1 Revision 1

2	
3	Meyrowitzite, Ca(UO ₂)(CO ₃) ₂ ·5H ₂ O, a new mineral with a novel uranyl-
4	carbonate sheet
5	
6	Anthony R. Kampf ^{1§} , Jakub Plášil ² , Travis A. Olds ³ , Barbara P. Nash ⁴ , Joe
7	MARTY ⁵ AND HARVEY E. BELKIN ⁶
8	
9	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los
10	Angeles, CA 90007, USA
11	² Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
12	³ Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre
13	Dame, IN 46556, USA
14	⁴ Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
15	⁵ 5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
16	⁶ United States Geological Survey (Ret.), Reston, VA 20190 USA
17	
18	Abstract
19	Meyrowitzite, $Ca(UO_2)(CO_3)_2 \cdot 5H_2O$, is a new mineral species from the Markey mine, Red
20	Canyon, San Juan County, Utah, U.S.A. It is a secondary phase found on calcite-veined
21	asphaltum in association with gypsum, markeyite, and rozenite. Meyrowitzite occurs as
22	blades up to about 0.2 mm in length, elongate on [010], flattened on {100}, and exhibiting the
23	forms {100}, {001}, {101}, {110}, and {011}. The mineral is yellow and transparent with
24	vitreous luster and very pale yellow streak. Fluorescence is from weak greenish yellow to
25	moderate greenish blue. The Mohs hardness is ca 2, tenacity is brittle, fracture is irregular,

[§] Email: akampf@nhm.org

•	
26	and there is one perfect cleavage, $\{-101\}$. The measured density is 2.70(2) g·cm ⁻³ . The
27	mineral is optically biaxial (+) with $\alpha = 1.520(2)$, $\beta = 1.528(2)$, and $\gamma = 1.561(2)$ (white light).
28	The 2 <i>V</i> (meas.) = 53.0(6)°; weak dispersion, $r > v$; optical orientation: $Z = \mathbf{b}$, $Y \land \mathbf{a} \approx 19^{\circ}$ in
29	obtuse β ; pleochroism pale yellow, $X \approx Y < Z$. Electron microprobe analyses provided the
30	empirical formula $Ca_{0.94}(U_{1.00}O_2)(CO_3)_2 \cdot 5(H_{2.02}O)$ on the basis of U = 1 and O = 13 <i>apfu</i> , as
31	indicated by the crystal structure determination. Meyrowitzite is monoclinic, $P2_1/n$, $a =$
32	12.376(3), $b = 16.0867(14)$, $c = 20.1340(17)$ Å, $\beta = 107.679(13)^{\circ}$, $V = 3819.3(12)$ Å ³ , and $Z =$
33	12. The structure ($R_1 = 0.055$ for 3559 $I_0 > 2\sigma I$) contains both UO ₇ pentagonal bipyramids and
34	UO_8 hexagonal bipyramids, the later participating in uranyl tricarbonate clusters (UTC). The
35	two kinds of bipyramids and the carbonate groups link to form a novel corrugated
36	heteropolyhedral sheet. This is the first structural characterization of a uranyl-carbonate
37	mineral with a U:C ratio of 1:2. Meyrowitzite is apparently dimorphous with zellerite.
38	
39	Keywords: meyrowitzite; new mineral species; uranyl tricarbonate; crystal structure; zellerite;
40	Markey mine, Red Canyon, Utah.
41	
42	INTRODUCTION
42 43	INTRODUCTION Carbonate minerals containing U^{6+} are usually relatively soluble in aqueous solutions.
43	Carbonate minerals containing U^{6+} are usually relatively soluble in aqueous solutions.
43 44	Carbonate minerals containing U^{6+} are usually relatively soluble in aqueous solutions. Aqueous uranyl-carbonate complexes are generally quite stable and are responsible for
43 44 45	Carbonate minerals containing U^{6+} are usually relatively soluble in aqueous solutions. Aqueous uranyl-carbonate complexes are generally quite stable and are responsible for uranium migration in the environment on a large scale (Langmuir, 1978; Clark <i>et al.</i> , 1995).
43 44 45 46	Carbonate minerals containing U ⁶⁺ are usually relatively soluble in aqueous solutions. Aqueous uranyl-carbonate complexes are generally quite stable and are responsible for uranium migration in the environment on a large scale (Langmuir, 1978; Clark <i>et al.</i> , 1995). The most abundant complexes are uranyl monocarbonate, [(UO ₂)(CO ₃)] ⁰ , uranyl dicarbonate,
 43 44 45 46 47 	Carbonate minerals containing U^{6+} are usually relatively soluble in aqueous solutions. Aqueous uranyl-carbonate complexes are generally quite stable and are responsible for uranium migration in the environment on a large scale (Langmuir, 1978; Clark <i>et al.</i> , 1995). The most abundant complexes are uranyl monocarbonate, $[(UO_2)(CO_3)_2]^0$, uranyl dicarbonate, $[(UO_2)(CO_3)_2]^{2-}$ and uranyl tricarbonate, $[(UO_2)(CO_3)_3]^{4-}$, with pK _a values of 5.5, 7 and 9,
 43 44 45 46 47 48 	Carbonate minerals containing U^{6+} are usually relatively soluble in aqueous solutions. Aqueous uranyl-carbonate complexes are generally quite stable and are responsible for uranium migration in the environment on a large scale (Langmuir, 1978; Clark <i>et al.</i> , 1995). The most abundant complexes are uranyl monocarbonate, $[(UO_2)(CO_3)]^0$, uranyl dicarbonate, $[(UO_2)(CO_3)_2]^{2-}$ and uranyl tricarbonate, $[(UO_2)(CO_3)_3]^{4-}$, with p K_a values of 5.5, 7 and 9, respectively (Langmuir, 1978). The most abundant uranyl carbonate minerals are those with a

