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Abstract 12 

A series of synthetic Mid-Ocean Ridge Basalt (MORB) glasses with Fe3+/FeTOT from 0 to 1, 13 

determined previously by Mössbauer spectroscopy, was used to test methods for quantifying 14 

Fe3+/FeTOT by Raman spectroscopy. Six numerical data reduction methods were investigated, 15 

based on conventional approaches as well as supervised and unsupervised machine learning 16 

algorithms. For the set of glass standards, with fixed composition, the precision of all methods 17 

was ≤ ± 0.04 (one standard deviation). However, Raman spectra recorded for 42 natural MORB 18 

glasses from a wide range of locations revealed a strong correlation between the Raman spectra 19 

and composition, despite the latter varying only over a relatively limited range, such that the 20 

methods calibrated using the glass standards are not directly applicable to the natural samples. 21 

This compositional effect can be corrected by using a compositional term that links spectral 22 

variations to Fe3+/FeTOT of the glass. The resulting average Fe3+/FeTOT determined by Raman 23 

spectroscopy was 0.090 ± 0.067 (n=42). This value agrees with the latest Fe K-edge XANES 24 

and wet-chemistry estimates of 0.10 ± 0.02. The larger uncertainty of the Raman determination 25 

reflects the sensitivity of Raman spectroscopy to small changes in glass structure. While this 26 

sensitivity is detrimental for high precision Fe3+/FeTOT determinations, it allows the major 27 

element composition of natural MORB glasses to be determined within 1 mol% through the 28 

use of a neural network. This suggests that Raman spectrometers may be used to determine the 29 

composition of samples in situ at difficult to access locations that are incompatible with X-ray 30 

spectrometry (e.g. Mid-Ocean Ridges). Raman spectroscopy may also be useful in detecting 31 

changes in the oxidation state of Fe in volcanic glasses where high spatial resolution is required 32 

(e.g., melt inclusions), and other compositional variation is not an issue. 33 
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1. Introduction 38 

 39 

Mid-Ocean Ridge Basalts (MORB), derived from partial melting of the upper mantle, are 40 

central to our understanding of the geochemistry of the mantle and the formation of the oceanic 41 

crust (e.g. Langmuir et al. 1992; Asimow et al. 2004; O’Neill and Jenner 2012; Gale et al. 42 

2013) MORB glasses, formed by rapid cooling at the rim of pillow lavas, enable the 43 

composition of the melts to be determined (e.g., Jenner and O’Neill 2012), including volatile 44 

contents (Kendrick et al. 2013), and oxidation states (Christie et al. 1986; Bézos and Humler 45 

2005; Cottrell and Kelley 2011, 2013; Berry et al. 2018; Zhang et al. 2018; O’Neill et al. 2018). 46 

This, in turn, allows the intensive and extensive thermodynamic conditions of the mantle 47 

source to be calculated (e.g. Asimow et al. 2004). In particular, the oxidation state of Fe in 48 

MORB, expressed as Fe3+/FeTOT with FeTOT = Fe2+ + Fe3+, is important because it affects 49 

estimates of temperature, mineral assemblages, and the speciation of volatile elements, both 50 

during the production of the parental magmas in the mantle and their subsequent low-pressure 51 

evolution. 52 

 53 

The latest average Fe3+/FeTOT values of natural MORB glasses from global sources have been 54 

determined to be 0.10 ± 0.02 (Berry et al. 2018) and 0.14 ± 0.01 (Zhang et al. 2018) by Fe K-55 

edge XANES spectroscopy, and 0.11 ± 0.02 by wet-chemistry (corrected for plagioclase 56 

phenocrysts, Bézos and Humler 2005). Wet chemistry is a destructive method that lacks spatial 57 

resolution and is unsuitable for inhomogeneous glasses or small samples such as melt 58 

inclusions (e.g., see Bézos and Humler 2005). Fe K-edge XANES spectroscopy has excellent 59 

precision and micron spatial resolution in two dimensions, but  requires glass standards that 60 

are compositionally matched and for which Fe3+/FeTOT has been determined by another 61 

technique, such as 57Fe Mössbauer spectroscopy (e.g. Berry et al. 2008). There are also 62 

questions concerning possible photo-oxidation during analysis of hydrous glasses (e.g. Cottrell 63 

et al. 2018). A considerable drawback for routine analysis is that it requires access to a 64 

synchrotron light source. 65 

 66 

Raman spectroscopy is an alternative technique for determining Fe3+/FeTOT that is often readily 67 

accessible without delay, is non-destructive, has micron-scale spatial resolution, requires 68 



minimal sample preparation, is easy to perform, and spectra can be acquired within minutes. 69 

Previous studies have shown how Raman spectroscopy can be used for quantifying the 70 

concentration of H2O (Thomas 2000; Zajacz et al. 2005; Behrens et al. 2006; Thomas et al. 71 

2008; Mercier et al. 2009, 2010; Le Losq et al. 2012) and CO2 (Amalberti et al. 2012; Morizet 72 

et al. 2013) in glasses, with applications to pumices and melt inclusions (Shea et al. 2014; 73 

Métrich et al. 2016). The potential of Raman spectroscopy to determine Fe3+/FeTOT in glasses 74 

has been demonstrated previously using various data treatment protocols (Magnien et al., 2004, 75 

2006, 2008; Roskosz et al., 2008; Di Muro et al., 2009; Di Genova et al., 2016). The simplest 76 

method requires correlating changes in Fe3+/FeTOT with changes in the intensity of the Raman 77 

spectra at a given Raman shift (Magnien et al. 2006; Roskosz et al. 2008). A more complex 78 

method involves peak fitting the Raman signals assigned to stretching of tetrahedral SiO4 and 79 

AlO4 units in order to extract the Fe3+-O signal, which can be related to Fe3+/FeTOT (Di Muro 80 

et al. 2009; Welsch et al. 2017). Recently, Di Genova et al. (2016) proposed another approach 81 

based on interpolation between two endmember spectra (e.g., oxidized and reduced glasses of 82 

the same composition). These different studies focused on demonstrating the ability of Raman 83 

spectroscopy to quantify Fe3+/FeTOT in glasses of known composition.  84 

 85 

Methods for quantifying Fe3+/FeTOT of glasses from Raman spectra have relied on either simple 86 

treatments (e.g. the intensity of one or more peaks, mixing end-member spectra) or peak fitting. 87 

To our knowledge, machine learning algorithms, which remove subjectivity in the data 88 

reduction protocol, have not yet been tested. Here we compare existing data reduction methods 89 

(conventional methods), based on spectral intensity variations and mixing of spectra, with new 90 

supervised and unsupervised machine learning approaches. We avoided the peak fitting 91 

procedure (e.g. Di Muro et al. 2009) because it is complex to perform and equivocal of 92 

interpretation (Welsch et al. 2017), and thus may not be suited to a routine protocol. 93 

