1	The effect of incorporated carbonate and sodium on the IR spectra of A-, B- and AB-type
2	carbonated apatites
3	Revision 2
4	Manuscript (6663) revised according to reviewers' comments (Aug 8, 2018) and
5	resubmitted
6	Manuscript, now 6800, revised according to reviewers' comments (Jan 13, 2019)
7	
8	Claude H. Yoder ¹ , Melissa M. Bollmeyer, Kathleen R. Stepien, and Robyn N. Dudrick
9	
10	Department of Chemistry, Franklin and Marshall College, Lancaster, Pennsylvania 17603, United
11	States
12	*Corresponding author 717-358-3806
13	Abstract
14	The substitution of carbonate in apatites has been voraciously explored for more than 60 years.
15	However, the characterization of the sites of carbonate substitution in apatite by the frequently
16	used identification method, infrared spectroscopy, is still incompletely understood. In a significant
17	departure from previous studies, a recent IR study concluded that most of the carbonate in apatites
18	resides in the channels, at least in apatites prepared at high temperature and pressure. A series of
19	A- and AB-carbonated calcium and strontium apatites have been prepared by aqueous precipitation
20	and by carbonation with CO ₂ at 800 °C. The type of carbonate substitution –A- (substitution for
21	hydroxide in the channel) or B- (substitution for phosphate)—was determined from the carbonate

¹ Corresponding author, claude.yoder@fandm.edu

22 asymmetric stretch (v_3) and out-of-plane bend (v_2) regions in the IR spectra. The IR v_3 and v_2 23 regions were analyzed by peak-fitting using both four- and six-peak models for the v₃ region. A 24 correlation of the band position of the high frequency A-type carbonate band frequency with 25 weight percent carbonate was observed for the calcium apatites, whereas a correlation of the band 26 positions of both the low and high frequency B-type carbonate bands with carbonate weight 27 percent occurs for the strontium apatites. The high-frequency member of the A-type carbonate v_3 28 region for the calcium apatites showed the greatest variation with a change in the composition (A-29 or B-type) of carbonate. The lower frequency observed for the A-type v_3 band of those calcium apatites with the greatest carbonate content suggested the importance of carbonate clusters in the 30 31 unit cell of highly carbonated apatites. Correlations of band frequencies with sodium content were 32 weaker than those for carbonate, even though carbonate and sodium were correlated with each 33 other in the calcium apatites. Analogous observations on the IR band frequencies in potassium-34 containing carbonated apatites, in which the potassium content is low, also suggest that carbonate 35 content is the primary driver for the interactions that produce overlap of A-type peaks with those in 36 the B-type region. This conclusion is further strengthened by the lack of a correlation of the 37 frequencies of A-type carbonate in strontium apatites in which the carbonate content is low. 38

A comparison of the IR carbonate v₃ region of the calcium apatites with that of apatites prepared under high pressure and temperature indicates that this region is very similar for both types of syntheses. Thus, previous conclusions about the distribution of A and B-type carbonate likely should be valid for most synthetic calcium apatites formed under a wide range of temperature and pressure conditions.

44	Keywords: Apatite, IR, carbonate, carbonate correlation with IR frequencies, peak-
45	fitting, A-type carbonate, B-type carbonate
46	
47	Introduction
48	The apatite family of minerals is said to accommodate in their structures about half of the elements
49	of the periodic chart (Kreidler and Hummel 1970; Hughes and Rakovan 2002) and as a result the
50	family has a variety of uses such as heavy metal remediation, ion-exchange, phosphors, and
51	nuclear waste encapsulation. The carbonated calcium hydroxyl- member of the family bears a
52	close resemblance to the inorganic portion of bone and teeth and is consequently used in a variety
53	of medical orthopedic applications.
54	
55	The substitution of the carbonate ion in the apatite structure is extremely facile (LeGeros 1981;
56	Elliott 1994, 2002; Pan and Fleet 2002; Fleet 2015). Bone contains about 6 wt% carbonate and
57	synthetic carbonated apatites have been studied since the 1950s, when LeGeros et al. (1969) found
58	that the presence of carbonate decreased the <i>a</i> -axial unit cell length relative to that of the parent
59	Ca10(PO4)6(OH)2, as expected for the replacement of phosphate by the smaller carbonate ion (B-
60	type substitution). In contrast, Wallaeyes (1954), Bonel (1972) and others found that the reaction
61	of apatite with CO ₂ at high temperatures produced a carbonated apatite for which the <i>a</i> -axis
62	increased in length and identified their product as having carbonate substituting for two hydroxides
63	in the apatite channel (A-type substitution). Since then there have been many examples of
64	aqueously precipitated apatites that have been identified as containing predominantly (generally
65	greater than 90%) B-type carbonate (LeGeros 1981; Elliott 1994, 2002; Pan and Fleet 2002).
66	

In a significant departure from previous studies, a recent IR study concluded that in apatites prepared at high temperature and pressure in the presence of sodium-containing reagents most of the carbonate resides in the channels (Fleet 2017). This careful analysis of the IR carbonate asymmetric stretch (v₃) region and the out-of-plane bend (v₂) region showed that the complexity of the v₃ region is a result of the intrusion of A-type doublets on the doublet of the B-type region (Fleet 2017). This decrease in frequency of the A-type doublet may be due to the presence of sodium ion (Fleet 2017).

75 Sodium (and other alkali metal cations used to charge-balance the anions present in the synthesis 76 reagents) can be incorporated into apatite during high temperature reactions of mixtures such as 77 CaCO₃, Na₂CO₃, CaHPO₄, and Ca(OH)₂ (Fleet and Liu 2007) or in aqueous precipitation reactions 78 such as the addition of Ca(NO₃)₂ to Na₂HPO₄ below 100 °C. These counter ions are generally 79 thought to replace those calcium ions (Ca2) that define the apatite channels (El Feki et al. 2000; 80 Pan and Fleet 2002). When reaction reagents contain the sodium counter ion, incorporation of Na⁺ 81 occurs as a result of co-substitution with carbonate in B-type substitution. The two most frequently 82 encountered charge compensation schemes for B-type substitution involve: a) the loss of 83 phosphate, calcium, and hydroxide (equation 1), and b) co-substitution of sodium with carbonate 84 and the loss of phosphate and calcium (equation 2).

