1 Revision 1

3	Phoxite, (NH ₄) ₂ Mg ₂ (C ₂ O ₄)(PO ₃ OH) ₂ (H ₂ O) ₄ , the first phosphate-oxalate mineral
4 5 6	Anthony R. Kampf ^{1§} , Aaron J. Celestian ¹ , Barbara P. Nash ² , and Joe Marty ³
0 7 8	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
9 10 11	² Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA ³ 5199 East Silver Oak Road, Salt LakeCity, UT 84108, USA
12	Abstract
13	Phoxite, (NH ₄) ₂ Mg ₂ (C ₂ O ₄)(PO ₃ OH) ₂ (H ₂ O) ₄ , is a new mineral species from the Rowley mine,
14	Maricopa County, Arizona, U.S.A., and it has potential uses in agricultural applications for soil
15	conditioning, fertilizing, and as a natural pesticide. It was found in an unusual bat-guano-related,
16	post-mining assemblage of phases that include a variety of vanadates, phosphates, oxalates and
17	chlorides, some containing $\mathrm{NH_4^+}$. Other secondary minerals found in association with phoxite are
18	antipinite, aphithitalite, bassanite, struvite, thenardite and weddellite. Crystals of phoxite are
19	colorless composite blades up to about 0.4 mm. The streak is white, the luster is vitreous to oily.
20	The Mohs hardness is $2\frac{1}{2}$, the tenacity is brittle, fracture is irregular, there is fair {100} cleavage,
21	and the measured density is 1.98(2) g·cm ⁻³ . Phoxite is optically biaxial (-) with $\alpha = 1.499(1)$, $\beta =$
22	1.541(1), $\gamma = 1.542(1)$ (white light); $2V = 16(1)^{\circ}$; dispersion $r < v$, slight; orientation $Y = \mathbf{b}$, $X \wedge \mathbf{a}$
23	$\approx 9^{\circ}$ in obtuse β . Electron microprobe analyses yielded the empirical formula
24	$[(NH_4)_{1.77}K_{0.23}]_{\Sigma 2}Mg_{2.00}(C_2O_4)(PO_3OH)_2(H_2O)_4$, with the C and H content provided by the crystal
25	structure. Raman spectroscopy confirmed the presence of NH_4 and C_2O_4 . Phoxite is monoclinic,

[§] Email: akampf@nhm.org

26	$P2_1/c$, with $a = 7.2962(3)$, $b = 13.5993(4)$, $c = 7.8334(6)$ Å, $\beta = 108.271(8)^\circ$, $V = 738.07(7)$ Å ³ ,
27	and $Z = 2$. In the crystal structure of phoxite ($R_1 = 0.0275$ for 1147 $I_0 > 2\sigma I$ reflections), bidentate
28	linkages between C2O4 groups and Mg-centered octahedra yield chains, which linked to one
29	another via PO ₃ OH tetrahedra to create undulating $[Mg_2(C_2O_4)(PO_3OH)_2(H_2O)_4]^{2-}$ sheets. Strong
30	hydrogen bonds link the sheets into a "soft framework", with channels containing NH_4^+ . The
31	$\mathrm{NH_4}^+$ forms both ordered hydrogen bonds and electrostatic bonds with O atoms in the framework.
32	Phoxite is the first mineral known to contain both phosphate and oxalate groups as essential
33	components.
34	
35	Keywords: phoxite; new mineral species; phosphate; oxalate; crystal structure; Rowley mine,
36	Arizona.
~-	
37	
37	INTRODUCTION
37 38 39	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we
37383940	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we encountered an unusual and still actively forming bat guano assemblage at depth (125 feet) in the
 37 38 39 40 41 	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we encountered an unusual and still actively forming bat guano assemblage at depth (125 feet) in the Rowley mine near Theba, Arizona. Previously, from this assemblage, we reported on the new
 37 38 39 40 41 42 	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we encountered an unusual and still actively forming bat guano assemblage at depth (125 feet) in the Rowley mine near Theba, Arizona. Previously, from this assemblage, we reported on the new mineral rowleyite, which has a microporous vanadate-phosphate framework structure (Kampf et
 37 38 39 40 41 42 43 	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we encountered an unusual and still actively forming bat guano assemblage at depth (125 feet) in the Rowley mine near Theba, Arizona. Previously, from this assemblage, we reported on the new mineral rowleyite, which has a microporous vanadate-phosphate framework structure (Kampf et al. 2017). Herein, we report on the new mineral phoxite, (NH ₄) ₂ Mg ₂ (C ₂ O ₄)(PO ₃ OH) ₂ (H ₂ O) ₄ ,
 37 38 39 40 41 42 43 44 	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we encountered an unusual and still actively forming bat guano assemblage at depth (125 feet) in the Rowley mine near Theba, Arizona. Previously, from this assemblage, we reported on the new mineral rowleyite, which has a microporous vanadate-phosphate framework structure (Kampf et al. 2017). Herein, we report on the new mineral phoxite, (NH ₄) ₂ Mg ₂ (C ₂ O ₄)(PO ₃ OH) ₂ (H ₂ O) ₄ , which is the first mineral found to contain both phosphate and oxalate groups.
 37 38 39 40 41 42 43 44 45 	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we encountered an unusual and still actively forming bat guano assemblage at depth (125 feet) in the Rowley mine near Theba, Arizona. Previously, from this assemblage, we reported on the new mineral rowleyite, which has a microporous vanadate-phosphate framework structure (Kampf et al. 2017). Herein, we report on the new mineral phoxite, (NH ₄) ₂ Mg ₂ (C ₂ O ₄)(PO ₃ OH) ₂ (H ₂ O) ₄ , which is the first mineral found to contain both phosphate and oxalate groups. Oxalate minerals are relatively rare. While they sometimes form abiotically, they most
 37 38 39 40 41 42 43 44 45 46 	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we encountered an unusual and still actively forming bat guano assemblage at depth (125 feet) in the Rowley mine near Theba, Arizona. Previously, from this assemblage, we reported on the new mineral rowleyite, which has a microporous vanadate-phosphate framework structure (Kampf et al. 2017). Herein, we report on the new mineral phoxite, (NH ₄) ₂ Mg ₂ (C ₂ O ₄)(PO ₃ OH) ₂ (H ₂ O) ₄ , which is the first mineral found to contain both phosphate and oxalate groups. Oxalate minerals are relatively rare. While they sometimes form abiotically, they most commonly occur in connection with biological systems. Some plants (e.g. <i>Tragia ramosa</i>) use
 37 38 39 40 41 42 43 44 45 46 47 	INTRODUCTION In our investigations of post-mining mineralization in mines of the southwestern U.S., we encountered an unusual and still actively forming bat guano assemblage at depth (125 feet) in the Rowley mine near Theba, Arizona. Previously, from this assemblage, we reported on the new mineral rowleyite, which has a microporous vanadate-phosphate framework structure (Kampf et al. 2017). Herein, we report on the new mineral phoxite, (NH ₄) ₂ Mg ₂ (C ₂ O ₄)(PO ₃ OH) ₂ (H ₂ O) ₄ , which is the first mineral found to contain both phosphate and oxalate groups. Oxalate minerals are relatively rare. While they sometimes form abiotically, they most commonly occur in connection with biological systems. Some plants (e.g. <i>Tragia ramosa</i>) use