Conventional methods and supervised machine learning require the Fe3+/FeTOT values of the 94 

glass standards to be known. Unsupervised machine learning methods, however, do not require 95 

prior knowledge of Fe3+/FeTOT of the standards, such that they offer an independent way of 96 

determining Fe3+/FeTOT for comparison with the results of other techniques. Those methods 97 

were assessed  for a set of 13 synthetic glasses with a typical but simplified MORB composition 98 

and known Fe3+/FeTOT (Berry et al. 2018). Following the proof of concept, the methods were 99 

used to determine Fe3+/FeTOT of a representative set of 42 natural MORB glasses from the 100 

Atlantic, Indian and Pacific oceans, with known major and trace elements compositions 101 



(Melson et al. 2002; Jenner and O’Neill 2012; Kendrick et al. 2013) and Fe K-edge XANES 102 

Fe3+/FeTOT values (Berry et al. 2018). 103 

 104 

 105 

2. Material and Methods 106 

 107 

2.1 Starting Glasses 108 

 109 

The MORB standards were prepared from mixtures of reagent grade SiO2 (52.0 wt%), Al2O3 110 

(16.1 wt%), CaCO3 = CaO (12.4 wt%), Fe2O3 = FeO (10.0 wt%), MgO (8.2 wt%) and TiO2 111 

(1.3 wt%) that were equilibrated at 1400 ˚C and values of log fO2 between 0 and -11 (-4.7 and 112 

6.3 in log units relative to the quartz-fayalite-magnetite, QFM, buffer) for ~ 24 h before 113 

quenching in water. A sample was also prepared at logfO2 = 4.8 (QFM + 11.2) using a piston-114 

cylinder apparatus. The Fe3+/FeTOT ratio of each glass was determined by Mössbauer 115 

spectroscopy, and found to vary from ~ 0 to 1 (Table 1). For further details see Berry et al. 116 

(2018). 117 

 118 

Samples of natural MORB glass were obtained from the Department of Mineral Sciences, 119 

Smithsonian Institution, as polished chips mounted in epoxy resin and are listed by MNNH 120 

catalogue numbers in Supplementary Table 1. The sample details and major element 121 

composition are given in Melson et al. (2002), their trace element composition in Jenner and 122 

O’Neill (2012), and their Fe3+/FeTOT values determined by Fe K-edge XANES spectroscopy in 123 

Berry et al. (2018). From the set analysed by Berry et al. (2018), the Raman spectra of five 124 

glasses (NMNH No. 111235-85, 115083-41, 113828-5, 111241-1, 111237-67) were 125 

contaminated by contributions from crystals (see supplementary code) and were not considered 126 

during the data reduction. Five samples studied previously by Kendrick et al. (2013) from Juan 127 

de Fuca (Alv 2262-8 and Alv 2269-2), the East Pacific Rise Clipperton (CL DR01) and Mid-128 

Atlantic Ridge MAPCO (CH98 DR08 and CH98 DR11) were also analysed as polished 129 

sections in epoxy resin. 130 

 131 

2.2 Raman Spectra Acquisition 132 

 133 

Raman spectra of glasses were recorded using a Renishaw inVia™ spectrometer, equipped 134 

with a Peltier-cooled detector, a 2400 l/mm grating and a confocal system. Samples were 135 



excited using a 532 nm laser line focused ~ 3 µm below the surface using a x100 Leica 136 

objective. The laser power on the sample was ~ 1.2 mW. The spatial resolution was < 1 µm, 137 

and the spectral resolution ~ 1.2 cm-1. Five spectra were recorded from different points for each 138 

sample. They were treated separately during the data reduction process. The acquisition time 139 

varied between 120 and 180 s. For water-bearing natural MORB samples, oxidation of Fe by 140 

the laser has been reported at high laser power (Di Genova et al. 2017). The combination of a 141 

laser power less than 5 mW (Di Genova et al. 2017) with a relatively short counting time of 142 

120 s, and the analysis at five different spots, was used to prevent Fe oxidation during spectral 143 

acquisition. We checked this by recording Raman maps for six samples, by acquiring 120 144 

spectra with an acquisition time of 1 s over an area of 10 µm by 12 µm. During the acquisition 145 

of these maps, the sample was continuously moved, such that the beam spent less than 1 s at a 146 

given location. The individual spectra were noisy, but their average produced a spectrum with 147 

a signal to noise ratio similar to that of a spectrum acquired in 120 s at a single point. No 148 

difference was observed between spectra obtained in these two ways, indicating that no 149 

variation of Fe3+/FeTOT was induced during the acquisition. 150 

 151 

To investigate differences in spectrometer, laser wavelength, and signal-to-noise ratio (S/N), 152 

as would be expected between laboratories, spectra were also acquired using a T64000 Jobin-153 

Yvon® Raman triple spectrometer equipped with a confocal system, a nitrogen-cooled 1024 154 

CCD detector, and a 488 nm Coherent® 70-C5 Ar+ laser operating at 1.8 W. A 1/100 filter was 155 

inserted in the laser pathway to ensure that laser power on the sample was less than 2 mW and 156 

a 100x Olympus® objective was used for analysis. This setup allows a spatial resolution < 1 157 

µm, and a spectral resolution of ~ 0.7 cm-1.  Acquisition time was tuned to deteriorate the S/N 158 

such that, with this setup, the average S/N in the 800-1300 cm-1 portion of the spectra was ~20, 159 

compared to over 60 for the inVia™ Renishaw system. 160 

 161 

2.3 Data pre-processing 162 

 163 

The spectra (Fig. 1) were pre-processed in Python using the Rampy library (Le Losq, 2018). 164 

The data were corrected for temperature and excitation line effects following Galeener and Sen 165 

(1978). We focused the data reduction methods on the 800-1300 cm-1 region of the spectra, 166 

which contains signals from Si-O, Al-O and Fe3+-O stretching in the glass structure (Brawer 167 

and White 1975, 1977; Virgo et al. 1980; Mysen et al. 1982; Virgo et al. 1982). This region 168 



also avoided signals due to nanolites (< 800 cm-1), which were observed in the spectra of some 169 

of the natural glasses (see supplementary materials). We chose to fit a linear baseline to subtract 170 

the background (Fig. 2A), with the aim of having only Si-O, Al-O and Fe3+-O stretching signals 171 

in the background-corrected spectra that will be used for Fe3+/FeTOT determination. The low 172 

and high frequency anchors of the linear baseline were determined using a grid-search 173 

algorithm as those resulting in the lowest root mean square error (RMSE) between the 174 