51	example, the mineral zellerite, Ca[(UO ₂)(CO ₃) ₂]·5H ₂ O (Coleman <i>et al.</i> , 1966), which occurs
52	commonly within the carbonate-rich alteration associations of supergene U minerals, has so
53	far eluded crystallographic characterization. Here, we present the description of the new
54	uranyl-carbonate mineral, meyrowitzite, Ca(UO ₂)(CO ₃) ₂ ·5H ₂ O, a dimorph of zellerite, and the
55	first structural characterization of a uranyl-carbonate mineral with a U:C ratio of 1:2.
56	Meyrowitzite is named in honor of American analytical chemist Robert Meyrowitz
57	(1916-2013). Mr. Meyrowitz received his bachelor's degree in chemistry from the City
58	College of New York in 1936, after which he conducted research in microchemical analysis at
59	Brooklyn College (New York). During World War II, he served in the U.S. Army and,
60	because of his skills as a chemist, he was assigned to work on the Manhattan Project. After
61	the war, he joined the United States Geological Survey (USGS), from which he retired in
62	1973. In his years at the USGS, he was especially known for his knack for developing
63	innovative new methods for analyzing small and difficult to study mineralogical samples, and
64	is also well-known for his formulation of the high-index immersion liquids (1.74 to 2.00) that
65	are still in use for optical determinations (Meyrowitz and Larsen, 1951). He published
66	prolifically, often collaborating on the descriptions of new minerals (e.g. brockite, duttonite,
67	goldmanite, hendersonite, metazellerite, ningyoite, sahamalite, sherwoodite, simplotite,
68	weeksite and zellerite). Many of the new minerals species that he worked on were from the
69	uranium deposits of the western U.S. Among them was zellerite, the dimorph of the
70	meyrowitzite. Robert Meyrowitz' son Alan has approved of the naming of the mineral in his
71	father's honor.
72	The new mineral and name were approved by the Commission on New Minerals,
73	Nomenclature and Classification of the International Mineralogical Association (IMA 2018-
74	039). Two cotype specimens of meyrowitzite are deposited in the collections of the Natural

75 History Museum of Los Angeles County, Los Angeles, California, USA, catalogue numbers

76 66789 and 66790.