49 being studied as a novel pesticide for chewing pests (e.g., locusts) (Nakata 2015). Oxalate 50 materials could even be employed simultaneously as pesticides and fertilizers, enriching the soil 51 with ammonium (similar to zeolite uses; Eroglu 2015, Bernardi 2016) and phosphate, while 52 providing essential oxalate ingredients to enhance natural defense mechanisms in plants. Recent developments in metal organic framework synthesis have predominantly used Fe²⁺-based amine-53 54 templated oxalate phosphates with some success (cf. Usman 2018, Anstoetz 2015; Reháková 55 2004). However, iron release can decrease soil pH and, therefore, be problematic in areas with 56 already acidic soils. A synthetic phase corresponding to phoxite might be useful in agriculture 57 applications with either high or low acidic soils or in soils with saline or alkaline waters. We are 58 currently investigating methods of synthesis, ion-exchange mechanisms for common metal 59 nutrients, and dissolution properties in phoxite, with an eye toward natural soil remediation and 60 enhanced time-release fertilization for increased crop yield with minimal soil treatment. 61 Biologically induced mineralization can involve a variety of processes, among which is 62 the deposition of excretion from birds or bats on rock surfaces to form incrustations of guano. Bat 63 guano is generally rich in ammonium oxalate (and urate) and phosphates, as well as cations such 64 as K, Na, Ca, Mg, and Fe. Clearly, the new mineral is compositionally consistent with formation 65 in a guano deposit; however, it is surprising that no mineral containing both essential phosphate 66 and oxalate has previously been reported from a guano deposit. 67 The name "phoxite" reflects the fact that the mineral contains both phosphate (ph) and 68 oxalate (ox) groups. The new mineral and name were approved by the Commission on New 69 Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 70 2018-009). Four small cotype specimens are deposited in the collections of the Natural History 71 Museum of Los Angeles County, Los Angeles, California, USA, catalogue numbers 66697,

72 66698, 66699, and 66700.

- 73
- 74

OCCURRENCE

Phoxite was found by two of the authors (ARK and JM) on the 125-foot level of the Rowley mine, near Theba, Painted Rock district, Maricopa County, Arizona, USA (33°2'57"N 113°1'49.59"W). The Rowley mine is a former Cu-Pb-Au-Ag-Mo-V-baryte-fluorspar mine that exploited veins presumed to be related to the intrusion of an andesite porphyry dike into Tertiary volcanic rocks. Although the mine has not been operated for ore since 1923, collectors took notice of the mine as a source of fine wulfenite crystals around 1945. The most detailed recent account of the history, geology and mineralogy of the mine was by Wilson and Miller (1974).

82 The new mineral was found in a hot and humid area of the mine in an unusual bat guano-83 related, post-mining assemblage of phases that include a variety of vanadates, phosphates, 84 oxalates, and chlorides, some containing NH_4^+ . This secondary mineral assemblage is found 85 growing on baryte-quartz-rich matrix. Phoxite was found near the floor of the tunnel in close 86 association with antipinite (second known occurrence; Chukanov et al. 2015), aphithitalite, 87 bassanite, struvite, thenardite, and weddellite, as well as bat-related biological residue. Phoxite 88 crystal intergrowths comprise portions of the interiors and rims of circular masses, presumably 89 related to relatively recent/fresh bat excrement (Fig. 1). Other secondary minerals found in this 90 general assemblage include ammineite, cerussite, fluorite, halite, hydroglauberite, mimetite, 91 mottramite, perite, rowleyite (Kampf et al. 2018), salammoniac, urea, vanadinite, willemite, 92 wulfenite, and several other potentially new minerals. 93 Phoxite has also been verified to occur in Petrogale Cave, near Madura, Western Australia

33

94 (31°52'9"S 127°23'19"E). Bridge (1977) reported it as a phase associated with archerite and

95	designated it as unknown A. It is listed as UM1977-10-PO:CaClKMg on the IMA list of Valid
96	Unnamed Minerals. As the latter designation indicates, it was determined by Bridge to contain P,
97	K, Ca, Mg, and minor Cl. The equivalence of Bridge's unknown A to phoxite was reported to the
98	authors by Peter Elliott, who has restudied the original samples of Bridge (1977). The K, Ca, and
99	Cl in Bridge's preliminary electron probe microanalysis are apparently nonessential components,
100	and Bridge presumably did not analyze for C or N.
101	
102	PHYSICAL AND OPTICAL PROPERTIES
103	Crystals of phoxite are composite blades, up to about 0.4 mm in maximum dimension,
104	growing in complex intergrowths (Figs. 1, 2, and 3). The blades are flattened on {100} and
105	elongated and striated along [001]. The crystal forms $\{100\}$, $\{010\}$, $\{110\}$, $\{011\}$, $\{120\}$, and
106	{11-1} (Fig. 4) were identified based upon careful observations during the single-crystal XRD
107	and optical studies. Reflected-light measurements were not possible because of the complex
108	intergrowths of crystals and the generally poorly formed, stepped nature of crystal faces. No
109	twinning was observed.
110	The crystals are colorless, but usually appear light to medium brown or flesh-colored due
111	to inclusions. The streak is white and the luster is vitreous to oily. Phoxite is non-fluorescent in
112	long- and short-wave ultraviolet light. It has a Mohs hardness of $2\frac{1}{2}$ based upon scratch tests.
113	Crystals are brittle with irregular fracture and exhibit a fair {100} cleavage. The density
114	measured by floatation in a mixture of methylene iodide and toluene is $1.98(2)$ g·cm ⁻³ . The
115	calculated density is 1.987 g·cm ⁻³ using the empirical formula and 1.965 g·cm ⁻³ using the ideal
116	formula. The mineral is insoluble at room temperature in H ₂ O, strong acids (HCl, H ₂ SO ₄ , HNO ₃)
117	and strong base (concentrated NaOH aqueous solution).

