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Abstract 9 

As iron-sulfide mineral phases are important sedimentary sinks for naturally occurring or 10 

contaminant metals, it is important to know the fate of metals during diagenetic 11 

transformation of primary sulfide minerals into more stable phases, such as pyrite (FeS2). 12 

Furthermore, the trace metal content of pyrite has been proposed as a marine paleoredox 13 

proxy. Given the diverse low-temperature diagenetic formation pathways for pyrite, this 14 

use of pyrite requires validation. We therefore studied nickel (Ni) and cobalt (Co) 15 

incorporation into freshly-precipitated mackinawite (FeSm), and after experimental 16 

diagenesis to pyrite (FeS2) using S0 as an oxidant at 65°C. Metal incorporation was 17 

quantified on bulk digests using ICP-OES or ICP-AES. Bulk mineralogy was 18 

characterized with micro-X-ray diffraction (micro-XRD), documenting transformation of 19 

mackinawite to pyrite. Epoxy mounts were made anoxically of mackinawite and pyrite 20 

grains. We used synchrotron-based micro-X-ray Fluorescence (μXRF) to map the 21 

distribution of Co and Ni, as well as to collect multiple energy maps throughout the sulfur 22 

(S) K-edge. Iron (Fe) and S K-edge micro-X-ray absorption near edge spectroscopy 23 



 2 

(μXANES) was used to identify the oxidation state and mineralogy within the 24 

experimentally synthesized and diagenetically transformed minerals, and map end-25 

member solid phases within the grain mounts using the multiple energy maps. Metal-free 26 

FeSm transformed to pyrite, with residual FeSm detectable. Cobalt- and Ni-containing 27 

FeSm also transformed to pyrite, but with multiple techniques detecting FeSm as well as 28 

S0, implying less complete transformation to pyrite as compared to metal-free FeSm. 29 

These results indicate that Co and Ni may inhibit transformation for FeSm to pyrite, or 30 

slow it down. Cobalt concentrations in the solid diminished by 30% during pyrite 31 

transformation, indicating that pyrite Co may be a conservative tracer of seawater or 32 

porewater Co concentrations. Nickel concentrations increased several-fold after pyrite 33 

formation, suggesting that pyrite may have scavenged Ni from dissolution of primary 34 

FeSm grains. Nickel in pyrites thus may not be a reliable proxy for seawater or porewater 35 

metal concentrations.  36 

Keywords: mackinawite, pyrite, diagenesis, cobalt, nickel, X-ray absorption 37 

spectroscopy, X-ray Fluorescence 38 

Introduction 39 

Pyrite (FeS2) is the most abundant iron sulfide mineral on the surface of the Earth 40 

(Rickard and Luther III 2007) and has formed in marine sediments (e.g. “diagenetic” 41 

pyrite) for at least 3.5 billion years (Gy) (Shen et al. 2001). The presence of pyrite, as 42 

well as its isotopic and elemental composition, has been applied to determining the redox 43 

conditions of the site of deposition, as well as the atmosphere and oceans. For instance, 44 

the presence of detrital pyrite in sediments > 2 Gy old was one of the early indications of 45 
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an anoxic Archean atmosphere (Holland 1984). Because of the enhanced mobilization of 46 

sulfate to the oceans from weathering of continental pyrite as oxygen appeared in the 47 

atmosphere, the presence of marine pyrite, formed either authigenically or diagenetically, 48 

tracks the timing of oxidation of the Earth and atmosphere. Pyrite Fe and S isotopes are 49 

exploited to track the magnitude of pyrite burial through time (Rouxel et al. 2005; 50 

Tostevin et al. 2014), the amount of sulfate in the oceans (Canfield and Farquhar 2009), 51 

as well as atmospheric and ocean oxygenation (Mojzsis et al. 2003; Rouxel et al. 2005; 52 

Konhauser et al. 2011; Fakhraee et al. 2018).  53 

Increasingly, though, scientists are also looking into the trace metal inventory of 54 

sedimentary pyrite as a reflection of the trace metal contents and conditions of the 55 

overlying water column. While investigations of trace metals in bulk clastic sediments, 56 

such as shales, are useful for this purpose, these studies tend to better highlight the utility 57 

of elements that undergo extreme authigenic enrichments in sediments under certain 58 

redox conditions (Algeo and Maynard 2004; Algeo and Rowe 2012), rather than those 59 

that are specifically incorporated by pyrite. The trace metals that become incorporated 60 

into pyrite by co-precipitation can reflect either the abundance of these elements in 61 

seawater (Huerta-Diaz and Morse 1992), and the metals can be sequentially extracted 62 

from existing sulfide phases (Huerta-Diaz and Morse 1990). Such targeted extractions 63 

can be extremely useful for modern sediments where multiple sulfide minerals may be 64 

present (Scholz and Neumann 2007; e.g. Olson et al. 2017). 65 

As sediments lithify, there is a potential for resetting of the trace metal contents by 66 

diagenesis, fluid alteration, or metamorphism. Extraction of pyrites and associated trace 67 

elements in clastic rocks is subject to limitations based on extraction efficiency, or 68 
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extraction specificity (Harrison et al. 1973). In situ analysis of trace metals in pyrite by 69 

methods such as laser ablation ICP-MS (e.g. Large et al. 2014; Gregory et al. 2015) or 70 

electron microprobe microanalysis (EPMA) coupled to wavelength-dispersive 71 

spectroscopy (WDS) have the utility of unambiguously assigning metal enrichments to 72 

pyrite vs. other phases (e.g. organics, detrital minerals, or authigenic precipitates such Fe- 73 

and/or Mn-oxides) (Chappaz et al. 2014). Laser ablation ICP-MS paths and quantitative 74 

elemental maps made by EPMA of individual pyrite grains, nodules, or framboids can 75 

also help to distinguish primary enrichments of trace metals from later overgrowths 76 

(Large et al. 2009; Swanner et al. 2013). Such findings are valuable to understanding 77 

pathways for economically significant trace metal enrichments (Tardani et al. 2017). 78 

The availability of bioessential metals [e.g. nickel (Ni), cobalt (Co), copper (Cu), Mo, Zn, 79 

Se, etc.) in the Precambrian oceans is widely agreed to have controlled the origination 80 

and activity of microbial functional groups throughout Earth’s history, due to the use of 81 

metals as active centers in enzymes or in organic co-factors (Anbar and Knoll 2002). 82 

While there has been an effort to infer changes in the abundance of metals in the 83 

environment through the genomic and metallomic inventory of modern organisms 84 

(Dupont et al. 2006, 2010), direct sedimentary records of metal availability are necessary 85 

for constraining the availability of metals (Robbins et al. 2016).  As with modern 86 

sediments discussed above, the bulk rock inventory or trace metals in shales deposited 87 

throughout Earth’s history is useful for informing general metal availability in the early 88 

oceans (e.g. Scott et al. 2008, 2012). Mineral specific metal analyses of chemical 89 

sediments, such as iron formations (Konhauser et al. 2009; Partin et al. 2013; Robbins et 90 

al. 2013; Swanner et al. 2014; Chi Fru et al. 2016), and in situ metal quantification 91 
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directly from diagenetic pyrite (Large et al. 2014; Swanner et al. 2014; Long et al. 2016) 92 

can complement bulk analyses, and even provide direct estimates of seawater 93 

concentrations of some elements (Konhauser et al. 2009). Multiple, temporally-resolved 94 

metal records from several sedimentary reservoirs highlight the co-evolution of life and 95 

its role in influencing ocean and atmospheric redox chemistry, in addition to its reaction 96 

to it (Robbins et al. 2016). 97 

Cobalt and Ni are a bioessential elements that are incorporated into iron sulfide 98 

precipitates (e.g. mackinawite), unlike metals that precipitate directly with sulfide (e.g. 99 

