1	Revision 2
2	Regular article
3	Lepageite, Mn ²⁺ ₃ (Fe ³⁺ ₇ Fe ²⁺ ₄)O ₃ [Sb ³⁺ ₅ As ³⁺ ₈ O ₃₄], a new arsenite-antimonite mineral from the
4	Szklary pegmatite, Lower Silesia, Poland
5	
6	Lepageite, a new arsenite–antimonite mineral from the Szklary pegmatite, Lower Silesia,
7	Poland
8	
9	ADAM PIECZKA ^{1*} , MARK A. COOPER ² AND FRANK C. HAWTHORNE ²
10	
11	¹ AGH University of Science and Technology, Department of Mineralogy, Petrography
12	and Geochemistry, 30-059 Kraków, Mickiewicza 30, Poland
13	² Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
14	Canada; mark_cooper@umanitoba.ca, frank_hawthorne@umanitoba.ca
15	
16	* Corresponding author: pieczka@agh.edu.pl
17	
18	Abstract
19	Lepageite, a new arsenite-antimonite mineral, was discovered in a granitic pegmatite hosted by
20	serpentinites of the Szklary massif, Lower Silesia, SW Poland. The mineral occurs as euhedral to
21	subhedral, brownish-black, opaque, sometimes twinned crystals up to 20–30 μ m in size
22	(commonly only ~5 μm), with metallic luster. Average microprobe analysis (in wt%): As_2O_3
23	31.61, Sb ₂ O ₃ 26.23, Fe _{total} O 29.79 (Fe ₂ O ₃ 21.51 + FeO 10.74 from stoichiometry), MnO 8.44,

24	MgO 0.26, sum 98.49, based on 37 O and 13 As + Sb $apfu$ gives the empirical formula
25	$(Fe^{3+}_{6.90}Fe^{2+}_{3.89}Mn^{2+}_{3.10}Mg_{0.16})_{\Sigma14.05}(As^{3+}_{8.32}Sb^{3+}_{4.68})_{\Sigma13.00}O_{37}, corresponding to the end-member of the end-me$
26	lepageite formula $Mn^{2+}_{3}(Fe^{3+}_{7}Fe^{2+}_{4})O_{3}[Sb^{3+}_{5}As^{3+}_{8}O_{34}]$. Streak, hardness, tenacity, optical
27	properties and density were not determined due to the tiny grain size and very small amount of
28	available material. The mineral does not show fluorescence, and no cleavage, fracture or parting
29	were observed. Lepageite is triclinic, space group P -1, and has unit-cell parameters $a =$
30	10.607(3), $b = 10.442(3)$, $c = 15.260(5)$ Å, $\alpha = 89.579(12)$, $\beta = 104.479(8)$, $\gamma = 89.706(9)^{\circ}$, $V = 10.442(3)$, $\gamma $
31	1636.4(9) Å ³ , $Z = 2$. The density calculated on the basis of the empirical lepageite composition
32	and its unit-cell volume is 5.192 g/cm ³ . The crystal structure was refined to an R_1 index of 3.6%.
33	Four $\text{Sb}^{3+}O_4$ groups link to four $\text{As}^{3+}O_3$ groups to form a cluster of composition
34	$[Sb_4As_4O_{19}][AsO_3]_5$ that consists of a six-membered ring of alternating $Sb^{3+}O_4$ and $As^{3+}O_3$
35	polyhedra linked to a three-membered ring of two $Sb^{3+}O_4$ and one $As^{3+}O_3$ polyhedra that is
36	decorated by another $As^{3+}O_3$ polyhedron. There are also five distinct isolated $As^{3+}O_3$ groups.
37	These units link to densely packed arrangements of FeO ₆ octahedra, MnO ₇ and MnO ₈ polyhedra
38	to form a strongly bonded framework. The strongest lines in the X-ray powder diffraction pattern
39	of lepageite, calculated on the basis of the proposed structure model, are, respectively [d in Å, I ,
40	(<i>hkl</i>)]: 2.831, 100, (0 -3 3); 2.854, 92, (0 3 3); 2.846, 88, (3 0 2); 2.898, 85, (-3 0 4); 2.487, 34, (-3
41	-3 1); 2.474, 34, (-3 3 1) and 2.463, 34, (0 0 6). Lepageite is a primary mineral formed during
42	injection of an evolved LCT-type melt related to anatectic processes within the metasedimentary-
43	metavolcanic complex of the nearby Góry Sowie Block, ~380 Ma, into serpentinite of the
44	Szklary massif and its contamination by fluid-mobile serpentinite-hosted elements, among others
45	As and Sb, transported in the form of $H_2AsO_3^-$ and $HSbO_2$ species at $pH \approx 9-11$ and a low redox
46	potential of -0.7 to -0.3 V.

Keywords: lepageite, new mineral, arsenite, antimonite, chemical composition, crystal structure,
 crystallization conditions, Szklary, Poland.

- 50
- 51

Introduction

The Szklary pegmatite is a small body of granitic LCT (Li–Cs–Ta) pegmatite hosted by 52 serpentinites of the Szklary massif, Lower Silesia, Poland. It is considered to be part of the 53 54 tectonically fragmented Sudetic ophiolite (Majerowicz and Pin 1986) and is about 420 Ma old (Oliver et al. 1993). In spite of its small dimensions, the pegmatite is notable due to (i) the 55 presence of many rare and unknown minerals of various mineral groups, e.g., native metals and 56 metalloids, Nb-Ta and Mn oxides, Mn phosphates with the apatite-group and graftonite-group 57 minerals richest in Mn worldwide, numerous As-Sb accessory phases in the absence of typical 58 löllingite and arsenopyrite; (ii) very high degrees of Mn-Fe fractionation; and (iii) the absence of 59 sulfides and the occasional presence of baryte as the only phase containing sulfur (Pieczka 2010; 60 Pieczka et al. 2011, 2013, 2015, 2018; Szuszkiewicz et al. 2018). 61 62 The assemblage of As-Sb minerals in the pegmatite (Table 1) evolves from zero-valent native As and Sb and their melts, through various As³⁺ and Sb³⁺ phases to pyrochlore-supergroup 63 minerals in which As and Sb may occur also as pentavalent cations, and finally to As⁵⁺ 64 substituting for P^{5+} in some phosphates. Such a sequence indicates the crystallization of the 65 66 assemblage at varying Eh-pH conditions. Thus, considering valence states of As and Sb and other coexisting cations, the assemblage provides an opportunity to evaluate its formation conditions. 67 In the paper, we discuss these conditions based on the composition of a newly discovered 68 arsenite-antimonite mineral lepageite, ideally $Mn^{2+}_{3}(Fe^{3+}_{7}Fe^{2+}_{4})O_{3}[Sb^{3+}_{5}As^{3+}_{8}O_{34}]$. Lepageite has 69 been approved by the Commission on New Minerals, Nomenclature and Classification 70 (CNMNC) of the International Mineralogical Association (IMA 2018–028). The name of the 71

72	mineral is for Yvon Le Page (born October 7, 1943), a crystallographer who (1) developed the
73	program MISSYM that has played a major role in the correct solution of complex mineral
74	structures (including lepageite itself), and (2) solved the structures of many minerals and was
75	involved in the description of several new minerals. The lepageite holotype (specimen Sz 96) is
76	deposited in the collection of the Mineralogical Museum of University of Wrocław, catalogue
77	number MMWr IV7926. The postal address of the museum is as follows: University of Wrocław,
78	Faculty of Earth Science and Environmental Management, Institute of Geological Sciences,
79	Mineralogical Museum, 50-205 Wrocław, Cybulskiego 30, Poland.
80	
81	Occurrence
82	Lepageite was discovered in the Szklary LCT pegmatite ($50^{\circ}39.068$ 'N, $16^{\circ}49.932$ 'E), ~ 6 km N
83	of the Ząbkowice Śląskie town, ~60 km south of Wrocław, Lower Silesia, SW Poland. The
84	massif is part of the Central-Sudetic ophiolite that adjoins the Góry Sowie Block (GSB) on the
85	east. It is enclosed as a mega-boudin in the mylonitized GSB gneisses of the Early Carboniferous
86	Niemcza Shear Zone. The pegmatite, completely excavated by mineral collectors in 2002, formed
87	a NNE-SSW elongated lens or a boudin $\sim 4 \times 1$ m in planar section, outcropped in the northern part
88	of the massif. To the southwest, it has a primary intrusive contact with an altered aplitic gneiss up
89	to 2 m thick, and both rocks are surrounded by tectonized serpentinite (Szuszkiewicz et al. 2018).
90	A vermiculite-chlorite-talc zone is locally present along the contact with serpentinite. The
91	pegmatite corresponds to the beryl-columbite-phosphate subtype of the REL-Li pegmatite class
92	in the classification of Černý and Ercit (2005). The pegmatite [383±2 Ma; CHIME dating on
93	monazite-(Ce), Pieczka et al. 2015] is significantly older than the neighboring small late-
94	syntectonic dioritic, syenitic and granodioritic intrusions (~335-340 Ma) occurring in the

95	Niemcza Shear Zone (Oliver et al. 1993), and corresponds to the anatectic event in the adjacent
96	GSB of 380–374 Ma (van Breemen et al. 1988; Timmermann et al. 2000; Turniak et al. 2015).
97	The pegmatite consists mainly of plagioclase (Ab ₉₉₋₈₂ An ₁₋₁₈), microcline perthite, quartz and
98	biotite, with minor Fe ³⁺ -bearing schorl-dravite, spessartine and muscovite. It is relatively poorly
99	zoned with (1) a marginal graphic zone composed of albite + quartz \pm minor-to-accessory biotite
100	commonly altered to clinochlore + black tourmaline; (2) a coarser-grained intermediate graphic
101	zone of microcline perthite + quartz + small quartz-tourmaline nests, with smaller amounts of
102	albite and biotite, increased abundance of muscovite and spessartine, and accessory chrysoberyl
103	present locally in muscovite aggregates; (3) a central zone of graphic microcline + quartz, in
104	places developed as blocky feldspar with interstitial albite, rare muscovite, and no black
105	tourmaline or biotite (Pieczka 2000; Pieczka et al. 2015). The aforementioned accessory minerals
106	are present in zones (2) and (3). Most of them form crystals usually less than 1 mm in size,
107	disseminated in quartz, microcline, albite and muscovite.
108	Lepageite is an accessory mineral, occurring only as minute inclusions, reaching 30 μ m in
109	diameter (commonly ~5 μ m), in (Mn,Be,Na,Cs)-bearing cordierite or close to it (Fig. 1). It is
110	associated with other Fe-Mn-As-Sb oxides: schafarzikite and three or four unrecognized arsenite-
111	antimonite phases of different (Fe+Mn)/(As+Sb) ratio, but rarer and even smaller than lepageite,
112	harmotome, Ba-bearing microcline, baryte and hematite. The (Cs,Mg)-bearing beryl, (Cs,Mg)-
113	bearing muscovite, Cs-bearing phlogophite and annite, paragonite, clinochlore, chamosite,
114	vermiculite and smectites are found as the replacement and breakdown products after cordierite.
115	
116	Physical properties
117	Lepageite forms small euhedral to subhedral, brownish-black, opaque crystals up to 20–30 μ m in
118	size, with metallic luster (Fig. 1). Due to the tiny grain sizes and very small amount of available

material, streak, hardness, tenacity and optical properties were not determined. The mineral does
not show fluorescence, and no cleavage, fracture or parting were observed. Density was not
measured for the same reasons; the density calculated on the basis of the empirical composition
of the type lepageite and its unit-cell volume is 5.192 g/cm³. Using the empirical formula and
calculated density, the mean refractive index obtained from Gladstone-Dale relation (Mandarino
1979, 1981) is 2.21.