85
$$CO_3^{2-} = PO_4^{3-} + Ca^{2+} + OH^-$$
 (1)

86
$$Na^{+} + CO_{3}^{2-} = PO_{4}^{3-} + Ca^{2+}$$
 (2)

87

The distinguishing features of A- and B-type carbonate in the IR spectral pattern of AB-type
apatites appear to be related to the amount of incorporated Na⁺(Fleet 2017; Fleet and Liu 2007)

90	and this may also be the case for apatites containing K^+ (Verbeeck et al. 1995). When sodium
91	substitutes for calcium (Ca2) the charge in the channel decreases and makes A-type substitution
92	less favorable (Barinov et al. 2008; Zyman and Tkachenko 2013). Formation of vacancies
93	(equation (1)) has the same charge-lowering effect and consequently also affects carbonate
94	substitution and characteristic vibrational frequencies. The effect of counter ions (and vacancies)
95	could also depend on the location and orientation of carbonate ions, with the frequencies of A-type
96	carbonate being more strongly affected than B-type due to the presence of Na ⁺ (substituting for
97	Ca2) in the channel (Fleet and Liu 2007; Madupalli et al. 2017).
98	
99	We report here our investigations of AB-apatites of the form $(A-)_n(B-)_mCMApOH$, where C =
100	carbonated, M = Ca and Sr, and n and m vary to produce different series of carbonated apatites that
101	range from pure A-type to AB-type apatites. AB-type apatites were prepared by aqueous
102	precipitation reactions, whereas A-type products were prepared by carbonation reactions of apatite
103	or carbonated AB-type apatite at 800 °C. A knowledge of the location of carbonate in the apatite
104	structure is crucial to understanding the properties and biological behavior of biomaterials,
105	particularly the possible role of the channel in ion transport and acid-base control of body fluids
106	(Fleet 2017). In particular, our work contributes to an understanding of the extent to which the
107	analyses that showed large amounts of A-type carbonate in high temperature/pressure sodium-
108	bearing apatites can be extrapolated to their aqueously precipitated counterparts.
109	
110	Experimental Section
111	Synthesis of apatite starting materials
112	

All samples were prepared using Milli-Q deionized water and ACS reagent grade reagents with
 purities above 98%. ¹³C labeled CO₂ (99% purity) was obtained from Sigma-Aldrich. Yields were
 >90%.

116

117 *Calcium hydroxylapatite (CaApOH):*

A 60 mL portion of 0.20 M (NH4)₂HPO4 was added dropwise at a rate of 1 drop/sec to 60 mL of 0.33 M Ca(NO₃)₂•4H₂O at 80°C. The ratio of calcium to phosphate followed the 5:3 stoichiometry of calcium hydroxylapatite (Ca₅(PO₄)₃OH). The pH was manually adjusted to 9 using 3 M NH₃ and maintained at that pH during the digestion time of 1 day at 80 °C. The precipitate was filtered through a medium porosity sintered glass filter crucible using vacuum filtration, washed 4 times with a total of 120 mL of distilled water, and dried in a vacuum oven for 3 hours at 120 °C and 5 torr.

125

126 For the aqueous synthesis of carbonated calcium hydroxylapatites (CCaApOH), 25 mL of 0.36 M 127 NH₄H₂PO₄ and 25 mL of 0.60 M Ca(NO₃)₂•4H₂O were added simultaneously at a rate of 0.5 128 drop/sec to an amount of a 2.16 M sodium carbonate solution necessary to prepare various mole 129 ratios of carbonate to phosphate at 80°C. A mole ratio of 1 to 1 (carbonate to phosphate) required 130 4.2 mL of the 2.16 M carbonate solution, which was added to 50 mL H₂O. The pH was adjusted to 131 9 using 3 M NH₃ during the addition and was maintained throughout the digestion time of 4 hours. 132 The precipitate was filtered through a medium porosity sintered glass filter crucible using vacuum 133 filtration, washed 4 times with a total of 120 mL of distilled water, and dried for 5 hours at 130°C 134 followed by a vacuum drying for 6 hours at room temperature and 5 torr. 135

136 Strontium hydroxylapatites (SrApOH):

137	A 50 mL solution of 0.22 M Sr(NO ₃) ₂ was added dropwise at a rate of 1 drop/sec to 50 mL of 0.13
138	M NH ₄ H ₂ PO ₄ at 90°C. The ratio of strontium to phosphate was based on the 5:3 stoichiometry of
139	strontium hydroxylapatite (Sr5(PO4)3OH). The pH was adjusted to 9 using 3 M NH3 during the
140	addition and was maintained throughout the digestion time of 2 days at 90 °C. The precipitate was
141	filtered through a medium porosity sintered glass filter crucible using vacuum filtration, washed 4
142	times with a total of 120 mL of distilled water, and dried in a vacuum oven for 24 hours at room
143	temperature and 5 torr.
144	
145	Carbonated strontium hydroxylapatites (CSrApOH) were synthesized in the presence of varying
146	concentrations of sodium by using different phosphate reagents. A 50 mL portion of 0.22 M
147	Sr(NO ₃) ₂ and 50 mL of 0.13 M (NH ₄) ₃ PO ₄ , NaH ₂ PO ₄ , or Na ₃ PO ₄ •12H ₂ O were added
148	simultaneously at a rate of 1 drop/sec to 50 mL of 0.092 M NaHCO3 or Na2CO3 at 90°C. The pH
149	was adjusted to 9 during the addition using 3 M $\rm NH_3$ or 3 M $\rm NaOH$ and was maintained
150	throughout the digestion time of 1-2 days. The precipitate was filtered through a medium porosity
151	sintered glass filter crucible using vacuum filtration, washed 4 times with a total of 120 mL of
152	distilled water, and dried in a vacuum oven for 24 hours at room temperature and 5 torr.
153	
154	Reaction of apatites with CO ₂

About 0.1 g of the finely ground sample of apatite was placed as a thin layer in a ceramic boat and was calcined in a muffle furnace at 800°C for 7-24 hours (Wallaeys 1954). The calcined sample was placed in a quartz tube in a tube furnace. Activated (350 °C) molecular sieves were placed in 250 mL filter flasks at both ends of the tube, with the exit filter flask connected to a flow meter and bubbler. Research grade CO₂ with less than 0.5 ppm H₂O was passed through the apparatus at a
flow rate of about 0.1 L/min and the tube furnace was heated to 750-850°C for 1 day. Samples
treated with ¹³C labeled CO₂ were heated for 2 hours at 800°C under CO₂ gas using a flow rate of
about 0.2 L/hour.

163

164 Characterization

165 Products were characterized using X-ray powder diffraction with a PANalytical X'Pert PRO

166 Multipurpose diffractometer Theta-Theta System with Cu-K α radiation (λ = 1.54060 Å). The

167 samples were prepared on a cavity slide and were analyzed using the PANalytical program

168 X'Pert Highscore Plus in a range from 5 to 70° 2θ using a step size of 0.0167 °/step and a dwell

169 time of 3.34 s/step. Unit cell parameters were determined by referencing peaks to a PDF card

170 for the corresponding apatite. The program UnitCell for OS X (Holland and Redfern 1997) was

171 then used to obtain *a*- and *c*-axial lengths. Unit cell parameters were also determined by the

172 Rietveld method using the PANalytical X'Pert Highscore Plus (version 2.3e) program. Based on

173 repeated determinations of unit cell parameters on one compound the error is estimated to be

 ± 0.001 Å. All products were free of impurities such as calcium or strontium phosphates

 $(M_3(PO_4)_2)$ and calcium or strontium carbonate as indicated by XRD analyses.

