 5 kbar above and below the H$_2$O-saturation line. The assemblage Pl + Ph + Ep + Qz is stable in the M(H$_2$O) range of 4.4–5.0 mol% (corresponding to 1.21–1.38 wt%) H$_2$O.

To better constrain the P-T conditions for the formation of the plagioclase pseudomorphs, mineral composition isopleths are contoured in the field of the H$_2$O-saturated assemblage (Pl + Ph + Ep + Qz + H$_2$O, Fig. 5c). The isopleth value of anorthite in plagioclase (X_{An}) increases with both temperature and pressure. The isopleth value of Si in phengite changes in a similar way to anorthite, while the isopleth of paragonite in phengite (X_{Pg}) is nearly parallel to the pressure axis. The stability of the assemblage is more sensitive to pressure than temperature. Therefore, the isopleths of anorthite in plagioclase and paragonite in phengite are chosen to make the P-T estimation. The majority of the plagioclase and phengite analyses are in the X_{An} range of 0.08–0.10 and the X_{Pg} range of 0.034–0.040 (Table 3), corresponding to a P-T range of 5–7 kbar and 435–515 °C (shaded quadrilateral, Fig. 5c). A few plagioclase analyses have X_{An} above 0.12 and/or X_{Pg} below 0.03, which are plotted outside of the stability field of the assemblage. The P-T estimates by thermobarometry and phase diagram modeling are broadly consistent, both pointing to greenschist facies metamorphism.
DISCUSSION

Possible origin of the radial epidote aggregates

Natural spherulites are thus far mostly found in igneous and sedimentary rocks. They are considered to have crystallized from supercooling/supersaturated melts, glasses or solutions. Spherulites are also described or mentioned in some metamorphic rocks, although their origin and petrological significance has barely been addressed. For the radial epidote aggregates (spherulites and radial euhedral epidote aggregates) in the metavolcanic breccia studied here, four different origins are considered. These include: crystallization from (a) volcanic melts or glasses or post-volcanic hydrothermal fluids; (b) shock-induced amorphous materials; (c) solute-rich metamorphic fluid; (d) fluid-mediated metamorphic reactions.

Crystallization from volcanic melts or glasses or post-volcanic hydrothermal fluids.

Volcanic spherulites generally have compositions similar to those of their bulk rocks. For example, the spherulites crystallized from supercooling rhyolitic melts are generally composed of SiO$_2$ polymorphs, sodic plagioclase and alkali feldspar (e.g., Castro et al. 2008; Watkins et al. 2009; Befus et al. 2015), those crystallized from supercooling basaltic melts are generally composed of olivine, pyroxene and calcic plagioclase (e.g., Lofgren 1971a; Monecke et al. 2004; Soule et al. 2006). The fact that the composition of the epidote spherulites is incompatible to the felsic bulk composition of the host volcanic breccia indicates that the epidote spherulites did not crystallize from the volcanic melt or glass. Melinger-Cohen et al. (2015) describe epidote spherulites and radial euhedral epidote aggregates forming two distinct zones in amygdules in a basalt from northern Michigan and suggest that they crystallized from a hydrothermal fluid during cooling of the rock. Spherulites crystallized from post-volcanic hydrothermal fluid forming amygdules are close
(see below for definition of close and open spherulites), round in shape, and have sharp
smooth boundaries. In contrast, the spherulites reported in the present study are more open
(wider interfibrillar areas), variable in shape, and have irregular boundaries. The
crystallization of spherulites filling vesicles starts from the walls of the pore spaces, whereas
in the present case the REE-rich epidote fibers emanate from the centers of the spherulites.

Almost all the epidote spherulites reported here are fragmented and cemented by REE-poor
epidote (Figs. 2b‒2d, 3b, 3d and S1b). However, the radially overgrowing epidote laths and
euhedral crystals are not fragmented except for those on border of the lithic fragments (Fig.
1c). In some cases, metamorphic minerals (phengite, garnet, biotite, and hematite) are
included in the overgrowing zones. The inclusion minerals are all found as coarser grains in
the surrounding matrix (Figs. 2b‒2d, 3b and S1b). Some epidote fibers and overgrowing
radial epidote laths are oriented at large angles to or crosscut the foliation (Figs. 3a–3d and
S2a–S2d). In Fig. 3b, for example, the foliation formed by oriented phengite, biotite and
hematite grains does not affect the shapes of the epidote fibers and laths but instead are
stopped or indented by the epidote laths. These observations indicate that brittle deformation
occurred after the formation of the epidote spherulites, but before the radiating overgrowth of
the epidote laths and euhedral crystals.

The radial euhedral epidote aggregates occur both in the fragments and in the matrix of the
breccia (Fig. 1c). Those on the border of a fragment are cut off and only parts of them are left
(Fig. 1c), suggesting that they formed both before and after brecciation. Therefore, the
brecciation was more likely tectonic and occurred during greenschist facies metamorphism,
long after the volcanic brecciation. Some of the radial euhedral epidote aggregates contain
bright bits of REE-rich epidote in their cores, suggesting growth on fragmented spherulites.
Epidote in such a texture in places includes biotite and hematite and indent phengite and biotite (Figs. 2g and 2h), indicating that they grew over the metamorphic mica.

To conclude, the radial euhedral epidote aggregates, in places overgrowing the epidote spherulites, are certainly of metamorphic origin. The epidote spherulites are likely also metamorphic. Similar epidote textures were described elsewhere in low grade metamorphic rocks (Misch, 1965; Van Staal et al. 1990).

Crystallization from shock-induced amorphous materials. Analogous to the devitrification of supercooling volcanic glasses, it is possible to form spherulites from glasses of other origins. Non-equilibrium textures formed by metamorphic microlites (e.g., spherulitic, dendritic, skeletal, acicular and poikilitic crystals) in variably eclogitized granulites and gabbros are suggested to have formed in seismic events (Austrheim and Boundy 1994; Austrheim and Anderson 2004; John and Schenk 2006; Yang et al. 2014a, 2014b, 2017; Putnis et al. 2017). In the metavolcanic breccia studied here, the epidote spherulites, the fine grains of metamorphic minerals in the plagioclase pseudomorphs, and the skeletal garnet may be considered to be microlites. The volcaniclastic fabric is preserved although the igneous minerals are replaced by metamorphic minerals. This is in accordance with shock metamorphism, in which the original fabric of the protolith is generally preserved (Feldman 1994; Yang et al. 2017). Epidote spherulites of similar size to the ones studied here are observed in eclogite facies pseudotachylytes (Austrheim & Andersen, 2004; Petley-Ragan et al., 2018). It is possible, therefore, that the epidote spherulites in the metavolcanic breccia crystallized from amorphous materials produced by a seismic event (Su et al. 2006; Nakamura et al. 2015; Yang et al. 2017). The materials needed for the crystallization of epidote may be from the igneous Ca-rich plagioclase and Fe-bearing minerals, such as biotite and hematite, in
addition to fluid.