- 125
- 126

Chemical composition

Quantitative chemical analyses of lepageite were done at the Inter-Institute Analytical Complex 127 for Minerals and Synthetic Substances at the University of Warsaw, Poland, using a Cameca SX 128 100 electron microprobe operating in wavelength-dispersive (WDS) mode with an accelerating 129 voltage of 15 kV, a beam current of 10 nA, peak count-time of 20 s, background time of 10 s, and 130 a beam diameter of 1-2 µm. Standards, analytical lines, diffracting crystals and mean detection 131 limits (wt%) were as follows: diopside (Mg Ka, TAP, 0.03), rhodonite (Mn Ka, LIF, 0.10), 132 133 hematite (Fe Ka, LIF, 0.10), GaAs (As La, TAP, 0.06) and InSb (Sb La, PET, 0.08). Aluminum, Si, P, Ti, Nb and Ta were sought but were below the detection limits. The raw data were reduced 134 with the PAP routine of Pouchou and Pichoir (1985). Analytical data on holotype material are 135 136 given in Table 2. The empirical formula of lepageite, $(Fe^{3+}_{6.90}Fe^{2+}_{3.89}Mn^{2+}_{3.10}Mg_{0.16})_{\Sigma14.05}(As^{3+}_{8.32}Sb^{3+}_{4.68})_{\Sigma13.00}O_{37}, was calculated on the basis of 37 O March 100 March 100$ 137 atoms per formula unit (*apfu*) and 13 $As^{3+} + Sb^{3+}$ cations as indicated by the crystal structure of 138 the mineral. Taking into account the results of the crystal-structure investigation (see below), the 139

end-member formula of lepageite is $Mn^{2+}{}_{3}(Fe^{3+}{}_{7}Fe^{2+}{}_{4})O_{3}[Sb^{3+}{}_{5}As^{3+}{}_{8}O_{34}]$, corresponding to (in wt%): As₂O₃ 30.68, Sb₂O₃ 28.26, Fe₂O₃ 21.67, FeO 11.14, and MnO 8.25.

143	Powder diffraction data
144	Powder diffraction data could not be collected due to scarcity of material. The X-ray powder
145	diffraction pattern calculated from the refined crystal-structure is reported in Table 3.
146	
147	Crystal structure
148	A single grain, $7 \times 20 \times 30 \ \mu m$ and composed of two twinned crystals, was extracted; all other
149	grains were < 5 microns. The grain was an entirely entombed inclusion that needed to be
150	physically broken out. Therefore, we coated the section with grease to avoid loss of the crystal
151	during this process.
152	Data collection and refinement
153	The extracted grain was attached to a MiTeGen polymer loop and mounted on a Bruker D8 three-
154	circle diffractometer equipped with a rotating-anode generator (Mo $K\alpha$ X-radiation), multilayer
155	optics and an APEX-II detector. A Ewald sphere of data was collected to $62^{\circ} 2\theta$ using 20 s per
156	0.2° frame with a crystal-detector distance of 5 cm. Evaluation of the diffraction pattern revealed
157	that the crystal contained a significant non-merohedral twin-component (180° rotation about c*),
158	and the intensity data were processed as an overlapping twin. Twin integration gave 94434 total
159	reflections, with 32990 [component 1], 32911 [component 2] and 28533 [both components]
160	(<i>Deposit Material</i>). The reflections were averaged and merged [$R_{int} = 5.0\%$] to give 10478
161	reflections (single reflections from the primary domain, plus composites involving both domains)
162	for structure (twin) refinement. The unit-cell dimensions were obtained by least-squares
163	refinement of 4073 reflections with $I > 10\sigma I$. All diffraction maxima from the X-ray crystal can
164	be indexed on the triclinic cell with the inclusion of the twin law [-0.998 -0.001 0.005 / 0.000 -
165	1.000 -0.002 / 0.729 -0.025 0.998]. The E statistics are consistent with a centre of symmetry, but
166	attempts to solve the structure in the space group P-1 were unsuccessful. The atomic arrangement

was solved in *P*1, and a center of symmetry was subsequently identified using the MISSYM program (Le Page 1987, 1988). An origin shift was applied and equivalent sites for the *P*1 model were combined to produce the *P*-1 structure model. Structure (twin) refinement from 10478 reflections (including 6350 composites) gave a final R_1 value of 3.6% (for 9912 observed reflections, $Fo > 4\sigma F$). The twin-volume fraction (i.e., twin contribution to composites) refined to 0.4756(7). Atom positions, equivalent isotropic-displacement parameters and selected interatomic distances there are in the attached CIF file. Bond valences are given in Table 4.

174 Site assignment

The crystal structure of lepageite contains 28 cation sites and 37 anion sites. Lepageite is a simple oxide, in that the bond-valence sums at all O sites are in the range 1.85-2.14 vu (valence unit) (Table 4) and the O sites are occupied by simple O²⁻ ions. The cation sites can be subdivided into two groups: (1) those with a heavier scattering species, i.e., $\geq 33 e$, with the cation displaced to one side of three or four O-sites; and (2) those possessing a lighter scattering species, i.e., $\leq 26 e$ that is centrally located with a [6]- to [8]-coordination. In the first group, the sites are occupied by As³⁺ and Sb³⁺ that show lone-pair-stereoactive behavior; in the second group, the sites are

182 occupied by Fe^{3+} , Fe^{2+} and Mn^{2+} .

183	The Sb(1)–Sb(4) sites are occupied by Sb ³⁺ with two short equatorial bonds to O_{eq} (i.e., 1.93–
184	2.03 Å) and two slightly longer axial bonds to O_{ax} (i.e., 2.12–2.35 Å), all lying to one side of the
185	Sb^{3+} cation. The O_{ax} -Sb- O_{ax} angles vary from 141.9-145.4°, and the O_{eq} -Sb- O_{eq} angles vary
186	from 95.3–105.7°. A similar coordination for Sb ³⁺ occurs in stenhuggarite (Coda et al. 1977).
187	Both the refined scattering and observed < ^[4] Sb-O> distances (i.e., 2.120–2.129 Å) are consistent
188	with full occupancy of these sites by Sb^{3+} . There are longer Sb-O distances in each coordination
189	polyhedron, resulting in the coordination numbers [6] and [7] \times 3, respectively. These longer
190	bonds contribute significantly to the sum of the incident bond-valences about the central cations,

bringing the sums into accord with the valence-sum rule. The observed $<^{[6]}Sb^{3+}-O^{2-}$ and 191 $<^{[7]}$ Sb³⁺-O²⁻> distances are in accord with the mean distances observed in all inorganic oxide-192 oxysalt Sb³⁺ structures (Gagné and Hawthorne 2018): grand $<^{[6]}$ Sb³⁺-O²⁻> = 2.443 Å, range:

193

194 2.349–2.623 Å;
$$<^{[7]}$$
Sb³⁺-O²⁻> = 2.486 Å, range: 2.445–2.517 Å

The As(1)–As(9) sites are occupied dominantly by As^{3+} [with minor Sb³⁺ at As(8) and As(9)], 195 with three short As-O bonds (i.e., 1.709-1.888 Å) to one side of the As³⁺ ion. This is a typical 196 coordination for As³⁺ showing lone-pair-stereoactive behavior (e.g., Cooper and Hawthorne 197 1996, 2016). The refined scattering and $<^{[3]}$ As-O> distances (i.e., 1.783–1.806 Å) for the As(1)– 198 As(7) sites are consistent with full occupancy by As^{3+} . Scattering in excess of 33 electrons was 199 observed at the As(8) site, along with elongated As(8)-O bonds (i.e., $<^{[3]}$ As(8)-O> = 1.878 Å). 200 Site-occupancy refinement with coupled As and Sb scattering factors gave As_{0.637}Sb_{0.363} for the 201 As(8) site. The excess scattering and longer bond-lengths are in accord with the refined Sb 202 content at As(8). The electron scattering around the As(9) site was modeled as two distinct sites 203 [As(9a) and As(9b)] with a refined As(9a)–As(9b) distance of 0.640(19) Å. The refined site-204 205 occupancies for the As(9a) and As(9b) sites are 1.034(7) and 0.071(7), respectively; as the sum exceeds unity, the minor presence of an additional heavier scattering-species is indicated (i.e., 206 Sb). The combined site-scattering of 36.5 e is consistent with an occupancy of As_{0.81} and Sb_{0.19} 207 208 over the combined As(9a)/As(9b) sites. The As(9a) site has three short bonds to $O(\langle As(9a)-O \rangle =$ 1.837 Å) and the As(9b) site has two shorter and two intermediate bonds to O (similar to the Sb 209 sites). If the partitioning of As and Sb onto As(9a) and As(9b) is done with respect to ideal bond-210 valence constraint (i.e., 3 vu) at both sites, then the inferred occupancies of $^{As(9a)}(As_{0.80}Sb_{0.17})_{\Sigma 0.97}$ 211 and $^{As(9b)}(As_{0.01}Sb_{0.02})_{\Sigma 0.03}$ result. The As and Sb contents from the chemical analysis is 212 $(As_{8,32}Sb_{4,68})_{\Sigma=13}$ and from the site-occupancy refinement is $(As_{8,45}Sb_{4,55})_{\Sigma=13}$. For the sites 213 occupied solely by As^{3+} [As(1)-As(7)], the mean bond-lengths for a coordination of [3] are very 214

close and the incident bond-valence sums are close to 3 *vu*. Gagné and Hawthorne (2018) list the grand $<^{[3]}$ As³⁺-O²⁻> distance as 1.789 Å with a range of 1.758 to 1.794 Å, and the values found here (1.759–1.789 Å) fall within this range. There are longer As³⁺-O²⁻ distances with suitable geometry that could correspond to weakly bonded ligands but they do not contribute significantly to the incident bond-valence sums.