Mössbauer Fe3+/FeTOT values and those predicted by the intensity and mixing methods 175 

described in sections 2.4.1 and 2.4.2. This resulted in the subtraction of a linear baseline 176 

interpolated between the intensities at 850 and 1140 cm-1 (Fig. 2A). The baseline corrected 177 

spectra were smoothed using a Whittaker function to maximize the signal to noise ratio (Eilers 178 

2003; see supplementary code for an example), and then the intensity normalised to vary 179 

between 0 and 1 (Fig 2B). The spectra resulting from this arbitrary baseline correction cannot 180 

be used to infer the glass structure. However, the correction provides a simple method for 181 

isolating variations in the Raman signals related to changes in Fe oxidation state (Fig 2B).  182 

Furthermore, the arbitrary baseline correction was found to be beneficial because it avoids the 183 

introduction of random errors associated with variations in the real spectral background when 184 

the sample signal is low (e.g. near 1250 cm-1).  185 

 186 

2.4 Determining the oxidation state of iron by Raman spectroscopy 187 

 188 

In this study, six different methods were evaluated for determining the oxidation state of Fe in 189 

the suite of MORB glass standards (Table 1) from the background subtracted 850-1140 cm-1 190 

region of the Raman spectra (Fig. 2B). The idea is to relate, for a set of glass standards with 191 

fixed major element composition, changes in the Raman spectra to changes in Fe3+/FeTOT. The 192 

six methods investigated are described below. 193 

 194 

2.4.1 Intensity method 195 

  196 

The intensity of the Raman spectra between 850 and 1140 cm-1 varies systematically with 197 

Fe3+/FeTOT in the glass standards (Figs. 1, 2B). In particular, the intensity at 930 cm-1 varies 198 

strongly with Fe3+/FeTOT. This feature has contributions from Fe3+-O (Virgo et al. 1982; 199 

Magnien et al. 2006; Di Muro et al. 2009), and thus should be ideal for determining Fe3+/FeTOT. 200 

Two methods were tested to quantify the intensity at 930 cm-1: direct measurement at fixed 201 

frequency (the average of values between 929 and 931 cm-1) and peak fitting the 850-1140 cm-202 



1 spectral envelop with arbitrary Gaussian components. Direct measurements of the intensity 203 

at 930 cm-1 (hereafter abbreviated I930) provided the better precision and this approach was 204 

used. 205 

 206 

2.4.2 Mixing method 207 

 208 

The Mixing method is based on the bilinear model that describes the matrix dataset 𝐷",$ , of 209 

dimension n spectra times m features (i.e. Raman shifts), as: 210 

 211 

𝐷",$ = 𝐹",' ∙ 𝑆',$ + 𝜀",$ ,  (1) 212 

 213 

where 𝐹",' is the matrix of component fractions, 𝑆',$ the matrix of partial spectral components 214 

(endmember spectra), k the number of components and 𝜀",$ a noise term. In the present case, 215 

k = 2 (reduced and oxidised endmembers), as verified by a principal component analysis of the 216 

13 standards, which revealed that two components account for more than 99.8% of the variance 217 

in the data. Using the notation SOX and SRED to designate the oxidised (Fe3+/FeTOT = 1) and 218 

reduced (Fe3+/FeTOT = 0) Raman spectral components, and FOX as the fraction of SOX, eq. (1) 219 

can be re-arrange as: 220 

 221 

𝐷",$ = 𝐹,- ∙ 𝑆,- + (1 − 𝐹,-) ∙ 𝑆234 .  (2) 222 

 223 

We used least absolute regression (LAD) to determine FOX, because LAD is more robust than 224 

least squares with respect to outliers or non-Gaussian distributions (Tarantola 2005). The 225 

optimised FOX values can then be related to the glass Fe3+/FeTOT values (Di Genova et al., 226 

2016). 227 

 228 

2.4.3 Alternative Least Square Multivariate Curve Resolution (ALS MCR) 229 

 230 

Solving eq. (1) usually requires either 𝐹",' or 𝑆',$. For example, 𝐹",' are obtained from 𝑆',$ 231 

in the Mixing method (sec. 2.4.2). However, several techniques allow both 𝐹",' and 𝑆',$ to be 232 

estimated from 𝐷",$, including independent component analysis (e.g. Hyvärinen et al. 2001), 233 

non-negative matrix factorisation (e.g. Lin 2007), iterative optimisation (e.g. Zakaznova-234 

Herzog et al. 2007), and self-modelling curve resolution (Jiang et al. 2004; de Juan and Tauler 235 



2006), also known as multivariate curve resolution. As they do not require prior knowledge of 236 

neither 𝐹",' nor 𝑆',$ (see eq. 1), those methods belong to the class of unsupervised machine 237 

learning algorithms.  For the present dataset of spectra, several conditions need to be satisfied: 238 

(i) 𝐹",' 	 ∈ [0,1] ; (ii) 𝐹",: = 1 - 𝐹",; ; and (iii) 𝑆',$ 	∈ ℝ=. Of the available methods, multivariate 239 

curve resolution can help solve the present problem with respecting those conditions. 240 

 241 

In this study, the ALS MCR method was used to iteratively optimise 𝐹",' and 𝑆',$. The PyMCR 242 

python library was used, starting the algorithm with estimations of 𝑆',$ obtained from mean 243 

spectra in our spectral dataset. The algorithm was allowed to perform 50 iterations. After 244 

convergence, usually achieved in only a few iterations, optimised 𝐹",' and 𝑆',$ matrices are 245 

available for the investigated dataset. The spectral endmembers stored in the optimised 𝑆',$ 246 

matrix (i.e. optimised FOX and FRED) can then be used with the Mixing method for new samples.  247 

 248 

Convergence of the ALS MCR algorithm is inherently dependent on the starting conditions (e.g. 249 

Valderrama et al. 2016). The effects of the range of Fe3+/FeTOT values included in 𝐷",$, and 250 

the starting 𝑆',$ components, were tested using iterative protocols. The Fe3+/FeTOT dataset 251 

range can be represented by two variables: (i) D Fe3+/FeTOT of 𝐷",$, which represents the 252 

difference in Fe3+/FeTOT between the most reduced and the most oxidized samples in the 253 

dataset; and (ii) mean Fe3+/FeTOT of 𝐷",$, which is the mean value of Fe3+/FeTOT for  the dataset. 254 

Similarly, variations in the initial 𝑆',$ components are represented using two parameters: (i) D 255 

Fe3+/FeTOT of 𝑆',$ represents the difference in Fe3+/FeTOT between the two initial 𝑆',$ 256 

components; and (ii) mean Fe3+/FeTOT of 𝑆',$, which is the average Fe3+/FeTOT of the two initial 257 

𝑆',$ components. 258 

 259 

To determine how the root-mean-square deviations between the estimated and nominal 260 

Fe3+/FeTOT  values of the standard vary with D Fe3+/FeTOT and mean Fe3+/FeTOT of 𝐷",$, and D 261 