HgS) (Morse and Arakaki 1993), a result of the kinetics of exchange between water 100 

ligands for sulfide (S2-) (Morse and Luther III 1999). This means that the incorporation of 101 

Co and Ni into mackinawite is predictable with a partition coefficient (Morse and 102 

Arakaki 1993), an observation validated by the near-quantitative incorporation of these 103 

elements from porewaters into sulfide minerals, including pyrite (Scholz and Neumann 104 

2007; Olson et al. 2017). Changes in the marine Co reservoir through time determined 105 

from pyrite, bulk black shale and iron formation Co contents are consistent, and indicate 106 

that pyrite Co contents may reflect concentrations in the water column (Swanner et al. 107 

2014). Nickel is expected to behave similarly in the pyrite system (Morse and Arakaki 108 

1993). Using the marine sedimentary record as an indicator of marine metal reservoirs 109 

presumes that diagenesis does not alter the original metal contents of these sediments. 110 

However, diagenetic metal mobilization is a possibility for iron (oxy)hydroxides 111 

(Frierdich et al. 2011), and loss, gain or redistribution of Co or Ni could occur as primary 112 

iron sulfides (e.g. mackinawite, greigite, or the aqueous FeS cluster, FeSaq) are 113 
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transformed to pyrite during low-temperature diagenesis (i.e. <80°C) or later fluid 114 

alteration.  115 

The formation pathways of pyrite are debated, but it is generally understood that pyrite 116 

forms from an aqueous or precipitated FeS phase, such as mackinawite, greigite or an 117 

aqueous or nanoparticulate FeS cluster (e.g. FeSaq) (Luther and Rickard 2005). At low 118 

temperatures (i.e. below 80°C), hydrogen sulfide (H2S) is the product of microbial sulfate 119 

reduction at circumneutral pH (Jørgensen 1982), which can then precipitate with 120 

dissolved Fe2+ to form an FeS phase. The presence of S in the S1- oxidation state in pyrite 121 

indicates that S in any primary FeS precipitate must be oxidized from S2-, and Fe 122 

removed (or S added) to form the mineral pyrite (Goldhaber and Kaplan 1974). This has 123 

been accomplished experimentally through oxidation of FeS solids (mackinawite or 124 

greigite) with S0 (Berner 1970; Sweeney 1972; Schoonen and Barnes 1991b), 125 

polysulfides (i.e. chains of S0 and S-1) (Rickard 1969; Hunger and Benning 2007), or H2S 126 

(Rickard 1997; Rickard and Luther III 1997; Butler and Rickard 2000). Although the 127 

degree to which solid FeS minerals such as mackinawite actually exists in sediments has 128 

been questioned due to bias with the traditional acid-volatile sulfide (AVS) extraction 129 

(Rickard and Morse 2005), numerous studies have directly detected mackinawite (Burton 130 

et al. 2009; Morgan et al. 2012a; Kraal et al. 2013) and greigite (Keene et al. 2011) in the 131 

environment, justifying the use of these solids as precursor material. Another possible 132 

formation route is direct pyrite formation through reductive dissolution or surface 133 

reactions of Fe(III) (oxyhydr)oxide minerals with H2S or polysulfides (Hellige et al. 134 

2012; Peiffer et al. 2015; Wan et al. 2017). While specific mechanistic details vary, 135 

reaction of dissolved species and dissolution or recrystallization of an initial solid phase, 136 
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such as mackinawite or greigite, and subsequent nucleation of pyrite are generally 137 

invoked (Wang and Morse 1996; Rickard and Luther III 1997). Such reactions could 138 

mobilize trace metals co-precipitated or adsorbed with precursor phases. 139 

In this study, two different pathways were used to convert freshly-precipitated 140 

mackinawite (FeSm) containing Co and/or Ni into pyrite. The amount of metal in the 141 

FeSm and pyrite were quantified by bulk and microscale techniques, in order to determine 142 

whether these metals are retained through diagenesis. Bulk and microscale techniques for 143 

both mineralogy and trace element quantification were coupled to give insights on the 144 

influence of these metals in promoting or inhibiting diagenetic pyrite formation.  145 

 146 

Methods 147 

Mineral Synthesis 148 

Mackinawite (FeSm) was synthesized from solutions of 0.6 M ferrous ammonium sulfate 149 

(Fe(NH4)2(SO4)2)and 0.6 M sodium sulfide (Na2S)(Rickard 1997). Both solutions were 150 

made with ultrapure water (conductivity 0.052 μS) that had been boiled and cooled under 151 

an N2 stream to make it anoxic. Sodium sulfide crystals were washed for 30 s with anoxic 152 

water in order to remove any oxidized S-species from the surface, then water was 153 

removed with a Pasteur pipette. Washed crystals were dried under an N2 stream and 154 

stored in a N2 atmosphere within a glass bottle with a butyl rubber stopper. Washed 155 

sodium sulfide crystals were weighed in an anoxic glovebox (100% N2). The ferrous 156 

ammonium sulfate and sodium sulfide solutions were made in glass serum bottles and 157 

sealed with butyl rubber stoppers with an N2 headspace. To synthesize FeSm, equal 158 

volumes of each solution were added via N2-purged syringes to a previously N2-purged 159 
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and stoppered serum bottle under a slight vacuum (0.5 mbar). FeSm precipitated 160 

immediately. For synthesis of FeSm that contained either Ni or Co, 4.7 mg NiCl26H20 or 161 

190 mg CoCl26H20 powders were weighed into serum bottles and stoppered, then 162 

flushed with N2. This was accomplished by introducing N2 through a long needle, which 163 

bubbled the solution, and letting the overpressure escape through a second, shorter 164 

needle. An appropriate volume of the ferrous ammonium sulfate solution was added to 165 

achieve concentrations of 500 µM Ni or 2000 µM Co when mixed with the sodium 166 

sulfide solution. These solutions were then mixed with sodium sulfide as described 167 

above.  168 

Pyrite synthesis was attempted by two different methods. The first, oxidation of FeSm 169 

with H2S (Rickard 1997) (hereafter “H2S oxidation), was attempted in order to 170 

circumvent introduction of other solid S species (e.g. elemental sulfur, S0) that would be 171 

detected with later microanalysis. The reaction 13323-4 of Rickard (1997) was chosen 172 

(400 mg ferrous ammonium sulfate, 80°C, pH 6, -250 mV, 4 mM H2S), as partial pyrite 173 

synthesis was reported from that reaction (80% pyrite and 20% mackinawite). Partial 174 

synthesis was desirable so that the partitioning of Co and Ni between the primary and 175 

secondary mineral could be evaluated. The anoxic solution of Ti(III)citrate and the 176 

phthalate buffer were made as described (Rickard 1997). The Na2S solution was made as 177 

described for mackinawite synthesis, but then adjusted to pH 6 with anoxic 1N HCl. Dry 178 