Crystallization from a solute-rich metamorphic fluid. The local presence of epidote in the anhydrous quartz and feldspar aggregates in the Ganghe metavolcanic breccia may suggest that they crystallized directly from an infiltrating metamorphic solute-rich hot fluid phase. However, the fact that no apparent fluid conduit is observed around the epidote spherulites does not imply a large scaled fluid infiltration. These epidote spherulites are also unrelated to open fluid-filled pores or cavities, suggesting that the fluid migration was rather local and at a very small scale, possibly along grain boundaries. The sporadic occurrence of the radial epidote aggregates also implies that their crystallization was unrelated to widespread fluid ingress. Based on mineral proportions and their H$_2$O contents, the H$_2$O content in the phengite dominated fragment containing several radial epidote aggregates (80 vol% Ph + 9 vol% Ep + 10 vol% Pl + 1 vol% Grt) is estimated to be about 3.7 wt% (Fig. 1c). The H$_2$O content in the plagioclase pseudomorphs ranges from 0.2 wt% to 1.7 wt%, with the proportions of phengite and epidote varying from about 35 vol% and 5 vol% to about 3 vol% and 2 vol%, respectively. The nearly anhydrous aggregates dominated by K-feldspar, plagioclase, and quartz contain very small proportions of hydrous minerals (epidote <5 vol% and phengite <5 vol%) and <0.4 wt% of H$_2$O. The variable degrees of H$_2$O-saturation in different textural domains are inconsistent with large scaled H$_2$O saturated regional metamorphism. The sharp boundaries and the lack of prevailing reaction products between the fragments and the matrix suggest that pervasively fluid-rich conditions were not attained and the transport distances of materials were small, for otherwise the boundaries between the fragments and the matrix would have been obliterated (Etheridge et al. 1983; Walther and Wood 1984). However, if the crystallization was in a very brief metamorphic event (see...
(discuss the below), it may be envisioned that some small domains or grain boundaries in the rock may be transiently H$_2$O-rich, such that H$_2$O-saturated assemblages were produced locally (Fig. 5d) (Rubie 1986).

The REE-rich epidote + apatite ± thorite assemblages are interpreted to be the breakdown product of igneous monazite during metamorphism (Finger et al. 1998). The REE-rich epidote + apatite aggregates are occasionally found in the matrix of the metavolcanic breccia at Ganghe. Therefore, the REE for the formation of the epidote spherulites may have derived internally in the rock, via the breakdown of the REE-bearing igneous minerals such as monazite and plagioclase. However, the possibility that the REE were introduced by the fluids cannot be excluded. A quantitative evaluation of gains or losses of the REE during the fluid-rock interactions requires mass balance calculations by using the whole-rock REE contents of variably altered rocks (Ague, 2017; Centrella et al. 2016). This approach, however, is not attempted in the present case because the differently altered samples of the metavolcanic breccia needed for the calculations are not identified in the field.

Crystallization from fluid-mediated metamorphic reactions. The highly non-equilibrium nature of spherulites may have formed through significantly overstepped metamorphic reactions. Reaction overstepping may be related to delayed nucleation due to sluggish crystallization kinetics caused by slow diffusion rate, deficiency of fluid, or absence of deformation (Ridley and Thompson 1986; Wilbur and Ague 2006; Austrheim 2013). Overstepped reactions may be triggered by infiltration of fluid that facilitates the component diffusion. In such a case, the crystallization conditions can be highly non-equilibrium and the compositional gradients around the growing crystal are large. The reaction rate can be fast due to a large free energy change (Rubie 1998). Such a mechanism was proposed to interpret the
radial texture of fibrous or dendritic garnet cores overgrown by euhedral garnet rims in some
greenschist facies to amphibolite facies metamorphic rocks (Wilbur and Ague 2006). The
overstepping of garnet-forming reactions was suggested to be caused by hindered garnet
nucleation, related to the refractory nature of reactant spinel and product garnet. In the case of
Ganghe, the growth of the radial epidote crystals around preexisting minerals indicates
delayed nucleation. The overstepping of a reaction can be due to deviations of P, T or
composition from the equilibrium state (Pattison et al. 2011). A P-T-fluid pulse, for example,
may cause a hydration reaction to take place in a non-equilibrium manner (see below).

As is discussed below, for any of the above mentioned origins for the formation of the
epidote spherulites to be realistic, it is necessary to involve a transient change of P, T, and/or
fluid conditions resulting in overstepping of the REE-rich epidote-forming reactions and
restoring back quickly to the original conditions, such that the highly non-equilibrium epidote
textures could have formed and preserved.

Kinetics of epidote crystallization in the different textures

The epidote spherulites. Lofgren (1974) defined spherulites with interfibrillar areas filled
by visible melt and foreign material to be open spherulites and those with tightly interwoven
fibers to be closed. He also distinguished coarse and fine spherulites by a fiber thickness of 3–
5 μm. The epidote spherulites described here consist of REE-rich epidote fibers of <3–5 μm
and visible interfibrillar REE-poor epidote (Figs. 2b–2e). They are thus considered to be open
and fine spherulites.

Considering thermodynamics, a large driving force (Gibbs free energy change) is
necessary for the crystallization of spherulites (e.g., Sunagawa 1999; Oaki and Imai 2003;
Jones 2017). From kinetics point of view, the ratio of the diffusion rate (D) to the crystal
growth rate \((G)\) is a controlling factor of the crystal shape (Lofgren 1980; Kirkpatrick 1981). The spherulitic crystal form is favourably developed at small \(D/G\) values (Keith and Padden 1963; Lofgren 1974; Donaldson 1976; Corrigan 1982; Baker and Freda 2001). When the diffusion rate is much slower than the growth rate, the components rejected by the growing crystal (impurities) are concentrated around the interface while the components required by the growing crystal (nutrients) are depleted around the interface. Volumes away from the growing crystal interface featured by more nutrients and less impurities are the only possible places for further crystal growth and spiky interfaces are favourable for continuous growth (Keith and Padden 1963; Lofgren 1971a). Thus the resultant crystal shape is a collection of spikes around a growth center, forming spherulitic or dendritic shapes.