Fe3+/FeTOT and mean Fe3+/FeTOT of 𝑆',$, these values were varied by iteration, such that 262 

different subsets of 𝐷",$	and 𝑆',$ were generated. These subsets were provided to the ALS 263 

MCR algorithm to calculate optimised 𝑆',$ and 𝐷",$	matrices. These optimised matrices were 264 

then used to determine Fe3+/FeTOT for the entire 𝐷",$ and  𝑆',$	datasets.  265 

 266 

2.4.4 Neural Networks, Kernel Ridge and Support Vector regressions 267 



 268 

The three other techniques that were investigated used the supervised machine learning 269 

regression algorithms Neural Networks, Kernel Ridge, and Support Vector from the Scikit 270 

Learn library (Pedregosa et al. 2011). An interface for using these algorithms with Raman data 271 

was implemented in the Rampy library (Le Losq 2018) through the class mlregressor (see the 272 

Jupyter notebook in the supplementary materials as well as the rampy.mlregressor help). The 273 

machine learning algorithms require the data to be divided into two subsets: a training subset 274 

to train the different algorithms, and a testing subset that are treated as unknowns to evaluate 275 

the predictive error of the algorithms. The train-test split was performed by randomly sorting 276 

the dataset according to their Fe3+/FeTOT values (function chemical_splitting from the rampy 277 

library). The testing data subset was ~ 38 % of the total dataset. 278 

 279 

The Neural Network technique uses a network of activation units, which are Rectifier functions 280 

[y = max(0,x)] (Glorot et al. 2011) in the present study, to map the relationship between the 281 

Raman spectra and  Fe3+/FeTOT values of the glasses (see description in Bengio 2009 and 282 

references therein). The activation units have adjustable parameters, called weights and biases, 283 

that are optimised by least square regression. This method makes no assumptions about the 284 

linearity of variations in the Raman spectra with Fe3+/FeTOT. The network was optimised by 285 

testing different architectures to minimize the training and testing errors, and to keep those two 286 

values as close as possible to each other. A simple architecture with three activation units in a 287 

single hidden layer provided the most robust fits. Adding more activations units or layers did 288 

not decrease the error metrics of the network, and hence this simple architecture was used. The 289 

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (lbfgs) solver was chosen, as it performs 290 

better than others for the present small dataset. Bagging, which consists of training multiple 291 

networks and returning the average of their outputs (Breiman and Breiman 1996), was 292 

performed to avoid over-fitting and to promote the ability of the network to predict new values. 293 

A total of 100 networks were trained, and the results represent the average output of these 100 294 

networks. 295 

 296 

The Kernel Ridge and Support Vector techniques regress the data after their projection in a 297 

high-dimensionality space. This projection was done using a non-linear radial basis kernel 298 

function, such that the Raman intensity can non-linearly depend on Fe3+/FeTOT. The difference 299 

between the Kernel Ridge and Support Vector regressions lies in the use of different loss 300 

functions: Kernel Ridge regression uses a penalized (l2 normalisation) residual of the sum of 301 



squares, whereas Support Vector regression uses a e-insensitive loss function (e is a deviation 302 

term in the loss function, i.e. the predictions are allowed to be as far from the calibration data 303 

as e). More information on these algorithms is available in Murphy (2012), Smola and 304 

Schölkopf (2004) and Vapnik (1999). The hyper-parameters of the Kernel Ridge and Support 305 

Vector algorithms were automatically tuned by performing a random 5-fold cross-validation 306 

on the training dataset. 307 

 308 

A Jupyter notebook running under the Python language, together with all the spectra, are 309 

provided as supplementary materials to enable the results of this study, and the figures, to be 310 

reproduced. 311 

 312 

3. Results 313 

 314 

3.1 Raman spectra of MORB glass standards 315 

 316 

The Raman spectra of the MORB glass standards exhibit peaks and shoulders at ~ 505, 570, 317 

660, 735, 804, 930 and 1005 cm-1 (A to G markers in Fig. 1), with intensities that depend on 318 

Fe3+/FeTOT. The intensities of the A, B, C and D Raman signals decrease with decreasing 319 

Fe3+/FeTOT (Fig. 1, Table 1), whereas those of E and G increase (Figs. 1, 2B). The intensity of 320 

F relative to that of G decreases with decreasing Fe3+/FeTOT (Fig. 2B). 321 

 322 

The changes in the Raman spectra of the glasses following changes in Fe3+/FeTOT reflect 323 

changes in (i) the Fe3+ contribution to the Raman signals, and (ii) the overall glass structure as 324 

Fe3+ and Fe2+ have different roles. The signals in the 810-1300 cm-1 region of the Raman 325 

spectra of MORB glasses can be assigned to symmetric and asymmetric stretching of Qn SiO4-326 

AlO4 units, where n is the number of bridging oxygens (Brawer and White 1975, 1977; 327 

Furukawa and White 1980; Furukawa et al. 1981; Mysen et al. 1982; McMillan 1984; Mysen 328 

1990; Neuville and Mysen 1996; Neuville et al. 2004; Neuville 2006; Neuville et al. 2008; Le 329 

Losq and Neuville 2013; Le Losq et al. 2014). The intensity at F is assigned to the combination 330 

of signals from Fe3+-O stretching in the glass network (Virgo et al. 1982; Wang et al. 1995; 331 

Magnien et al. 2004, 2006, 2008; Di Muro et al. 2009; Cochain et al. 2012) and Si-O stretching 332 

in Q2 units (Virgo et al. 1980; Mysen et al. 1982; McMillan 1984). This assignment agrees 333 

with (i) the decrease in the relative intensity of F with reduction of Fe (Figs. 1, 2B) and (ii) the 334 



presence of F as a shoulder in the spectra of the most reduced samples (Figs. 1, 2B). The peak 335 

near 1005 cm-1 mainly comprises contributions from Si-O and Al-O stretching in Q3 units. This 336 

signal usually occurs near 1100 cm-1 in Al-free silicate glasses (e.g. Mysen et al. 1982; 337 

McMillan 1984) but shifts to lower frequencies in aluminosilicate glasses (Neuville and Mysen 338 

1996; Mysen et al. 2003; Le Losq and Neuville 2013). This assignment is consistent with the 339 

composition of MORB glasses; with NBO/T values ranging from ~ 0.5 to ~ 1.0 (see Chapter 340 

17 in Mysen and Richet 2005), they are expected to be enriched in Q3 units and to contain 341 

minor fractions of Q2 and Q4 (e.g. Maekawa et al. 1991). 342 

 343 

3.2 Raman spectroscopy as a tool for determining Fe3+/FeTOT of MORB glasses 344 

 345 

3.2.1 The Intensity method 346 

 347 

I930 in the Raman spectra of the synthetic MORB glasses is linearly correlated with Fe3+/FeTOT 348 