77	
78	OCCURRENCE
79	Meyrowitzite was discovered on specimens collected underground in the Markey
80	mine, Red Canyon, White Canyon District, San Juan County, Utah, USA (37°32'57"N
81	110°18'08"W). The Markey mine is located about 1 km southwest of the Blue Lizard mine, on
82	the east-facing side of Red Canyon, about 72 km west of the town of Blanding, Utah, and
83	about 22 km southeast of Good Hope Bay on Lake Powell. The geology of the Markey mine
84	is quite similar to that of the Blue Lizard mine (Chenoweth, 1993; Kampf, et al., 2015a),
85	although the secondary mineralogy of the Markey mine is notably richer in carbonate phases.
86	The information following is taken largely from Chenoweth (1993).
87	Jim Rigg of Grand Junction, Colorado began staking claims in Red Canyon in March
88	of 1949. The Markey group of claims, staked by Rigg and others, was purchased by the
89	Anaconda Copper Mining Company on June 1, 1951. After limited exploration and
90	production, the mine closed in 1955. The mine was subsequently acquired from Anaconda by
91	Calvin Black of Blanding, Utah under whose ownership the mine operated from 1960 to 1982
92	and was a leading producer in the district for nearly that entire period.
93	Mineralized channels are in the Shinarump member of the Chinle Formation. The
94	Shinarump member consists of medium- to coarse-grained sandstone, conglomeratic
95	sandstone beds and thick siltstone lenses. Ore minerals were deposited as replacements of
96	wood and other organic material and as disseminations in the enclosing sandstone. Since the
97	mine closed, oxidation of primary ores in the humid underground environment has produced a
98	variety of secondary minerals, mainly sulfates, as efflorescent crusts on the surfaces of mine
99	walls.
100	Meyrowitzite is a very rare mineral, found on calcite-veined asphaltum in association

with gypsum, markeyite (Kampf *et al.*, 2018) and rozenite. See Kampf *et al.* (2018) for a
more complete list of the secondary minerals identified from the Markey mine, including
several which are recently described new species.

104

105 PHYSICAL AND OPTICAL PROPERTIES

106 Crystals of meyrowitzite are blades up to about 0.2 mm in length, commonly in

107 irregular and radiating intergrowths (Fig. 1). Blades are elongate on [010], flattened on {100}

108 and exhibit the forms {100}, {001}, {101}, {110} and {011} (Fig. 2). No twinning was

109 observed. The mineral is yellow and transparent with vitreous luster and very pale-yellow

110 streak. Meyrowitzite exhibits variable fluorescence from weak greenish yellow to moderate

greenish blue under a 405 nm laser. It has a Mohs hardness of about 2, brittle tenacity,

112 irregular fracture, and one perfect cleavage on {-101}. The density measured by flotation in a

mixture of methylene iodide and toluene is 2.70(2) g·cm⁻³. The calculated density is 2.702

114 $g \cdot cm^{-3}$ using the empirical formula and 2.714 $g \cdot cm^{-3}$ using the ideal formula. The mineral is

115 easily soluble in H_2O at room temperature.

116 Meyrowitzite is optically biaxial (+) with $\alpha = 1.520(2)$, $\beta = 1.528(2)$, and $\gamma = 1.561(2)$

117 measured in white light. The 2V measured using extinction data analyzed with EXCALIBRW

118 (Gunter *et al.*, 2004) is 53.0(6)°; the calculated 2V is 53.3°. The dispersion is weak, r > v. The

optical orientation is $Z = \mathbf{b}$, $Y \wedge \mathbf{a} \approx 19^{\circ}$ in obtuse β . Crystals are weakly pleochroic in shades

- 120 of pale yellow, $X \approx Y < Z$. The Gladstone–Dale compatibility, $1 (K_P/K_C)$, (Mandarino, 2007)
- 121 is -0.039 (excellent) using the empirical formula, and -0.035 (excellent) using the ideal

122 formula – where $k(UO_3) = 0.134$ as provided by Larsen (1921).