176

A Bruker Tensor 37 IR Spectrometer with a Ge ATR mount was used to obtain the IR spectra of products using 256 scans at a resolution of 2 cm⁻¹. The uncertainty in peak positions obtained from multiple scans of the same sample is ± 0.1 cm⁻¹. For all samples peak-fitting was performed on spectra not modified by smoothing or base-line correction using Thermo Scientific GRAMS/AI

181	Spectroscopy Software Suite. Peak fitting of the carbonate asymmetric stretch region (v_3) was
182	based on the model that the spectral envelope is a sum of intensity due to two to four underlying
183	doublets, the members of which are nearly equally intense. This method is based on the
184	assumption that both A- and B-type carbonate ions have D_{3h} or lower symmetry in the apatite
185	structure (Tacker 2008). In the case of carbonate ions of less than D _{3h} symmetry, each structurally
186	different ion gives rise to two asymmetric stretch and one out-of-plane bend peaks (Fleet 2015,
187	2017). The use of Gaussian functions for the carbonate asymmetric stretch region (v_3) and either
188	Gaussian or Lorentzian functions for the out of plane bend region (v_2) accounted for at least 96%
189	of the spectral intensity for most samples. The average standard error for the peak-fitting was
190	0.0011. Populations of carbonate environments (A, A', and B) were obtained from band areas
191	assuming that the extinction coefficients for each band were the same.
192	
193	Weight percent sodium was obtained using X-ray fluorescence spectroscopy (XRF) with a
194	Panalytical PW 2404 Vacuum Spectrometer equipped with a 4 kW Rh X-ray tube. An anhydrous

195 powder of each sample was prepared by ignition at 1200 °C, and then used to prepare a glass disc

196 with one part anhydrous sample material and 9 parts lithium tetraborate. The uncertainty in the

197 determination of the percentage of sodium is ± 0.02 %.

198

Carbonate was determined by combustion analysis using a Costech ECS4010 CHNS Analyzer and by Galbraith laboratories (Knoxville, TN), both of which involve the determination of carbonate by combustion at 950 °C. Use of oxygen to enhance combustion in the analyzer produced carbonate percentages similar to those obtained without the use of O₂. The carbonate content of similar carbonated apatites were previously determined by a combination of combustion analysis,

204	Raman and IR spectroscopy (Deymier et al. 2017), but for the samples in the current study the use
205	of combustion analysis was found to be more reliable. The reported carbonate percentage for each
206	sample was obtained from the average of two or three determinations taken from the in-house
207	(Costech) and the Galbraith analyses. The relative error in the carbonate percentage is 5 %.
208	
209	NMR spectra were obtained on an Agilent Unity 500 MHz NMR spectrometer equipped with a 3.2
210	mm solids probe capable of spin speeds of 24 kHz. ³¹ P and ¹³ C spectra were obtained at 202.094,
211	and 125.500 MHz, respectively, using delay times of 30 and 100 sec, respectively. ³¹ P was
212	referenced to calcium hydroxylapatite (Biorad) at 0.0 ppm, and ¹³ C was referenced to adamantane
213	at 37.4 ppm.
214	Results
215	In order to study the effects of carbonate and sodium incorporation on the carbonate vibrational
216	frequencies in apatite, three types of carbonate-containing apatites were utilized: a) A-type,
217	prepared by reaction of uncarbonated CaApOH or SrApOH with CO2 at 800 °C, b) AB-type
218	calcium or strontium apatites, prepared by aqueous precipitation using sodium-containing
219	reactants, and c) AB-type calcium or strontium apatites, prepared by carbonation of AB-type
220	apatites (prepared by aqueous precipitation, subsequently calcined at 800 °C) with CO ₂ at 800 °C.
221	
222	The formation of the channel (A-type) carbonate ion in the reaction of CO ₂ with apatite can be
223	rationalized by the reaction of hydroxide, present in the channels, with the Lewis acidic CO ₂ :
224	$CO_2 + 2 OH^- \rightarrow CO_3^{2-} + H_2O$
225	If all of the channel hydroxide ions were consumed to form A-type carbonate, the compound with
226	formula Ca10(PO4)6CO3 and carbonate wt% of 5.8 would be formed. If AB-type apatite is used in

- the carbonation reaction, the preliminary calcination step removes carbonate according to the
- equation
- $CO_3^{2-} \rightarrow CO_2 + O^{2-}$

230 The "oxide" ion at the location of the former carbonate ion may react with CO₂ in the carbonation

step to reform carbonate ions. In the carbonation step CO₂ may also react with hydroxide ion

$$CO_2 + O^{2-} \rightarrow CO_3^{2-}$$

in the channel. These apatites also contain varying amounts of sodium, present as a result of the substitution of calcium by sodium during the aqueous preparation of the AB-type apatite in the presence of sodium as a counter ion. The relative amounts of A- and B-type carbonate therefore depend on the amount of carbonate in the starting, AB-type apatite and on the extent of the carbonation reaction, which is controlled by the flow rate and duration of the flow of CO₂.

238

239 A-type apatites

240 The products of all reactions of an apatite with CO₂ were characterized by powder XRD, carbon combustion analysis, IR spectroscopy, and for some products, solid state MAS single pulse ¹³C 241 242 NMR spectroscopy. The IR spectrum of the A-type carbonated product (76P) of the reaction of 243 CaApOH (76) with CO₂ at 800 °C contained peaks of nearly equal intensity in the carbonate asymmetric stretch (v_3) region at 1541 and 1463 cm⁻¹. The carbonate out-of-plane bend (v_2) region 244 245 contained a single peak (879 cm⁻¹) with a small amount of low frequency asymmetry. In the apatites prepared from ¹³C labeled CO₂, these peaks appeared at 1508, 1419, and 854 cm⁻¹, shifted 246 to lower frequencies as expected because of the greater mass of the ¹³C isotope relative to that of 247 248 ¹²C. By comparison, Bonel (1972) obtained peaks for the isotopically unlabeled apatites at 1534, 1465 and 883 cm⁻¹, while Jebri et al. (2017) observed peaks at 1549,1460 and 879 cm⁻¹. The 249

250	frequencies of both the v_3 and the v_2 peaks are indicative of A-type carbonate, which has higher
251	frequencies than those of B-type carbonate (Elliott 1994; Fleet 2015, 2017).
252	
253	The carbonate v_3 region (Figure 1) of the product (16A) of the reaction of SrApOH (16) with CO ₂
254	at 830°C contained peaks at 1545 and 1454 cm ⁻¹ , which can be assigned to an A-type doublet as
255	previously reported (1537, 1451 cm ⁻¹) by Bonel (1972). In the v_2 region a peak at 877 cm ⁻¹
256	corresponds to the peak at 874 cm ⁻¹ reported by Bonel (1972). In the IR spectrum of strontium
257	hydroxylapatite prepared using ¹³ C labeled CO ₂ the peak positions were 1508, 1415, and 851
258	cm^1 .
259	Figure 1
260	
261	The unit cell parameters obtained for products of the reaction of MApOH ($M = Ca \text{ or } Sr$) with CO_2
262	at 800 °C (Table 1) provide additional assurance of A-type substitution. The increase in the a-
263	axial length of the A-type products relative to the axial length for the un-carbonated parent has
264	been recognized as a fundamental characteristic of A-type substitution since the 1950s (Elliott
265	1994).
266	
267	Table 1.
268	AB-type apatites
269	In the aqueous addition reactions used to prepare the AB-type apatites, co-substitution of sodium
270	and carbonate ions occurred to give, on average, 0.6 mole of Na per mole of incorporated
271	carbonate ($r^2 = 0.95$). These carbonated apatites were subjected to calcination at 800 °C, and
272	subsequently to reaction with CO ₂ . Thus, the products are AB-type apatites, which contain

varying amounts of sodium, present as a result of the replacement of some Ca²⁺ ions by Na⁺ ions 273 274 during the aqueous preparation of the B-type apatite.