(Fig. 3), with a correlation coefficient of 0.9973. It is thus possible to determine Fe3+/FeTOT of 349 

a glass from the I930 scaled Raman intensity using the equation: 350 

 351 

Fe3+/FeTOT = 4.084(38) ´ I930 - 2.779(29) . (3) 352 

 353 

The root-mean-square deviation between the Fe3+/FeTOT values of the standards and those 354 

calculated with eq. 3 is 0.02 (1s).  355 

 356 

3.2.2 The Mixing method 357 

 358 

Following a protocol similar to that described by Di Genova et al. (2016), we used the  spectra 359 

of the most oxidized and reduced glasses (log fO2 = 4.8 and -11.0, Table 1) as endmembers. 360 

Then, FOX was adjusted by least absolute regression to obtain mixed spectra that matched the 361 

observed ones (Fig. 4A). FOX is linearly proportional to Fe3+/FeTOT (Fig. 4B) with a correlation 362 

coefficient of 0.9974. This result differs from the finding of Di Genova et al. (2016), who 363 

reported non-linear variations of FOX with Fe3+/FeTOT for rhyolitic and basaltic glasses. This 364 

may be due to the fact that these authors did not use endmember spectra with Fe3+/FeTOT = 0 365 

and 1, but of intermediate values. In the present case, FOX and Fe3+/FeTOT are related by: 366 

 367 



Fe3+/FeTOT = 1.02(1) ´ FOX – 0.003(4) . (4) 368 

 369 

FOX directly gives Fe3+/FeTOT of MORB glasses to within 0.03 (1s).  370 

 371 

3.2.3 The ALS MCR method 372 

 373 

For a set of glasses with unknown but varying Fe3+/FeTOT values, ALS MCR can determine the 374 

endmember spectra (i.e. spectra corresponding to Fe3+/FeTOT = 0 and 1), and hence, Fe3+/FeTOT 375 

for any MORB glass by linear combination fitting. 376 

 377 

Figure 5 presents the results obtained from tests performed to evaluate the sensitivity of ALS 378 

MCR to the starting conditions (see sec. 2.4.3). The best results were obtained when the dataset 379 

covered the largest possible range of Fe3+/FeTOT values, i.e. when D Fe3+/FeTOT of 𝐷",$ → 1 380 

and mean Fe3+/FeTOT of 𝐷",$ → ~ 0.4 - 0.5 (Fig. 5A). Fe3+/FeTOT root-mean-square deviations 381 

< 0.06 were achieved using datasets with D Fe3+/FeTOT of D ≥ 0.75 and mean Fe3+/FeTOT of D 382 

∈ [0.35,0.55]. The choice of the initial 𝑆',$ affects the accuracy of the ALS MCR method in a 383 

less extent than the choice of the initial 𝐷",$ (Fig. 5B). Fe3+/FeTOT root-mean-square deviations 384 

< 0.03 were obtained for initial 𝑆',$ with mean Fe3+/FeTOT ∈ [0.4,0.6] and D Fe3+/FeTOT ∈ 385 

[0.1,0.6].  386 

 387 

The ALS MCR method was tested further by optimising 𝑆',$ using the full dataset 𝐷",$. From 388 

Figure 5B, initial S components with D Fe3+/FeTOT and mean Fe3+/FeTOT of ~ 0.5 and 0.4, 389 

respectively, should provide the best results. Thus, the mean spectra at Fe3+/FeTOT = 0.66 and 390 

0.25 were selected as initial 𝑆',$ components. Selecting mean spectra with Fe3+/FeTOT = 0 and 391 

1 does not significantly change the results, but the present choice allows the effects of 392 

differences in the initial and optimised 𝑆',$ components to be illustrated, as shown in Figure 393 

6A. The optimised 𝑆',$ spectra are clearly different from their initial values, demonstrating the 394 

ability of ALS MCR to identify the true 𝑆',$ endmembers. The optimised 𝑆',$ produce good 395 

fits to the observed spectra (Fig. 6B). The fraction of the oxidised endmember, COX, is linearly 396 

related to the Fe3+/FeTOT of the glass by (Fig. 6C): 397 

 398 

Fe3+/FeTOT = 1.07(1) ´ COX – 0.035(5) . (5) 399 



 400 

Contrary to FOX, COX is not directly equal to Fe3+/FeTOT. This is because of small differences 401 

between the optimised 𝑆',$ endmembers and the mean Raman spectra at Fe3+/FeTOT = 0 and 1 402 

(residuals shown in Fig. 6A). These differences introduce a bias, such that using COX as a direct 403 

estimate of Fe3+/FeTOT leads to slightly (~ 0.02) under- and over-estimations of Fe3+/FeTOT, 404 

depending on the Fe3+/FeTOT value. Because of this, the root-mean-square deviation between 405 

the Raman-determined and standard Fe3+/FeTOT values is ± 0.04 when assuming FOX = COX. 406 

Slightly better results were obtained using eq. 5, which allows Fe3+/FeTOT of the glasses to be 407 

determined within ± 0.03 (Table 1). 408 

 409 

3.2.4 Neural Networks, Kernel Ridge and Support Vector regression methods 410 

 411 

The Neural Network, Kernel Ridge, and Support Vector methods performed very well with 412 

both the training and testing datasets (Fig. 7), with root-mean-square deviations between the 413 

measured and predicted Fe3+/FeTOT values of ~ 0.01-0.03 (Table 1). For all methods, the root-414 

mean-square deviations for the training dataset were slightly lower than that for the testing 415 

dataset, indicating that the machine-learning algorithms tended to slightly over-fit the training 416 

dataset. Over-fitting is not desirable because it indicates that the generalisation ability of the 417 

algorithms (i.e. their ability to predict values for new samples) may not be optimal. However, 418 

in the present case, the difference between the training and testing standard deviations is small 419 

(≤ 0.02), and the over-fitting is considered to be negligible. Therefore, these algorithms can be 420 

used to predict Fe3+/FeTOT of MORB glasses with an error ≤ ± 0.03 (1s). 421 

 422 

3.2.5 Is there a better method? 423 

 424 

The root-mean-square deviations between the Fe3+/FeTOT values determined by Mössbauer 425 

and Raman spectroscopy are < 0.04 for all six methods. The Intensity and Mixing methods are 426 

as accurate and precise as those using machine learning (ALS MCR, Neural Network, Kernel 427 

Ridge and Support Vector; Table 1). 428 

 429 

The choice of method depends on the aims of the study and the dataset. If a single data 430 

reduction method was to be chosen, the simplicity of the Intensity and Mixing methods makes 431 

these appealing. If Fe3+/FeTOT of the standards are unknown, the ALS MCR method may allow 432 