118	Phoxite is optically biaxial (-) with $\alpha = 1.499(1)$, $\beta = 1.541(1)$, $\gamma = 1.542(1)$ determined in
119	white light. The measured 2 <i>V</i> is 16(1)° and the calculated 2 <i>V</i> is 17.2°. Slight $r < v$ dispersion was
120	observed. The optical orientation is $Y = \mathbf{b}$, $X \wedge \mathbf{a} \approx 9^{\circ}$ in obtuse β . No pleochroism was observed.
121	
122	RAMAN SPECTROSCOPY
123	Raman spectroscopy was conducted on a Horiba XploRa+ micro-Raman spectrometer at
124	the Natural History Museum of Los Angeles. Attempts were made to measure the Raman
125	spectrum with a 532 nm laser; however, phoxite was susceptible to burning by the beam due to
126	the ~2 μ m spot size even at the lowest power setting (30 μ W). Consequently, the spectrum was
127	measured using an incident wavelength of 785 nm, laser slits of 100 μ m, 1800 gr/mm diffraction
128	grating and a 100× (0.9 NA) objective. Data were collected for \sim 12 minutes at maximum laser
129	power of 19.0 mW at the sample, which achieved sufficient signal-to-noise ratio without altering
130	the spectrum during data collection.
131	The Raman spectrum of phoxite is shown in Figure 5 and bands are listed in Table 1.
132	Phoxite has several characteristic regions for phosphate, oxalate and ammonium and these modes
133	can be matched and visualized from Wurm database (www.wurm.info; Caracas and Bobocioiu,
134	2011) of computed properties for minerals. The Raman bands centred between 965 cm^{-1} and 889
135	cm^{-1} were assigned to P-O stretches of the phosphate group, 1068 cm^{-1} and 992 cm^{-1} were
136	assigned to the P-O stretches associated with protonated phosphate, 1492 cm ⁻¹ through 1375 cm ⁻¹
137	were assigned to C-C and C-O stretches of oxalate (e.g. as seen in caoxite). There is an
138	indication that the NH_4 bending mode appears in Raman spectrum at 1645 cm ⁻¹ , similar to
139	struvite (<u>www.rruff.info</u> ; Lafuente et al. 2015), the symmetric stretching in teschemacherite and
140	twisting in barberiite.

142	CHEMICAL ANALYSIS
143	Analyses of phoxite (7 points over 4 crystals) were performed at the University of Utah
144	on a Cameca SX-50 electron microprobe with four wavelength dispersive spectrometers utilizing
145	Probe for EPMA software. Analytical conditions were 15 keV accelerating voltage, 5 nA beam
146	current and a beam diameter of 10 μ m. Counting times were 30 seconds on peak and 15 seconds
147	on background for each element. Raw X-ray intensities were corrected for matrix effects with a
148	$\phi\rho(z)$ algorithm (Pouchou and Pichoir, 1991). Severe damage from the electron beam was
149	observed. Attempts to analyze N (syn. Cr ₂ N standard) provided a wide range of values [(NH ₄) ₂ O:
150	5.26–10.53 wt%]. This is assumed to be due to variable loss of NH_4 under the beam. The highest
151	value obtained for (NH ₄) ₂ O corresponds to close to the ideal amount of NH ₄ when combined with
152	analyzed K, which would share the same structural site.
153	CHN analysis conducted at the Marine Sciences Institute, University of California at
154	Santa Barbara provided C 6.95, H 3.91 and N 4.32 wt%, which corresponds to C_2O_3 20.83, H_2O
155	23.78 and $(NH_4)_2O$ 8.04 wt%. Because of the small sample size (1.2 mg), the presence of
156	inclusions of other unidentified phases in phoxite crystals and the unavoidable incorporation of
157	associated phases in the analyzed sample, these values are considered to be rough
158	approximations, at best. Consequently, (NH ₄) ₂ O, C ₂ O ₃ and H ₂ O calculated from the structure
159	determination are used for the empirical formula. The loss of NH_4 and H_2O during and/or prior to
160	(due to vacuum) the analyses results in significantly higher concentrations for the remaining
161	constituents than are to be expected; therefore, the other analyzed constituents have then been
162	normalized to provide a total of 100%. Analytical data are given in Table 2.

163 The empirical formula (based on 2 P and 16 O *apfu*) is

164 $[(NH_4)_{1.77}K_{0.23}]_{\Sigma 2}Mg_{2.00}(C_2O_4)(PO_3OH)_2(H_2O)_4$. The simplified formula is

165 $(NH_4)_2Mg_2(C_2O_4)(PO_3OH)_2(H_2O)_4$, which requires $(NH_4)_2O$ 11.92, MgO 18.46, P₂O₅ 32.50,

166 C₂O₃ 16.49, H₂O 20.63, total 100 wt%. The Gladstone-Dale compatibility (Mandarino, 2007) 1 –

167 (K_p/K_c) is -0.007 in the range of superior compatibility.

168

169 X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION

170 Powder X-ray studies were carried out using a Rigaku R-Axis Rapid II curved imaging 171 plate microdiffractometer with monochromatized MoK α radiation. A Gandolfi-like motion on the 172 ϕ and ω axes was used to randomize the sample. Observed *d*-values and intensities were derived 173 by profile fitting using JADE 2010 software (Materials Data, Inc.). The powder data are 174 presented in Table 3. Unit-cell parameters refined from the powder data using JADE 2010 with 175 whole pattern fitting are a = 7.294(4), b = 13.565(4), c = 7.834(4) Å, $\beta = 108.317(15)^{\circ}$, and V =176 735.8(6) Å³. 177 Single-crystal X-ray studies were carried out using the same diffractometer and radiation 178 used for the powder study. The Rigaku CrystalClear software package was used for processing 179 the structure data, including the application of an empirical multi-scan absorption correction 180 using ABSCOR (Higashi, 2001). The structure was solved by direct methods using SIR2011

181 (Burla et al. 2012) and SHELXL-2016 (Sheldrick, 2015) was used for the refinement of the

182 structure. All non-hydrogen sites were refined with anisotropic displacement parameters. All H

atoms were located in difference Fourier maps and these sites were successfully refined with

- 184 isotropic displacement parameters without distance or displacement parameter restraints. The N
- 185 site was refined with joint occupancy by N and K, with the occupancies of the H sites associated