The temperature dependence of REE partitioning behavior of the epidote-group minerals suggests that the REE-rich epidote crystallizes at a higher temperature than the REE-poor epidote (Frei et al. 2003). During the spherulite formation, LREE, Mg and Fe\(^{2+}\) were preferentially incorporated into the epidote fibers leaving Al and Fe\(^{3+}\) for the later formation of the interfibrillar epidote. This compositional variation implies that the REE-rich epidote fibers and REE-poor interfibrillar epidote crystallized successively in a cooling process. The growth of the epidote spherulites in the metavolcanic breccia at Ganghe likely occurred at a low \(D/G\) value under a high degree of supersaturation, far from equilibrium. The epidote-forming reaction may be written involving the observed minerals in the textures and surrounding areas as:

\[
\text{Pl} + \text{Kfs} + \text{Bt} + \text{Qz} + \text{Fluid} \rightarrow \text{Ep} + \text{Ph} + \text{Grt} \quad (1)
\]

From this it can be inferred that the reaction occurred via dissolution of the reactants and precipitation of the products, and that the rate-controlling step was likely the diffusion rate of
Al in the fluid. The growth rate (G) and D/G ratio are estimated by using the relationship (Walther and Wood 1984; Rubie 1986):

\[
G = -\frac{2VDC\delta r\Delta G_r}{RTdx}
\]

(2)

where V is the molar volume of epidote and ΔG_r is the Gibbs free energy change for the epidote-forming reaction (cf. Fig. 6a) calculated using the thermodynamic dataset of Holland and Powell (2011) and the activities of the mineral end-members and a reduced H$_2$O activity (assumed to be 0.5), which is needed in order that the reaction is intersected by the P-T path; d is the final average grain diameter of the epidote spherulites (here taken to be 100 μm), r is the radius of the growing epidote spherulites. The crystal nucleus radius at the initial time of crystallization assumed to be 1 nm (Rubie 1986). R is the gas constant and T is the initial crystallization temperature in K. Following Walther and Wood (1984), it is assumed that the grain boundary diffusion coefficient of Al (D) under H$_2$O-saturated conditions is 10^{-16} m2·s$^{-1}$; the concentration of Al (C) is 3.0×10^4 mol·m$^{-3}$, the thickness of the grain boundary (δ) is 100 nm, and the constant accounting for the non-linear path of the component (τ) is 0.7.

In this scenario, the estimated P-T conditions (Figs. 5a–5c) for the matrix assemblage represent the ambient P-T rather than the P-T spike for the crystallization of the epidote spherulites. Quantitative P-T estimates for the spherulites are difficult to make. In view of the presence of Na-plagioclase and absence of omphacite in the rock, a pressure increase to the average pressure between reaction (3) and the reaction Jd + Qz = Ab (about 11 kbar) and an associated slight increase in temperature to 520 °C are assumed for this P-T evolution of the epidote spherulites (Fig. 6a). Based on the above assumptions the initial growth rate of the epidote spherulites is calculated to be about 2.7×10^{-9} m·s$^{-1}$. The ratio D/G is then 3.8×10^{-8} m,
a very small value as expected for the growth of spherulites. The uncertainties in these estimates mainly come from the uncertainty of diffusion rate. The G varies sympathetically with D by the same order of magnitude. Although the P-T path for the spherulites is poorly constrained (Fig. 6a), the uncertainty arisen from it is much smaller. For example, if the P-T pulse is assumed to have reached lower values of 7 kbar and 490 °C, the initial G and the D/G ratio are estimated to be 3.1×10^{-10} m·s$^{-1}$ and 3.2×10^{-7} m, respectively, also very small values for the preferential growth of spherulites.

The epidote-forming reaction (Fig. 6a) used in the above estimation of growth rate does not involve the REE components in the epidote spherulites, which cannot be taken into account due to the lack of thermodynamic data for the REE-bearing epidote end-members and fluid. This and the assumption of H$_2$O activity equal to 0.5 add uncertainties in the calculated ΔG_r and growth rate. Given the highly non-equilibrium and diffusion-controlled nature of crystallization, it is assumed that the epidote spherulites began to crystallize when $-\Delta G_r$ exceeded $0.4RT$, below which the crystallization is considered to be very close to equilibrium and the crystal growth is interface-controlled (Walther and Wood 1984; Rubie, 1986). With this lowest $-\Delta G_r$, a conservative initial G and a corresponding high D/G are then estimated to be 2.5×10^{-10} m·s$^{-1}$ and 4.2×10^{-7} m, respectively. These estimates are independent of the positions of the reaction in Fig. 6a and the P-T path. Therefore, the conclusion that the initial growth rate was large and the growth was diffusion-controlled is unchanged despite the large uncertainties involved in the estimation. In view of the fibrous feature of the epidote crystals, the above estimation of growth rate is again conservative because the collection of radiating fibers and interfibrillar crystals is approximated by a solid sphere.

The radial euhedral epidote aggregates. The radial euhedral epidote aggregates growing
on the spherulites or preexisting minerals represent a new stage of epidote crystallization (Figs. 2a–2d, 3b and S1b). A similar change of epidote growth texture was described in a basalt (Melinger-Cohen et al. 2015), in which epidote spherulites and radial euhedral crystal aggregates form two separate zones in amygdules. These two zones are interpreted to have formed during two distinct stages of hydrothermal metamorphism corresponding to changes of the degree of supersaturation or supercooling (Melinger-Cohen et al. 2015). Misch (1965) described epidote glomeroblasts in a suit of crossite and actinolitic schists and distinguished three continuous crystallization stages according to epidote texture. The texture changes from radial fibrous crystal aggregates through radially arranged tapering crystals to granoblastic mosaics of lumpy grains. Misch (1965) noted that the number of crystals in a given glomeroblast progressively decreased and the epidote grains evolved toward a single porphyroblast. Such a change of texture was also produced in experimental crystallization of aromatic hydrocarbon melt, in which spherulites formed at a supercooling of 59 °C were overgrown by radial euhedral crystals at a supercooling of 9 °C (Magill and Plazek 1967). Monte Carlo simulations suggest that the change of garnet texture in a metapelite and a metaultramafic rock from dendritic or spherulitic cores to euhedral rims corresponds to decreases in the degree of supersaturation (Wilbur and Ague 2006).