𝑆',$ components to be extracted and Fe3+/FeTOT to be determined, if the dataset covers a large 433 

range of Fe3+/FeTOT values (Fig. 5). The Intensity, Mixing and ALS MCR methods all rely on 434 

linear variations between Raman signals and Fe3+/FeTOT of the glasses. In contrast, the Neural 435 

Network, Kernel Ridge, and Support Vector methods do not assume linearity and do not require 436 

the mathematical form of the variations to be known. 437 

 438 

Ultimately, we recommend the use of multiple data reduction methods, as undertaken here, 439 

to test the consistency of results. This is desirable because each data reduction protocol may be 440 

differently sensitive to how differences in composition affect the Raman spectra (Fig. 2B). 441 

Therefore, following a Bayesian approach, the average of the results from all the methods 442 

should be more robust than any single estimate (e.g. Perrone 1993). In the present case, such 443 

an approach is easy to implement because all the methods presented in this study are simple to 444 

setup and cheap in terms of computing resources. Averaging the results of the six models to 445 

determine Fe3+/FeTOT of the glasses from their Raman spectra resulted in a root-mean-square 446 

deviation of 0.02 (1s). 447 

 448 

3.2.6 Application to natural MORB glasses 449 

 450 

The baseline subtracted and normalised Raman spectra of natural MORB glasses are shown in 451 

Figure 8A (see supplementary Jupyter Notebook for full spectra). While the spectra are similar 452 

to that of the glass standard with Fe3+/FeTOT = 0.106, non-negligible differences are apparent 453 

(Fig. 8A). I930 varies between 0.66 and 0.76, and is correlated with the concentration of MgO 454 

and CaO in the glass (Pearson correlation coefficient = 0.73`, Fig. 8B). For the glass standards, 455 

a difference of ~ 0.10 in I930 corresponds to a difference in Fe3+/FeTOT of ~ 0.40 (Fig. 3). For 456 

these spectra, the six methods described give an average Fe3+/FeTOT of 0.15 with a large 457 

standard deviation of 0.11.  458 

 459 

It is possible to refine this estimate by including a compositional term in the expressions 460 

relating Raman features to Fe3+/FeTOT. We focused on the Intensity method and expressed I930 461 

as: 462 

 463 

I930 = (K0 + K1 ´ Fe3+/FeTOT) + K2 ´ X , (6) 464 

 465 



where X is a parameter reflecting the chemistry of the samples, and K0, K1 and K2 constants. 466 

X could be chosen as either [MgO+CaO] or the number of non-bridging oxygens per 467 

tetrahedral unit (NBO/T) in the glass. Increasing [MgO + CaO] favours the formation of non-468 

bridging oxygens and thus of depolymerised Q2 units in basaltic glasses, which give signals 469 

near 950 cm-1 (e.g. Mysen et al. 1982). This is consistent with the positive trend observed 470 

between I930 and [MgO + CaO] (Fig. 8B). However, while NBO/T parameterises the general 471 

effect of differences in the fraction of network formers (e.g. Si, Al) and network modifiers (e.g. 472 

Na, K, Ca, Mg) on the glass structure, it does not consider the effect of the ionic properties of 473 

network modifiers on the distribution of Qn units, which contribute to the Raman intensity 474 

between 850 and 1140 cm-1. For example, at a constant NBO/T of 0.5 for alkali silicate glasses, 475 

the fractions of Q4 and Q2 increase at the expense of Q3 as the ionic field strength (Z/r2, where 476 

Z is the electric charge and r the ionic radius) of the alkali metal cation increases (Maekawa et 477 

al. 1991). The ionic field strength of metal cations also influences other structural properties of 478 

silicate glasses and melts, including the fraction of highly-coordinated Al, excess NBO, and 479 

Si-Al disorder (see Le Losq et al. 2019 for a review). As a result, to describe changes in the 480 

Raman spectra due to variations in the sample composition, we used the mean ionic field 481 

strength (IFS) of network modifiers (M), IFS(M), as the X parameter in eq. (6): 482 

 483 

𝐼𝐹𝑆(𝑀) = 	2𝑥CDEF × 𝐼𝐹𝑆(𝑁𝑎
=) + 2𝑥JEF × 𝐼𝐹𝑆(𝐾

=) + 𝑥LDF × 𝐼𝐹𝑆(𝐶𝑎;=) + 𝑥NOF ×484 

𝐼𝐹𝑆(𝑀𝑔;=) + 𝑥QRF × 𝐼𝐹𝑆(𝐹𝑒;=) , (7) 485 

 486 

where 𝑥NE/UUV F are the mol fractions of the oxide components 𝑀;/W
W= 𝑂, and IFS of a cation 𝑀W=is 487 

calculated as Z/r2. The r values were taken from Shannon (1976) for coordination numbers 488 

(CN) of 6. For simplicity, we do not consider variations in CN since these are likely to be 489 

negligible given the limited range of compositional variability in MORB. We also consider 490 

FeO as equal to total Fe because Fe3+/FeTOT of natural MORB is always low (~0.1) and constant 491 

(e.g. Berry et al. 2018; Zhang et al. 2018), such that any influence of Fe on the glass structure 492 

will come from variations in 𝑥QRF. 493 

 494 

The correlation between I930 and IFS(M) is linear for natural MORB glasses (Fig. 9). The 495 

ordinate at the origin of this trend corresponds to K0 + K1´ Fe3+/FeTOT, and its slope to K2. 496 

K1 is directly given by the linear trend between Fe3+/FeTOT and I930 (Fig. 3), and is equal to 497 

0.2435(23), while K2 equals 0.00624(29). It then is trivial to determine K0 as 0.111(27). Using 498 



these parameters, it is possible to plot iso-redox curves of IFS(M) versus I930, as shown in Fig. 499 

9. A visual inspection indicates that the natural samples have a mean Fe3+/FeTOT value ~ 0.1, 500 

although there is significant scatter. Manipulating eq. (7) to extract Fe3+/FeTOT values for 501 

natural MORB from K0, K1, K2 and I930 yields a mean Fe3+/FeTOT of 0.090(67).  502 

 503 

3.2.7 Effect of acquisition conditions 504 

 505 

Applying the methods calibrated using the spectra acquired with the Renishaw system to the 506 

spectra acquired with the T64000 Jobin-Yvon® system (see section 2.2 for details about 507 

acquisition conditions and supplementary Jupyter notebook for data visualization) resulted in 508 

the standard deviation between the Mössbauer and Raman Fe3+/FeTOT values increasing from 509 

0.02 to 0.08. Part of this increase in uncertainty can be assigned to the decrease in spectral S/N 510 

(from > 60 to ~ 20). However, Fe3+/FeTOT values > 0.5 appear to be under-estimated and have 511 

the largest effect on the average error.  This may indicate that the Raman cross-sections of the 512 