There are three Mn sites occupied by Mn^{2+} . The Mn(1) and Mn(3) sites are coordinated by 220 eight O²⁻ ions with <Mn-O> distances of 2.472 and 2.436 Å, respectively. These two Mn 221 coordinations show significant overall bond-length dispersion, with individual Mn-O distances 222 spanning 2.09–3.10 Å. The Mn(2) site is coordinated by seven O atoms with a \langle Mn(2)-O \rangle 223 distance of 2.300 Å. The refined site-occupancy at Mn(2) [1.065(7)] indicates that a minor 224 amount of a heavier scattering species may be present (presumably Fe^{2+}). There are eleven Fe 225 sites octahedrally coordinated by O atoms with <Fe-O> distances in the range 2.023–2.153 Å. 226 The refined site-occupancies and mean bond-lengths are consistent with occupancy by a 227 combination of Fe³⁺ and Fe²⁺. The Fe(1)–Fe(6) sites have <Fe-O> distances from 2.023–2.052 Å 228 and bond-valence sums (using the Fe³⁺-O equation) from 2.84–2.99 vu (Table 4), indicating that 229 these six Fe sites are predominantly occupied by Fe^{3+} . The Fe(9)–Fe(11) sites have <Fe-O> 230 distances from 2.139–2.153 Å and bond-valence sums (using the Fe²⁺-O bond-valence 231 232 parameters) from 2.04–2.08 vu (Table 4), indicating that these three Fe sites are predominantly occupied by Fe²⁺. The Fe(7) and Fe(8) sites have intermediate <Fe-O> distances of 2.106 and 233 2.124 Å and bond-valence sums (using the Fe^{3+} -O bond-valence parameters) of 2.53 and 2.33 vu, 234 respectively (Table 4), indicating that these two Fe sites are occupied by both Fe²⁺ and Fe³⁺. All 235 As and Sb in the structure occur in coordinations characteristic of the 3+ oxidation state. The 236 three larger coordination polyhedra contain Mn that must be in the 2+ oxidation state as indicated 237 by the \langle Mn-O \rangle distances that are characteristic of Mn²⁺ and are in accord with both the 238

electroneutrality of the structure and crystallization at low Eh conditions (see GeneticImplications).

241 Bond topology

242	The various cation polyhedra are named using the central site. Sb(1), Sb(2), Sb(3), Sb(4) and
243	As(1), As(2), As(4), As(7) form a finite cluster of SbO ₄ and AsO ₃ groups (Fig. 2). Sb(2)O ₄ ,
244	As(4)O ₃ , Sb(3)O ₄ , As(2)O ₃ , Sb(4)O ₄ and As(1)O ₃ form a six-membered ring by sharing
245	polyhedron corners with each other. The polyhedra are oriented with respect to the ring such that
246	the stereoactive lone-pairs of electrons belonging to the Sb ³⁺ ions are oriented inward toward the
247	centre of the ring whereas the the stereoactive lone-pairs of electrons belonging to the As ³⁺ ions
248	are oriented outward away from the centre of the ring (Fig. 2). An Sb(1)O ₄ group shares anions
249	with an Sb(3)O ₄ group and an As(2)O ₃ group to form a three-membered ring that shares an edge
250	with the six-membered ring, and the Sb(1)O4 group links to a (terminal) $As(7)O_3$ group. All
251	AsO ₃ groups in this cluster link only to SbO ₄ groups whereas Sb(1)O ₄ links directly to Sb(3)O ₄ in
252	the three-membered ring (Fig. 2). All short As-O distances of the polyhedra in the cluster are
253	close to their mean value of 0.98 vu. However, the short Sb-O distances fall into two groups, with
254	pairs of bonds in each cluster close to their mean values of 0.88 and 0.48 vu , respectively. It is the
255	longer Sb-O bonds ($vu \sim 0.48$ vu) that link to the adjoining AsO ₃ groups, allowing the bridging
256	anions also to link to the Fe and Mn octahedra . The remaining AsO ₃ groups involve As(3),
257	As(5), As(6), As(8) and As(9), and are all isolated groups in that they do not link to each other or
258	to the polyhedra of the cluster. Thus, there is no direct linkage of AsO ₃ polyhedra in the structure
259	of lepageite, and we may write the (Sb,As) component of the structure as [Sb ₄ As ₄ O ₁₉][AsO ₃] ₅ .
260	In the structure, Mn ²⁺ is both [7]- and [8]-coordinated (Fig. 3a). The polyhedra share edges to
261	form a cluster of six polyhedra that are centered at the origin of the structure. Three Fe^{2+}
262	octahedra, Fe(5), Fe(8) and Fe(9), share edges to form a staggered trimer (Fig. 3b). The

263	remaining Fe octahedra form an extended group of staggered chains of edge-sharing and corner-
264	sharing octahedra linked together by sharing corners with single octahedra (Fig. 4a,b). These
265	three elements form a densely packed framework with the Sb^{3+} and As^{3+} polyhedra (Fig. 5).
266	Chemical formula
267	The O(1)–O(27) anions are the twenty-seven O atoms involved in the nine AsO ₃ groups. The
268	anions O(30), O(31), O(33) and O(34) form short bonds with Sb^{3+} at Sb(2) and Sb(4), and
269	collectively can be represented as two SbO ₂ groups. The anions O(28), O(29) and O(32) form
270	short bonds with Sb(1) and Sb(3) where $O(29)$ is a bridging O atom, thus forming a Sb ₂ O ₃ group.
271	The remaining anions $O(35)$, $O(36)$ and $O(37)$ form stronger bonds to the Mn and Fe sites. The
272	Mn^{2+} is highly ordered at the three Mn sites, whereas there is some disorder in the Fe^{2+} - Fe^{3+}
273	distribution. The divalent cations from the chemical analysis involve 3 elements (Fe^{2+} , Mn^{2+} ,
274	Mg^{2+}), and the overall 2+ and Fe ³⁺ content is fixed by stoichiometry in relation to the constituent
275	37 O <i>apfu</i> . Thus, for $(As^{3+}, Sb^{3+})_{13}(Fe^{3+}, Fe^{2+}, Mn^{2+}, Mg)_{14}O_{37}$, the Fe ³⁺ content must be 7 <i>apfu</i> , and
276	the chemical data were so normalized. The formula $Mn^{2+}{}_{3}(Fe^{3+}{}_{7}Fe^{2+}{}_{4})O_{3}[Sb^{3+}{}_{4}As^{3+}{}_{9}O_{34}]$ conveys
277	these attributes. Lepageite is in class 04.JA. Arsenites, antimonites, bismuthites; without
278	additional anions, without H_2O in the classification of Strunz (Strunz and Nickel 2001), and in
279	the classification of Dana (Gaines et al. 1997), it belongs to class 45. Acid and normal
280	antimonites and arsenites.
281	
282	Genetic implications

Arsenites and antimonites are rare in Nature (< 50 mineral species) and are generally related to base-metal and polymetallic ore deposits, usually as accessory phases associated with more common As and Sb minerals such as arsenopyrite, löllingite, tetrahedrite, *etc.*. Of the ~20 arsenite \pm antimonite minerals of Fe \pm Mn, only karibibite and schneiderhöhnite have been discovered in

287	pegmatites: karibibite, $Fe^{3+}_{3}(As^{3+}O_2)_4(As^{3+}_2O_5)(OH)$, firstly at Tuften, Norway (Larsen 2013),
288	and karibibite + schneiderhöhnite, $Fe^{2+}Fe^{3+}{}_{3}As^{3+}{}_{5}O_{13}$, in pegmatites of the Kalba Range,
289	Kazahstan (Voloshin et al. 1989). The arsenites were also found in the Urucum and Almerindo
290	pegmatite mines and the Boca Rica claim, Minas Gerais, Brazil (Cassedanne 1986; mindat.org),
291	and in the White Elephant Mine, South Dakota, USA (Smith and Fritzsch 2000). In almost all
292	occurrences, they are associated with löllingite \pm arsenopyrite \pm tennantite. Lepageite and
293	schafarzikite, from the Szklary pegmatite in Poland, are the third and fourth Fe-Mn arsenite-
294	antimonite species known from a pegmatitic environment. Moreover, in the Szklary pegmatite,
295	they coexist with three or four other Mn-Fe arsenite-antimonite species of different
296	(Mn+Fe)/(As+Sb) ratio, still as yet undescribed due to their extremely small grain size. In this
297	locality, lepageite and the other arsenite-antimonite phases crystallized from a geochemically
298	evolved LCT-type melt related to anatectic melting in the nearby metasedimentary-metavolcanic
299	GSB complex, emplaced into serpentinites of the Szklary massif as an adjacent part of the
300	Sudetic ophiolite (Pieczka et al. 2015). The melt was strongly contaminated with Mg and
301	enriched in fluid-mobile elements, particularly As and Sb, by interaction with the host
302	serpentinite (see discussion on mobile elements in Deschamps et al. 2013; p.118). All these As
303	and Sb minerals formed prior to the crystallization of beryl and cordierite-group minerals, and
304	metasomatic alteration of the latter into an assemblage of (Mg,Cs)-enriched secondary beryl,
305	mica-, chlorite- and smectite-vermiculite-group minerals.
306	Characterization of the crystallization conditions for the arsenite-antimonite assemblage is an
307	interesting problem as the Szklary pegmatite is unique with regard to the relatively numerous As
308	\pm Sb phases present. As arsenite-antimonite minerals are extremely rare in pegmatites, their
309	appearance should be controlled by the As and Sb concentrations in pegmatite-forming melts,
310	along with the coexisting S and accompanying redox conditions. Typical pegmatite-forming