The above natural and experimental observations imply that the radial euhedral crystal aggregates should grow at a degree of supersaturation/supercooling that is lower than that required by the growth of spherulites but higher than that of the single euhedral crystals. Therefore, the radial euhedral epidote aggregates is also a texture formed in a process significantly far from equilibrium. The change of crystal size and shape from fine and fibrous
to coarse and euhedral corresponds to a significant drop of the supersaturation and an increased D/G ratio. Such a texture may be explained by assuming that D is comparable to G, such that the nutrients and the impurities can be more effectively diffused to and away from the growing interface, and the component concentration is essentially homogeneous around the growing crystal. In this case, the crystal morphology is likely controlled by its crystallographic structure and the resultant crystal is euhedral (Vernon 2004). The radiation of the crystals from preexisting minerals implies a low nucleation rate.

The individual euhedral epidote crystals. The individual euhedral epidote crystals clustering around the radial epidote aggregates (Figs. 1c, 2d, 2h and S1e) represent a final stage of epidote crystallization. As shown by the experimental studies, polyhedral crystals are produced with a small degree of supersaturation, slightly deviated from equilibrium state (Lofgren 1974; Donaldson 1976; Fenn 1977; Oaki and Imai 2003). A low degree of supersaturation sufficient to surmount the nucleation energy barrier for the formation of stable crystal nuclei is required for the crystallization of these euhedral epidote grains (Vernon 2004). Therefore, the individual epidote crystals around the epidote spherulites should have crystallized at near equilibrium conditions upon a further decrease in supersaturation and a further increase in the D/G ratio.

IMPLICATIONS

The fibrous crystals in the spherulites having relatively large interfacial energies would recrystallize to adjust their shapes to equilibrium forms with low interfacial energies in a protracted process. Such morphological adjustments of spherulites were observed in experiments in which fibrous quartz and feldspar crystals growing from devitrified rhyolitic glasses have locally recrystallized into an aggregate of fine equant grains (Lofgren 1971b).
Lofgren (1971b) envisioned that if the devitrification proceeds completely, a granophyric or granitic texture forms without preservation of glassy precursors or spherulitic textures. In the experiments of ammonium compound crystallization, dendritic ammonium thiocyanate crystals formed in the initial stage of crystallization gradually changed into coarse-grained euhedral crystals with prolonged crystallization time (1–50 h) under essentially constant conditions (Means and Park 1994; Mills et al. 2011). The morphology of zirconia crystallized from mixed solution of zirconium oxychloride and H\textsubscript{2}SO\textsubscript{4} was primarily spherulitic in short-duration runs while it changed into isolated and coarser crystals in longer duration runs (Mottet et al. 1992). These observations mean that the non-equilibrium textures progressively evolved towards equilibrium ones and will be eventually obliterated if the crystallization conditions were kept constant for sufficient amounts of time. Thus, the preservation of the epidote spherulites is possible only if they stay away from their crystallization conditions rapidly, such as the quench processes of melts.

Quantitative modeling shows that the timescales for the growth of natural spherulites in igneous rocks are on the orders of a few days or up to a few years, depending on temperature, growth rate, and the size of the spherulites (Castro et al. 2008; Watkins et al. 2009; Von Aulock et al. 2013; Bullock et al. 2017). Holding other parameters in equation (2) constant, the $-\Delta G_r$ decreases and x increases as the system evolves towards equilibrium and the growth rate decreases accordingly. A minimum growth rate ($5.0 \times 10^{-15} \text{ m·s}^{-1}$) is calculated by using the conservative $-\Delta G_r$ ($0.4RT$) with a final average spherulite radius ($x = 50 \mu\text{m}$) in equation (2). This minimum growth rate is 5×10^4 times lower than the conservative initial growth rate ($2.5 \times 10^{-10} \text{ m·s}^{-1}$) estimated above as the final average radius of the epidote spherulites is the same times larger than the assumed initial crystal nucleus. Dividing the final radius of the...
spherulite by this minimum growth rate, an upper limit of the timescale for the spherulite
growth is about 320 years. The actual timescale was likely smaller, in view of the
conservative estimate of growth rate and the approximation of the spherulite by solid sphere.
Therefore, the timescale for the crystallization of the epidote spherulites at Ganghe should be
short and is incompatible with that of a protracted equilibrium but records a transient or
dynamic process.

Short-lived metamorphism (from ~100 years up to <1 Ma) associated with pulsed fluid
infiltration and/or heating was inferred from chromatographic modeling (Skelton, 2011) and
diffusion modeling of oxygen and lithium isotopes and cations in metamorphic minerals
(Young and Rumble III 1993; Van Haren et al. 1996; Graham et al. 1998; Camacho et al. 2005;
Ague and Baxter 2007; Penniston-Dorland et al. 2010; Dragovic et al. 2015; Chu et al. 2017).
Based on modeling of Sr diffusion in apatite and multicomponent diffusion in garnet, Ague
and Baxter (2007) envisioned pulsed metamorphism in some of the mountain building
processes. From the variations of epidote texture studied here, a similarly pulsed but much
more short-lived metamorphic event may be inferred for the Ganghe metavolcanic breccia
(Fig. 6b).

Based on the above considerations, it is suggested that the growth of epidote spherulites
was due to P-T and fluid pulses followed by rapid restoring to ambient conditions. They were
subjected to brittle deformation before being overgrown by the radial euhedral epidote
aggregates (Figs. 2b–2d and 3b). The growth of this latter epidote texture was also a
non-equilibrium process, and implies P-T and fluid pulses but a less degree of
supersaturation/supercooling (Fig. 6b). If, as discussed above, their growth rate numerically
equals the assumed diffusion rate of Al in a fluid ($D = 10^{-16} \text{ m}^2 \cdot \text{s}^{-1}$, $D/G \approx 1 \text{ m}$), the timescale
for the growth of 100 \(\mu \text{m} \) epidote crystals in these aggregate is about \(3.2 \times 10^4 \) years. The crystallization of the individual euhedral epidote marks the restoring again to ambient conditions.

Pulsed metamorphic events are suggested to be caused by shear heating or seismic faulting (Camacho et al. 2005; Chu et al. 2017). The dynamic crystallization process responsible for the rapid formation of the non-equilibrium epidote textures studied here may also be related to seismicity (Austrheim & Andersen 2004; Petley-Ragan et al. 2018). Pseudotachylytes are reported in the LGMRs in this area of Dabieshan, providing evidence for seismic events (Liu, 2002, Liu et al., 2005). The brittle deformation of the epidote spherulites (Figs. 2b–2d and 3b) and the fragmentation of the radial euhedral epidote aggregates (Figs. 1c and 2g) imply repeated tectonic brecciation in the metavolcanic breccia. The occurrence of the radial epidote aggregates both in the fragments and in the matrix implies repeated growth of the textures. The seismicity might have induced stress and fluid pulses in the wallrock (Sibson et al. 1975), which may have caused the growth of the non-equilibrium epidote textures.