- 123
- 124

RAMAN SPECTROSCOPY

125 Raman spectroscopy was conducted on a Horiba XploRA PLUS. Because of

126 significant fluorescence using a 532 nm diode laser, the spectrum was recorded using a 785 127 nm diode laser. The spectrum from 1800 to 80 cm^{-1} is shown in Figure 3. In general, the 128 measured meyrowitzite spectrum is similar to the spectrum of zellerite (Frost et al., 2008); 129 however, the spectrum of meyrowitzite contains larger number of bands (especially in the region of UO_2^{2+} stretching vibrations), most probably due to lowering of the corresponding 130 131 site-symmetry: orthorhombic (zellerite) \rightarrow monoclinic (meyrowitzite). A broad band composed of two overlapping bands at 1450 and 1380 cm⁻¹ results from 132 the split doubly degenerate $v_3 (CO_3)^{2-}$ antisymmetric stretching vibrations of the $(CO_3)^{2-}$ 133 polyhedra. Medium to strong bands at 1100, 1095, 1080, and 1065cm⁻¹ are associated with 134 the $v_1 (CO_3)^{2-}$ symmetric stretching vibrations. Splitting of these bands is consistent with the 135 136 presence of structurally non-equivalent carbonate units (Koglin et al., 1979; Anderson et al., 137 1980; Čejka, 1999 and 2005, and references therein); there are six independent C sites in the 138 structure of meyrowitzite (see below). A multi-component band of high intensity, composed of overlapping bands at 850, 840, 835, and 825 cm⁻¹, is attributable to the v_2 (δ) (CO₃)²⁻ 139 bending vibrations, and (in overlap) to the $v_1 (UO_2)^{2+}$ symmetric stretching vibrations. Using 140 the empirical relation of Bartlett and Cooney (1989), we can infer the corresponding U-O 141 142 bond lengths from the above-mentioned wavenumbers (in the order as given above): 1.76, 143 1.77, 1.78, and 1.79 Å. The structure refinement provided U–O bond-lengths in the range of 144 1.75-1.80 Å; therefore, it is possible that all observed overlapping bands in the region 850-825 cm⁻¹ belong to the $v_1 (UO_2)^{2+}$ symmetric stretching vibration. A strong component band, 145 composed of overlapping bands at 760 and 745 cm^{-1} , and a weak composite band at 687 cm^{-1} 146 are attributable to the v_4 (δ) (CO₃)²⁻ bending vibrations. Medium to strong bands at 270 and 147 240 cm⁻¹ are attributable to split doubly degenerate v_2 (δ) (UO₂)²⁺ bending vibrations. 148 Medium-strong bands at 218, 145, and 125 cm⁻¹ are attributable to the lattice modes (Koglin 149 150 et al., 1979; Anderson et al., 1980; Čejka, 1999 and 2005).

151	
152	CHEMICAL ANALYSIS
153	Chemical analyses (3) were performed at the University of Utah on a Cameca SX-50
154	electron microprobe with four wavelength dispersive spectrometers and using Probe for
155	EPMA software (Probe Software, Inc., Eugene, OR). Analytical conditions were 15 keV
156	accelerating voltage, 10 nA beam current and a beam diameter of 5 μ m. Raw X-ray intensities
157	were corrected for matrix effects with a $\phi \rho(z)$ algorithm (Pouchou and Pichoir, 1991).
158	Concentrations of total oxygen and carbon, calculated from the ideal formula, were used in
159	the matrix correction.
160	It was impossible to obtain a good polish and crystal surfaces suffered further because
161	of crystal dehydration; however, the beam produced no damage to the sample. Because
162	insufficient material is available for direct determination of H ₂ O and CO ₂ , they are calculated
163	based upon the structure determination (2 C and 13 O apfu). Analytical data are given in
164	Table 1. The empirical formula is $Ca_{0.94}(U_{1.00}O_2)(CO_3)_2 \cdot 5(H_{2.02}O)$. The ideal formula is
165	Ca(UO ₂)(CO ₃) ₂ ·5H ₂ O, which requires CaO 10.78, UO ₃ 54.98, CO ₂ 16.92, and H ₂ O 17.32,
166	total 100 wt.%.
167	
168	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
169	Both powder and single-crystal X-ray studies were carried out using a Rigaku R-Axis
170	Rapid II curved imaging plate microdiffractometer with monochromatized MoK α radiation.
171	For the powder study, a Gandolfi-like motion on the ϕ and ω axes was used to randomize the
172	sample, which consisted of several crystals. Observed d values and intensities were derived by

- 173 profile fitting using JADE 2010 software (Materials Data, Inc. Livermore, CA). Data are
- 174 given in Table 2. Unit cell parameters refined from the powder data using JADE 2010 with

175 whole pattern fitting are a = 12.417(17), b = 16.127(17), c = 20.123(17) Å, $\beta = 107.53(4)^{\circ}$ 176 and V = 3842 (7) Å³.