311	melts are usually poor in As and Sb, and these elements are generally completely incorporated by
312	löllingite and arsenopyrite that form at high temperature early in the crystallization of a
313	pegmatite. Geochemical fractionation can increase the concentrations of As and Sb to such a
314	degree that, in the final stages of pegmatite formation at relatively high oxygen fugacity, they
315	form Sb(As)-Nb-Ta oxides such as stibiocolumbite and stibiotantalite, or primary Sb-bearing
316	pyrochlore-supergroup minerals, e.g., oxystibiomicrolite or members of the roméite group. The
317	latter minerals involve partly or completely oxidized As and Sb. A good example of such
318	behaviour are the well-known pegmatites at Varuträsk (Sweden) with löllingite, arsenopyrite,
319	stibnite, native Sb, stibarsen, senarmontite, stibiotantalite and oxystibiomicrolite (Černý et al.
320	2004; Sandström 2008), at Viitaniemi (Finland) with löllingite, arsenopyrite, stibnite, tetrahedrite,
321	native Sb, senarmontite, valentinite and oxyplumboroméite (Sandström and Lahti 2009), at
322	Urucum (Brazil), where karibibite and schneiderhöhnite are associated with löllingite, tennantite
323	and stibiotantalite (Cassedanne 1986), and at the White Elephant Mine, USA, where
324	schneiderhöhnite coexists with löllingite, arsenopyrite and arsenolite (Smith and Fritzsch 2000).
325	The Szklary pegmatite has numerous droplet inclusions of native As and Sb, stibarsen and
326	paradocrasite, As ₂ O ₃ and Sb ₂ O ₃ oxides, stibiocolumbite and stibiotantalite as Sb ³⁺ -(Nb,Ta)
327	oxides, abundant substitution of As ³⁺ and Sb ³⁺ for Si ⁴⁺ in dumortierite-group minerals (Pieczka
328	2010; Pieczka et al. 2011, 2013), and the presence of schafarzikite, lepageite and other
329	unrecognized arsenite-antimonites. Furthermore, the presence of $As^{5+} \pm Sb^{5+}$ in (As,Sb)-bearing
330	pyrochlores and apatites, chernovite-(Y) and arsenogorceixite, is unique. Moreover, the absence
331	of sulfides and arsenides, and the presence of exceptionally rare baryte only in the arsenite-
332	antimonite assemblage, are other important characteristics of the pegmatite.
333	The unique minerals of the Szklary pegmatite allow evaluation of the redox conditions of
334	crystallization using Eh-pH diagrams for such redox-sensitive elements as As, Sb and Fe,

approximated to room temperature and $P = 10^5$ Pa (Takeno 2005). Superimposing these diagrams 335 (Fig. 6) indicates that crystallization of As^{3+} and Sb^{3+} phases containing both Fe^{2+} and Fe^{3+} (as 336 well as Mn^{2+}) occur at alkaline conditions (pH \approx 9–11) at relatively low reduction potential (Eh \approx 337 -0.7 to -0.3 V). This range of pH conditions corresponds to spring waters discharged from rocks 338 undergoing active serpentinization, which typically have pH values even above 10 (McCollom 339 and Seewald 2013). Above Eh > -0.4 to - 0.3 V, the HAs O_4^{2-} species exists and arsenates should 340 already crystallize in this pH range; at pH < 8, the FeOH⁺/Fe₂O₃ and HAsO₂/HAsO₄^{2–} equilibria 341 superimpose, and thus FeOH⁺ can only exist along with HAsO₂ with no ferric iron and arsenate 342 species, or the species should occur together at slightly higher Eh. None of the latter situations 343 corresponds to the assemblage recorded at Szklary, where tiny crystals of hematite are rarely 344 associated with lepageite and the unrecognized arsenite-antimonite species as minute inclusions 345 in (Mn,Be,Na,Cs)-bearing cordierite. The arsenite-antimonite assemblage also cannot crystallize 346 at pH > 11, because magnetite should crystallize at these conditions (Fig. 6), and it is not 347 observed at Szklary. 348

The conditions characterized above correspond to As and Sb transported in the alkaline fluids as $H_2AsO_3^-$ and $HSbO_2$ species and explain the initial formation of native As and Sb and their melts at the contacts with a more acidic felsic pegmatite-forming melt via the following redox reactions:

353 $H_2AsO_3^- + 4H^+ + 3e^- = As + 3H_2O$

354 $\text{HSbO}_2 + 3\text{H}^+ + 3e^- = \text{Sb} + 2\text{H}_2\text{O}$

The change in pH caused by the alkaline fluids in the contact zone gave rise to successive crystallization of arsenite-antimonite phases, and finally to the appearance of As⁵⁺- and Sb⁵⁺bearing species at increasing Eh, observed in the pegmatite only as products of the final crystallization: AsO₄-bearing apatite-group minerals, arsenogorceixite, chernovite-(Y), (As,Sb)-

359	bearing pyrochlores, and coexisting baryte as a product of trace precipitation of BaSO ₄ from
360	oxidizing fluids carrying accessory sulfate anion. According to this scenario, arsenite-antimonite
361	minerals can occur in granitic pegmatites only as accessory minerals, and this is what is observed.
362	
363	Acknowledgements
364	We thank Anthony R. Kampf and an anonymous reviewer for valuable comments on this
365	manuscript. The studies were supported by the National Science Centre (Poland) grant
366	2015/17/B/ST10/03231 to AP and a Discovery Grant to FCH from the Natural Sciences and
367	Engineering Research Council and a Grant from the Canada Foundation for Innovation to FCH.
368	
369	References
370	Cassedanne, J.P. (1986) The Urucum pegmatite, Minas Gerais, Brazil. Mineralogical Record, 17,
371	307–314.
372	Černý, P., and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian
373	Mineralogist, 43, 2005–2026.
374	Černý, P., Chapman, R., Ferreira, K., and Smeds, S.A. (2004) Geochemistry of oxide minerals of
375	Nb, Ta, Sn, and Sb in the Varuträsk granitic pegmatite, Sweden: The case of an "anomalous"
376	columbite-tantalite trend. American Mineralogist, 89, 505–518.
377	Coda, A., Dal Negro, A., Sabelli, C., and Tazzoli, V. (1977) The crystal structure of
378	stenhuggarite. Acta Crystallographica, B33, 1807–1811.
379	Cooper, M.A., and Hawthorne, F.C. (1996) The crystal structure of ludlockite, $PbFe^{3+}_{4}As^{3+}_{10}O_{22}$,
380	the mineral with pentameric arsenite groups and orange hair. The Canadian Mineralogist, 34,
381	79–89.

- 382 Cooper, M.A., and Hawthorne, F.C. (2016) Refinement of the crystal structure of
- schneiderhöhnite. The Canadian Mineralogist, 54, 707–713.
- Deschamps, F., Godard, M., Guillot, S., and Hattori, K. (2013) Geochemistry of subduction zone
 serpentinites: A review. Lithos, 178, 96–127.
- Gagné, O.C., and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters
- for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.
- Gagné, O. C., and Hawthorne, F.C. (2018) Bond-length distributions for ions bonded to oxygen:
 Metalloids and post-transition metals. Acta Crystallographica, B74, 63-78.
- Gaines, R.V., Skinner, H.C., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana's New
- 391 Mineralogy, 8th ed., John Wiley & Sons, Inc.
- Larsen, A.O. (2013) Contributions to the mineralogy of the syenite pegmatites in the Larvik
 Plutonic Complex. Norsk Bergverksmuseet Skrift, 50, 101–109.
- Le Page, Y. (1987) Computer derivation of the symmetry elements implied in a structure
- description. Journal of Applied Crystallography, 20, 264–269.
- Le Page, Y. (1988) MISSYM 1.1 a flexible new release. Journal of Applied Crystallography,
 21, 983–984.
- Majerowicz, A., and Pin, C. (1986) Preliminary trace element evidence for an oceanic depleted
- mantle origin of the Ślęża ophiolitic complex SW Poland. Mineralogia Polonica, 17, 12–22.
- 400 Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The
- 401 Canadian Mineralogist, 17, 71–76.
- Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and
 its application. The Canadian Mineralogist, 19, 441–450.
- McCollom, T.M., and Seewald, J.S. (2013) Serpentinites, hydrogen, and life. Elements, 9, 129– 134.

406	Oliver, G.J.H., Corfu, F., and Krogh, T.E. (1993) U-Pb ages from SW Poland: evidence for a
407	Caledonian suture zone between Baltica and Gondwana. Journal of Geological Society,
408	London, 150, 355–369.
409	Pieczka, A. (2000) A rare mineral-bearing pegmatite from the Szklary serpentinite massif, the
410	Fore-Sudetic Block, SW Poland. Geologia Sudetica, 33, 23–31.
411	Pieczka, A. (2010) Primary Nb-Ta minerals in the Szklary pegmatite, Poland: New insights into
412	controls of crystal chemistry and crystallization sequences. American Mineralogist, 95, 1478-
413	1492.
414	Pieczka. A., Grew, E.S., Groat, L.A., and Evans, R.J. (2011) Holtite and dumortierite from the
415	Szklary pegmatite, Lower Silesia, Poland. Mineralogical Magazine, 75, 303–315.
416	Pieczka, A., Evans, R.J., Grew, E.S., Groat, L.A., Ma, C., and Rossman, G.R. (2013) The
417	dumortierite supergroup. II. Three new minerals from the Szklary pegmatite, SW Poland:
418	Nioboholtite, $(Nb_{0.6}\Box_{0.4})Al_6BSi_3O_{18}$, titanoholtite, $(Ti_{0.75}\Box_{0.25})Al_6BSi_3O_{18}$, and szklaryite,
419	\Box Al ₆ BAs ³⁺ ₃ O ₁₅ . Mineralogical Magazine, 77, 2841–2856.
420	Pieczka, A., Szuszkiewicz, A., Szełęg, E., Janeczek, J., and Nejbert, K. (2015) Granitic
421	pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). Fieldtrip
422	Guidebook of the 7 th International Symposium on Granitic Pegmatites, Książ, Poland, June
423	17-19, 2015, C 73–103.
424	Pieczka, A., Biagioni, C., Gołębiowska, B., Jeleń, P., Pasero, M., and Sitarz, M. (2018)
425	Parafiniukite, Ca ₂ Mn ₃ (PO ₄) ₃ Cl, a new member of the apatite supergroup from the Szklary
426	pegmatite, Lower Silesia, Poland: Description and crystal structure. Minerals, 9, 485.
427	Pouchou, I. L., and Pichoir, F. (1985) "PAP" (phi-rho-z) procedure for improved quantitative
428	microanalysis. In I.T. Armstrong, Ed., Microbeam Analysis, pp. 104–106, San Francisco
429	Press, San Francisco.