275

276	The IR spectrum of a product of this oxide/hydroxide-directed carbonation can be seen in Figure 2,
277	which shows the carbonate v_3 and v_2 regions, as well as the phosphate v_3 region of the starting
278	carbonated apatite (32) and the product (32P) of the reaction with CO ₂ . Both the v_3 and v_2
279	carbonate regions show that (32) appears (top spectrum) to contain mostly B-type carbonate,
280	which was removed by calcination leaving oxide in its place (middle spectrum). During
281	carbonation the CO ₂ with both oxide ions, which essentially reproduces the B-type carbonate of the
282	starting apatite, and with hydroxide ions in the channel (bottom spectrum).
283	
284	The small high frequency peak at 1543 cm ⁻¹ in the product (32P) can be attributed to A-type
285	carbonate because of its position relative to that of the A-type carbonate in (76P) shown in Figure
286	3 (a) middle panel. The increase in the intensity of the high frequency limb of the B-type doublet
287	(1452 cm ⁻¹) can be ascribed to the intrusion of the low frequency limb of the A-type doublet. The
288	presence of only a small amount of A-type carbonate can be attributed to the relatively short
289	duration of the reaction; that is, there was insufficient time for the CO ₂ to produce additional
290	channel carbonate ions.
291	
292	Like the v_3 region, the v_2 region of the carbonated product can be rationalized as a combination of
293	a small amount of A-CCaApOH with a majority of B-CCaApOH. The 874 cm ⁻¹ frequency of the

major peak of the product confirms the dominance of B-type carbonate (Fleet 2015, 2017). 294

Figure 2 295

296

297 IR band-fitting

298 A careful analysis of the carbonate asymmetric stretch (v_3) and out-of-plane bend (v_2) regions requires the fitting of bands to an envelope of spectral intensity that extends from about 1560 to 299 1370 cm⁻¹ (v_3) and from about 880 to 840 cm⁻¹ (v_2) for calcium apatites. Two models were used 300 301 for band-fitting of the calcium apatites: for both models the number of bands in the v₃ region was 302 twice the number of bands used in the v_2 region. Because the v_2 region is relatively free of other peaks it generally does not require baseline correction and is most definitive of the type of 303 304 carbonate substitution (Fleet 2015). For all of the AB-calcium apatites in this study, over 95% of 305 the spectral intensity in both regions was accounted for by Gaussian functions. In the v_2 region one band was present in the A-carbonate region of 880 - 875 cm⁻¹, and one band appeared in the 306 B-carbonate region of 874-870 cm⁻¹ (Fleet 2015, 2017). In the v₃ region each carbonate ion in a 307 308 different environment appears as a doublet of nearly equally intense bands.

309

310 In the four-band model (see Figure 3 (a)), the carbonate v_3 region was accounted for with four 311 bands—two A-type and two B-type. In the second model (see Figure 3 (b)) six bands were utilized in the v_3 region. The six-band model has a number of advantages over the four- band 312 313 model: a) it accounts for a greater percentage of the spectral intensity, b) it accommodates the use 314 of doublet pairs of nearly equal areas, and c) the separation of the bands in each doublet (Δv) for A 315 and B bands are more comparable to A and B assignments in the literature (Tacker 2008), where 316 $\Delta v(A) > \Delta v(B)$. The six-band model has the disadvantage of introducing two bands, labeled A' in the v₃ region, that have no simple correspondence to most literature band assignments. These two 317 318 A' bands are present in the fitted v_3 region of the IR spectra of every apatite in this study and are of

319	similar width and frequency (ca. 1400 and 1500 cm ⁻¹) to bands 2 and 6 in the band-fitted v_3 region
320	of LM005 (Fleet 2017). Fleet (2017) assigned these bands to members of doublets attributed to A-
321	type carbonates in different channel environments (Fleet 2017). The 6-band model requires the use
322	of three bands in the v_2 region, two of which are believed to correspond to two A-type carbonate
323	environments and one to B-type carbonate. Because of the change in population of the A' band
324	with carbonate/sodium incorporation we attribute the A' band to carbonate in channels in which a
325	calcium ion has been replaced by either a sodium ion or a vacancy. The band at 866 \mbox{cm}^{-1} in the ν_2

- region could also be assigned to labile carbonate (Rey et al. 1989).
- 327

328 Figure 3, with its vertical stacks of three panels, shows the relationship of the bands in the v_3 region of essentially 100 % A-type carbonate apatite (76P) (middle panel) to the fitted Gaussian 329 330 bands of the same region for apatite (82P) (bottom panel) that resulted from the reaction of AB-331 type aqueously precipitated apatite (82) (top panel) with CO₂. Because the v_2 region contains bands at 879 and 872 cm⁻¹, strongly suggestive of A and B-type carbonates, respectively, the v₃ 332 333 region of 82P should be described by a total of four Gaussian bands. Both the four- and six-band 334 models for fitting the v₃ region of apatites (82) and (82P) are shown in Figure 3. Figure 4 shows 335 the three-band interpretation of the v_2 region of (82). consistent with the six-band fitting for the v_3 336 region.

337 Figure 3

Figure 4

The process of tracing the A- and B-type bands through band-fitting is also shown (Figure 5) for an apatite containing a greater percentage of carbonate. The aqueously precipitated apatite (33)

361 362	Discussion
360	
359	Figure 6
358	Table 3
357	frequencies for the carbonated strontium apatites are given in Table 3.
356	to an analysis of the areas of the constituent v_3 peaks (82 % A-type based on v_2). Band
355	1427 and 1397 cm ⁻¹ . The carbonate composition of the product consists of 78% A-type according
354	visible in the v_3 region. The A-type bands appear at 1544 and 1452 cm ⁻¹ with the B-type bands at
353	Although the product contains considerable A-type carbonate, the B-type carbonate region is still
352	strontium apatite (44) containing 3.8 wt% carbonate and 0.3 wt% sodium is shown in Figure 6.
351	1) (Weidner et al. 2015; Jebri et al. 2012). An example of the carbonation product (44P) of a
350	some compounds, consistent with the increase in a-axis length with carbonate substitution (Table
349	areas in the v_2 region reveals that A-type carbonate constitutes over half of the total peak areas in
348	in the carbonated strontium apatites (Weidner et al. 2015). Analysis of the strontium apatite band
347	The calcium and strontium apatites differ by the presence of a greater amount of A-type carbonate
346	Table 2
345	Figure 5
344	at 1532 and 1458 cm ⁻¹ . Band frequencies are given in Table 2.
343	bands mirror two bands in (33P) at 1443 and 1409 cm ⁻¹ . The A-type bands of the product appear
342	represent A-type bands, whereas the B-type doublet appears at 1444 and 1413 cm ⁻¹ . The B-type
341	is shown in the top panel of figure 5, using a six-band model. The bands at 1528 and 1470 cm^{-1}
340	contains 19.8 wt% carbonate and 3.9 wt% sodium. Band-fitting for the v_3 carbonate region of (33)