FeSm was weighed into a glass headspace vial with a small stir bar, and closed with a 179 

stopper inside the glovebox. The buffer solution, Ti(III)citrate solution, and the Na2S 180 

solution were introduced via syringes that had been flushed with N2. The mixture was 181 
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incubated in a sand bath at 80°C on a temperature regulated hot plate, stirring, for either 4 182 

or 20 days. At the end of the reaction, the headspace was flushed with N2. 183 

The second pyrite synthesis method reacted FeSm with orthorhombic sulfur (S8, with 184 

sulfur in the S0 oxidation state) (Schoonen and Barnes 1991b), hereafter “sulfur 185 

oxidation”. FeSm was synthesized as described above. Dried FeSm (see below) was 186 

resuspended with pH 6 anoxic phthalate buffer in a stoppered serum vial. Orthorhombic 187 

sulfur was weighed, and placed into a stoppered headspace vial, then the headspace was 188 

exchanged with N2. Inside the glovebox, the orthorhombic sulfur and a small stir bar 189 

were added to the FeSm-buffer solution and crimped with butyl rubber stoppers. The vials 190 

were place in a sand bath at 65°C on a temperature regulated hot plate, stirring, for 2 191 

weeks. At the end of the reaction, the mineral suspension was centrifuged at 4000 rpm, 192 

the liquid removed with a 2-inch needle, and carbon disulfide (CS2) was introduced from 193 

a stock under N2 atmosphere to solubilize the unreacted orthorhombic sulfur. The 194 

suspension was centrifuged once again and CS2 removed prior to washing of the 195 

suspension with water (see below). 196 

After synthesis, minerals in solution were spun at 4000 rpm for 10 min. while still sealed 197 

in glass serum bottles. Liquid was removed with a 2-inch needle while N2 was being 198 

injected into the headspace using a second needle to maintain atmospheric pressure. 199 

Anoxic ultrapure water was added to the mineral suspension, and centrifugation repeated 200 

until the suspension had been washed twice. Then, vials were moved into the glovebox 201 

where the stoppers were removed. The serum bottles were covered with a paper tissue 202 

held in place by rubber bands. They were then placed in the vacuum chamber of the 203 
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glovebox under a vacuum of -0.8 mbar until dried. Dried samples were stored in 204 

stoppered, N2-filled glass bottles at room temperature until further use.  205 

All glassware used in the above protocols was acid washed for at least 24 hours in 1N 206 

HCl. This was followed by a 24-hour soak in ultrapure water, followed by 3 rinses in 207 

fresh ultrapure water. 208 

 209 

Embedding and Polishing 210 

Dried samples of synthetic mineral grains were sprinkled into plastic one-inch diameter 211 

rounds either on the bench or inside a glovebox (90% N2/10% H2). Samples were then 212 

immediately placed under vacuum within a Polyvac vacuum impregnator (Presi GmbH) 213 

at 80 kPa for 15 min. Then, Araldite epoxy 2020 A/B was slowly added (100:35 vol) 214 

until the sample was covered. Embedding proceeded at 80 kPa for 90 minutes. Samples 215 

were left to set for 24 hours before removing from the impregnator.  216 

Embedded samples were first ground with abrasive papers: 1200 (15 micron), then 2500 217 

(8 micron) using a PRESI Mecatech 334. Polishing utilized a PRESI diamond stick LD 218 

33 (3 micron) and Presi RAM polishing cloth, followed by a final polish with 0.05 219 

micron deagglomerated gamma alumina on a Buehler Chemomet I cloth (BUEHLER 220 

Micropolisch II 0.05 micron). Sample mounts were stored and transported in a nitrogen 221 

atmosphere. Just prior to synchrotron-based microanalysis, samples were polished with a 222 

1 µm cloth to remove oxidized coatings. 223 

 224 

Bulk Analysis 225 
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Particle size of synthesized samples was analyzed with a Mastersizer 2000 (Malvern 226 

Instruments GmbH). The surface area of solids was analyzed using a Micromeritics 227 

ASAP 2000 BET analyzer. Dried samples were loaded onto a holder and kept anoxic 228 

(100% N2) until directly before analysis by µ-X-ray Diffraction (XRD) on a Bruker D8 229 

Discover instrument (Bruker, Germany) equipped with a CoKα X-ray tube (k = 0.17902 230 

nm, 30 kV, 30 mA) and GADDS area detector (Berthold et al., 2009). Mineral phases 231 

were identified using the International Center for Diffraction Data (ICDD) database.  232 

Bulk trace element measurements were carried out by ICP-OES (Perkin Elmer Optima 233 

5300 or Horiba Ultima 2) or an ICP-AES at University of Tübingen. Mineral samples (5-234 

30 mg) were digested with aqua regia: 0.5 ml concentrated trace metal grade (TMG) 235 

HNO3 (65%) and 1.5 mL concentrated HCl at 60°C. Residues were resuspended in 8N 236 

TMG HNO3, and diluted ten-fold in 2% TMG HNO3. Elemental sulfur that did not 237 

dissolve was filtered through a 0.2 μm Whatman filter. Aqueous samples were preserved 238 

with and further diluted in 2% TMG HNO3. 239 

 240 

Microscale Analysis & Spectroscopy 241 

Elemental mapping by micro X-ray fluorescence (µXRF) and S and Fe K-edge X-ray 242 

absorption near-edge structure (XANES) spectroscopy was performed at beam lines (BL) 243 

14-3 and 2-3, respectively at Stanford Synchrotron Radiation Lightsource (SSRL). Sulfur 244 

distribution was mapped in approximately 1x1 mm areas at ~2500 eV on BL14-3, which 245 

has an energy range of 2100 to 5000 eV. The incident energy was selected using a 246 

Si(111) ɸ=90 double crystal monochromator and the fluorescence signal was collected 247 

with a Si-drift diode Vortex detector (Hitachi) coupled to an Xspress3 pulse processing 248 
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system (Quantum Detectors). The energy was calibrated to the thiosulfate pre-edge peak 249 

set to 2472.02 eV or a sulfate peak from CaSO4 set to 2483 eV. The spot size was 5x5 250 

µm, unless otherwise noted, and dwell times were between 50 to 200 µs. For a subset of 251 

samples, S maps were collected at multiple energies (ME) around the S K-edge that 252 

corresponded to characteristic absorption features for monosulfides, pyrite, elemental 253 

sulfur, sulfite/metal monosulfides, sulfate, and total sulfur, in order of increasing energy. 254 

In 2013 these energies were 2470, 2471.5, 2472.5, 2476.5, 2483, and 2490 eV. In 2014 255 

they were 2469.7, 2471.2, 2472.2, 2476.2, 2482.7, and 2499 eV. In 2015 and 2016 these 256 

energies were 2470.7, 2471.1, 2472.6, 2478.5, 2482.5 and 2499 eV. These maps were 257 

then deadtime corrected, and subjected to a principle component analysis (PCA) in the 258 

Microanalysis Toolkit (http://smak.sams-xrays.com) (Webb 2011). Compositionally 259 

diverse spots based on the absorption at different energies above the S K-edge were 260 

revealed by PCA, and these spots were chosen for S K-edge spectroscopy. Fluorescence 261 

spectra were collected from 2460 to 2500 eV. Spectra were deadtime corrected and 262 

normalized using the SIXPACK software package (Webb 2005). Within SIXPACK, the 263 

collected spectra from each sample (3 to 23 spectra per sample) were subjected to PCA to 264 

reveal the number of unique spectra. These end-members (EM), representing the 265 

compositional heterogeneity of all μXANES from an individual sample, were then fitted 266 

with spectra of reference sulfur compounds available from the ESRF 267 

(https://www.esrf.eu/home/UsersAndScience/Experiments/XNP/ID21/php.html), and 268 

additional samples from mineral collections of laboratory synthesis that were analyzed on 269 