430	Sandström, F. (2008) Varuträskpegmatiten. Litofilen, 25(2), 17–46 (in Swedish).
431	Sandström, F., and Lahti, S.I. (2009) Viitaniemipegmatiten i Eräjärvi, Orivesi, Finland. Litofilen,
432	26(1), 11–38.
433	Smith, A.E., and Fritzsch, E. (2000) South Dakota. Rock & Minerals, 75(3), 156–169.
434	Strunz, H., and Nickel, E.H. (2001) Strunz Mineralogical Tables, 9th Edition. Schweizerbart'sche
435	Verlagsbuchhandlung, Stuttgart.
436	Szuszkiewicz, A., Pieczka, A., Gołębiowska, B., Dumańska-Słowik, M., Marszałek, M., and
437	Szełęg, E. (2018): Chemical composition of Mn- and Cl-rich apatites from the Szklary
438	pegmatite, Central Sudetes, SW Poland: Taxonomic and genetic implications. Minerals, 8,
439	350.
440	Takeno, N. (2005): Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases.
441	Geological Survey of Japan Open File Report No.419. National Institute of Advanced
442	Industrial Science and Technology; Research Center for Deep Geological Environments.
443	Timmermann, H., Parrish, R.R., Noble, S.R., and Kryza, R. (2000) New U-Pb monazite and
444	zircon data from the Sudetes Mountains in SW Poland: evidence for a single-cycle Variscan
445	orogeny. Journal of the Geological Society, London, 157, 265–268.
446	Turniak, K., Pieczka, A., Kennedy, A.K., Szełęg, E., Ilnicki, S., Nejbert, K., and Szuszkiewicz,
447	A. (2015) Crystallisation age of the Julianna pegmatite system (Góry Sowie Block, NE
448	margin of the Bohemian massif): evidence from U-Th-Pb SHRIMP monazite and CHIME
449	uraninite studies. Book of Abstracts of the 7th International Symposium on Granitic
450	Pegmatites, Książ, Poland, 111–112.
451	Van Breemen, O., Bowes, D.R., Aftalion, M., and Żelaźniewicz, A. (1988) Devonian
452	tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland:

- evidence from Rb-Sr and U-Pb isotopic studies. Journal of Polish Geological Society, 58, 3–
 10.
- Voloshin, A.V., Pakhomovsky, Ya.A. and Bakhchisaraitsev, A.Yu. (1989) On karibibite and
- schneiderhohnite from pegmatites of Eastern Kazakhstan. Novye Dannye o Mineralakh,
- 457 Moscow, Nauka, 36, 129–135 (in Russian).

458	Figure captions:
459	Figure 1. Characteristic appearance of lepageite in the Szklary pegmatite: (a) inclusion of the
460	holotype crystal (before extraction) in (Mn,Be,Na,Cs)-bearing cordierite; (b) other representative
461	inclusions of lepageite in cordierite; (c) holotype lepageite. Abbreviations: Crd – cordierite, Hrm
462	– harmotome, Qz – quartz.
463	
464	Figure 2. The [Sb ₄ As ₄ O ₁₉] cluster in the crystal structure of lepageite.
465	
466	Figure 3. Components of the structure of lepageite: (a) the cluster of $Mn^{2+}O_7$ groups (blue
467	polyhedra) and $Mn^{2+}O_8$ groups (lilac polyhedra); (b) the trimer of $Fe^{2+}O_6$ octahedra (yellow
468	polyhedra).
469	
470	Figure 4. Components of the structure of lepageite: (a) the extended linkage of $Fe^{2+}O_6$ octahedra.
471	Legend as in Fig. 2.
472	
473	Figure 5. The crystal structure of lepageite; legend as in Fig. 2 plus green circles: Sb ³⁺ ; red
474	circles: As ³⁺ .
475	
476	Figure 6. Crystallization conditions for arsenite-antimonite minerals in the Szklary pegmatite
477	shown in the Eh-pH diagrams of Takeno (2005). The Eh-pH relations for Fe are marked in
478	black, for As in orange, and for Sb in green. Manganese is omitted because it occurs as Mn^{2+} at
479	pH < 10.5 and $Eh < 0.2$ V.

Table 1. Minerals of the Szklary pegmatite containing As and Sb.