363	Many apatites contain an alkali metal cation M ⁺ that has substituted for calcium in the process of
364	compensating for the local charge imbalance that occurs during substitution of carbonate for
365	phosphate in apatites precipitated in aqueous solution. Although M ⁺ may be a counter ion in, for
366	example, a phosphate reagent (e.g., Na ₃ PO ₄) used in the synthesis of apatite, it is not necessarily
367	incorporated into the apatite; that incorporation depends in part upon its stability in the apatite
368	structure. For example, the use of Rb ₃ PO ₄ as a reagent in the synthesis of a sulfated apatite results
369	in very small amounts of incorporated Rb^+ in the product apatite due to the large size of the ion
370	(Tran et al. 2017). However, the use of sodium reagents in aqueous carbonate substitution
371	reactions generally results in sodium-containing products, such as Ca ₉ Na(PO ₄) ₅ (CO ₃)(OH) ₂ ,
372	probably because of the energetically favorable exchange of sodium for calcium (De Maeyer, et al.
373	1996). In this study sodium was introduced by co-substitution with carbonate utilizing sodium-
374	containing reagents.
375	
376	The frequencies of the carbonate (v_3) asymmetric stretch modes of carbonated apatites are
377	influenced by a variety of factors such as:
378	a) the local environment of carbonate, including electrostatic interactions with cations and
379	other anions. These interactions produce the higher asymmetric stretch and out-of-plane bend
380	frequencies for A-type carbonate relative to B-type carbonate. Electrostatic interactions also
381	affect carbonate substituted for phosphate, but are weaker due to the greater separation of
382	carbonate from the channel cations.
383	

b) the number and proximity of other carbonate ions. If the concentration of carbonate is low,
it is statistically likely that carbonate ions are randomly scattered throughout unit cells over the

386 entire apatite crystallite. At higher concentrations, there is a higher probability of forming

clusters of carbonate ions, thereby producing greater inter-carbonate interactions.

388

387

389	c) The presence of Na^+ ions (and other +1 counter ions), as substitutions for Ca^{2+} in the channel
390	wall lowers the charge surrounding carbonate in the channel, thereby potentially favoring
391	substitution of carbonate for phosphate (Zyman and Tkachenko 2013; Yoder et al. 2016). The
392	decrease in charge within the channels is also experienced by B-type carbonate ions. Because
393	substitution of M^+ for Ca^{2+} usually occurs during co-substitution of carbonate it is likely that
394	the distance between the substituted carbonate and the M^+ ions is relatively small (within the
395	same or neighbor unit cells), potentially making the effect of Na ⁺ on vibrational frequencies
396	significant. It is also likely that A- and B-type carbonate and Na ⁺ are physically coupled, an
397	interaction supported by X-ray diffraction data (Fleet 2015). Because of the smaller distance
398	between an A-type carbonate ion and a Na ⁺ replacement for a channel calcium ion, the effect is
399	greater for A-type carbonate (Fleet 2015). In the IR spectra of sodium-containing apatites
400	prepared at high temperature and pressure the high-frequency band of the type-A carbonate is
401	shifted from its frequency of ca. 1544 cm ⁻¹ in sodium-free carbonated apatites (synthesized at
402	high temperature and pressure) to below 1500 cm ⁻¹ where it is combined with, and
403	indistinguishable from, B-type peaks (Fleet and Liu 2007; Fleet 2015, 2017).

404

405 **Correlations of peak frequencies**

Tables 2 and 3 contain the carbonate asymmetric stretching (v₃) frequencies for all carbonated
calcium and strontium apatites in this study. A comparison of both A- and B-type carbonate
asymmetric stretch frequencies for the calcium apatites with both low and high amounts of A-type

409	carbonate (Table 4) shows that the amount of A-type carbonate does not much affect the B-type
410	carbonate stretch frequencies, which vary only by 9 cm ⁻¹ for both the high- and low-frequency
411	members. The A-type frequencies, on the other hand, vary by 16 cm ⁻¹ (high frequency member)
412	and 14 cm ⁻¹ (low frequency member). Table 2 shows a variation of 26 and 22 cm ⁻¹ in the high-
413	and low-frequency A-type bands and 12 and 11 cm ⁻¹ in the high- and the low-frequency B-type
414	bands. The position of the high-frequency member of the A-type carbonate v_3 region therefore has
415	the greatest variation with change in the proportion of A- and B-type carbonate ions (cf. Madupalli
416	et al. 2017).

- 417 **Table 4**
- 418

419 The carbonate frequencies also appear to be related to the total amount of carbonate: lower values 420 for the frequencies of the high-frequency member of the A-type doublet are shown by the calcium 421 apatites with the largest amount of carbonate (Table 4). This observation suggests that there may 422 be a correlation between the extent of carbonation and the A-type frequencies. Figure 7 shows the 423 relationship between the high frequency member of the A-type doublet for the calcium apatites and 424 the percent carbonate in the apatite with two points omitted. Although the relationship is clear, the point-by-point correlation is only moderate ($r^2 = 0.69$), but with two points omitted the correlation 425 improves to $r^2 = 0.86$. A very similar correlation was obtained with band frequencies obtained 426 using the four-band model. 427

428

Scatter in the correlations can be attributed to errors in the carbonate content (relative error = 5%),
errors in band fitting (which depend on the model used, the number and types of bands employed,

431 and the quality of the fit to the spectral data), spectral processing (the use of smoothing and/or base

	Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6800
432	line correction), and the resolution and quality of the original spectra. In our experience the
433	principal source of error is likely to reside in the carbonate wt%, and this is shown in the error bars
434	in Figure 7.
435	Figure 7
436	Because wt% CO3 and wt% Na are correlated in the apatite samples, a correlation of the
437	frequencies for the high frequency type-A band relative to wt% Na was also expected, but is
438	weaker than that for carbonate. Correlations of the other bands (low-frequency A-type, high- and
439	low-frequency B-type) with wt% carbonate (and wt% Na) are considerably weaker.
440	
441	Carbonate clusters
442	The highly carbonated calcium apatites have an average of over two carbonate ions per unit cell,
443	which could lead to local concentrations of more than four carbonate ions in two adjacent unit
444	cells. These clusters would also include counter ions and/or vacancies and could involve special
445	accommodation or coupling (Fleet 2015) of carbonate ions. The clusters could produce a large
446	effect on the frequencies of local carbonate ions, especially those in the channels.
447	
448	Strontium apatite correlations
449	Surprisingly, the frequencies of the A-type carbonate bands in the v_3 region of the IR spectra of the
450	strontium apatites are not well correlated with either wt% CO3 or wt% Na, while the frequencies of