ACKNOWLEDGEMENTS

We thank Jay J. Ague, Stephen Centrella, two anonymous reviewers and the editors for their constructive reviews and patient editorial handling, which greatly improved the manuscript. Special thanks are due to Wen-Lan Zhang at Nanjing University for analyzing the REE-bearing epidote by electron microprobe. We are also grateful to Qian Mao, Yu-Guang Ma, Di Zhang and Juan Wang for help in the analysis of other minerals. Xin Yan and Sai-Hong Yang helped in using the field emission scanning electron microscope. Chong Li and Feng Nie assisted in the field. This work is supported by the National Natural Science Foundation of China (Grant Nos. 41873040, 41573029 and 41490614).
REFERENCES CITED

Corrigan, G.M. (1982) The crystal morphology of plagioclase feldspar produced during
isothermal supercooling and constant rate cooling experiments. Mineralogical Magazine,
46, 433–439.

model for clino- and orthoamphiboles in the system
656.

to Mineralogy and Petrology, 57, 187–213.

Occurrence of metastable rocks in deeply subducted continental crust from the Dabie
Mountains, central China. Episodes, 25, 84–89.

during subduction revealed by zoned garnet geochronology and thermodynamic modeling,

Droop, G. (1987) A general equation for estimating Fe$^{3+}$ concentrations in ferromagnesian
silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical

metamorphism and deformation. Journal of Metamorphic Geology, 1, 205–226.

Geochimica et Cosmochimica Acta, 60, 3487–3504.

Mineral Deposit Research: Meeting the Global Challenge: Proceedings of the Eighth

cataclasite dykes at Yangkou in the Chinese Su-Lu UHP metamorphic belt. Journal of
Metamorphic Geology, 32, 937–960.

implication for coseismic ultrahigh-pressure metamorphism and the rate of the process.
Contributions to Mineralogy and Petrology, 167, DOI: 10.1007/s00410-014-1013-7.

shock-induced high-P metamorphism in a gabbro. Journal of Metamorphic Geology, 35,
121–140.

and elemental concentrations in metamorphic garnet from southeastern Vermont, USA.
Geochimica et Cosmochimica Acta, 57, 2585–2597.

pressure metamorphic rocks from the Dabie–Sulu orogen in China: implications for

Dabie-Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
FIGURE CAPTIONS

Figure 1

(a) Contact relationship between the metavolcanic breccia (MB) and the enclosed coesite-bearing eclogite (CE) body, which is about 8 m in length and 50 cm in width. Their boundary is outlined with a white line. The dashed lines on the upper left represent inferred boundary covered by soil.

(b) A polished hand specimen of the metavolcanic breccia consisting of various types of volcanic fragments with variable shapes and sizes in a fine-grained matrix. An albitophyre fragment (A) and a hematite rich fragment (F) are labelled.

(c) Backscattered electron image of a fragment dominated by phengite and epidote, with less amounts of garnet and Na-plagioclase and several pseudomorphs after igneous plagioclase (Pl ps), is outlined by a white dashed line. Some skeletal garnet grains are arrowed. Radial euhedral epidote aggregates occur both in the fragment and in the matrix (upper right, arrowed). Many of the radial epidote aggregates on the border of the fragment are cut off and only parts of them are left in the fragment.

Figure 2 Photomicrographs and backscattered electron (BSE) images of epidote textures in the metavolcanic breccia. Solid circles mark the spots of electron microprobe analysis and the numbers correspond to the data number in Table 1.

(a) Photomicrograph of a fan-shaped epidote spherulite in the matrix (cross-polarized light). The spherulite is overgrown by discrete epidote grains and is further surrounded by the fine-grained matrix minerals including plagioclase, K-feldspar, phengite, biotite, quartz, garnet and hematite. The epidote fibers in the spherulite display sweeping extinctions.
(b) BSE image of a spherulite consisting of bright (REE-rich) epidote fibers and dark (REE-poor) interfibrillar epidote. The fibers become finer away from the radiating point. Low angle non-crystallographic branching can be seen. REE concentration shows a general decrease away from the radiating point. The intervening lath-shaped epidote crystals (indicated by arrows) overgrowing the spherulite are similarly variable in REE contents across their boundaries. REE-poor epidote grains appear as inclusions in the spherulite. The area around the radiating point is fragmented. The whole texture may be viewed to be a portion of a fragmented original spherulite.

(c) BSE image of an epidote spherulite with REE-rich epidote fibers concentrated and radiating from the center, setting in a matrix composed of plagioclase, biotite, K-feldspar, quartz, phengite, garnet and hematite. Some of these minerals are enclosed in the zone between the spherulite and the lath-shaped epidote overgrowth (middle left). In the central part of the texture, the spherulite is fragmented, with randomly oriented bits of the bright fibrous epidote cemented by dark epidote. The overgrowing radiating epidote laths are further overgrown by euhedral epidote crystals displaying faint oscillatory zoning and bright rims (lower middle). These overgrowths on the spherulite remain integrate, implying that the fragmentation of the spherulite predates the overgrowths.

(d) BSE image of broken epidote spherulites overgrown by REE-poor epidote radiating in the same directions of the epidote fibers. The cores of the spherulites are more intensively fragmented and are cemented by REE-poor epidote. Fine-grained hematite (arrowed) and zircon (in black circles) are included both in the spherulitic parts and in the cementing epidote. The matrix is a fine-grained assemblage of Qz + Na-Pl + Ph + Kfs + Ep + Grt + Hem.

(e) Enlarged view of a large fragment of the spherulite on the right part of Fig. 3d, the
REE-rich epidote fibers are branching and are terminated by euhedral epidote (arrowed).

Photomicrograph of radial euhedral epidote aggregates in a fragment dominated by fine-grained phengite and epidote (cross-polarized light).

BSE image of two radial aggregates of euhedral epidote around randomly oriented epidote grains in the matrix of a fragment. The epidote crystals display oscillatory zoning with alternating bright and dark zones mimicking the euhedral shapes of the crystals. The epidote grains overgrew or indent the matrix minerals.