481

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Mineral	Formula
ArsenicAsAntimonySbStibarsenAsSbParadocrasiteSb_3AsOxides and hydroxidesArsenolite / claudetiteAs_Q_3SenarmontiteSb_Q_3StibiocolumbiteSbNbO4StibiocolumbiteSbNAbQ4Calciobetafite (Sb-bearing)(Ca,Sb ³⁺ ,Ca)2Tic2J2AQ20Arsenites and antimonitesFeSb2Q4Phosphates and arsenatesPhosphates and arsenatesFluorapatite (Mn,As-bearing)(Ca,Mn)s[(P,As)Q4]3Pieczkaite (As-bearing)Mns[(P,As)Q4]3Chernovite-(Y)YAsQ4ArsenogorceixiteBaAl3(AsQ4)(AsO3OH)(OH)6SilicatesSilicatesDumortierite (As,Sb-bearing)Al7-(5x+4w+y)3(Ta,Nb)xTiw□(2x+w+y)3BSi(3-y)(Sb,As)yO18-yy≤1.5 and x>1-(5x+4w+y)3(Ta,Nb)xT		Metalloids
AntimonySbStibarsenAsSbParadocrasiteSb ₃ AsOxides and hydroxidesArsenolite / claudetiteAs ₂ O ₃ SenarmontiteSb ₂ O ₃ StibiocolumbiteSbNO ₄ StibiocolumbiteSbNO ₄ StibiotantaliteSbTaO ₄ Oxy-stibiomicrolite $(Sb^{3+}, Ca)_2Ta_2O_6O$ Calciobetafite (Sb-bearing) $(Ca, Sb^{3+}, \Box)_2(Ti, Sb^{5+}, Nb)_2(O, OH, \Box)$ a U-Mn-As-Sb-Ta-Ti oxide $[(Mn, Fe)_{<3}U_{1}]_{x4}(As_2Sb_2)_{x4}[(Ta, Nb)_{>2}Ti_{<2}]_{x4}O_{20}$ Arsenites and antimonitesFeSb ₂ O ₄ LepageiteMn ²⁺ ₃ (Fe ³⁺ ₇ Fe ²⁺⁴ , JO ₃ [Sb ³⁺ ₅ As ³⁺ ₈ O ₃₄]Phosphates and arsenatesPhosphates and arsenatesFluorapatite (Mn, As-bearing)(Ca, Mn) ₅ [(P, As)O ₄] ₃ Pieczkaite (As-bearing)Mn ₅ [(P, As)O ₄] ₃ Chernovite-(Y)YAsO ₄ ArsenogorceixiteBaAl ₃ (AsO ₄)(AsO ₃ OH)(OH) ₆ Dumortierite (As,Sb-bearing)Al ₇ (sx+4w+y)/3 Ta,Nb) _x Ti _w □(2x+w+y)/3BSi(3-y)(Sb,As) _y O _{18-y} y ≤ 1.5 and x > 1-(5x+4w+y)/3 Ta,Nb) _x Ti _w □(2x+w+y)/3BSi(3-y)(Sb,As) _y O _{18-y} y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta,Nb) _x Ti _w □(2x+w+y)/3BSi(3-y)(Sb,As) _y O _{18-y} y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta,Nb) _x Ti _w □(2x+w+y)/3BSi(3-y)(Sb,As) _y O _{18-y} y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta,Nb) _x Ti _w □(2x+w+y)/3BSi(3-y)(Sb,As) _y O _{18-y} y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta,Nb) _x Ti _w □(2x+w+y)/3BSi(3-y)(Sb,As) _y O _{18-y} y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta,Nb) _x Ti _w □(2x+w+y)/3BSi(3-y)(Sb,As) _y O _{18-y} y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta,Nb) _x Ti _w □(2x+w+y)/3BSi(3-y)(Sb,As) _y O _{18-y} <	Arsenic	As
StibarsenAsSbParadocrasiteSb ₃ AsOxides and hydroxidesArsenolite / claudetiteAs ₂ O ₃ SenarmonitieSb ₂ O ₃ StibiocolumbiteSbNbO ₄ StibiocolumbiteSbNbO ₄ StibiocolumbiteSbTaO ₄ Oxy-stibiomicrolite $(Sb^{3+}, Ca)_2 Ta_2 O_6 O$ Calciobetafite (Sb-bearing) $(Ca, Sb^{3+}, \Box)_2 (Ti, Sb^{5+}, Nb)_2 (O, OH, \Box)$ a U-Mn-As-Sb-Ta-Ti oxide $[(Mn, Fe)_{<3} U_{>1}]_{24} (As_2 Sb_2)_{24} [(Ta, Nb)_{>2} Ti_{<2}]_{24} O_{20}$ Arsenites and antimonitesFeSb ₂ O ₄ Lepageite $Mn^{2+}_3 (Fe^{3+}_7 Fe^{2+}_4) O_3 [Sb^{3+}_5 As^{3+}_8 O_{34}]$ Phosphates and arsenatesPhosphates and arsenatesFluorapatite (Mn, As-bearing) $(Ca, Mn)_5 [(P, As)O_4]_3$ Pieczkaite (As-bearing) $Mn_5 [(P, As)O_4]_3$ Phosphates and arsenatesSilicatesDumortierite (As, Sb-bearing) $Al_7 (5x+4w+y)/3 (Ta, Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)} (Sb, As)_y O_{18-y}$ $y \le 1.5$ and $x > 1 - (5x+4w+y)/3$ and $> w$ and $Ta > Nb$ Nioboholtite (As, Sb-bearing) $Al_7 - (5x+4w+y)/3 (Ta, Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)} (Sb, As)_y O_{18-y}$ $y \le 1.5$ and $x > 1 - (5x+4w+y)/3$ and $> w$ and $Ta > Nb$ Nioboholtite (As, Sb-bearing) $Al_7 - (5x+4w+y)/3 (Ta, Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)} (Sb, As)_y O_{18-y}$ $y \le 1.5$ and $x > 1 - (5x+4w+y)/3$ and $> w$ and $Ta < Nb$ Nite (As, Sb-bearing) $Al_7 - (5x+4w+y)/3 (Ta, Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)} (Sb, As)_y O_{18-y}$ $y \le 1.5$ and $x > 1 - (5x+4w+y)/3 and > w and Ta < NbNite (As, Sb-bearing)<$	Antimony	Sb
ParadocrasiteSb_3As Oxides and hydroxidesArsenolite / claudetite As_2O_3 Senarmontite Sb_2O_3 Stibiocolumbite $SbNbO_4$ Stibiocolumbite $SbNbO_4$ Stibiotantalite $Sb^3+Ca_2Ta_2O_6O$ Calciobetafite (Sb-bearing) $(Ca,Sb^{3+},\Box)_2(Ti,Sb^{5+},Nb)_2(O,OH,\Box)$ a U-Mn-As-Sb-Ta-Ti oxide $[(Mn,Fe)_{<3}U_{>1}]_{24}(As_2Sb_2)_{24}[(Ta,Nb)_{>2}Ti_{<2}]_{24}O_{20}$ Arsenites and antimonitesArsenites and antimonitesSchafarzikiteFeSb_2O_4Lepageite $Mn^{2+3}(Fe^{3+}_7Fe^{2+}_4)O_3[Sb^{3+}_5As^{3+}_8O_{34}]$ Phosphates and arsenatesPhosphates and arsenatesFluorapatite (Mn,As-bearing) $(Ca,Mn)_5[(P,As)O_4]_3$ Pieczkaite (As-bearing) $Mn_5[(P,As)O_4]_3$ Pieczkaite (As-bearing) $Ma_17(5x+4w+y)/3(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ y ≤ 1.5 and 1-(5x+4w+y)/3 and > w and Ta > NbNioboholtite (As,Sb-bearing) $Al_7(5x+4w+y)/3(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ y ≤ 1.5 and $x > 1-(5x+4w+y)/3$ and y and $Ta < Nb$ Nioboholtite (As,Sb-bearing) $Al_7(5x+4w+y)/3(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ y ≤ 1.5 and $x > 1-(5x+4w+y)/3$ and y and $Ta < Nb$ Nioboholtite (As,Sb-bearing) $Al_7(5x+4w+y)/3(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ y ≤ 1.5 and $x > 1-(5x+4w+y)/3$ and y and $Ta < Nb$ Nioboholtite (As,Sb-bearing) $Al_7(5x+4w+y)/3(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ y ≤ 1.5 and $x > 1-(5x+4w+y)/3$ and y and $Ta < Nb$ Nioboholtite (As,Sb-bearing) Al_7-	Stibarsen	AsSb
$\label{eq:asymptotic formula} \begin{array}{llllllllllllllllllllllllllllllllllll$	Paradocrasite	Sb ₃ As
Arsenolite / claudetiteAs2O3SenarmontiteSb2O3StibiocolumbiteSbNbO4StibiocolumbiteSbTaO4Oxy-stibiomicrolite(Sb ³⁺ , Ca) ₂ Ta ₂ O ₆ OCalciobetafite (Sb-bearing)(Ca,Sb ³⁺ , Ca) ₂ (Ti,Sb ⁵⁺ ,Nb) ₂ (O,OH, \Box)a U-Mn-As-Sb-Ta-Ti oxide[(Mn,Fe) ₋₃ U ₋₁] ₂₄ (As ₂ Sb ₂) ₂₄ [(Ta,Nb) _{>2} Ti ₋₂] ₂₄ O ₂₀ Arsenites and antimonitesSchafarzikiteSchafarzikiteFeSb ₂ O ₄ LepageiteMn ²⁺ ₃ (Fe ³⁺ ₇ Fe ²⁺ ₄)O ₃ [Sb ³⁺ ₅ As ³⁺ ₈ O ₃₄]Phosphates and arsenatesFluorapatite (Mn,As-bearing)(Ca,Mn) ₅ [(P,As)O4] ₃ Pieczkaite (As-bearing)(Ca,Mn) ₅ (P,As)O4] ₃ Othernovite-(Y)YAsO4ArsenogorceixiteBaAl ₃ (AsO ₄)(AsO ₃ OH)(OH) ₆ Dumortierite (As,Sb-bearing)Al _{7-(5x+4w+y)/3} (Ta,Nb) _x Ti _w $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)yO_{18-y}$ y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta,Nb) _x Ti _w $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)yO_{18-y}$ y ≤ 1.5 and x > 1-(5x+4w+y)/3 and > wand Ta > NbNioboholtite (As,Sb-bearing)Al _{7-(5x+4w+y)/3} (Ta,Nb) _x Ti _w $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)yO_{18-y}$ y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta,Nb) _x Ti _w $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)yO_{18-y}$ y ≤ 1.5 and x > 1-(5x+4w+y)/3 and > wand Ta < Nb		Oxides and hydroxides
SenarmontiteSb2Q3StibiocolumbiteSbNbQ4StibiotantaliteSbTaQ4Oxy-stibiomicrolite $(Sb^{3+}, Ca)_2 Ta_2 O_6 O$ Calciobetafite (Sb-bearing) $(Ca, Sb^{3+}, \Box)_2(Ti, Sb^{5+}, Nb)_2(O, OH, \Box)$ a U-Mn-As-Sb-Ta-Ti oxide $[(Mn, Fe)_{<3}U_{>1}]_{\Sigma4}(As_2Sb_2)_{\Sigma4}[(Ta, Nb)_{>2}Ti_{<2}]_{\Sigma4}O_{20}$ Arsenites and antimonitesSchafarzikiteFeSb_2Q4Lepageite $Mn^{2+}_3(Fe^{3+}_7Fe^{2+}_4)O_3[Sb^{3+}_5As^{3+}_8O_{34}]$ Phosphates and arsenatesFluorapatite (Mn,As-bearing)Pieczkaite (As-bearing)Chernovite-(Y)ArsenogorceixiteBaAl_3(AsO_4)(AsO_3OH)(OH)_6SilicatesDumortierite (As,Sb-bearing)Holtite (As,Sb-bearing)Al7-(5x+4w+y)/3 (Ta,Nb)_xTiw $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \leq 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta > Nb$ Nioboholtite (As,Sb-bearing)Al7-(5x+4w+y)/3 and $> w$ and $Ta < Nb$ Nioboholtite (As,Sb-bearing)Al7-(5x+4w+y)/3 and $> w$ and $Ta < Nb$ Al7-(5x+4w+y)/3 (Ta,Nb)_xTiw $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \leq 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ Nioboholtite (As,Sb-bearing)Al7-(5x+4w+y)/3 (Ta,Nb)_xTiw $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \leq 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ Nioboholtite (As,Sb-bearing)Al7-(5x+4w+y)/3 and $> w$ and $Ta < Nb$ Al7-(5x+4w+y)/3 and $> w$ and $Ta < Nb$ Al7-(5x+4w+y)/3 and $> w$ and $Ta < Nb$ Al7-(5x+4w+y)/3 (Ta,Nb)_xTiw $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ </td <td>Arsenolite / claudetite</td> <td>As₂O₃</td>	Arsenolite / claudetite	As ₂ O ₃
StibiocolumbiteSbNbO4StibiotantaliteSbTaO4Oxy-stibiomicrolite $(Sb^{3+}, Ca)_2Ta_2O_6O$ Calciobetafite (Sb-bearing) $(Ca, Sb^{3+}, \Box)_2(Ti, Sb^{5+}, Nb)_2(O, OH, \Box)$ a U-Mn-As-Sb-Ta-Ti oxide $[(Mn, Fe)_{<3}U_{>1}]_{\Sigma4}(As_2Sb_2)_{\Sigma4}[(Ta, Nb)_{>2}Ti_{<2}]_{\Sigma4}O_{20}$ Arsenites and antimonitesSchafarzikiteFeSb_2O4Lepageite $Mn^{2+}_3(Fe^{3+}_7Fe^{2+}_4)O_3[Sb^{3+}_5As^{3+}_8O_{34}]$ Phosphates and arsenatesFluorapatite (Mn, As-bearing) $(Ca, Mn)_5[(P, As)O_4]_3$ Pieczkaite (As-bearing) $(Ca, Mn)_5[(P, As)O_4]_3$ Pieczkaite (As-bearing) $Mn_5[(P, As)O_4]_3$ Pieczkaite (As, Sb-bearing) $Al_{7-(5x+4w+y)/3}Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}$ y ≤ 1.5 and 1-(5x+4w+y)/3 (Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}y ≤ 1.5 and x > 1-(5x+4w+y)/3 and > w and Ta > NbNioboholtite (As, Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}$ y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}y ≤ 1.5 and x > 1-(5x+4w+y)/3 (Ta, Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb, As)_yO_{18-y}y	Senarmontite	Sb ₂ O ₃
StibiotantaliteSbTaO4 $Oxy-stibiomicrolite$ $(Sb^{3+}, Ca)_2Ta_2O_6O$ $Calciobetafite (Sb-bearing)$ $(Ca, Sb^{3+}, \Box)_2(Ti, Sb^{5+}, Nb)_2(O, OH, \Box)$ a U-Mn-As-Sb-Ta-Ti oxide $[(Mn, Fe)_{<3}U_{>1}]_{\Sigma4}(As_2Sb_2)_{\Sigma4}[(Ta, Nb)_{>2}Ti_{<2}]_{\Sigma4}O_{20}$ Arsenites and antimonitesSchafarzikiteFeSb_2O4Lepageite $Mn^{2+}_3(Fe^{3+}_7Fe^{2+}_4)O_3[Sb^{3+}_5As^{3+}_8O_{34}]$ Phosphates and arsenatesFluorapatite (Mn, As-bearing) $(Ca, Mn)_5[(P, As)O_4]_3$ Pieczkaite (As-bearing) $(Ca, Mn)_5[(P, As)O_4]_3$ Phosphates and arsenatesFluorapatite (As, Sb-bearing) $Mn_5[(P, As)O_4]_3$ Mns[(P, As)O_4]_3MospicereixBaAl_3(AsO_4)(AsO_3OH)(OH)_6SilicatesDumortierite (As, Sb-bearing)Holtite (As, Sb-bearing)Nioboholtite (As, Sb-bearing)Nioboholtite (As, Sb-bearing)Nioboholtite (As, Sb-bearing)Nioboholtite (As, Sb-bearing)Vitanoholtite (As, Sb-bearing)Vitanoholtite (As, Sb-bearing)Nioboholtite (As, Sb-bearing)Vitanoholtite (As, Sb-bearing)<	Stibiocolumbite	SbNbO ₄