BL 14-3 (these include mackinawite (FeS) and polysulfide). Mackinawite was bulk dried 270 

powder from the FeSm synthesis described above, without added metals. The distribution 271 

http://smak.sams-xrays.com/
http://smak.sams-xrays.com/
https://www.esrf.eu/home/UsersAndScience/Experiments/XNP/ID21/php.html
https://www.esrf.eu/home/UsersAndScience/Experiments/XNP/ID21/php.html
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of EM were then back-mapped using the characteristic fluorescence intensities at the 272 

specific energies in the MicroAnalysis Toolkit, similar to published methods (Mayhew et 273 

al. 2011; Farfan et al. 2018). 274 

Iron, sulfur, and trace metals were mapped in approximately 0.5x0.5 mm areas at 8500 275 

eV on BL2-3, which has an energy range of 4500 to 24000 eV. The incident energy was 276 

selected using a Si(111) ɸ=0 double crystal monochromator, and the fluorescence signal 277 

was collected with a Si-drift diode Vortex detector (Hitachi) coupled to an Xspress3 278 

pulse processing system (Quantum Detectors). The energy was calibrated using the first 279 

inflection of an Fe0 foil as a standard (7112 eV). The spot size was either 2x2 or 5x5 µm, 280 

and dwell times were between 50 to 200 µs. Spots with different element intensities were 281 

chosen for Fe K-edge XANES (3 to 10 spectra per sample). Data was processed as 282 

described above.  283 

Reference spectra used for fitting Fe K-edge XANES have been previously published 284 

(O’Day et al. 2004). Additional reference spectra were for Fe XANES collected as bulk 285 

samples on BL 4-1 at SSRL. Powdered samples were analyzed in sandwiches of Kapton 286 

tape, or in Teflon holder windows sealed with Kapton tape. Where necessary, powders 287 

were diluted with boron nitride to reduce self-absorption effects. The XANES spectra 288 

were collected in transmission mode as well as in fluorescence mode using a Lytle 289 

detector. The E0 of an Fe0 metal foil placed behind the first transmission detector was 290 

adjusted to 7112 eV in order to energy calibrate the resulting spectra. Replicate spectra 291 

were then averaged and background subtracted in SIXPACK (Webb 2005). 292 

Semi-quantitative analysis of elemental abundance was accomplished by calibrating to 293 

NIST-traceable standards of the elements of interest, which were deposited on mylar 294 
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films measured at the same detector distance, incident energy, dwell time, spot size, and 295 

detector gain as the samples. A calibration file was assembled containing the information 296 

from the standard maps in the MicroAnalysis Toolkit, and applied to the sample. Because 297 

the samples were in thick mounts, the sample thickness was approximated as the 298 

absorption length for the mineral host, either FeSm or FeS2. Because individual grains 299 

may be thinner, especially on the margins than this absorption thickness, it is important to 300 

emphasize that this approach is only semi-quantitative. The amount of element per area 301 

was converted to concentrations as mg metal per g sample assuming one absorption 302 

length of either FeSm or pyrite as the sample depth. A mask was applied to the image to 303 

eliminate pixels that did not represent Fe- and S-containing particles, and the statistics 304 

were calculated on the selected pixels by the MicroAnalysis Toolkit. 305 

 306 

Results 307 

Characteristics of Synthesized Minerals 308 

The bulk mineralogy of synthetic samples was determined by XRD. Reference minerals 309 

were mackinawite, greigite, pyrite, pyrrhotite, and elemental sulfur. Synthesized FeSm 310 

matched diffraction patterns for mackinawite, with minor greigite and pyrrhotite (Figure 311 

1). No peaks attributable to the iron oxides hematite, goethite, magnetite, or ferrihydrite 312 

were present (data not shown). The XRD pattern for FeSm with no metals was very 313 

similar to that with added Co or Ni. Transformation of FeSm with or without Co or Ni to 314 

pyrite via H2S oxidation (Rickard 1997) did not produce pyrite. However, peaks for 315 

mackinawite were sharpest in the FeSm sample with no metals that reacted the longest - 316 

20 days - whereas FeSm with either Co or Ni (reacted 4 d) had lower intensity peaks, the 317 
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weakest in the sample that contained Ni. Pyrite was synthesized from FeSm both with and 318 

without Co or Ni using the sulfur oxidation protocol. Residual elemental sulfur was also 319 

detected in Co- and Ni-containing samples. The pyrite peaks had similar intensity 320 

irrespective of metal additions. 321 

During synthesis with 0.1 L each of 0.6 M ferrous ammonium sulfate and Na2S solutions, 322 

5.27 g of FeSm is calculated to have formed. FeSm had a BET surface area of 25.96±0.29 323 

m2/g, within the range of values reported in the literature for similar methodologies. 324 

Other BET measurements on synthetic freeze-dried FeSm resulted in 36.5 m2/g (Rickard 325 

1997), 16-21 m2/g (Benning et al. 2000), and 47 m2/g (Wolthers et al. 2003). Particle size 326 

ranged from 2 to 138 μm, with greater than 90% of particles being less than 10 μm. Pyrite 327 

synthesized by sulfur oxidation had a BET surface area of 13.84±0.21 m2/g. The surface 328 

area of Co-containing pyrite synthesized by sulfur oxidation was 18.06±0.12 m2/g.  329 

The results of S K-edge XRF and S XANES mapping of FeSm synthesized with Co or Ni 330 

are shown in Figure 2, with the composition and fitting results of identified EM spectra 331 

reported in Table 1. FeSm synthesized without metals was not mapped at ME through the 332 

S K-edge, so a similar map is not available. However, grains synthesized without metals 333 

were composed of FeS and sulfate, based on analysis of the spot S XANES spectra 334 

(Figure 3; Table 1). The standard quenstedtite (a hydrated ferric sulfate, 335 

Fe2(SO4)3·11H2O) was used as a proxy for the presence of an inorganic sulfate, as this fit 336 

all of the samples in the study requiring it fairly well. Substituting another sulfate mineral 337 

(e.g. anhydrite) did not change the fit significantly (e.g. more than 10% improvement on 338 

∑2 values; data not shown). It is important to note that inclusion of quenstedtite in the fit 339 

is not equivalent to detection of this mineral, as XANES is not a crystallographic 340 
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technique. The use of quenstedtite in fits rather estimates the amount of a inorganic 341 

sulfate-bearing phase (Zeng et al. 2013). The FeSm synthesized in the presence of Co or 342 

Ni similarly were fit with FeS and sulfate (Figure 2). Although ME mapping was not 343 

performed at the Fe K-edge, Fe XANES from points on the FeSm with added Co sample 344 

map were fit by FeS and pyrrhotite (Table 2). In this case, the FeS spectra used was 345 

collected from a bulk powder of the FeSm synthesized without any metals. FeSm with 346 

added Ni was fit with mostly FeS and some pyrrhotite. 347 

The synthesized FeSm was sensitive to oxidation during embedding, polishing and oxic 348 

handling during analysis. Figure 3 shows the EM S XANES spectrum of the FeSm 349 

embedded oxically, which was fit by the reference spectra for FeS (0.68) and sulfate 350 