BSE image of a spherical aggregate of euhedral epidote crystals radiating around quartz and plagioclase in a matrix of biotite, garnet, quartz, plagioclase, phengite, hematite and K-feldspar. Individual epidote grains in the aggregate are zoned in composition, with their brighter tips and margins higher in Fe than the darker inner parts. The biotite flake on the upper left is indented by the epidote grain. Garnet and phengite appear as interstitial grains between in the epidote crystals.

Figure 3 Backscattered electron images showing the relationship between the orientations of the crystals in the spherulite texture and the foliation (indicated by double-headed arrows).

An epidote spherulite growing over the foliation formed by the matrix minerals (Pl + Qz + Kfs + Ph + Bt + Ep + Grt + Ttn + Hem) in a lithic fragment. The orientations of the epidote fibers in the spherulite are at a large angle to the foliation. An elliptical epidote aggregate enclosing the matrix minerals occurs on the left side.

An enlarged view of part of the epidote spherulite in (a) showing inclusions of quartz (arrowed) rimmed by epidote in the core (lower left) and inclusions of biotite, phengite and quartz in the zone in the spherulite and the overgrowing epidote. The core of the spherulite is...
fragmented, with the bright bits of epidote cemented by dark epidote. The epidote crystals extending from the epidote fibers truncate the foliation formed by oriented phengite, biotite and hematite in the matrix. The phengite flakes appear to be overgrown by the epidote laths.

(c) An epidote aggregate between a fine-grained fragment in the lower left and the coarser-grained matrix (Pl + Qz + Kfs + Ph + Bt + Ep + Grt + Ttn + Hem). The fragment contains more abundant hematite and plagioclase and the matrix is more abundant in phengite and quartz. The foliation runs through both of them in the lower left to upper right direction. The difference in mineral assemblage and the same foliation suggest that both the volcanic lithic fragment and the matrix were subjected to greenschist facies metamorphism.

(d) An enlarged view of an epidote spherulite on the right side of the epidote aggregate in (c) showing a broken epidote spherulite (bright epidote) overgrown by dark epidote grains. The central area is a mixture of many fine-grained, randomly oriented bright bits of epidote (one of them is arrowed) with coarser dark epidote grains. The missing parts of the spherulite on the upper right and lower left as well as the flow pattern of the bright bit of epidote in the central area suggests that the fragmentation was coeval with foliation. A large part of the broken spherulite on the right and a dendritic part on the lower right are magnified in Fig. 2e and Fig. S1c, respectively.

Figure 4 REE-Al plot showing the composition of epidote in spherulites, radial euhedral epidote aggregates (REEA) and individual euhedral epidote grains.

Figure 5

(a) Thermobarometry for the matrix assemblage of the metavolcanic breccia (Pl + Kfs + Ph
Intersections of the selected equilibria yield \(P-T \) estimates of 5.5–6 kbar and 475–485 °C.

\(T-\log_{10}(fO_2) \) diagram \((P = 6 \text{ kbar}) \) calculated with the same assemblage used in (a). The intersections selected of \(O_2 \)-bearing equilibria yield the \(\log_{10}(fO_2) \) ranging from −22.7 to −22.4. The NNO (Ni-NiO) and MH (magnetite-hematite) buffers are calculated at the same pressure for comparison.

\(P-T \) pseudosection of plagioclase pseudomorph in the metavolcanic breccia, with \(H_2O, \) quartz and phengite in excess. The bulk composition is (in mol%): SiO\(_2\) (69.74), Al\(_2\)O\(_3\) (15.77), CaO (3.27), MgO (0.33), FeO (0.91), K\(_2\)O (2.17), Na\(_2\)O (7.60), and Fe\(_2\)O\(_3\) (0.21). The dotted and dashed lines in the field of Pl + Ph + Ep + Qz + \(H_2O \) signify isopleths of anorthite end-member proportion in the plagioclase \((X_{An}) \) and paragonite end-member proportion in the phengite \((X_{Pg}) \), respectively. The ranges of the \(X_{An} \) (0.08–0.10) and \(X_{Pg} \) (0.034–0.040) correspond to a \(P-T \) range of 435 °C to 515 °C and 5 kbar to 7 kbar (shaded quadrilateral).

\(P-M(H_2O) \) pseudosection calculated at 450 °C, with the relative proportion of the oxides other than \(H_2O \) being the same with Fig. 5a. Quartz and phengite are present in all of the assemblages unless those at low \(M(H_2O) \) labelled with ‘−Ph’, which means the absence of phengite. The thick line indicates the \(H_2O \)-saturation and dotted lines signify the isopleth of \(X_{An} \). The regions of the observed assemblages (Pl + Ph + Ep ± Kfs ± Qz) are shaded.

Figure 6

(a) Inferred pressure \((P) \)-temperature \((T) \) path followed by the metavolcanic breccia during the crystallization of a radial epidote aggregate. The \(P-T \)-fluid pulse is thought to have been induced by faulting, forming the \(P-T \) loop (dotted lines) from the ambient conditions (shaded
quadrilateral) corresponding to greenschist facies conditions. The epidote spherulites or the radial euhedral epidote aggregates crystallized as the P-T conditions rapidly restored from the P-T spike to the ambient conditions. The equilibria $\text{Ab} = \text{Jd} + \text{Qz}$ and $\text{Kfs} + 4\text{An} + 2\text{H}_2\text{O} = 2\text{Qz} + \text{Ms} + 2\text{Zo}$ are plotted to constrain the possible range of the P-T spike. As quantitative P-T estimates for the spherulites are difficult to make, P-T values of the spike are only shown for schematic illustration. See text for discussion on the uncertainty arisen from that of the P-T spike.

(b) Schematic illustration showing the P-T variations of the metavolcanic breccia with time (t). The spherulites may have crystallized in response to the first larger P-T-fluid pulse. The radial euhedral epidote aggregates (REEA) crystallized subsequent to brecciation of the epidote spherulite, in response to the second smaller P-T pulse. The individual euhedral epidote crystals surrounding the epidote spherulites and the radial euhedral epidote aggregates crystallized as the P-T restored to the ambient greenschist facies conditions.

TABLES

Table 1 Representative electron microprobe analyses of epidote in different epidote textures.

Table 2 Representative electron microprobe analyses of minerals in the matrix.