- both the high- (Figure 8, $r^2 = 0.89$) and low-frequency B-type ($r^2 = 0.75$) bands give correlations 451
- showing an increase in IR vibrational frequency with an increase in wt% CO₃. The low-frequency 452
- B-type frequencies also show a correlation with wt% Na ($r^2 = 0.77$), and, like the carbonate 453
- correlations, shown an increase in frequency with an increase in wt% Na. 454

455 **Figure 8**

The difference in the correlations of the A-type frequencies with respect to carbonate and sodium 456 concentrations found for the calcium and strontium apatites can be attributed to three factors: the 457 lower degree of carbonate saturation during synthesis of the Sr apatites, the larger size of the 458 459 channels in the Sr apatites, and the lower probability of carbonate clusters in the Sr apatites. 460 During the synthesis using the reagents and conditions specified in the Experimental Section, up to 461 approximately 20% carbonate can be incorporated into calcium apatite, but only 7% carbonate in strontium hydroxylapatite (if more carbonate is present, strontium carbonate is formed). The 462 463 smaller number of carbonate ions per unit cell for the strontium apatites, makes the probability of high carbonate clusters less likely. Finally, the larger size (Shannon 1976) of the strontium ion 464 (1.18 Å) than the calcium ion (1.00 Å) results in a greater distance between the carbonate ion (or 465 sodium ion) and the strontium ions in the channel and leads to a smaller effect on the vibrational 466 frequencies. 467

468

The stronger correlation of carbonate asymmetric stretch frequencies with carbonate concentration, 469 relative to sodium concentration, suggests that the vibrational frequencies may be affected 470 471 primarily by carbonate content. The possibility of the influence of carbonate/Na clusters on the Atype vibrational frequencies seems particularly likely for highly carbonated calcium apatites. The 472 473 lack of significant correlations between wt% carbonate and the high frequency A-type bands in the 474 strontium apatites may be a result of the larger channel distances and the smaller number of 475 carbonate ions per unit cell (and smaller probability of carbonate/sodium clusters) in these compounds. 476

478	The apatites explored in this study accommodate carbonate mainly by co-substitution of sodium.
479	Our attempts to synthesize highly carbonated apatites in the presence of potassium ions indicate
480	that these products contain only a small percentage of potassium and a maximum of 14 wt%
481	carbonate (the same mole ratios in the presence of Na^+ produced 20 wt% carbonate). The v ₃ region
482	of the more highly carbonated apatites containing a ten times smaller number of moles of
483	potassium than their sodium homologs also showed a decrease in the frequency of the highest
484	frequency A-type peaks relative to that frequency in less carbonated apatites. Hence, it is likely
485	that the extent of carbonation, rather than the amount of counter ion, controls the change in
486	vibrational frequencies.
487	
488	
489	Implications
490	
491	Although other charge balance mechanisms for B-type carbonate incorporation in apatites may not
492	show precisely the same effects on vibrational frequencies (Vignoles et al. 1988), sodium-
493	containing apatites prepared by solid state reaction at high temperature and pressure have a similar
494	pattern of vibrational frequencies to the ones in this study. Figure 9 compares the carbonate v_3
495	region of a sodium-containing apatite (LM005) prepared at high temperature and pressure (Fleet
496	2017) with the same region of the IR spectra of two apatites from this study (77 and 77P). The
497	higher intensity of the middle peak at ca. 1450 cm ⁻¹ in LM005, relative to those of the apatite
498	starting materials (such as (77)), which contain mostly B-type apatite, is a result of the greater
499	percentage of A-type carbonate, characteristic of reactions at high temperature (Yoder et al. 2016).
500	Figure 0a shows that the high temperature/pressure anatite is closer in everall appearance to

501	products containing a greater percentage of A-type carbonate (such as (77P)), as well as human
502	enamel (Fleet and Liu 2007). Fleet's demonstration of higher percentages of channel carbonate in
503	apatites prepared at high temperature and pressure depended heavily on the deconvolution of the
504	IR carbonate v_3 region of sample LM005. It appears to us likely that these observations (Fleet
505	2017) can be extrapolated to synthetic apatites prepared by aqueous precipitation and probably also
506	to bioapatites. The "B-type appearance" of the v_3 carbonate region of the IR spectra of apatites
507	with greater carbonate and sodium concentrations is a result of the decrease in frequency of the
508	high frequency A-type band and a change in the population of the A- and A'-type bands.
509	
510	Finally, we return to the interpretation of the A' bands in the fitted v_3 and v_2 carbonate regions of
511	the IR spectra of the calcium hydroxylapatites (Table 3). If our interpretation of the A' sites as a
512	second channel environment is correct, then all of the calcium apatites prepared in this study have
513	a greater percentage of channel carbonate than that reported in the vast majority of the apatite
514	literature. This conclusion is also borne out by our three-band interpretation of the v_2 carbonate
515	region of (82) (Figure 4) where the third band at 867 cm ⁻¹ could alternatively be assigned to
516	another carbonate species such as labile carbonate (Rey et al. 1989). This region is unchanged
517	after heating to 600 °C (24 h) making labile carbonate unlikely. In the absence of a deconvolution
518	model that would eliminate the need for a second A-type environment we propose that additional
519	channel sites be considered for carbonated calcium apatites prepared in aqueous solution.
520	Figure 9
521	Acknowledgements
522	The authors are indebted to Jill Pasteris (Department of Earth and Planetary Sciences, Washington

523 University, St Louis, MO) for Raman spectra and helpful discussions, Stanley and Karen

524	Mertzman and Emily Wilson (Department of Earth and Environment, Franklin and Marshall
525	College) for analytical work, the Camille and Henry Dreyfus Foundation for a Senior Scientist
526	Mentor award (CHY), and the Lucille and William Hackman Program and the Yoder Student
527	Research Endowment at Franklin & Marshall College for funding.
528	
529	
530	References
531	Barinov, S.M., Fadeeva, I.V., Ferro, D., Rau, J.V., Cesaro, S.N., Komlev, V.S., and Fomin, A.S.
532	(2008) Stabilization of carbonate hydroxyapatite by isomorphic substitutions of sodium for
533	calcium, Russian Journal of Inorganic Chemistry, 53, 164-168.
534	
535	Bonel, G. (1972) Contribution to the study of the carbonation of apatite. 1. Synthesis and
536	physicochemical properties of type A carbonated apatites. Annales de Chimie France, 7, 65-87.
537	
538	De Maeyer, E.A.P., Verbeeck, R.M.H., and Pieters, I.Y. (1996) Carbonate and alkalimetal
539	incorporation in calciumhydroxyapatite. Trends in Inorganic Chemistry, 4, 157-171.
540	
541	Deymier, A.C., Nair, A.K., Depalie, B., Qin, Z., Arcot, K., Drouet, C., Yoder, C.H., Buehler, M.J.
542	Thomopoulos, S., Genin, G.M., and Pasteris, J.D. (2017) Protein-free formation of bone-like
543	apatite: New insights into the key role of carbonation. Biomaterials, 127, 75-88.
544	
545	El Feki, H., Savariault, J.M., Salah, A.B., and Jemal, M. (2000) Sodium and carbonate distribution

546 in substituted calcium hydroxyapatite. Solid State Sciences, 2, 577-586.