186	with N tied to the N occupancy. This yielded $(NH_4)_{0.923}K_{0.077}$, compared to $(NH_4)_{0.885}K_{0.115}$				
187	provided by the EPMA. Data collection and refinement details are given in Table 4, atom				
188	coordinates and displacement parameters in Table 5, selected bond distances in Table 6 and a				
189	bond-valence analysis in Table 7.				
190	As is generally the case for structure refinements using X-ray data, the true H locations				
191	are about 0.97 Å from O atoms and about 1 Å from the N atom to which they are bonded. The				
192	actual H ···O hydrogen-bond lengths are shorter than indicated by an amount approximately equal				
193	to the differences between the refined and "true" values of the O-H and N-H distances. The				
194	hydrogen-bond strengths used in the bond-valence analysis were based on O–O and N–O				
195	distances, which are not dependent on the H locations.				
196					
197					
198	D ESCRIPTION OF THE STRUCTURE				
199	The structure of phoxite contains NH ₄ (ammonium), PO ₃ OH (hydrogen phosphate) and				
200	C_2O_4 (oxalate) groups and MgO ₄ (H ₂ O) ₂ octahedra. The C_2O_4 group forms bidentate linkages				
201	with two equivalent Mg-centered octahedra, that is, by sharing two cis O atoms with each				
202	octahedron. The pair of $MgO_4(H_2O)_2$ octahedra linked by the central oxalate group forms a				
203	$Mg_2(C_2O_4)O_4(H_2O)_4$ unit. Of the four vertices of each octahedron that do not participate in the				
204	bidentate oxalate linkage, two cis vertices are O atoms of H2O groups and two cis vertices are				
205	shared with PO ₃ OH tetrahedra. The PO ₃ OH tetrahedra each share two non-OH vertices with Mg-				
206	centered octahedra in different $Mg_2(C_2O_4)O_4(H_2O)_4$ units. The linkages between the PO ₃ OH				
207	tetrahedra and the Mg ₂ (C ₂ O ₄)O ₄ (H ₂ O) ₄ units result in an undulating				

208 $[Mg_2(C_2O_4)(PO_3OH)_2(H_2O)_4]^{2-}$ sheet (Fig. 6). The NH₄⁺ is located in the interlayer (Fig. 7) and 209 forms bonds to O atoms in adjacent sheets. The NH₄–O bonding is described below.

- 210 Hydrogen bonding
- 211 Hydrogen bonding between the OH and H₂O hydrogens and other O atoms serve as
- additional linkages both within and between the sheets. The OH–HOH…O5 hydrogen bond,
- 213 between the OH of the PO₃OH group in one sheet and the O5 of the PO₃OH group in an adjacent
- sheet and with an OH···O5 distance of only 2.611(2) Å, is a particularly strong linkage between
- the structural sheets. The strength of this bond is comparable to that of some of the Mg-O bonds.
- 216 The OW1 group forms two relatively strong hydrogen bonds, one intersheet bond (OW1-
- H1b···O2; 2.278 Å) to a PO₃OH group and one intrasheet bond, (OW1–H1a···O2; 2.749 Å) to a
- 218 C₂O₄ group. The OW2 group forms two intrasheet hydrogen bonds to O atoms of PO₃OH groups,
- one of which (OW2–H2b····O4; 2.710 Å) is relatively strong. The network of linkages created by
- the four strongest hydrogen bonds is shown in Figure 8. Because of the strong hydrogen bonds
- between the sheets, the phoxite structure can be considered a "soft framework", with channels
- 222 containing NH_4^+ .
- 223 NH₄–O bonding
- 224 The NH₄–O bond lengths in the structure of phoxite vary from 2.839 to 3.272 Å,
- 225 corresponding to a coordination of nine. In surveying NH₄-containing structures, Khan and Baur
- 226 (1972) found NH₄–O coordinations from 4 to 9. They concluded that for small (4 or 5)
- 227 coordinations, the NH₄ group behaves more like a conventional hydrogen-bond donor, forming
- 228 nearly linear N–H…O bonds, while for higher coordinations, the NH₄ group behaves more like
- an alkali cation, with the NH₄ group exhibiting orientational disorder or the H bonds being
- 230 polyfurcated. In the crystal structure of hannayite, Mg₃(NH₄)₂(HPO₄)₄·8H₂O, Catti and

231	Franchini-Angels (1976) described the hybrid (or dual) bonding behavior of the NH_4^+ group.					
232	They noted that, for short H…O bonds with large N–H…O angles, the NH_4^+ group behaves as an					
233	ordered hydrogen-bond donor, while long $H \cdots O$ distances and relatively small N-H $\cdots O$ angles					
234	are indicative of behavior as a strongly electropositive large alkali-like cation. They suggested					
235	that this dual behavior for NH_4^+ appears to be quite common. The dual-bonding behavior of NH_4^+					
236	is clearly observed in the structure of phoxite (Table 6; Fig. 9); each of the H atoms associated					
237	with the NH_4^+ group forms a single short, nearly linear hydrogen bond to an O atom, while other					
238	NH ₄ –O bonds are more appropriately regarded as electrostatic in nature.					
239	Garcia-Rodriguez et al. (2000) studies bond valences related to NH_4^+ groups, treating					
240	$\mathrm{NH_4}^+$ strictly as a spherical cation. Their bond-valence parameters provide reasonable bond-					
241	valence sums for phoxite (Table 7). It seems reasonable to assume that NH ₄ –O bonds					
242	corresponding to ordered hydrogen bonds provide somewhat greater bond strength than those					
243	corresponding to electrostatic bonds, but for bond-valence calculations, this appears to be					
244	adequately accounted for in the Garcia-Rodriguez et al. (2000) approach by the fact that these					
245	bonds are generally shorter.					
246	Structural comparisons					
247	Because phoxite is the first mineral known to contain both phosphate and oxalate groups					
248	as essential components, it is not surprising that its structure is not closely related to that of any					

other mineral (cf. Echigo and Kamata, 2010; Baran, 2014; Piro et al. 2016). The only other

- 250 oxalate minerals that also include tetrahedral anions are the REE sulfate-oxalates coskrenite-(Ce)
- 251 (Peacor et al. 1999), levinsonite-(Y), and zugshunstite-(Ce) (Rouse et al. 2001). The overall
- structural motifs in these sulfate-oxalate minerals are quite different from those in phoxite. While
- 253 bidentate linkages between oxalate groups and cations are typical in the structures of minerals

and synthetic phases, they usually are propagated into infinite structural units, such as the chainsin the minerals with the humboltine structure.