Table 3 Representative electron microprobe analyses of minerals in the plagioclase pseudomorphs.
Figure 1
Figure 2
Figure 3
Figure 4

interfibrillar fibrous
fibrous inclusion
inclusion interfibrillar
interfibrillar overgrowth
overgrowth REE A (REE-poor)
REE A (REE-poor) REEA (REE-zoned)
REE A (REE-zoned) individual euhedral
individual euhedral Fe^{3+}/(Fe^{3+}+Fe^{2+})
Fe^{3+}/(Fe^{3+}+Fe^{2+})
Figure 5

(a) 5Phi + 6Kfs + 12Czo = 5Grs + 4Eas + 7Cel + 9An
(b) 3Grs + 8An + 4Ep = 3Ann + 2Kfs + 8Czo + 9Qz + O2
(c) 2Eas + 3Fcel + 6Qz = Alm + Ms + 4Cel
(d) 8Grs + 9Gdt + 8Czo + 10Hem + 3Qz = 3Ann + 6Kfs + 20Ep

Qz, Ph and H2O in excess

Qz and Ph in excess

M(\text{H}_2\text{O})
Figure 6

(a) $2\text{Qz} + \text{Ms} + 2\text{Zo} \rightarrow \text{Kfs} + 4\text{An} + 2\text{H}_2\text{O}$

(b) Crystallochemistry of the epidote spherulites and REEA burial and GS facies metamorphism.
Table 1: Representative epidote compositions in the epidote spherulites and radial euhedral epidote aggregates (REEA)

<table>
<thead>
<tr>
<th>Texture</th>
<th>Fibrous inclusion</th>
<th>Interstitial</th>
<th>Euhedral overgrowth</th>
<th>in REEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>number 1234567</td>
<td>8 9</td>
<td>10 11</td>
<td>13 14 15</td>
</tr>
</tbody>
</table>

1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	
SiO₂	36.11	36.37	35.99	37.22	36.70	35.89	36.54	37.49	37.31	37.10	37.64	37.45	37.22	37.99	37.56	38.04
TiO₂	0.08	0.06	0.11	0.05	0.11	0.07	0.06	0.02	0.04	0.06	0.06	0.04	0.08	0.06	0.16	0.06
Al₂O₃	21.59	21.81	21.26	23.76	22.54	21.63	22.81	22.49	23.06	23.08	23.15	22.73	23.27	24.34	23.67	23.30
MnO	0.15	0.74	0.59	0.61	0.49	0.60	0.95	0.48	0.51	0.54	0.83	0.60	0.12	1.00	0.74	
MgO	0.28	0.25	0.27	0.12	0.18	0.21	0.17	0.11	0.11	0.12	0.03	0.08	0.05	0.05	0.06	
Na₂O	0.04	0.00	0.08	0.05	0.00	0.01	0.05	0.00	0.00	0.02	0.05	0.01	0.02	0.01	0.02	
K₂O	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	
La₂O₃	3.82	3.01	3.22	1.21	1.64	3.19	1.62	0.92	1.03	0.68	0.81	0.10	0.65	0.08	0.00	0.43
CeO₃	5.88	5.29	5.32	1.81	2.81	3.23	2.76	1.33	1.84	1.34	1.30	0.48	0.74	0.06	0.00	0.42
PrO₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NdO₃	0.23	0.27	0.12	0.54	0.67	0.45	0.51	0.03	0.29	0.14	0.05	0.03	0.08	0.07	0.00	0.13
SmO₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EuO₃	0.11	0.20	0.07	0.30	0.09	0.00	0.18	0.30	0.10	0.20	0.25	0.20	0.01	0.00	0.00	0.07
GdO₃	0.00	0.18	0.05	0.13	0.14	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DyO₃	0.00	0.00	0.28	0.08	0.12	0.06	0.02	0.13	0.15	0.01	0.07	0.13	0.04	0.02	0.10	
Total	97.97	97.12	98.32	98.54	98.04	97.64	97.80	97.74	98.02	97.22	98.26	97.69	97.48	97.79	97.32	98.80

Note: ”-“ denotes not analyzed. REEA=radial euhedral epidote aggregates.
REE-poor in REEA (REE-zoned) individual euhedral

<table>
<thead>
<tr>
<th></th>
<th>18</th>
<th>19</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>REE-poor</td>
<td>38.33</td>
<td>57.30</td>
<td>37.93</td>
<td>38.20</td>
<td>34.59</td>
<td>37.69</td>
<td>37.57</td>
<td>37.61</td>
<td>38.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.12</td>
<td>0.05</td>
<td>0.12</td>
<td>0.06</td>
<td>0.11</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>23.39</td>
<td>24.24</td>
<td>23.74</td>
<td>23.81</td>
<td>24.32</td>
<td>19.95</td>
<td>23.60</td>
<td>24.52</td>
<td>23.06</td>
<td>23.24</td>
</tr>
<tr>
<td></td>
<td>12.64</td>
<td>11.71</td>
<td>11.01</td>
<td>11.27</td>
<td>11.63</td>
<td>11.84</td>
<td>12.54</td>
<td>11.61</td>
<td>12.98</td>
<td>12.91</td>
</tr>
<tr>
<td></td>
<td>0.77</td>
<td>0.87</td>
<td>1.50</td>
<td>1.13</td>
<td>0.43</td>
<td>1.52</td>
<td>0.88</td>
<td>0.98</td>
<td>0.64</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.57</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>23.04</td>
<td>22.83</td>
<td>20.63</td>
<td>21.96</td>
<td>22.39</td>
<td>14.74</td>
<td>22.15</td>
<td>22.40</td>
<td>22.69</td>
<td>22.75</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.06</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.04</td>
<td>0.66</td>
<td>0.23</td>
<td>0.00</td>
<td>1.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.03</td>
<td>1.43</td>
<td>0.17</td>
<td>0.02</td>
<td>7.37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.48</td>
<td>0.06</td>
<td>0.00</td>
<td>3.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.05</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.00</td>
<td>0.33</td>
<td>0.02</td>
<td>0.10</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
<td>0.01</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>98.64</td>
<td>98.05</td>
<td>98.05</td>
<td>97.43</td>
<td>96.90</td>
<td>97.31</td>
<td>97.22</td>
<td>96.99</td>
<td>97.18</td>
<td>97.07</td>
<td>97.75</td>
</tr>
</tbody>
</table>