(0.37) (Table 1). The EM spectra from FeSm embedded anoxically also fit with FeS and 351 

sulfate, but polysulfide was also necessary for a good fit (Figure 3; Table 1). No ME 352 

map was collected, so it was not possible to assess the distribution of the phases. 353 

However, these spectra were determined to be representative of the ten individual 354 

XANES collected on each sample by a PCA in SIXPACK. The FeSm with no metal 355 

sample was not analyzed at the Fe K-edge.   356 

The results of S K-edge XRF and S XANES mapping on samples treated with the sulfur 357 

oxidation method are presented in Figure 4, with the EM spectra displayed and used to 358 

determine phase distributions, and the spectral fitting results reported in Table 1. The 359 

FeSm with no metals added oxidized with the sulfur oxidation method resulted in 360 

predominately pyrite (Figure 4a). Minor amounts of FeS were present in this and Co- 361 

and Ni-containing samples (Figure 4b and 4c), visible as a shoulder at 2470 eV along 362 

the pyrite pre-edge absorption feature. Sulfate was also present, as with FeSm samples. 363 



 17 

No sulfur was detected by XRF/XANES, although it was observed by XRD (Figure 1). 364 

When Co was present, the grains were predominantly pyrite, with some polysulfide and 365 

residual FeS (Figure 4b). The matrix was composed of sulfur and polysulfide, which was 366 

not seen in the metal-free sample. When Ni was added, most grains were made of pyrite 367 

with some polysulfide, or pyrite with FeS (Figure 4c).  368 

The FeSm containing either Co or Ni treated with the H2S oxidation pathway did not 369 

produce pyrite, according to S XANES and XRF. The composition of EM S XANES 370 

spectra determined fitting was FeS with minor sulfate (Table 1). The Fe XANES spectra 371 

fit with an FeS standard (Table 2).  372 

 373 

Trace element additions 374 

The elemental concentrations of solutions used to synthesize FeSm were analyzed, but S 375 

was not calibrated, and Fe was often above the range of the calibration curve and could 376 

not be quantified (Table 3). The ferrous ammonium sulfate solutions with nickel chloride 377 

or cobalt chloride were measured before adding the sodium sulfide solution, and had a 378 

concentration of 65.28 mg/L (1112 µM) Ni, which was diluted by an equal volume of 379 

sodium sulfide solution to achieve ca. 500 μM Ni final concentration. The solution with 380 

Co had 223.2 mg/L (3878 µM) Co, and was also diluted by an equal volume of the 381 

sodium sulfide solution to achieve ca. 2000 μM Co.  382 

The Fe content of bulk solids determined with ICP-OES increased after applying the H2S 383 

oxidation protocol (Table 3). The Fe content was only quantified in the Ni-containing 384 

sample after sulfur oxidation, due to the range of ICP-AES and standard concentrations. 385 

For the Co and Ni-bearing solids, Co and Ni were quantified in bulk by either ICP-OES 386 
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(FeSm and H2S oxidation samples) or ICP-AES (sulfur oxidation samples; Table 3) or 387 

semi-quantitatively mapped by X-ray fluorescence at 11 keV on individual pixels (Table 388 

4). The measured values of Co and Ni in FeSm, measured by ICP-OES were 1.05±0.26 389 

mg Ni per g FeSm, and 3.71±0.06 mg Co per g FeSm, higher than the range of the median 390 

values obtained by synchrotron-based XRF mapping on beam line 2-3 at 11 keV: of 391 

0.4±0.2 mg Ni per g FeSm and 3.1±0.7 mg Co per g FeSm. Quantification of Ni after 392 

sulfur oxidation diverged the most between methods. ICP-AES measured 3.4±0.1 mg Ni 393 

per g mineral, while XRF maps contained median values of 0.5±0.4 mg Ni per g mineral. 394 

Results for Co after sulfur oxidation were comparable by bulk and microscale methods. 395 

Maps of particles used for XRF quantification are shown in Supplementary Figure 1.  396 

 397 

Discussion 398 

Mineral Transformation 399 

For the FeSm synthesized in this study, XRD documented the mineral mackinawite, with 400 

minor greigite and pyrrhotite (Figure 1). The best fitting standard for S XANES spectra 401 

was with FeS, a mackinawite standard, occasional polysulfide, and varying amounts of 402 

sulfate (Table 1). Even after embedding in the glovebox, the FeSm still shows signs of 403 

oxidation, evidenced by the inclusion of sulfate and polysulfide in the fits, although it 404 

may be less oxidized than samples embedded in air (Figure 3). Less sulfate was needed 405 

to fit the anoxically embedded samples, however, indicating some success of the 406 

protection from oxygen. The presence of polysulfide may have resulted from some 407 

sample hydration during storage, as the sample was anoxically embedded a year after 408 

oxically embedded samples, although they were stored under dry N2 in airtight 409 
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containers. As sulfate minerals were not detected in XRD (detection limit 5 wt. %), 410 

oxidation likely occurred during the storage, embedding or analysis of samples, and not 411 

during synthesis or transformation protocols. There was a major reflection at about 35° in 412 

the FeSm that could be greigite or pyrite, but other major reflections for these minerals 413 

were absent. The addition of Co or Ni did not appear to alter the mineralogy of the FeSm, 414 

or to change the intensity or width of reflections (Figure 1).  415 

The attempts to transform FeSm, with or without Co and/or Ni, to pyrite via H2S 416 

oxidation were not successful. From XRD, the sample still appeared to be mackinawite, 417 

with the most intense reflections in the Co-containing samples (Figure 1). The Ni and 418 

Co-containing samples were only reacted 4 d, and yet had much more intense reflections 419 

for mackinawite than FeSm without metals, reacted either 4 or 20 d. The failure of the 420 

H2S oxidation method to produce pyrite from FeSm synthesized with Co or Ni was also 421 

verified by S XANES and XRF mapping (Table 1), as well as by point Fe XANES 422 

analysis (Table 2). These results are consistent with a number of studies, which found 423 

very slow reactions between mackinawite and H2S to form pyrite (Berner 1970; 424 

Schoonen and Barnes 1991b; Wilkin and Barnes 1996; Benning et al. 2000). It has been 425 

suggested that the freeze-dried FeS, used in the successful synthesis of pyrite via H2S 426 

oxidation (Rickard 1997), underwent minor oxidation by oxygen during drying, 427 

providing oxidized surface sites for the formation of pyrite via reaction with H2S 428 

(Benning et al. 2000). Secondary electron microscopy (SEM) studies of freeze-dried 429 

mackinawite in that second study noted an oxidized sulfate mineral phase, as well as a 430 

change in morphology from freshly-precipitated mackinawite (Benning et al. 2000). In 431 

this same study, the freeze-dried material produced pyrite in reaction with H2S (100% 432 
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transformation after 9 days), whereas freshly precipitated mackinawite reacted with H2S 433 

did not. Our finding that N2-dried mackinawite does not react with H2S to form pyrite 434 

further support the claim (i.e. Benning et al. 2000) that H2S oxidation of mackinawite is 435 

not a significant reaction in the formation of pyrite at low temperatures.  436 

In contrast, pyrite was formed from the sulfur oxidation method, evident in clear 437 

reflections for pyrite from XRD in metal-free samples (Figure 1). After pyritization, 438 

most XRD reflections for mackinawite had disappeared, indicating near-complete 439 

reaction. From the S ME mapping and EM XANES, pyrite was also the main product 440 