256	We are unaware of any synthetic phase with a structure based on a sheet identical to that					
257	in phoxite, but there are structures with locally similar linkages. For example, Huang and Lii					
258	(1998) report a framework structure for $[C_4H_{12}N_2][In_2(C_2O_4)(HPO_4)_3] \cdot H_2O$ that is based upon					
259	pairs of In-centered octahedra joined by bidentate linkages to a central C2O4 group; however, in					
260	this phase, all four of the remaining O vertices of each octahedron is shared with a PO ₄ group.					
261	Another example is the sheet structure of $(NH_4)_2[VO(HPO_4)]_2(C_2O_4) \cdot 5H_2O$ reported by					
262	Junghwan et al. (2000), in which pairs of highly distorted V-centered octahedra are joined by					
263	bidentate linkages to a central C ₂ O ₄ group. In this case, three of the remaining O vertices of each					
264	octahedron is shared with a PO ₄ group, while the fourth O forms a short vanadyl bond with the V.					
265						
266	IMPLICATIONS					
267	In recent score, there has been a creat deal of records or creative the related					

In recent years, there has been a great deal of research on synthetic phosphate-oxalates, 267 268 particularly focusing on the fabrication of porous framework structures, which take advantage of 269 the ability of the oxalate group to form strong bidentate linkages with octahedrally coordinated 270 cations (cf. Chen et al. 2004). Such frameworks have potential applications in catalysis, 271 adsorption, ion exchange, gas storage, separation, and sensing (cf. Luan et al. 2015). The 272 structure of phoxite is based upon linkages between oxalate groups, phosphate groups and 273 octahedrally coordinated Mg, which result in a sheet, rather than a three-dimensional framework. 274 Nevertheless, the unique topology of the sheet structural unit in phoxite, the fact that the structure 275 has formed without the need for an organic templating agent, and the occurrence of the phase in 276 nature all have the potential to provide valuable insights into this important class of compounds.

277	Another avenue worth investigating is whether the strong hydrogen bonding between the				
278	undulating sheets gives the phoxite structure soft-framework character that may be useful for ion				
279	exchange and, perhaps, expansion of the interlayer region between the sheets could allow for the				
280	accommodation of larger molecules. Ion exchange properties may be particularly interesting for				
281	agriculture applications, including the mitigation of over-fertilization practices and the treatment				
282	of saline irrigation water, while the oxalate would provide a natural pesticide defense for crops. A				
283	caveat in this regard is that the ordered hydrogen bonding of the NH^{4+} cation to surrounding O				
284	atoms is indicative of a well-defined structural role for NH ⁴⁺ , which could inhibit ion exchange.				
285					
286	ACKNOWLEDGEMENTS				
287	Reviewers Mark Cooper and Nikita Chukanov are thanked for constructive comments,				
288	which improved the manuscript. Keith Wentz, claim holder of the Rowley mine, is thanked for				
289	allowing underground access for the study of the occurrence and the collecting of specimens.				
290	Peter Elliott is acknowledged for providing information on material from Petrogale Cave,				
291	including the results of his single-crystal structure determination. This study was funded, in part,				
292	by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural				
293	History Museum of Los Angeles County.				
294					
295	References				
296	Anstoetz, M., Rose, T.J., Clark, M.W., Yee, L.H., Raymond, C.A., and Vancov, T. (2015) Novel				
297	applications for oxalate-phosphate-amine metal-organic-frameworks (OPA-MOFs): Can an				
298	iron-based OPA-MOF be used as slow-release fertilizer?. PLoS One, 10, e0144169.				

- Baran, E.J. (2014) Natural oxalates and their analogous synthetic complexes. Journal of
- 300 Coordination Chemistry, 67, 3734–3768.
- 301 Bernardi, A.C.C., Polidoro, J.C., de Melo Monte, M.B., Pereira, E.I., de Oliveira, C.R., and
- 302 Ramesh, K. (2016) Enhancing Nutrient Use Efficiency Using Zeolites Minerals—A Review.
- 303 Advances in Chemical Engineering and Science, 6, 295.
- Bridge, P.J. (1977) Archerite, (K,NH₄)H₂PO₄, a new mineral from Madura, Western Australia.
- 305 Mineralogical Magazine, 41, 33–35.
- 306 Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C.,
- 307 Mallamo, M., Mazzone, A., Polidori, G., and Spagna, R. (2012) SIR2011: a new package for
- 308 crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357–
- 309 361.
- 310 Caracas, R. and Bobocioiu, E. (2011) The WURM project a freely available web-based
- repository of computed physical data for minerals. American Mineralogist, 96, 437–443.
- 312 Chen, Z., Weng, L., Chen, J., and Zhao, D. (2004) Hydrothermal synthesis and characterization
- of new hybrid open-framework indium phosphate-oxalates. Chinese Science Bulletin, 49,
 658–664.
- 315 Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Lyssenko, K.A., Belakovskiy, D.I., Färber,
- G., Möhn, G., Van, K.V. (2015) Antipinite, KNa₃Cu₂(C₂O₄)₄, a new mineral species from a
- 317 guano deposit at Pabellón de Pica, Chile. Mineralogical Magazine, 79, 1111–1121.
- Echigo, T. and Kimata, M. (2010) Crystal chemistry and genesis of organic minerals: a review of
- 319 oxalate and polycyclic aromatic hydrocarbon minerals. Canadian Mineralogist, 48, 1329–
- 320 1357.

- 321 Eroglu, N., Emekci, M., and Athanassiou, C. G. (2017) Applications of natural zeolites on
- 322 agriculture and food production. Journal of the Science of Food and Agriculture, 97(11),
- 323 3487–3499.
- 324 Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters
- for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.
- 326 García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R., and González-Silgo, C. (2000) Bond-valence
- 327 parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565–569.
- 328 Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
- 329 Kampf, A.R., Cooper, M.A., Nash, B.P., Cerling, T., Marty, J., Hummer, D.R., Celestian, A.J.,
- 330 Rose, T.P., and Trebisky, T.J. (2017) Rowleyite, $[Na(NH_4,K)_9Cl_4][V^{5+,4+}_2(P,As)O_8]_6$
- $n[H_2O,Na,NH_4,K,Cl]$, a new mineral with a mesoporous framework structure. American
- 332 Mineralogist, 102, 1037–1044.
- 333 Lafuente, B., Downs R.T., Yang. H., and Stone, N. (2015) The power of databases: the RRUFF
- 334 project. In: Highlights in Mineralogical Crystallography. Armbruster, T. and Danisi, R.M.,
- eds. Berlin, Germany, W. De Gruyter, pp 1–30.
- Luan, L., Li, J., Chen, C., Lin, Z., and Huang, H. (2015) Solvent-free synthesis of crystalline
- 337 metal phosphate oxalates with a (4,6)-connected fsh topology. Inorganic Chemistry, 54,
- *9387–9389.*
- 339 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- 340 mineral species for further study. Canadian Mineralogist, 45, 1307–1324.
- 341 Nakata, P.A. (2003) Advances in our understanding of calcium oxalate crystal formation and
- function in plants. Plant Science, 164, 901–909.