<p>| | 2.16 | 2.24 | 2.26 | 2.24 | 2.27 | 2.06 | 2.21 | 2.29 | 2.16 | 2.16 |
| | 0.81 | 0.76 | 0.63 | 0.69 | 0.68 | 0.43 | 0.79 | 0.76 | 0.86 | 0.82 |
| | 0.02 | 0.01 | 0.11 | 0.06 | 0.09 | 0.44 | 0.04 | 0.01 | 0.00 | 0.04 |
| | 0.05 | 0.06 | 0.10 | 0.08 | 0.03 | 0.11 | 0.06 | 0.07 | 0.04 | 0.04 |
| | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 |
| | 1.94 | 1.92 | 1.78 | 1.88 | 1.90 | 1.38 | 1.89 | 1.90 | 1.93 | 1.92 |
| | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.06 | - | - | - | - |
| | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.24 | - | - | - | - |
| | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | - | - | - |
| | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.12 | - | - | - | - |
| | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | - | - | - | - |
| | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | - | - | - | - |
| | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | - | - | - |
| | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | - | - | - | - |
| | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
| | 0.01 | 0.00 | 0.09 | 0.02 | 0.01 | 0.44 | - | - | - | - |
| | 2.99 | 3.02 | 3.01 | 2.99 | 3.04 | 3.00 | 3.05 | 3.06 | 3.03 | 3.02 |
| | 2.00 | 1.98 | 1.98 | 1.97 | 1.93 | 1.94 | 1.95 | 1.96 | 1.98 | 1.97 |
| | 0.28 | 0.15 | 1.68 | 0.88 | 1.32 | 6.01 | 0.63 | 0.08 | 0.07 | 0.54 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Plagioclase</th>
<th>K-feldspar</th>
<th>Phengite</th>
<th>Biotite</th>
<th>epidote</th>
<th>Garnet</th>
<th>Hematite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>65.24</td>
<td>63.84</td>
<td>46.53</td>
<td>37.40</td>
<td>38.47</td>
<td>37.25</td>
<td>0.31</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.07</td>
<td>0.07</td>
<td>0.91</td>
<td>2.00</td>
<td>0.13</td>
<td>0.15</td>
<td>0.01</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.60</td>
<td>18.50</td>
<td>28.80</td>
<td>15.15</td>
<td>24.32</td>
<td>20.32</td>
<td>0.13</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>FeO</td>
<td>0.22</td>
<td>0.08</td>
<td>6.41</td>
<td>19.75</td>
<td>11.66</td>
<td>16.16</td>
<td>90.91</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.85</td>
<td>0.07</td>
<td>15.44</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.02</td>
<td>1.98</td>
<td>10.36</td>
<td>0.06</td>
<td>0.88</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>2.49</td>
<td>0.04</td>
<td>0.02</td>
<td>0.35</td>
<td>22.19</td>
<td>9.23</td>
<td>0.01</td>
</tr>
<tr>
<td>Na₂O</td>
<td>10.31</td>
<td>0.48</td>
<td>0.26</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.16</td>
<td>15.62</td>
<td>10.59</td>
<td>9.36</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.10</td>
<td>98.66</td>
<td>95.55</td>
<td>95.30</td>
<td>96.91</td>
<td>99.45</td>
<td>91.46</td>
</tr>
<tr>
<td>Si</td>
<td>2.86</td>
<td>2.98</td>
<td>3.18</td>
<td>2.86</td>
<td>3.03</td>
<td>3.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.11</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>1.15</td>
<td>1.03</td>
<td>2.32</td>
<td>1.37</td>
<td>2.28</td>
<td>1.93</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.01</td>
<td>0.00</td>
<td>0.37</td>
<td>1.26</td>
<td>0.13</td>
<td>1.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>1.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>1.18</td>
<td>0.01</td>
<td>0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>1.89</td>
<td>0.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Na</td>
<td>0.87</td>
<td>0.05</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
<td>0.92</td>
<td>0.92</td>
<td>0.91</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.65</td>
<td>0.04</td>
<td>1.98</td>
</tr>
<tr>
<td>Total</td>
<td>5.01</td>
<td>4.99</td>
<td>7.09</td>
<td>7.80</td>
<td>8.00</td>
<td>8.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Table 3 Representative electron microprobe analyses of minerals in the plagioclase pseudomorphs

<table>
<thead>
<tr>
<th></th>
<th>Plagioclase</th>
<th>K-feldspar</th>
<th>Phengite</th>
<th>Epidote</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>65.47</td>
<td>65.39</td>
<td>65.84</td>
<td>65.44</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>0.24</td>
<td>0.13</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>1.97</td>
<td>1.85</td>
<td>1.03</td>
<td>2.09</td>
</tr>
<tr>
<td>Na₂O</td>
<td>10.37</td>
<td>10.37</td>
<td>10.94</td>
<td>10.32</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.25</td>
<td>0.13</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>Total</td>
<td>100.24</td>
<td>99.64</td>
<td>99.82</td>
<td>100.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>2.87</th>
<th>2.88</th>
<th>2.90</th>
<th>2.87</th>
<th>2.87</th>
<th>2.97</th>
<th>2.95</th>
<th>3.19</th>
<th>3.20</th>
<th>3.18</th>
<th>3.22</th>
<th>3.18</th>
<th>3.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Al</td>
<td>1.13</td>
<td>1.13</td>
<td>1.10</td>
<td>1.14</td>
<td>1.15</td>
<td>1.05</td>
<td>1.08</td>
<td>2.33</td>
<td>2.32</td>
<td>2.35</td>
<td>2.32</td>
<td>2.35</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.37</td>
<td>0.38</td>
<td>0.38</td>
<td>0.35</td>
<td>0.36</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.87</td>
<td>0.88</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.94</td>
<td>0.93</td>
<td>0.94</td>
<td>0.95</td>
<td>0.94</td>
<td>0.93</td>
<td>0.94</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>-</td>
<td>0.61</td>
</tr>
<tr>
<td>Total</td>
<td>5.01</td>
<td>5.00</td>
<td>5.01</td>
<td>5.00</td>
<td>5.00</td>
<td>4.98</td>
<td>4.99</td>
<td>7.11</td>
<td>7.11</td>
<td>7.11</td>
<td>7.08</td>
<td>7.11</td>
<td>8.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X_An</th>
<th>0.09</th>
<th>0.09</th>
<th>0.09</th>
<th>0.10</th>
<th>0.10</th>
<th>0.00</th>
<th>0.00</th>
<th>0.03</th>
<th>0.03</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X_Ab</td>
<td>0.89</td>
<td>0.90</td>
<td>0.90</td>
<td>0.89</td>
<td>0.89</td>
<td>0.03</td>
<td>0.04</td>
<td>1.80</td>
<td>1.86</td>
<td>1.94</td>
<td>1.74</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_Kfs</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.97</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>