Si-O and Fe3+-O stretching modes change at different rates when varying the laser wavelength.  513 

The results may also be affected by different frequency responses of the different CCD 514 

detectors. 515 

 516 

Based on those observations, it is important to record spectra with high S/N (> 60) to be able 517 

to have accurate predictions of Fe3+/FeTOT.  Decreasing the S/N will lead to a progressive 518 

deterioration in the precision of the predicted Fe3+/FeTOT values.  If different spectrometers and 519 

laser wavelengths are used, the accuracy of any previously calibrated algorithms should be 520 

checked using standards. 521 

 522 

4. Discussion 523 

 524 

Both conventional methods (Intensity, Mixing) and machine learning algorithms (ALS MCR, 525 

Kernel Ridge, Support Vector and Neural Network) allow Fe3+/FeTOT to be determined from 526 

the Raman spectra of glasses, with fixed major element composition, with uncertainties < 0.04 527 

(Table 1). The combination of all six methods gives a precision of 0.02. The Intensity and 528 

Mixing methods are simple and provide accurate results. The machine learning methods 529 

performed well despite being trained with a limited set of samples. The ALS MCR method may 530 

be useful if the Fe3+/FeTOT values of the glass standards are unknown, or if endmember spectra 531 

are not available. Kernel Ridge, Support Vector and Neural Network regression algorithms 532 



relate Fe3+/FeTOT of the glasses to variations in their Raman spectra without any assumptions 533 

about the form of the variations. Pooling the results from multiple data reduction protocols is 534 

recommended for maximizing the robustness of Fe3+/FeTOT determinations for glasses with a 535 

fixed composition. 536 

 537 

The determination of Fe3+/FeTOT in natural MORB glasses requires a correction for the effect 538 

of composition on the Raman spectra (Figs. 8B, 9, eq. 7). The corrected mean value of 539 

Fe3+/FeTOT = 0.090(67) is in agreement with the latest XANES and wet chemistry results 540 

(Bézos and Humler 2005; Berry et al. 2018; Zhang et al. 2018). In particular, this estimate is 541 

in close agreement with the XANES value of 0.10(1) reported by Berry et al. (2018) for the 542 

same set of samples, which suggests an average fO2 for MORB of 0.1 log units above the QFM 543 

redox buffer. 544 

 545 

Raman spectroscopy can thus provide reasonable estimates of Fe3+/FeTOT in glasses, as long as 546 

the effect of glass chemistry is considered. High precision can be achieved for laboratory 547 

samples with constant chemical composition. However, the present results do not achieve the 548 

precision of Fe K-edge XANES, Mössbauer spectroscopy or wet chemistry for natural samples 549 

with variable chemical composition without the introduction of a compositional term. 550 

Compositional effects originating from variations in major element concentrations were 551 

corrected using eq. (6), but other factors that affect glass structure (and hence the Raman 552 

spectra), such as volatile content and quench rate, were not considered. The high standard 553 

deviation affecting the Fe3+/FeTOT estimate most probably reflects the occurrence of such 554 

effects. Further, while eq. (6) is valid for MORB glasses, it may not be suitable for determining 555 

Fe3+/FeTOT in other compositions. However, with a set of appropriate standards, Raman 556 

spectroscopy could be used to quantify Fe3+/FeTOT in any composition. In all cases, the routine 557 

determination of Fe3+/FeTOT in natural samples by Raman spectroscopy will be challenging due 558 

to the many variables that affect glass structure. 559 

 560 

5. Implications 561 

 562 

Machine learning techniques do not seem to be advantageous relative to conventional 563 

approaches for quantifying Fe3+/FeTOT in glasses with constant composition by Raman 564 

spectroscopy. However, their ease of implementation and flexibility (the problem can be non-565 

linear) make them preferable to other user-defined techniques when the functional form of the 566 



problem is unknown. In particular, the sensitivity of Raman spectra to glass structure can be 567 

used to determine glass composition. Di Genova et al. (2015; 2016) used the mixing method 568 

to determine the composition of natural glasses from Raman spectra. This required a post-569 

analysis step in the data treatment as the mixing ratio of end-member spectra varied non-570 

linearly with glass composition. In the present case, we trained a neural network to directly 571 

link the corrected 850-1140 cm-1 Raman signals (Fig. 8A) to the measured concentrations of 572 

major elements in the natural MORB glasses (supplementary materials), without any additional 573 

data manipulation. The results from one of the trained neural networks are shown in Figure 10. 574 

The network was able to predict the chemistry of MORB glasses with errors < ~ 1 mol%. This 575 

result suggests that Raman spectroscopy may be developed as a chemical probe. It also 576 

demonstrates the usefulness of neural networks for such calculations, as the algorithm directly 577 

provides the glass composition without intermediate data analysis steps. The approach could 578 

allow Raman spectroscopy to be used in situ to analyse pillow lavas with glassy rims at ocean 579 

ridges, by using submersibles equipped with Raman spectrometers already developed for deep 580 

sea water analysis (e.g. Brewer et al. 2004; White et al. 2005; Du et al. 2015). Raman 581 

spectrometers could also be used as a chemical probe in missions to planets or moons with 582 

dense atmospheres. The fact that all data processing performed in this study uses Python, a 583 

programming language that can be easily used in embedded systems would facilitate uptake.  584 

The present approach should be easy to implement for any system operating a portable Raman 585 

spectrometer. 586 
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Table 1:  Synthesis oxygen fugacity at 1400 ˚C, and relative to the quartz-fayalite-magnetite 820 

(QFM) buffer, of MORB glass standards (Berry et al. 2018), together with the Fe3+/FeTOT 821 

values determined by Mössbauer spectroscopy (± 0.01), and by Raman spectroscopy using the 822 

Intensity (Int.), Mixing (Mix.), ALS MCR (A.M.), Neural Networks (N.N.), Kernel Ridge 823 

(K.R.) and Support Vector (S.V.) techniques. Root-mean-squared deviations (RMSD, 1s) of 824 

the different Raman methods are indicated at the bottom; *calculated for the training data 825 

subset; f calculated for the testing data subset. 826 

 827 

log fO2 DQFM 
Fe3+/FeTOT 

Mössbauer Int. Mix. A.M. N.N. K.R. S.V. 