- 343 Nakata, P.A. (2015) An assessment of engineered calcium oxalate crystal formation on plant
- 344 growth and development as a step toward evaluating its use to enhance plant defense. PLoS
- 345 One, 10, e0141982.
- 346 Peacor, D.R., Rouse, R.C., and Essene, E.J. (1999) Coskrenite-(Ce),
- $(Ce,Nd,La)_2(SO_4)_2(C_2O_4) \cdot 8H_2O$, a new rare-earth oxalate mineral from Alum Cave Bluff,
- 348 Tennessee: characterization and crystal structure. Canadian Mineralogist, 37, 1453–1462.
- 349 Piro, O.E., Echeverría, G.A., González-Baró, A.C., and Baran, E.J. (2016) Crystal and molecular
- 350 structure and spectroscopic behavior of isotypic synthetic analogs of the oxalate minerals
- 351 stepanovite and zhemchuzhnikovite. Physics and Chemistry of Minerals, 43, 287–300.
- 352 Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 353 microvolumes applying the model "PAP." In: Heinrich, K.F.J. and Newbury, D.E. (eds)
- Electron Probe Quantitation. Plenum Press, New York, pp. 31–75.
- 355 Rehakova, M., Čuvanová, S., Dzivak, M., Rimár, J., and Gaval'Ova, Z. (2004) Agricultural and
- agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State
- and Materials Science, 8, 397–404.
- 358 Rouse, R.C., Peacor, D.R., Essene, E.J., Coskren, T.D., and Lauf, R.J. (2001) The new minerals
- levinsonite-(Y) [(Y, Nd,Ce)Al(SO₄)₂(C₂O₄) \cdot 12H₂O] and zugshunstite-(Ce)
- 360 $[(Ce,Nd,La)Al(SO_4)_2(C_2O_4) \cdot 12H_2O]$: Coexisting oxalates with different structures and
- differentiation of LREE and HREE. Geochimica et Cosmochimica Acta, 65, 1101–1115.
- 362 Sheldrick, G.M. (2015) Crystal Structure refinement with SHELX. Acta Crystallographica, C71,
- 363 3–8.
- 364 Usman, K. A. S., Buenviaje Jr, S. C., Edañol, Y. D. G., Conato, M. T., and Payawan Jr, L. M.
- 365 (2018). Facile Fabrication of a Potential Slow-Release Fertilizer Based on Oxalate-

- 366 Phosphate-Amine Metal-Organic Frameworks (OPA-MOFs). In: Materials Science Forum
- 367 (Vol. 936, pp. 14-19). Trans Tech Publications.
- 368 Wilson, W.E. and Miller, D.K. (1974) Minerals of the Rowley mine. Mineralogical Record, 5,
- 369 10–30.
- 370
- 371

372	FIGURE CAPTIONS				
373					
374	Figure 1. Circular structure comprised largely of phoxite crystals; note colourless/white rim of				
375	struvite crystals; field of view 3.4 mm across.				
376					
377	Figure 2. Intergrowth of light brown to flesh-coloured phoxite crystals. Note large composite				
378	blade on right side; field of view 0.65 mm across.				
379					
380	Figure 3. Intergrowth of flesh-coloured phoxite crystals with blue antipinite crystal near center;				
381	field of view 0.68 mm across.				
382					
383	Figure 4. Crystal drawing of phoxite; clinographic projection.				
384					
385	Figure 5. Raman spectrum of phoxite.				
386					
387	Figure 6. $[Mg_2(C_2O_4)(PO_3OH)_2(H_2O)_2]^{2-}$ sheet in the structure of phoxite viewed down [100].				
388					
389	Figure 7. Structure of phoxite viewed down [001].				
390					
391	Figure 8. Strong hydrogen bonds (shown as single black lines) in the structure of phoxite.				
392	Intersheet bonds are approximately vertical (parallel to b); intrasheet bonds are approximately				
393	horizontal (parallel to c).				
394					

- 395 Figure 9. The NH₄–O bonding in the structure of phoxite. Ordered hydrogen bonds are shown as
- 396 solid lines and electrostatic bonds are shown as dashed lines. Note that the N-H distances (not
- 397 shown) range from 0.74 to 0.84 Å based on the unrestrained structure refinement using XRD
- 398 data.

400 Table 1. Raman bands and their vibrational mode assignments for phoxite.

Band #	Intensity (%)	Position (cm ⁻¹)	HWHM (cm ⁻¹)	Vibrational Mode Assignments*
1	2	1680	12	NH ₄ bending
2	3	1645	7	NH ₄ bending
3	27	1492	4	possible NH ₄ bending, OH bending, C- O + C-C sym. stretching
4	30	1490	10	C-O sym. stretching; O-C-O bending
5	14	1375	23	COO rocking, NH ₄ bending
6	6	1069	12	P-O asym. stretching in HPO ₄
7	5	992	9	P-O stretching in HPO ₄
8	100	965	10	P-O stretching
9	44	922	7	
10	49	889	13	C-C stretching
11	6	863	7	
12	27	584	24	
13	9	587	5	u DO handing
14	13	572	9	v ₄ PO ₄ bending
15	23	549	9	
16	16	536	7	unassigned
17	45	517	9	v ₂ PO ₄ bending
18	13	449	13	v ₂ PO ₄ bending
19	22	401	10	
20	12	324	10	
21	2	290	5	Mg-O stretching
22	4	277	5	
23	20	264	8	
24	7	240	9	lattice modes

25	6	221	6
26	7	191	7
27	26	175	10
28	37	152	7
29	13	131	6
30	10	105	5
31	51	88	9

402

403 *Raman modes determined by comparative analysis of DFT calculations from the wurm.info

404 database.

Constituent	Mean	Min.	Max.	S.D.	Standard	Normalized
(NH ₄) ₂ O*						10.44
K ₂ O	2.74	2.07	3.36	0.45	sanidine	2.45
MgO	20.43	20.08	20.86	0.27	diopside	18.25
P ₂ O ₅	35.98	35.39	36.67	0.51	apatite	32.15
C ₂ O ₃ *						16.31
H ₂ O*						20.40
Total						100.00

405 Table 2. Analytical data (wt%) for phoxite.

406

407

408 * based on the structure.