Oxy-stibiomicrolite $(Sb^{3+}, Ca)_2Ta_2O_6O$ Calciobetafite (Sb-bearing) $(Ca, Sb^{3+}, \Box)_2(Ti, Sb^{5+}, Nb)_2(O, OH, \Box)$ a U-Mn-As-Sb-Ta-Ti oxide $[(Mn, Fe)_{<3}U_{>1}]_{\Sigma4}(As_2Sb_2)_{\Sigma4}[(Ta, Nb)_{>2}Ti_{<2}]_{\Sigma4}O_{20}$ Arsenites and antimonitesSchafarzikiteFeSb_2O_4Lepageite $Mn^{2+}_3(Fe^{3+}_7Fe^{2+}_4)O_3[Sb^{3+}_5As^{3+}_8O_{34}]$ Phosphates and arsenatesFluorapatite (Mn,As-bearing) $(Ca,Mn)_5[(P,As)O_4]_3$ Pieczkaite (As-bearing) $(Ca,Mn)_5[(P,As)O_4]_3$ Phosphates and arsenatesFluorapatite (As,Sb-bearing) $Mn_5[(P,As)O_4]_3$ Mns[(P,As)O_4]_3MarsenogorceixiteBaAl_3(AsO_4)(AsO_3OH)(OH)_6SulicatesDumortierite (As,Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTiw\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \leq 1.5$ and $z > 1-(5x+4w+y)/3$ and $z w$ and $Ta > Nb$ Nioboholtite (As,Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTiw\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \leq 1.5$ and $x > 1-(5x+4w+y)/3$ and $z w$ and $Ta > Nb$ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTiw $\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \leq 1.5$ and $x > 1-(5x+4w+y)/3$ and $z w$ and $Ta < Nb$ Nioboholtite (As,Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTiw \Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}y \leq 1.5 and x > 1-(5x+4w+y)/3 and z w and Ta < NbAl_{7-(5x+4w+y)/3}(Ta,Nb)_xTiw \Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}y \leq 1.5 and x > 1-(5x+4w+y)/3 and z w and Ta < NbAl_{7-(5x+4w+y)/3}(Ta,Nb)_xTiw \Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}y \leq 1.5 and z > 1-(5x+4w+y)/3 and z w$	Stibiotantalite	SbTaO ₄
Calciobetafite (Sb-bearing) a U-Mn-As-Sb-Ta-Ti oxide $(Ca,Sb^{3+},\Box)_2(Ti,Sb^{5+},Nb)_2(O,OH,\Box)$ $[(Mn,Fe)_{<3}U_{>1}]_{\Sigma4}(As_2Sb_2)_{\Sigma4}[(Ta,Nb)_{>2}Ti_{<2}]_{\Sigma4}O_{20}$ Arsenites and antimonitesSchafarzikite LepageiteFeSb_2O_4 Mn^{2+}_3(Fe^{3+}_7Fe^{2+}_4)O_3[Sb^{3+}_5As^{3+}_8O_{34}] Phosphates and arsenatesFluorapatite (Mn,As-bearing) Pieczkaite (As-bearing) $(Ca,Mn)_5[(P,As)O_4]_3$ Mn_5[(P,As)O_4]_3 Mn_5[(P,As)O_4]_3 Chernovite-(Y) ArsenogorceixiteBaAl_3(AsO_4)(AsO_3OH)(OH)_6 SilicatesSilicatesDumortierite (As,Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x \ge 1-(5x+4w+y)/3$ and $> w$ and $Ta > Nb$ Al _{7-(5x+4w+y)/3} (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} $y \le 1.5$ and $x \ge 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ Al _{7-(5x+4w+y)/3} (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} $y \le 1.5$ and $x \ge 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ Al _{7-(5x+4w+y)/3} (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} $y \le 1.5$ and $x \ge 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ Nioboholtite (As,Sb-bearing)Al _{7-(5x+4w+y)/3} (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} $y \le 1.5$ and $x \ge 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ Titanoholtite (As,Sb-bearing)Al _{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} $y \le 1.5$ and $x \ge 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$}	Oxy-stibiomicrolite	$(Sb^{3+},Ca)_2Ta_2O_6O$
a U-Mn-As-Sb-Ta-Ti oxide $ [(Mn,Fe)_{3}U_{>1}]_{\Sigma4}(As_{2}Sb_{2})_{\Sigma4}[(Ta,Nb)_{>2}Ti_{<2}]_{\Sigma4}O_{20} \\ Arsenites and antimonites \\ Schafarzikite \\ Lepageite \\ Mn^{2+}_{3}(Fe^{3+}_{7}Fe^{2+}_{4})O_{3}[Sb^{3+}_{5}As^{3+}_{8}O_{34}] \\ Phosphates and arsenates \\ Fluorapatite (Mn,As-bearing) \\ Pieczkaite (As-bearing) \\ Chernovite-(Y) \\ Arsenogorceixite \\ BaAl_{3}(AsO_{4})(AsO_{3}OH)(OH)_{6} \\ Silicates \\ Dumortierite (As,Sb-bearing) \\ Holtite (As,Sb-bearing) \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta > Nb \\ Nioboholtite (As,Sb-bearing) \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta > Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta > Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ y \leq 1.5 \text{ and } x^{-1}(5x+4w+y)/3 \text{ and } x \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \\ $	Calciobetafite (Sb-bearing)	$(Ca,Sb^{3+},\Box)_2(Ti,Sb^{5+},Nb)_2(O,OH,\Box)$
$\label{eq:schafarzikite} Arsenites and antimonites \\ Schafarzikite Eegageite FeSb_2O_4 \\ Mn^{2+}_3(Fe^{3+}_7Fe^{2+}_4)O_3[Sb^{3+}_5As^{3+}_8O_{34}] \\ Phosphates and arsenates \\ Fluorapatite (Mn,As-bearing) (Ca,Mn)_5[(P,As)O_4]_3 \\ Mn_5[(P,As)O_4]_3 \\ Mn_5[(P,As)O_4]_3 \\ YAsO_4 \\ Arsenogorceixite BaAl_3(AsO_4)(AsO_3OH)(OH)_6 \\ Silicates \\ Dumortierite (As,Sb-bearing) Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ 1-(5x+4w+y)/3 (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ 2-(5x+4w+y)/3 (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta > Nb \\ Nioboholtite (As,Sb-bearing) Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \ and \ x \geq 1-(5x+4w+y)/3 \ and \ > w \ and \ Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18$	a U-Mn-As-Sb-Ta-Ti oxide	$[(Mn,Fe)_{<3}U_{>1}]_{\Sigma4}(As_2Sb_2)_{\Sigma4}[(Ta,Nb)_{>2}Ti_{<2}]_{\Sigma4}O_{20}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Arsenites and antimonites
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Schafarzikite	FeSb ₂ O ₄
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Lepageite	$Mn^{2+}{}_{3}(Fe^{3+}{}_{7}Fe^{2+}{}_{4})O_{3}[Sb^{3+}{}_{5}As^{3+}{}_{8}O_{34}]$
$ \begin{array}{ll} Fluorapatite (Mn,As-bearing) \\ Pieczkaite (As-bearing) \\ Pieczkaite (As-bearing) \\ Chernovite-(Y) \\ Arsenogorceixite \\ BaAl_3(AsO_4)(AsO_3OH)(OH)_6 \\ & \\ Silicates \\ Dumortierite (As,Sb-bearing) \\ Holtite (As,Sb-bearing) \\ Holtite (As,Sb-bearing) \\ Nioboholtite (As,Sb-bearing) \\ Nioboholtite (As,Sb-bearing) \\ Titanoholtite (As,Sb-bearing) \\ \hline \\ Titanoholtite (As,Sb-bearing) \\ \hline \\ \\ \end{array} $		Phosphates and arsenates
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Fluorapatite (Mn,As-bearing)	$(Ca,Mn)_{5}[(P,As)O_{4}]_{3}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Pieczkaite (As-bearing)	$Mn_5[(P,As)O_4]_3$
Arsenogorceixite $BaAl_3(AsO_4)(AsO_3OH)(OH)_6$ SilicatesDumortierite (As,Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $1-(5x+4w+y)/3 > x$ and $> y$ $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta > Nb$ $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta > Nb$ $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ (Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}	Chernovite-(Y)	YAsO ₄
$\begin{array}{lll} Silicates\\ Dumortierite (As,Sb-bearing) & Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and 1-(5x+4w+y)/3 > x \ and > y\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta > Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and x>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and y>1-(5x+4w+y)/3 \ and > w \ and Ta < Nb\\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}\\ & y\leq 1.5 \ and y>1-(5x+4w+y)/3 \ and y>1-(5x+4w+y)/3$	Arsenogorceixite	BaAl ₃ (AsO ₄)(AsO ₃ OH)(OH) ₆
$ \begin{array}{lll} Dumortierite (As,Sb-bearing) & Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } 1-(5x+4w+y)/3 > x \mbox{ and } > y \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta > Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta > Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } x > 1-(5x$		Silicates
$ \begin{array}{ll} \mbox{Holtite (As,Sb-bearing)} & y \leq 1.5 \mbox{ and } 1-(5x+4w+y)/3 > x \mbox{ and } > y \\ \mbox{Al}_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta > Nb \\ \mbox{Al}_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ \mbox{Al}_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ \mbox{Al}_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ y \leq 1.5 \mbox{ and } y > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ \mbox{Al}_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ y \leq 1.5 \mbox{ and } y > 1-(5x+4w+y)/3 \mbox{ and } > y \mbox{ and } y$	Dumortierite (As,Sb-bearing)	$Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w}\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y}$
Holtite (As,Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BS1_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta > Nb$ Nioboholtite (As,Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ Titanoholtite (As,Sb-bearing) $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$ $Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y}$ $y \le 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta < Nb$		$y \le 1.5$ and $1-(5x+4w+y)/3 > x$ and $> y$
$ \begin{array}{ll} \mbox{Nioboholtite (As,Sb-bearing)} & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta > Nb \\ \mbox{Al}_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ \mbox{Al}_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ \mbox{ and } y \leq 1.5 \mbox{ and } y > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ \mbox{Al}_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3} BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ \mbox{ and } y \leq 1.5 \mbox{ and } y > 1-(5x+4w+y)/3 \mbox{ and } y and $	Holtite (As,Sb-bearing)	$AI_{7-(5x+4w+y)/3}(Ta,Nb)_{x}T1_{w} \sqcup_{(2x+w+y)/3}BS1_{(3-y)}(Sb,As)_{y}O_{18-y}$
Nioboholtite (As,Sb-bearing) $\begin{array}{l} Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } x > 1-(5x+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_xTi_w\Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_yO_{18-y} \\ y \leq 1.5 \text{ and } w \geq 1 (5w+4w+y)/3 \text{ and } > w \text{ and } = 1 \text{ and } > 0 \text$		$y \le 1.5$ and $x > 1-(5x+4w+y)/3$ and $> w$ and $Ta > Nb$
$\begin{array}{ c c c c c c } \hline Titanoholtite (As,Sb-bearing) & y \leq 1.5 \mbox{ and } x > 1-(5x+4w+y)/3 \mbox{ and } > w \mbox{ and } Ta < Nb \\ \hline Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } y \geq 1 \mbox{ (for } 4w+y)/3 \mbox{ and } > y \\ \hline Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } y \geq 1 \mbox{ (for } 4w+y)/3 \mbox{ and } > y \\ \hline Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y} \\ & y \leq 1.5 \mbox{ and } y \geq 1 \mbox{ (for } 4w+y)/3 \mbox{ and } y = 1 \mbox{ (for } 4w+y)/3 \mbox{ and } y = 1 \mbox{ (for } 4w+y)/3 \mbox{ and } y = 1 \mbox{ (for } 4w+y)/3 \mbox{ and } y = 1 \mbox{ (for } 4w+y)/3 \mbox{ and } y = 1 \mbox{ (for } 4w+y)/3 \mbox{ and } y = 1 \mbox{ (for } 4w+y)/3 \m$	Nioboholtite (As,Sb-bearing)	$AI_{7-(5x+4w+y)/3}(Ta,Nb)_{x}T1_{w} \sqcup_{(2x+w+y)/3}BS1_{(3-y)}(Sb,As)_{y}O_{18-y}$
r < 1.5 and $r > 1.(5r + 4rr + r)/2$ and $r = 1.5$	Titanoholtite (As,Sb-bearing)	$\begin{array}{l} y \leq 1.5 \text{ and } x > 1-(5x+4w+y)/3 \text{ and } > w \text{ and } Ta < Nb \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w} \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \end{array}$
Szklaryite* $V \le 1.3 \text{ and } w > 1-(3x+4w+y)/3 \text{ and } > x$ $Al_{7-(5x+4w+y)/3}(Ta,Nb)_x Ti_w \square_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_y O_{18-y}$	Szklaryite*	$\begin{array}{l} y \leq 1.5 \text{ and } w \geq 1-(5x+4w+y)/3 \text{ and } > x \\ Al_{7-(5x+4w+y)/3}(Ta,Nb)_{x}Ti_{w} \Box_{(2x+w+y)/3}BSi_{(3-y)}(Sb,As)_{y}O_{18-y} \end{array}$
y>1.5		y > 1.5