4.8 11.2 1.000 1.01 0.99 1.01 0.97 1.00 0.97 

0.00 6.38 0.773 0.75 0.73 0.75 0.77 0.77 0.75 

-1.00 5.40 0.661 0.66 0.63 0.65 0.66 0.66 0.66 

-2.00 4.40 0.537 0.53 0.51 0.53 0.54 0.54 0.54 

-3.07 3.32 0.414 0.43 0.42 0.43 0.43 0.42 0.44 

-4.00 2.39 0.250 0.26 0.25 0.27 0.23 0.27 0.28 

-5.00 1.39 0.167 0.16 0.15 0.16 0.14 0.16 0.17 

-6.00 0.39 0.103 0.11 0.10 0.11 0.09 0.10 0.10 

-7.00 -0.61 0.039 0.01 0.01 0.01 0.05 0.04 0.05 

-8.00 -1.61 0.024 0.04 0.04 0.05 0.04 0.03 0.02 

-9.00 -2.61 0.017 0.02 0.00 0.01 0.03 0.02 0.01 

-10.00 -3.61 0.000 0.00 0.00 -0.01 0.02 0.01 -0.01 

-11.00 -4.61 0.000 0.01 0.03 0.01 0.01 0.00 0.01 

  
RMSD: 0.02 0.03 0.03 

0.01* 0.01* 0.02* 

  0.04f 0.02f 0.03f 
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Figure 1: Raman spectra of synthetic MORB basaltic glasses; the colors indicate Fe3+/FeTOT. 830 

Each spectrum corresponds to the mean of five spectra acquired for each sample. The dashed 831 

lines labelled A-G mark the position of peaks and shoulders (see text). 832 

 833 

Figure 2: A) Example of the treatment of the 800-1300 cm-1 sections of the Raman spectra that 834 

was performed prior to any calculation. The linear cut-off baseline (red dotted line) joins the 835 

sample signals at 850 and 1140 cm-1. Any intensity below this baseline was removed from the 836 

data. B) Intensity from 850-1140 cm-1 after baseline subtraction. This background subtracted 837 

region of the spectra was normalised between 0 and 1. 838 

 839 

Figure 3: Normalised intensity at 930 cm-1 in the Raman spectra of the glasses as a function 840 

of the oxidation state of Fe. The line is a linear fit to the data. If not visible, errors are smaller 841 

than the symbols. 842 

 843 

Figure 4: A) Comparison of the mean spectrum at Fe3+/FeTOT = 0.41 (black line) and the fit 844 

(dotted red line) as a linear combination of the oxidised (SOX) and reduced (SRED) spectra 845 

(Mixing method); residuals between the data and fit are shown in the bottom panel. B) Fraction 846 

of the oxidised endmember spectrum, FOX, as a function of the oxidation state of Fe in the 847 

glasses. The line is a linear fit to the data. If not visible, errors are smaller than the symbols. 848 

 849 

Figure 5: Contour plots of the root-mean-square deviations (RMSD) between the measured 850 

Fe3+/FeTOT values and those predicted using the ALS MCR algorithm using (A) variable training 851 

subsets Dn,m and (B) different initial Sk,m spectra. In (A), RMSD Fe3+/FeTOT are represented 852 

against the mean and the range of Fe3+/FeTOT values in the data subsets used to train the 853 

algorithm. In (B), they are represented against the mean and the range of Fe3+/FeTOT between 854 

the two initial S spectra used to initiate the training. After training, RMSD Fe3+/FeTOT were 855 

estimated on the entire dataset. Black points show where calculations were made; lines and 856 

colors were obtained by triangular interpolation.  857 

 858 

Figure 6: Results of the ALS MCR algorithm using the entire Dn,m dataset, with initial (init.) 859 

Sk,m spectra at Fe3+/FeTOT = 0.66 and 0.25. A) Initial (init.) and optimised (opt.) oxidised (SOX) 860 

and reduced (SRED) endmember spectra; residuals between the optimised SOX and SRED 861 

components and the means of spectra recorded for samples with Fe3+/FeTOT = 0 and 1 are shown 862 

in the bottom panel. B) Comparison of the mean spectrum at Fe3+/FeTOT = 0.41 (black line) and 863 



its fit (dotted red line) obtained by mixing the SOX and SRED endmembers; residual shown in the 864 

bottom panel. C) The fraction of the oxidised end-member, COX, against the Fe3+/FeTOT values 865 

determined by Mössbauer spectroscopy for the MORB glass standards. The line is a linear fit 866 

to the data. If not visible, errors are smaller than the symbols. 867 

 868 

Figure 7: Raman Fe3+/FeTOT against Mössbauer Fe3+/FeTOT values for the MORB glass 869 

standards. Raman values were obtained from the A) Kernel Ridge, B) Support Vector, and C) 870 

Neural Network algorithms. See Table 1 for root-mean-square deviations of each dataset. If 871 

not visible, errors are smaller than the symbols. 872 

 873 

Figure 8: A) Normalised baseline-subtracted Raman spectra of 42 natural MORB glasses (see 874 

Supplementary Materials). The red dotted line is the spectrum of the glass standard with 875 

Fe3+/FeTOT = 0.10(1).  B) I930 as a function of the concentration of MgO + CaO (wt%) in the 876 

glasses. 877 

 878 

Figure 9: I930 as a function of the mean ionic field strength of modifier cations, IFS(M) for 879 

natural MORB glasses (open symbols) and MORB standards (solid symbols). Dotted lines 880 

represent the values of the model (eq. 6, see text) that links I930 to IFS(M) and Fe3+/FeTOT in 881 

MORB glasses. The colors reflect the Fe3+/FeTOT ratio (see colorbar). 882 

 883 

Figure 10: Neural network predicted versus measured compositions of natural MORB glasses. 884 

The standard deviations between the measured and predicted values for each subset are given 885 

for each compositional component. 886 

 887 
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Mössbauer Fe3+/FeTOT

0.0

0.2

0.4

0.6

0.8

1.0

M
ix
in
g
fr
ac
ti
on

F
O
X

B)



0.00 0.25 0.50 0.75 1.00

∆Fe3+/FeTOT of Dn,m

0.0

0.2

0.4

0.6

0.8

m
ea

n
F

e3
+

/F
eT

O
T

of
D
n
,m

A)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

R
M

S
D

F
e3

+
/F

eT
O

T

0.00 0.25 0.50 0.75 1.00

∆Fe3+/FeTOT of initial Sk,m

0.0

0.2

0.4

0.6

0.8

m
ea

n
F

e3
+

/F
eT

O
T

of
in

it
ia

l
S
k
,m B)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

R
M

S
D

F
e3

+
/F

eT
O

T



0.0

0.2

0.4

0.6

0.8

1.0

In
te
ns
it
y,
no
rm

al
is
ed

A)

init. SOX

init. SRED

opt. SOX

opt. SRED

850 900 950 1000 1050 1100 1150

Raman shift, cm−1

−0.02
0.00
0.02 Res.

0.0

0.2

0.4

0.6

0.8

1.0

In
te
ns
it
y,
no
rm

al
is
ed

B)

SOX

SRED

spectrum

fit

850 900 950 1000 1050 1100 1150

Raman shift, cm−1

−0.02
0.00
0.02 Res.

0.0 0.2 0.4 0.6 0.8 1.0
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