(Figure 4; Table 1), with minor FeS and sulfate, likely reflecting oxidation during 441 

sample mounting and/or analysis (e.g. Figure 2). The spot Fe XANES analysis also 442 

documented pyrite, but the product still retained some FeSm (Table 4). In addition, 443 

marcasite was a component of Fe XANES fits (Table 4), which likely reflects the same 444 

sulfur oxidation state and similar orbital energy levels of Fe in pyrite and marcasite 445 

(Jones 2006), rather than the presence of marcasite. The Fe XANES of pyrite and 446 

marcasite are very similar (O’Day et al. 2004). The inclusion of pyrrhotite in some fits 447 

could reflect some oxidation during embedding, storage, or analysis. 448 

Pyrite was also produced in the Co-containing solids, as evidenced by XRD, S XANES, 449 

and Fe XANES.  In the Co-containing samples, an additional intense reflection for sulfur 450 

was present at about 26°, and several minor reflections between 30-35° in the XRD data 451 

(Figure 1). These likely correspond to residual sulfur retained after CS2 washing. The 452 

single CS2 wash must have been insufficient to remove sulfur. It is significant that 453 

evidence for residual sulfur is not seen in the metal-free product. In Co-containing 454 

samples analyzed by S XANES, FeS was still present in pyrite grains (visible as a 455 



 21 

shoulder at 2470 eV), as was polysulfide (Figure 4). Sulfur and polysulfide comprised 456 

the matrix, consistent with the intense reflections for sulfur by XRD. Polysulfides form in 457 

reaction of elemental sulfur with water, and themselves react with FeSm to form pyrite 458 

(Schoonen and Barnes 1991b), and so are expected S phases during pyrite formation by 459 

the S0 oxidation method. By Fe XANES, both pyrite/marcasite and FeS were components 460 

of fits. Taken together, these data indicate that the presence of Co impeded reaction of 461 

FeSm to pyrite in the time course of the experiments (2 weeks). Although FeSm was still 462 

detectable in metal-free product, the absence of any detectable sulfur may signify that 463 

metal-free FeSm reacted more completely than Co-amended FeSm. Inhibition of FeS 464 

transformation to pyrite has been observed in the presence of arsenate [As(V)], although 465 

this is linked to arsenate oxidizing both Fe and S (Wolthers et al. 2007). An analogous 466 

pathway can be excluded for Co2+, as its reduction in aqueous phase is unlikely. Arsenate 467 

and arsenite ([As(III)] can also prevent FeS transformation to pyrite by sorption and 468 

blockage of surface sites (Wolthers et al. 2007). Although, Co does not adsorb even as 469 

strongly to FeS as Ni (Morse and Arakaki 1993), yet Ni-containing FeS appears to have 470 

more completely reacted in our experiments (see below). The lower concentrations of Co 471 

in pyrite compared to FeS (Tables 3 and 4) indicate that some Co could have been 472 

mobilized from solid phases during the reaction and available for sorption. It is 473 

impossible to rule out inhibition of pyrite formation due to Co sorption with our data. 474 

For Ni-containing samples, the predominant product of sulfur oxidation was pyrite, based 475 

on XRD, S XANES, and Fe XANES analyses. Some residual FeSm was present based on 476 

S and Fe XANES (Tables 1 and 2). One Fe XANES EM also fit with maghemite, 477 

indicating Fe oxidation, which likely occurred during sample embedding, storage, or 478 
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analysis, as it was not detected by XRD prior to these steps. Sulfur was also present based 479 

on XRD, but the diffraction peaks were not as sharp or as large as for the Co-containing 480 

product. Polysulfide was detectable in S XANES (Figure 4). The reaction of FeSm to 481 

pyrite also seems to be incomplete in the presence of Ni, but may have progressed further 482 

given the evidence for more abundant sulfur/polysulfide in the Co-containing grains. 483 

Another line of evidence is the more abundant distribution of sulfur-rich grains in Co-484 

containing product, as revealed by the 8000 eV XRF map (Supplementary Figure 2) as 485 

compared to the Ni-containing product, although the sample size is just a few grains. 486 

These results of incomplete pyrite formation in Ni-containing samples are in contrast to 487 

the recent observation that the presence of Ni accelerates the rate of pyrite formation 488 

(Morin et al. 2017). In that work, pyrite was formed from de novo synthesis from slightly 489 

acidic (ca. pH = 5.5) solutions of ferric chloride and H2S (Noël et al. 2014, 2015). In this 490 

mechanism, Fe(III) must be the oxidant, whereas our protocol started with solid FeSm and 491 

utilized sulfur as the oxidant. The authors proposed that Ni impurities accelerated pyrite 492 

nucleation from solution (Morin et al. 2017), which is generally slow. However, 493 

formation of pyrite in marine sediments likely proceeds from the nucleation and 494 

subsequent sulfidization of FeS minerals, such as mackinawite and greigite (Schoonen 495 

and Barnes 1991a), rather than through reaction of aqueous Fe(III) and H2S. This 496 

inference is supported by the observation of FeS phases being converted to pyrite with 497 

depth in numerous anoxic sediments (Cutter and Velinsky 1988; Huerta-Diaz and Morse 498 

1992; Scholz and Neumann 2007). Our experiments therefore suggest that Ni (and Co) 499 

impurities might impede the rate of pyritization in pH circumneutral sediments, although 500 
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others note that Ni and Co may more completely pyritize than other metals (Morgan et al. 501 

2012b). 502 

The weight percent of Fe in FeSm calculated from bulk digestion data in Table 3 was 503 

about 30-40%, less than the predicted 63.5% for a 1:1 Fe:S stoichiometry. This lower 504 

weight percent iron may have been caused by sulfate precipitation during drying, as 505 

discussed above. After the H2S oxidation protocol, the weight percent of iron increased to 506 

42-51%, closer to stoichiometric FeS, but still lower than expected. This may be due to 507 

increasing crystallinity of the FeSm in aqueous phase (Rickard 1995), which has support 508 

from the sharpening of diffraction peaks (Figure 1), or washing out of excess sulfate with 509 

the fluids used for H2S oxidation. Although the Fe content was not determined on most 510 

solids produced by the sulfur oxidation protocol, the Fe content for pyrite for the Ni-511 

containing sample was ca. 33 wt %, whereas stoichiometric pyrite should have 46.55% 512 

Fe. This likely reflects residual sulfur in the solid sample after the sulfur oxidation 513 

method, as well as the persistence of FeSm. 514 

 515 

Trace Element Incorporation 516 

 The distribution coefficient for Co in FeSm at 25°C is 29±3 (Morse and Arakaki, 1993), 517 

which predicted 16±2 mg Co per g FeSm in our synthesized mineral. The measured 518 

values of Co were 2.6 to 3.7 mg Co per g mineral were well under this range. Based on 519 

the published distribution coefficient of 280±181 for Ni in FeSm at 25°C (Morse and 520 

Arakaki 1993), we expected to see 3.9±2.5 mg Ni/g FeSm. The measured value of Ni in 521 