5	4	7
\sim		'

- 548 Elliott, J.C. (1994) Structure and chemistry of the apatites and other calcium orthophosphates.
- 549 Studies in Inorganic Chemistry 18, 389 p. Elsevier, Amsterdam.

- 551 Elliott, J.C. (2002) Calcium Phosphate Biominerals, Reviews in Mineralogy and Geochemistry,
- 552 48, 427-455.

553

- 554 Fleet, M.E. and Liu, X. (2007) Coupled substitution of type A and B carbonate in sodium-bearing
- 555 apatite. Biomaterials, 28, 916-926.

556

557 Fleet, M.E. (2015) Carbonated hydroxyapatite: Materials, synthesis, and application. CRC Press,

558 Fl (Taylor and Francis Group).

559

- 560 Fleet, M. (2017) Infrared spectra of carbonate apatites: Evidence for a connection between bone
- 561 mineral and body fluids. American Mineralogist, 102, 149-157.

562

563 Holland, T.J.B., and Redfern, S.A.T., (1997) Unit cell refinement from powder diffraction data: the

use of regression diagnostics. Mineralogical Magazine, 61, 65-77.

565

- 566 Hughes, J.M., and Rakovan, J. (2002) The crystal structure of apatite, Ca₅(PO₄)₃(F,OH,Cl),
- 567 Reviews in Mineralogy and Geochemistry, 48, 1-12.

569	Jehri S	S Boughzala	Н	Bechrifa	Α	and Iemal	М	(2012)	Structural	analy	vsis	and
507	JUUII, L). Dougiizaia,	11.,	Decimina,	n.,	, and Joinai.	, IVI.	(2012)	Juluciulai	anar	y 313	anu

- 570 thermochemistry of "A" type phosphostrontium carbonate hydroxyapatites. Journal of Thermal
- 571 Analysis and Calorimetry, 107, 963-972.
- 572
- 573 Jebri, S. Boughzala, H., Bechrifa, A., and Jemal, M. (2013) Rietveld structural refinement of "A"
- 574 type phosphostrontium carbonate hydroxyapatites. Powder Diffraction, 28, S409-S424.
- 575
- 576 Jebri, S., Khattech, I., and Jemal, M. (2017) Standard enthalpy, entropy and Gibbs free energy of
- 577 formation of "A" type carbonate phosphocalcium hydroxyapatites. Journal of Chemical.
- 578 Thermodynamics, 106, 84-94.
- 579
- 580 Kazin, P.E., Zykin, M.A., Dinnebier, R.E., Magdysyuk, O.V., Tretyakov, Yu.D., and Jansen, M.
- 581 (2012) An unprecedented process of peroxide ion formation and its localization in the crystal
- 582 structure of strontium peroxy-hydroxyapatite Sr10 (P O4)6 (O2) x (O H)(2-2x). Zeitschrift fuer
- 583 Anorganische und Allgemeine Chemie, 638, 909-919.
- 584
- 585 Kreidler, E.R., and Hummel, F.A. (1970) The crystal chemistry of apatite structure fields of fluor-
- and chlorapatite. American Mineralogist, 55, 170-184.
- 587
- 588
- 589 LeGeros, R.Z., Trautz, O.R., Klein, E., and LeGeros, J.P. (1969) Two types of carbonate
- substitution in the apatite structure. Experientia, 25, 5-7.
- 591

- 592 LeGeros, R. Z., (1981) Apatites in biological systems. Progress in Crystal Growth and
- 593 Characterization, 4, 1-46.
- 594
- 595 Madupalli, H., Pavan, B., and Tecklenburg, M.M.J. (2017) Carbonate substitution in the mineral
- 596 component of bone: discriminating the structural changes, simultaneously imposed by carbonate in
- A and B sites of apatite. Journal of Solid State Chemistry, 255, 27-33.
- 598
- 599 Pan, Y., and Fleet, M.E. (2002) Compositions of the apatite-group minerals: substitution
- 600 mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48, 13-49.

- Rey, C., Collins, B., Goechi, T., Dikson, J.R., and Glimcher, M.J. (1989) The carbonate
- 603 environment in bone mineral: A resolution-enhanced Fourier transform infrared spectroscopy
- 604 study. Calcified Tissue International, 45, 157-164.
- 605
- 606 Shannon, R.D. (1976) Revised effective radii and systematic studies of interatomic distances in
- halids and chalcogenides. Acta Crystallographica Section A, 32, 751-767.

608

- 609 Sudarsanan, K., and Young, R.A. (1969) Significant precision in crystal structural details: Holly
- 610 Springs hydroxyapatite. Acta Crystallographica, Section B: Structural Crystallography and Crystal
- 611 Chemistry, 25, 1534-1543.

- 613 Tacker, R. C. (2008) Carbonate in igneous and metamorphic fluorapatite: Two type A and two
- 614 type B substitutions. American Mineralogist, 93, 168-176.

- Tran, L.K., Stepien, K.R., Bollmeyer, M.M., and Yoder, C.H. (2017) Substitution of sulfate in
- 617 apatite. American Mineralogist, 102, 1971-1976.
- 618
- 619 Verbeeck, R. M.H., De Maeyer, E.A.P., and Driessens, F.C.M. (1995) Stoichiometry of potassium-
- and carbonate-containing apatites synthesized by solid state reactions. Inorganic Chemistry, 34,
- 621 2084-2088.
- 622
- 623 Vignoles, M., Bonel, G., Holcomb, D.W., and Young, R.A. (1988) Influence of preparation
- 624 conditions on the composition of type B carbonated hydroxyapatite and on the location of the

625 carbonate ions. Calcified Tissue International, 43, 33-40.

- 626
- 627 Wallaeys, R. (1954) Study of carbonate apatite obtained by synthesis in the solid state. Silicon,
- 628 sulphur, phosphates. Colloguium of the International Union of Pure and Applied Chemistry,
- 629 Munster, Verlag Chemie, Weinheim, Germany, 183-190.
- 630
- 631 Weidner, V.L., Carney, M.C., Schermerhorn, D.V., Pasteris, J.D., and Yoder, C.H. (2015) A-type

632 substitution in carbonated strontium fluor-, chlor- and hydroxylapatites. Mineralogical Magazine,

- 633 *7*9, 399-412.
- 634
- 635 Yoder, C.H., Landes, N.T., Tran, L.K., Smith, A.K., and Pasteris, J.D. (2016) The relative
- 636 stabilities of A- and B-type carbonate substitution in apatites synthesized in aqueous solution.
- 637 Mineralogical Magazine, 80, 977-983.