2											
I _{obs}	$d_{\rm obs}$		$d_{\rm calc}$	Icalc	hkl	I _{obs}	$d_{\rm obs}$		$d_{\rm calc}$	Icalc	hkl
			6.9284	2	100	15	2 1762	ſ	2.1838	7	212
8	6.60		6.5260	11	011	15	2.1/03	J	2.1681	4	061
100	6.17		6.1734	100	110				2.1431	2	-331
85	5.57		5.5775	74	-111	21	2.1182	ſ	2.1253	8	-161
15	4.00	ſ	5.0188	3	021	21		ĺ	2.1063	5	113
15	4.90	J	4.8529	4	120	0	2 0246	ſ	2.0344	4	123
11	4.24		4.2078	4	111	8	2.0246	J	2.0160	3	-313
			3.8709	2	031	5	1.9962		1.9895	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(0	2 700	ſ	3.8127	29	-1 0 2			(1.9561	2	-104
60	3.799	Ì	3.7933	21	130	13	1.9439	{	1.9526	5	5 -3 2 3
27	2 712	ſ	3.7192	14	002			t	1.9362	3	-114
27	3./13	J	3.7088	15	121	7	1 9020	ſ	1.9104	3	340
18	3.580		3.5875	18	012	1	1.8929	J	1.8879	2	-214
17	2 452	ſ	3.4820	9	-211				1.8797	2	071
17	3.433	J	3.4642	5	200			,	1.8592	4	-333
50	2 277	ſ	3.3998	37	040	10	1 9401		1.8544	4	242
39	3.377	J	3.3570	4	210	18	1.8491		1.8516	2	-171
14	3.273		3.2630	11	022			,	1.8425	5	014
9	3.189		3.1831	9	-221				1.8209	2	-262
20	2.046	ſ	3.0577	3	-202	10	1 0022	ſ	1.8011	5	-4 0 2
20	3.040	J	3.0522	16	140	10	1.8032	J	1.7900	3	162
			2.9832	4	-212			,	1.7335	3	302
			2.9715	3	-141	11	1 7202		1.7321	3	400
72	2.914		2.9178	60	102	11	1.7203		1.7196	4	312
			2.8753	2	032			X	1.7163	2	252
24	2 9 2 5	ſ	2.8529	16	112	17	1 (000	ſ	1.7099	7	-271
26	2.835	Ì	2.8202	10	-231	17	1.0988	Ì	1.6999	7	080

411 Table 3. Calculated powder X-ray data (d in Å) for phoxite. Only lines with $I_{calc} > 1$ listed.

12 2 750	Ş	2.7614	8	211				1.6870	2	-431
12 2.739	l	2.7525	4	230				1.6775	2	-413
		2.6814	2	122			(1.6729	2	063
14 2 590	ſ	2.6050	11	221	23 1	.6614		1.6698	6	104
14 2.589	J	2.5616	13	-113				1.6581	7	-3 6 1
		2.5349	2	-232				1.6573	3	114
32 2.536		2.5318	20	150	10 1	(242	ſ	1.6404	3	-4 2 3
6 2 402	ſ	2.5094	2	042	10 1	.0342	J	1.6312	5	-353
0 2.492	J	2.4852	4	-151			,	1.5481	2	-115
27 2 425	{	2.4393	10	013	16 1	5202)	1.5399	7	421
37 2.425		2.4265	22	240	10 1			1.5351	2	054
		2.3946	4	231				1.5292	2	073
8 2.366		2.3676	6	-213			(1.5160	6	-225
		2.3295	2	023	14 1	.5118	{	1.5111	3	-273
		2.3138	3	-3 0 2			(1.4988	2	144
		2.2900	11	-3 2 1			7	1.4809	2	-164
	(2.2810	17	-312	16 1	.4718	{	1.4763	2	190
63 2.275	{	2.2735	7	-242				1.4709	5	-315
	l	2.2666	8	060	5 1	.4396		1.4360	4	173
		2.2608	7	-1 3 3	11 1	1 1.4033	ſ	1.4064	6	-373
		2.1954	2	052	11 1		ĺ	1.4044	2	371

413

)		-
1	Diffractometer	Rigaku R-Axis Rapid II
;	X-ray radiation / power	Mo <i>K</i> α ($\lambda = 0.71075$ Å)/50 kV, 40 mA
	Temperature	293(2) K
	Structural Formula	$[(NH_4)_{0.923}K_{0.077}]_2Mg_2(C_2O_4)(PO_3OH)_2(H_2O)_4$
	Space group	$P2_{1}/c$
	Unit cell dimensions	a = 7.2962(3) Å
		b = 13.5993(4) Å
		c = 7.8334(6) Å
		$\beta = 108.271(8)^{\circ}$
	V	738.07(7) Å ³
	Ζ	2
	Density (for above formula)	$1.980 \text{ g} \cdot \text{cm}^{-3}$
	Absorption coefficient	0.52 mm^{-1}
	F(000)	454
	Crystal size	$100 \times 60 \times 40 \ \mu m$
	θ range	3.00 to 24.98°
	Index ranges	$-8 \le h \le 8, -16 \le k \le 16, -9 \le l \le 9$
	Refls collected / unique	$8153 / 1305; R_{int} = 0.034$
	Reflections with $I_0 > 2\sigma I$	665
	Completeness to $\theta = 24.98^{\circ}$	99.8%
	Refinement method	Full-matrix least-squares on F^2
	Parameters / restraints	145 / 0
	GoF	1.108
	Final R indices $[I > 2\sigma I]$	$R_1 = 0.0275, wR_2 = 0.0693$
	<i>R</i> indices (all data)	$R_1 = 0.0327, wR_2 = 0.0722$
	Largest diff. peak / hole	$+0.29/-0.33 e^{-3}$
	$*R_{int} = \Sigma F_o^2 - F_o^2 (mean) / \Sigma [F_o]$	²] GoF = $S = \{\Sigma[w(F_0^2 - F_0^2)^2]/(n-n)\}^{1/2}$ $R_1 = \Sigma F_0 - F_0 /\Sigma F_0 $ $wR_2 =$
	$\sum [w(F_2^2 - F_2^2)^2] \sum [w(F_2^2)^2]^3$	$^{1/2} w = 1/[\sigma^2(F_c^2) + (aP)^2 + bP]$ where a is 0.0388 b is 0.323 and P
	(2[n(10) + 2)] = [n(10) + 1] is $[2F_c^2 + Max(F_c^2 0)]/3$	
	<u></u> · · · · · · · · · · · · · · · · · ·	