FeSm (0.6 to 1.05 mg Ni/g mineral) was below this range (Table 3). In those experiments, 522 

mackinawite was synthesized by slow titration, whereas our FeSm was synthesized 523 
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rapidly by mixing a Co- or Ni-bearing iron solution with a sulfide solution. It is likely 524 

that this fast precipitation did not allow full uptake of the likely equilibrium values of Co 525 

and Ni observed in slow precipitation experiments (Morse and Arakaki 1993). This may 526 

be due to the slower exchange of H2O ligand for S2- on Co2+ and Ni2+ ions as compared to 527 

Fe2+ ions (Morse and Luther III 1999).  528 

After the H2S oxidation protocol, the measured value was 4.05±1.92 mg Co per g 529 

mineral, and 1.1 mg Co per g mineral after the sulfur oxidation protocol. Cobalt 530 

enrichments in FeSm are generally present in all particles based on XRF mapping of the 531 

synthesized minerals at 8500 eV (Supplementary Figure 2). In the samples mapped 532 

after sulfur oxidation, Co was distributed throughout the Fe-rich particles. From cross-533 

plots of the Fe and S pixels, the Fe-rich particles always contain some S, and so are 534 

inferred to be FeSm/pyrite. The sulfur-rich grains comprise a very low-Fe population of 535 

pixels, and are likely sulfur/polysulfide-rich grains (analyses not shown). Cobalt is visible 536 

in the FeSm/pyrite grains, but absent in the sulfur/polysulfide grains, indicating that Co is 537 

preferentially incorporated into sulfide minerals. From the bulk (ICP-OES or ICP-AES) 538 

and XRF metal quantification, there was general agreement between the techniques for 539 

the quantity of Co in both FeSm and sulfur oxidation products (Figure 5). However, Co 540 

was quantitatively lost from the samples during transformation. The lower concentration 541 

of Co in Fe-rich particles by XRF after pyrite transformation (Supplementary Figures 1 542 

and 2) indicates this is not a phenomenon of solid-phase dilution with residual sulfur for 543 

the ICP analyses. Therefore, it seems likely that Co is lost from the sulfide phase during 544 

transformation of FeSm to pyrite.  545 
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After treating FeSm with the H2S oxidation protocol, Ni increased to 1.43±0.87 mg Ni per 546 

g mineral. The amount in pyrite produced from the sulfur oxidation protocol was 3.4±0.1 547 

mg Ni per g mineral. In Ni-containing samples, the FeSm has Ni distributed throughout 548 

all grains. In the Ni-containing product oxidized by sulfur, both S and Fe-rich grains are 549 

visible in the XRF map, similar to the Co-containing sample (Supplementary Figure 2). 550 

In the product, some Fe-rich grains are preferentially enriched in Ni, while others are Ni-551 

poor, distinct from the Co-rich product. The S-rich grains have little Ni. As no multi-552 

energy maps were made at these higher energies on BL2-3 (e.g. the Fe K-edge), it is not 553 

possible to say whether Ni preferentially incorporated into discrete iron sulfide phases, 554 

such as FeSm or pyrite. Other studies have documented a preference of Ni for the pyrite 555 

vs. mackinawite mineral (Noël et al. 2015). This may be consistent with preferential Ni 556 

concentration in pyrite-bearing grains, as opposed to FeSm grains, although we cannot 557 

validate this with the current dataset. The ICP data always detected more Ni in the 558 

samples than is apparent with the synchrotron-based XRF maps (Figure 5), likely 559 

indicating the need for further matrix correction for XRF standards. Both techniques 560 

show an increase of Ni in the solid after sulfur oxidation, although this increase is 561 

unlikely to be statistically significant in the XRF data. It is possible that in case of 562 

dissolution of FeS, and incomplete pyrite formation, mobilized Ni was effectively 563 

sequestered in fewer grains, increasing the concentration. 564 

A final observation is that the addition of Co or Ni shifted the pre-edge peak position of 565 

the FeS in the S XANES spectra to more positive values (Figure 6), which was more 566 

extreme for Ni. A similar peak shift was noted for pyrite, although only for Ni. Other 567 

authors noted longer bond distance (2.28 Å) for Ni-S than for Fe-S (2.26 Å) based on Ni 568 
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EXAFS of mackinawite synthesized with Ni (Wilkin and Beak 2017). However, shorter 569 

bond distances generally require higher excitation energy. It may more likely reflect the 570 

ordering of stability constants of the transition metal series, e.g. the Irving-Williams 571 

order, Fe<Co<Ni<Cu>Zn (Rickard and Luther III 2006). Although the amount of the 572 

non-Fe metal is small, these pre-edge peaks may reflect the increased energy needed to 573 

achieve electronic transitions to empty hybridized Me-S and S-S anti-bonding orbitals. 574 

 575 

Implications 576 

The experiments described herein attempt to determine how efficiently the trace elements 577 

Ni and Co are pyritized under low-temperature pyrite formation from mackinawite. A 578 

first and important result was that oxidation of FeSm by H2S did not produce pyrite, 579 

casting doubt on the validity of this as a pyrite formation pathway in the absence of 580 

oxidized surface sites. However, pyrite was successfully synthesized through oxidation of 581 

FeSm with elemental sulfur. The equilibrium concentration of Co and Ni in the initial 582 

FeSm predicted by the published distribution coefficients was not attained in our 583 

experiments due to the fast precipitation method used. Cobalt was lost from the solid 584 

during transformation, as evidenced by the diminished concentrations of Co in pyrite 585 

compared to FeSm. The concentration of Ni increased during transformation, possibly due 586 

to the dissolution of FeSm and preferential sequestration of Ni in pyrite. In both cases, 587 

pyrite formation was not complete in the presence of added metals, indicating a kinetic 588 

inhibition to the formation of pyrite in the presence of Co and Ni. Taken together, these 589 

results suggest that if the pyrite formation pathway can be determined to initiate from a 590 

precursor FeS phase, the concentration of Co in pyrite could serve as a conservative 591 
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record of environmental concentrations. Nickel, however, seems unreliable in this 592 

capacity, as pyrite appears to take up additional Ni in comparison to precursor FeSm, 593 

during its formation, as well as incorporate in other phases, such as elemental sulfur. A 594 

caveat of this work is that other pyrite formation mechanisms are possible, e.g. from 595 

another solid-phase precursor mineral such as greigite or by reductive dissolution of 596 

Fe(III) (oxyhydr)oxides with hydrogen sulfide, or an aqueous or colloidal species (e.g. 597 

FeSaq), and the fate of trace metals during transformation should also be evaluated under 598 

those conditions. Also, our results are specific only to Co and Ni, and should not be 599 

extrapolated to other metals. 600 
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 817 