- 639 Zyman, Z.Z., and Tkachenko, M.V. (2013) Sodium-carbonate co-substituted hydroxyapatite
 640 ceramics. Processing and Application of Ceramics. 7, 153-157.
- 641

642 **Figure Captions**

- **Figure 1**. The carbonate asymmetric stretch (v_3) , phosphate asymmetric phosphate stretch (v_3) ,
- and carbonate out-of-plane bend (v_2) regions of the IR spectrum of A-type CSrApOH (16P). The
- absence of an OH peak at ca. 3570 cm⁻¹ (not shown) suggests that carbonation of the channel
- eliminated most of the OH⁻. The wt% carbonate for the compound is 3.0, whereas a strontium
- apatite with complete substitution of carbonate for hydroxide (Sr₁₀(PO₄)₆CO₃) would contain 4.0
- 648 wt% carbonate.
- **Figure 2.** IR spectra of carbonated apatite (32), calcined (32), and (32P). Top spectrum:

650 carbonated apatite (32) prepared by aqueous precipitation using NaH₂PO₄. Middle spectrum: the

- apatite after calcination. Bottom spectrum: the apatite (32P) obtained by carbonation (CO₂) of the
- 652 calcined apatite.

- **Figure 3.** (a) Four-band fit and (b) six-band fit of the v₃ carbonate region of the IR spectra of AB-
- type CCaApOH (82) and the product (82P) of the reaction of (82) with CO₂ at 800 °C. Top panel:
- 656 Fit for AB-type CCaApOH (82). Middle panel: Bands for pure A-type CCaApOH (76P). Bottom
- 657 panel: Fit for the product (82P) of the reaction of (82) with CO₂ at 800 °C. Dotted vertical lines at
- 1542 and 1461 cm⁻¹ are band positions for A-type (76P), while lines at 1450 and 1416 cm⁻¹
- 659 correspond to B-type bands. Dotted spectral lines are the experimental spectrum, whereas solid
- 660 lines correspond to the "spectrum" created by peak fitting.

662	Figure 4. The carbonate v_2 region of the IR spectrum of CCaApOH (82) using a
663	three-band model for band-fitting. The bands occur at 880 cm ⁻¹ (A-type), 873
664	cm ⁻¹ (B-type) and 867 cm ⁻¹ (A'-type or labile carbonate). Dotted spectral lines
665	are the experimental spectrum, whereas solid lines correspond to the "spectrum"
666	created by peak fitting.
667	
668	Figure 5. Six-band fit of the carbonate v_3 region of the IR spectrum for AB-type CCaApOH (33)
669	and the product (33P) of the reaction of (33) with CO ₂ at 800°C. Top panel: Six-band fit for
670	CCaApOH (33). Middle panel: Peaks for pure A-type CCaApOH (76P). Bottom panel: Six-band
671	fit for the product (33P) of the reaction of (33) with CO ₂ at 800 °C. Dotted lines at 1542 and 1461
672	cm ⁻¹ are band positions for A-type (76P), while lines at 1444 and 1412 cm ⁻¹ correspond to B-type
673	bands. Dotted spectral lines are the experimental spectrum, whereas solid lines correspond to the
674	"spectrum" created by peak fitting.
675	
676	Figure 6. The carbonate v_3 region of the IR spectrum of the strontium apatite (44P), containing 3.8
677	% carbonate and 0.3 % Na. Dotted spectral lines are the experimental spectrum, whereas solid
678	lines correspond to the "spectrum" created by peak fitting.

679

Figure 7. Least squares correlation of the IR carbonate frequencies (v₃) for the high frequency
member of the A-type bands of AB-CCaApOH relative to wt% CO₃. Point for (41) omitted.

- **Figure 8.** The IR carbonate frequencies (v_3) for the high frequency member of the B-type peaks of
- AB-CSrApOH relative to wt% CO₃. Points for (44) and (42A) omitted.
- 685
- **Figure 9.** Comparison of IR carbonate spectral regions (v₃) of AB-CCaApOH (77) and (77P)
- from this study to AB-CCaApOH (LM005) prepared at high temperature and pressure (Fleet,
- 688 2017).
- 689
- 690 Tables
- 691 **Table 1.** Lattice parameters for A-type products. Uncertainty in lattice parameters obtained in this
- 692 study, ±0.001 Å.

Apatite	a-axis (Å)	c-axis (Å)	Ref.
С _А СаАрОН	9.521	6.873	Fleet and Liu, 2007
	9.530	6.888	this work
СаАрОН	9.424	6.879	Sudarsanan and Young, 1969
CASrApOH	9.864	7.264	this work
SrApOH	9.764	7.280	Kazin et al., 2012
	9.745	7.265	Jebri et al., 2013
CABNaSrApOH*	9.808	7.264	this work

- **Table 2.** IR carbonate (v_3) band frequencies (cm^{-1}) obtained for CCaApOH using the six- band
- 695 model.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2019-6800

Sample	А	Α'	А	В	В	A'	ΔΑ	ΔΑ'	ΔΒ	%CO3	%Na
77	1530	1493	1472	1449	1418	1397	58	96	31	10.5	1.88
77P	1541	1489	1465	1448	1414	1386	76	103	34	7.35	0.9
82	1537	1496	1471	1450	1420	1396	66	100	30	8.9	0.14
82P	1546	1500	1461	1451	1413	1404	85	96	38	4.1	0.037
33	1528	1493	1470	1444	1413	1390	58	103	31	19.85	3.9
33P	1532	1486	1458	1443	1409	1386	74	100	34	18.6	3.7
40	1520	1496	1480	1455	1416	1395	40	101	39	6	0.165
40P	1544	1505	1473	1448	1413	1384	71	121	35	7.25	1.44
41	1534	1495	1474	1451	1418	1395	60	100	33	6.2	0.042
41P	1540	1501	1462	1448	1417	1404	78	97	31	4.8	0.43
Averages	1535.2	1495.4	1468.6	1448.7	1415.1	1393.7	66.6	101.7	33.6		

Table 3. IR carbonate (v_3) band frequencies (cm^{-1}) obtained for AB-CSrApOH using the four-

band model.

Apatite	A-type peaks		Δv B-type peaks		Δν	wt% CO3	wt% Na	
44	1550	1443	107	1425	1402	23	4.6	0.33
44A	1544	1452	92	1427	1397	30	2.4	0.29
45	1549	1458	91	1434	1404	30	6.3	0.48
45A	1543	1454	89	no	no		4.6	0.27
34	1520	1462	58	1438	1408	30	6.9	0.89

		(Cite as Author DOI:	s (Year) Ti https://doi.c	tle. American org/10.2138/a	Mineralogist, m-2019-6800	in press.		
	34A	1546	1458	88	1437	1405	32	6.6	1.00
	62	1551	1457	94	1435	1409	26	5.0	0.45
	62A	1546	1459	87	1440	1400	40	4.5	0.25
	63	1551	1455	96	1433	1407	26	5.2	0.33
	63A	1544	1453	91	1434	1395	39	5.5	0.04
	Avg	1542	1454.5	87.5	1432	1403	29		
701	no = not ob	served							

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

no = not observed

Table 4. A comparison of carbonate asymmetric stretch (v_3) frequencies (cm⁻¹) of calcium apatites with low and high % A-type carbonate.

Apatite	% B-type*	A-type frequencies	B-type frequencies						
Mostly A-type									
82P	31	1546 1461	1451 1413						
41P	24	1540 1462	1448 1417						
Mostly B-type									
33P	97	1532 1458	1443 1409						
77	92	1530 1472	1449 1418						
* from a two band analysis of v ₂									

Figures

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6800

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6800

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6800

730

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6800

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6800