415 Table 4. Data collection and structure refinement details for phoxite.

		-	-		-	
	x/a	y/b	z/c	$U_{ m eq}$		
N*	0.7385(3)	0.21889(15)	0.7622(3)	0.0264(13)		
HNA*	* 0.673(8)	0.196(4)	0.806(7)	0.094(18)		
HNB*	^c 0.790(6)	0.266(3)	0.831(6)	0.074(13)		
HNC*	• 0.685(6)	0.247(3)	0.674(6)	0.061(12)		
HND*	* 0.825(6)	0.186(3)	0.746(5)	0.056(11)		
Mg	0.26444(9)	0.35303(5)	0.55907(8)	0.01375(19)		
C	0.5691(3)	0.46030(14)	0.4845(3)	0.0169(4)		
Р	0.15271(7)	0.12917(4)	0.61797(7)	0.01640(18)		
01	0.5283(2)	0.37211(10)	0.5032(2)	0.0197(3)		
O2	0.28860(19)	0.50963(10)	0.55825(19)	0.0211(3)		
O3	0.1108(2)	0.14387(11)	0.7935(2)	0.0232(4)		
O4	0.2910(2)	0.20589(10)	0.58506(19)	0.0212(3)		
O5	-0.0349(2)	0.12447(10)	0.4597(2)	0.0233(4)		
OH	0.2638(2)	0.02774(11)	0.6229(2)	0.0239(4)		
HOH	0.195(5)	-0.022(2)	0.600(4)	0.060(10)		
OW1	0.0153(2)	0.36867(11)	0.6265(2)	0.0237(4)		
HW1A	A 0.011(5)	0.373(2)	0.739(5)	0.057(10)		
HW1E	3 -0.075(5)	0.413(2)	0.564(4)	0.051(9)		
OW2	0.4436(2)	0.36330(12)	0.8346(2)	0.0266(4)		
HW2A	A 0.495(5)	0.422(3)	0.864(5)	0.082(12)		
HW2E	3 0.387(5)	0.343(3)	0.923(5)	0.076(11)		
	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Ν	0.0228(15)	0.0262(16)	0.0297(16)	0.0048(8)	0.0073(9)	0.0029(8)
Mg	0.0136(3)	0.0128(3)	0.0155(4)	0.0003(2)	0.0056(3)	-0.0010(2)
С	0.0170(10)	0.0181(11)	0.0144(10)	0.0006(8)	0.0033(8)	0.0001(8)
Р	0.0174(3)	0.0154(3)	0.0163(3)	0.0000(2)	0.0050(2)	-0.0006(2)
01	0.0210(7)	0.0139(7)	0.0251(8)	0.0012(6)	0.0087(6)	0.0000(6)
O2	0.0191(7)	0.0192(8)	0.0280(8)	0.0010(6)	0.0118(7)	0.0000(6)
O3	0.0235(8)	0.0283(8)	0.0188(8)	0.0012(6)	0.0079(6)	0.0018(6)
O4	0.0233(8)	0.0185(7)	0.0235(8)	0.0001(6)	0.0099(6)	-0.0019(6)
05	0.0235(8)	0.0208(8)	0.0223(8)	-0.0006(6)	0.0026(7)	-0.0018(6)
OH	0.0222(8)	0.0173(8)	0.0311(9)	-0.0023(7)	0.0069(7)	-0.0004(6)
OW1	0.0219(8)	0.0294(9)	0.0217(8)	0.0032(7)	0.0095(7)	0.0045(7)
OW2	0.0303(9)	0.0278(9)	0.0231(9)	-0.0009(7)	0.0104(7)	-0.0044(7)
The re	efined occupancy	y of the N site	is 0.923(9) N	(and associate	d H) and $\overline{0.0}$)77(9) K.

449 Table 5. Atom coordinates and displacement parameters $(Å^2)$ for phoxite.

Mg–O4 2.0145(16) P	9-03	1.5127(15)	CO1	1.255(2)
Mg-O3 2.0305(16) P	9-04	1.5286(15)	C–O2	1.255(2)
Mg–OW1 2.0567(2	17) P	P-05	1.5331(15)	C–C	1.547(4)
Mg-O1 2.1199(2	15) P	–OH	1.5940(15)		
Mg–O2 2.1371(2	15) <	(P-O>	1.5421		
Mg–OW2 2.1492(2	17)				
<mg-o> 2.0847</mg-o>					
Hydrogen bonds					
$D-H\cdots A$	D-H	$\mathbf{H} \cdots \mathbf{A}$	D···A	<dha< td=""><td></td></dha<>	
OH−HOH…O5	0.83(3)	1.78(3)	2.611(2)	176(3)	
OW1–H1a…O5	0.89(4)	1.86(4)	2.749(2)	172(3)	
OW1-H1b····O2	0.92(3)	1.87(3)	2.782(2)	171(3)	
OW2−H2a…OH	0.89(4)	2.25(4)	3.037(2)	148(3)	
OW2−H2b…O4	0.95(4)	1.76(4)	2.710(2)	174(3)	
NH ₄ –O bonds					
N–H···O	N–H	H···O	N–O	<nho< td=""><td>$NH_4 \cdots O$ bonding*</td></nho<>	$NH_4 \cdots O$ bonding*
N–HNb…O5	0.84(5)	2.02(5)	2.839(2)	164(4)	hydrogen bond
N–HNd…O3	0.81(5)	2.08(4)	2.839(2)	155(3)	hydrogen bond
N-HNc…O1	0.78(5)	2.24(5)	2.976(2)	157(3)	hydrogen bond
N–HNa…O1	0.74(6)	2.32(6)	3.044(2)	167(5)	hydrogen bond
N–HNa…OW2	0.74(6)	2.88(5)	3.094(3)	100(4)	electrostatic bond
N–HNa…O4	0.74(6)	2.78(5)	3.127(2)	111(4)	electrostatic bond
N–HNd…OW1	0.81(5)	2.96(4)	3.166(3)	97(3)	electrostatic bond
N–HNa…O2	0.74(6)	2.72(5)	3.208(2)	125(4)	electrostatic bond
N_HNbOW1	0.84(5)	2.98(4)	3272(3)	103(3)	electrostatic bond

489 Table 6. Selected bond distances (Å) and angles (°) for phoxite.

-			r				
	NH.	Ma	D	C	Hydroge	Σ	
	11114	Ivig	Г	C	Accepted	Donated	
01	0.13, 0.11	0.32		1.43			1.99
02	0.07	0.30		1.43	0.19		1.99
03	0.19	0.39	1.32				1.90
04	0.09	0.40	1.27		0.22		1.98
05	0.19		1.26		0.28, 0.20		1.93
ОН			1.08		0.12	-0.28	0.92
OW1	0.08, 0.06	0.36				-0.20, -0.19	0.11
OW2	0.10	0.29				-0.22, -0.12	0.05
С				0.98			
Σ	1.02	2.06	4.93	3.84			

521 Table 7. Bond-valence analysis for phoxite.* Values are expressed in valence units.

522

523 * NH_4^+ –O bond-valence parameters from Garcia-Rodriguez et al. (2000). Mg^{2+} –O, P^{5+} –O, and C^{4+} –O bond-valence parameters are from Gagné and Hawthorne (2015). C–C bond-valence 524

525

526 parameters are from D.I. Brown (pers. comm.) Hydrogen-bond strengths based on O-O bond 527 lengths from Ferraris and Ivaldi (1988).

Figure 1

Figure 2

Figure 3

ays consult and cite the final, published document. See http://www.minsocam.org or GeoscienceV