end-members do not reflect common presence of Sb + As in compositions of the supergroup
minerals, the formulas of the minerals are presented in the form of the general supergroup

formula (Pieczka et al. 2013) and additional relationships among the contents of Al, Nb+Ta and

Ti at the All site and Sb+As at the Sb(As) site of the dumortierite structure, which must be fulfilled for each of the minerals.

488

constituent	Mean (wt%)	Range (wt%)	sd (wt%)	cation	apfu	sd (apfu)
As_2O_3	31.62	30.83 - 32.44	0.66	As ³⁺	8.32	0.17
Sb_2O_3	26.23	25.05 - 27.35	0.94	Sb^{3+}	4.68	0.17
Fe_2O_3	21.17	20.64 - 21.58	0.41	Fe ³⁺	6.90	0.13
FeO^*	10.74	9.45 - 11.75	1.07	Fe ²⁺	3.89	0.39
MnO	8.44	7.88 - 9.27	0.59	Mn^{2+}	3.10	0.22
MgO	0.26	0.18 - 0.33	0.06	Mg^{2+}	0.16	0.04
Total	98.46					

489 Table 2. Chemical composition of lepageite.490

491 Notes: *total Fe as FeO (mean 29.79% FeO); sd – standard deviation.

	$\frac{1}{1} \frac{1}{1} \frac{1}$													
I (%)	d (Å)	h k l	I(%)	d (Å)	h k l									
2	8.563	0 1 1	100	2.831	0-33									
2	7.348	1 1 0	2	2.785	-2 -1 5									
3	6.866	-1 0 2	2	2.735	-3 2 3									
2	5.746	-1 1 2	2	2.703	2-23									
3	5.221	$0\ 2\ 0$	2	2.638	-4 0 2									
2	4.811	1 1 2	3	2.617	2 1 4									
2	4.595	-2 1 0	2	2.610	$0 \ 4 \ 0$									
2	4.463	-1 -1 3	2	2.568	4 0 0									
3	4.321	1 2 1	2	2.553	-4 0 3									
6	4.104	-2 0 3	34	2.487	-3 -3 1									
10	3.791	-1 0 4	34	2.474	-3 3 1									
4	3.770	1 2 2	34	2.463	0 0 6									
6	3.732	1 -2 2	2	2.246	3 0 4									
3	3.543	-2 -2 2	3	2.234	-4 0 5									
11	3.539	-2 2 2	3	2.226	-3 -3 4									
11	3.535	-3 0 1	2	2.206	1 4 3									
2	3.423	3 0 0	3	2.141	$0 \ 4 \ 4$									
2	3.354	-3 -1 1	2	2.123	0-4 4									
2	3.275	-3 1 2	2	2.108	-5 0 1									
2	3.273	-1 3 1	2	2.091	-5 0 3									
2	3.260	3 1 0	3	2.074	4 0 3									
3	3.228	1 0 4	2	2.023	-5 0 4									
4	3.224	-2 -2 3	2	1.889	2 - 5 1									
5	3.179	2 0 3	2	1.853	-1 3 7									
2	3.176	1 3 1	17	1.768	-4 2 7/-6 0 2									
5	3.050	2 1 3/-1 0 5	2	1.766	-4 -3 6									
2	3.028	0 2 4	18	1.763	-3 3 7									
2	2.955	0 0 5	19	1.756	-3 -3 7									
2	2.933	-1 1 5	21	1.744	3 3 5									
85	2.898	-304	23	1.740	060									
2	2.893	-2 0 5	24	1.728	3-35									
3	2.891	2 3 0	2	1.697	-2 5 5									
4	2.872	3 2 0/-2 3 0	2	1.674	-6 0 5									
92	2.854	033	2	1.654	6 0 1									
88	2.846	302	2	1.648	532									

Table 3. Generated powder diffraction pattern for lepageite (the strongest reflection are marked in bold)

	Table 4. Bond-valence table* for lepageite																											
	Ch (4)	Ch (0)	CF (0)	Ch/4)	A = (4)	A=(0)	A=(0)	A = (4)	A = (F)	A = (C)	A = (7)	A = (0) **	A = (0)	M (4)	M-(0)	M-(2)	E-(4)	E-(0)	E-(0)	F ₂ (4)		E-(C)	E = (7)	E-(0)	E-(0)	E-(40)	E-(44)	5
0(4)	50(1)	SD(2)	50(3)	SD(4)	AS(1)	AS(2)	AS(3)	AS(4)	AS(5)	AS(6)	AS(7)	AS(8)	AS(9)	Mn(T)	Win(2)	Mn(3)	Fe(1)	Fe(2)	Fe(3)	Fe(4)	Fe(5)	Fe(6)	Fe(7)	Fe(8)	Fe(9)	Fe(10)	Fe(11)	2
0(1)		0.07		0.09	1.17	0.03	0.03	0.03														0.00		0.50		-	0.00	1.99
0(2)		0.47		0.55	0.89															0.20		0.38				0.22	0.23	2.05
0(3)			0.40	0.05	0.07	1.02				0.02										0.30						0.22		2.05
0(4)	0.41		0.49	0.05		0.02				0.03							0.56									0.30		1.95
0(5)	0.41		0.08	0.38		0.90											0.56		0.30					0.23				1.02
0(7)				0.00		0.52	0.00									0.11		0.39	0.00					0.20				1.85
0(1)							0.00									0.11		0.36										1.00
O(8)							0.92										0.46	0.00					0.18					1.89
- (-)																	0.33											
O(9)							0.88												0.39		0.40				0.27			1.94
O(10)			0.07				0.03	1.06							0.25			0.54										1.95
O(11)		0.05	0.45					1.06	0.03																		0.37	1.96
O(12)		0.43						0.84													0.36			0.26				1.89
O(13)									1.00					0.36	0.28	0.27												1.91
O(14)									1.00							0.18					0.56				0.26			2.00
O(15)									0.99			0.04		0.11								0.54					0.38	2.06
O(16)	0.07									1.04				0.41									0.46					1.91
O(17)										1.01		0.05		0.05						0.54						0.37		2.02
O(18)										0.99		0.05							0.54						0.38			1.96
0(10)	0.40						0.00				4.40					0.04							0.00					4.00
0(19)	0.12						0.06				1.10				0.40	0.04							0.68					1.88
0(20)											1.09				0.40	0.33												2.02
0(21)	0.64										0.03				0.20										0.20			2.02
0(21)	0.04										0.33	0.03			0.10					0.44					0.23	0.30		1.92
0(22)												0.55								0.44						0.50		1.00
0(23)												0.91							0.24	0.21	0.36			0.34				1.85
O(24)												0.89							0.21		0.00	0.42		0.01			0.31	1.86
- ()																						0.24						
O(25)													1.02	0.16		0.42							0.43					
O(26)			0.05										0.90				0.57	0.50										
O(27)													0.87			0.12		0.45			0.56							
O(28)	0.82																0.47						0.29		0.33			1.91
O(29)	0.81		0.84											0.04	0.35													2.04
O(30)		0.99																						0.46			0.43	1.94
		0.06																										
O(31)		0.86											0.08								0.60	0.60						
O(32)			0.88											0.32												0.36	0.36	1.92
O(33)				0.97																				0.48		0.43		1.93
L		ļ	ļ	0.05	ļ	ļ	ļ	ļ	ļ	ļ	ļ		ļ	l		l	ļ	ļ		L			ļ	ļ	ļ	ļ		L
O(34)				0.88	I	I	I	I	L			L		L	l				0.63	0.61						L		2.11
O(35)				I	I	I	I	I	L			L	0.10	L			0.60		0.71	L			0.49			L		1.90
O(36)		L		I	I	I	I	I	L			L	0.00	0.40	0.28	0.43	L	0.74		0.70		0.00	L		0.51	L		1.96
U(37)	0.07	0.00	0.00	0.07	0.00	0.05	0.04	0.00	0.00	0.07	0.40	0.07	0.03	0.42	1.00	4.00	0.00	0.00	0.00	0.76	0.04	0.69	0.50	0.00	0.04	0.04	0.00	1.90
Σ.	2.87	2.93	2.86	2.97	2.93	2.95	2.91	2.99	3.02	3.07	3.12	2.87	3.00	1.87	1.92	1.90	2.99	2.98	2.90	2.94	2.84	2.87	2.53	2.33	2.04	2.04	2.08	1
*Bond v	alences in	vu (valeno	ce units), b	ond-valen	ce parame	ters from (Jagne and	Hawthorn	e (2015).																			
AS(8)	ыне-оссора	ancy (AS _{0.6}	337 3D 0.363).																									

6903_Fig_1_Pieczka et al._Lepageite_R1

20 µm

6903_Pieczka et al. Lepageite_Fig3_R1

6903_Pieczka et al._Lepageite_Fig4_R1

6903_Pieczka et al._Lepageite_Fig5_R1

6903_Pieczka et al._ Lepageite_Fig6_R1