Figure Captions 818 
 819 
Figure 1. XRD of a. FeS with and without Co and/or Ni, b. FeS with and without Co 820 
and/or Ni after pyrite synthesis for 4 or 20 d using the H2S oxidation protocol, and after 821 
pyrite synthesis with and without Co and/or Ni formed using the sulfur oxidation 822 
protocol. Reference reflections are shown for mackinawite (red), pyrite (black), elemental 823 
sulfur (yellow), greigite (green), and pyrrhotite (blue). Elemental sulfur was a residual 824 
phase following the sulfur oxidation protocol. 825 
 826 
Figure 2. Phase distribution maps generated from multiple XRF maps within the S K-827 
edge and point XANES in FeSm synthesized with Co or Ni. For each sample, the end-828 
member XANES points labeled on the map (numbers) correspond to the spectra at right, 829 
and their distribution is shown in the same color as the corresponding spectra. Fits are 830 
dotted black lines. The fit compositions, as reported in Table 1, are also given. Note that 831 
FeSm synthesized without metals was not mapped at multiple XRF energies. A. Results of 832 
FeSm synthesis with Co added. B. Results FeSm synthesis with Ni added. 833 
 834 
Figure 3. Top, S XANES spectra from oxically embedded FeSm compared to the same 835 
sample embedded anoxically (bottom). Data are black circles, and fits are thin black 836 
lines.  837 
 838 
Figure 4. Phase distribution maps generated from multiple XRF maps within the S K-839 
edge and point XANES in experiments where pyrite was produced from sulfur oxidation. 840 
For each sample, the end-member XANES points labeled on the map (numbers) 841 
correspond to the spectra at right, and their distribution is shown in the same color as the 842 
corresponding spectra. Fits are dotted black lines. The fit compositions, as reported in 843 
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Table 1, are also given. A. Results of pyrite synthesis from FeSm with no metals added. 844 
B. Results of pyrite synthesis from FeSm with Co added. C. Results of pyrite synthesis 845 
from FeSm with Ni added. 846 
 847 
Figure 5. Amount of metal in the solids produced from FeSm and pyrite synthesis in the 848 
presence of Co or Ni. The average of triplicate bulk measurements by ICP-AES or ICP-849 
OES are in black, with error bars representing the standard deviation. The median of 850 
individual pixels in grains determined on XRF maps collected at 8500 eV. The error bars 851 
are standard deviation of these data. 852 
 853 
Figure 6. Overplots of endmember FeSm and pyrite S XANES from samples synthesized 854 
with and without Co and Ni. The presence of Ni causes a shift for the pre-edge feature of 855 
FeSm and pyrite to be shifted to higher energy. A subtle shift is observed with Co, but 856 
only for FeSm. 857 
 858 
 859 
 860 
 861 
 862 
 863 
 864 
 865 
 866 
 867 
 868 
 869 
 870 
 871 
 872 
 873 
 874 
 875 
 876 
 877 
 878 
 879 
 880 
 881 
 882 
 883 
 884 
 885 
 886 
 887 
 888 
 889 



 35 

Table 1. Sulfur XANES fit data. 
Sample Number 

of 

Spectra 

End 

member 

(EM) ID 

FeS Pyrite Poly-

sulfide 

Sulfur Sulfate
a
 Comp. 

Sum 

chi sq. 

FeS (embedded 
oxically; 2013) 2 61 0.68       0.37 1.05 6.71 
FeS (embedded 
anoxically; 2014) 10 80 0.68       0.14 0.82 1.29 
    88 0.47   0.22   0.21 0.90 1.64 
Pyrite (2015) 8 8 0.20 0.74     0.05 0.99 1.33 
    10 0.06 0.78     0.11 0.95 0.51 
                    
FeS + Co (2015) 7 21 0.80       0.10 0.9 1.78 
    25 0.29   0.16   0.32 0.77 1.09 

FeS + Co H2S 
(2013) 8 23 0.88         0.88 3.13 
    24 0.66       0.11 0.77 3.73 
Pyrite + Co (2014) 12 4 0.12 0.63 0.22     0.96 1.02 
    7     0.29 0.69   0.98 3.17 
                    
FeS + Ni (2013) 23 27 0.68       0.14 0.82 1.63 
    31 0.62       0.41 1.03 10.01 

FeS + Ni H2S 
(2013) 10 2 0.82       0.06 0.88 2.84 
    4 0.83       0.08 0.91 24.24 
Pyrite + Ni (2015) 9 29 0.15 0.73     0.05 0.93 0.69 
    35   0.79 0.25     1.04 1.83 
aThe Sulfate standard was quenstedtite. 
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Table 2. Iron XANES fit data. 
Sample Number 

of 

spectra 

End 

member 

(EM) 

ID 

FeS Pyrite Marc-

asite 

Pyrr-

hotite 

Mag-

hemite 

Comp. 

Sum 

chi 

sq. 

Pyrite (2015) 10 15 1.01         1.01 1.55 
    16   0.62 0.40     1.02 0.05 
    20 0.57 0.43       1.00 2.91 
                    
FeS + Co 
(2013) 8 2 0.70     0.32   1.03 0.49 

FeS + Co H2S 
(2013) 8 5 1.04         1.04 0.59 
Pyrite + Co 
(2015) 10 53 0.99         0.99 1.20 
    54   0.99       0.99 2.16 
    58   0.42 0.59     1.01 0.17 
                    
FeS + Ni (2015) 8 26 0.70     0.30   1.00 0.24 
    30 0.48     0.54   1.02 1.06 

FeS + Ni H2S 
(2013) 3 1 0.95         0.95 6.85 
Pyrite + Ni 
(2014) 3 43   0.83 0.14     0.97 0.93 
    45     0.37   0.51 0.87 9.11 
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Table 3. Elemental concentrations as determined on digests by ICP-OES or ICP-AES. 
Solutions (ppm)  

ICP-OES Fe Co  Ni 

Ferrous ammonium sulfate (0.6M) NA 1.36±2.36 4.39±1.37 
Hydrogen sulfide (0.6M) 1.67±8.86 BD BD 

Ferrous ammonium sulfate (0.6M) with 2 
mM Co NA 223.20±0.33 4.40±0.84 

Ferrous ammonium sulfate (0.6M) with 
0.5 mM Ni NA 1.47±0.41 65.28±0.97 
Solids (mg element/g mineral) 

ICP-OES Fe Co  Ni 

FeS_no_metals 327.53 ±0.23 0.02±0.02 0.05±0.630 
FeS_Co 348.56±0.07 3.71±0.06 0.07±0.11 
FeS_Ni 319.23±0.36 0.023±0.26 1.05±0.26 
FeS_no_metals_20d 480.87±2.60 0.05±6.45 0.06±22.15 
FeS_no_metals_4d 483.14±1.65 0.03±10.04 0.027±68.14 
FeS_Co_4d 455.96±0.85 4.05±1.92 0.06±2.82 
FeS_Ni_4d 493.71±1.13 0.05±0.40 1.43±0.87 
ICP-AES Fe Co  Ni 

Pyrite_no_metals  NA BD BD 
Pyrite_Co NA 1.1±0.0 BD 
Pyrite_Ni 327.7±20.4 BD 3.4±0.1 

NA = element was either not quantified, or element was above the range of 
quantification.BD=below detection. Detection limits were 0.0008, 0.0011, and 0.0015 
ppm for Fe, Co, and Ni, respectively, for ICP-OES. Detection limits were 0.1, 0.1, and 0.2 
ppm for Fe, Co, and Ni, respectively for ICP-AES. The relative standard deviations are 
also reported. 
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Table 4. Semi-quantitiative Co and Ni concentrations determined from XRF maps. 
Solids (mg element/g mineral) Element Mean Median e.s.d. 

FeS_Co (2013) Co 4 3.6 1.6 
FeS_Ni (2013) Ni 0.5 0.4 0.3 
FeS_Co_4d (2013) Co 3.2 3.1 0.7 
FeS_Ni_4d (2013) Ni 0.5 0.4 0.2 
Pyrite_Co (2014) Co 1.6 1.3 0.5 
Pyrite_Ni (2014) Ni 0.6 0.5 0.4 
Analytical precision was 0.1 mg element/g FeSm, which is estimated as the 
detection limit. 
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