178best crystal fragment, which was used for the collection of structure data, exhibited significant179mosaicity, some spot streaking and some extra spots indicative of one or more satellite180crystals. This fragment, measuring only $80 \times 80 \times 30 \ \mu$ m, provided usable data only to a181resolution of 0.88 Å. The Rigaku CrystalClear software package was used for processing the182structure data, including Lorentz and polarization corrections, and the application of an183empirical absorption correction using the multi-scan method with ABSCOR (Higashi, 2001).184The space group P_{21}/n was suggested by the Rigaku XPlain program, which readily led to a185structure solution using SIR2011 (Burla <i>et al.</i> , 2012). It should be noted that numerous186reflections violated the extinction conditions for space group P_{21}/n , and particularly for the <i>n</i> 187glide; however, efforts to obtain viable structure models in other space groups were188unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal199fragment, as noted above, and this also led us to omit five poorly fitting reflections that did190not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the191sites in difference Fourier maps. Data collection and refinement details are given in Table 3,195atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5,196and a bond valence analysis in Table 6.	177	Crystals of meyrowitzite are of relatively poor quality for single-crystal study. The
180 crystals. This fragment, measuring only $80 \times 80 \times 30 \mu$ m, provided usable data only to a 181 resolution of 0.88 Å. The Rigaku CrystalClear software package was used for processing the 182 structure data, including Lorentz and polarization corrections, and the application of an 183 empirical absorption correction using the multi-scan method with ABSCOR (Higashi, 2001). 184 The space group $P2_1/n$ was suggested by the Rigaku XPlain program, which readily led to a 185 structure solution using SIR2011 (Burla <i>et al.</i> , 2012). It should be noted that numerous 186 reflections violated the extinction conditions for space group $P2_1/n$, and particularly for the <i>n</i> 187 glide; however, efforts to obtain viable structure models in other space groups were 188 unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal 189 fragment, as noted above, and this also led us to omit five poorly fitting reflections that did 190 not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the 191 refinement of the structure. The limited data set allowed refinement with anisotropic 192 displacement parameters for all fully occupied sites, but not for four approximately half- 193 occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H 194 sites in difference Fourier maps. Data collection and refinement details are given in Table 3, 195 and a bond valence analysis in Table 6.	178	best crystal fragment, which was used for the collection of structure data, exhibited significant
resolution of 0.88 Å. The Rigaku CrystalClear software package was used for processing the structure data, including Lorentz and polarization corrections, and the application of an empirical absorption correction using the multi-scan method with ABSCOR (Higashi, 2001). The space group $P2_1/n$ was suggested by the Rigaku XPlain program, which readily led to a structure solution using SIR2011 (Burla <i>et al.</i> , 2012). It should be noted that numerous reflections violated the extinction conditions for space group $P2_1/n$, and particularly for the <i>n</i> glide; however, efforts to obtain viable structure models in other space groups were unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal fragment, as noted above, and this also led us to omit five poorly fitting reflections that did not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6.	179	mosaicity, some spot streaking and some extra spots indicative of one or more satellite
182structure data, including Lorentz and polarization corrections, and the application of an183empirical absorption correction using the multi-scan method with ABSCOR (Higashi, 2001).184The space group $P2_1/n$ was suggested by the Rigaku XPlain program, which readily led to a185structure solution using SIR2011 (Burla <i>et al.</i> , 2012). It should be noted that numerous186reflections violated the extinction conditions for space group $P2_1/n$, and particularly for the n187glide; however, efforts to obtain viable structure models in other space groups were188unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal189fragment, as noted above, and this also led us to omit five poorly fitting reflections that did190not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the191refinement of the structure. The limited data set allowed refinement with anisotropic192displacement parameters for all fully occupied sites, but not for four approximately half-193occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H194sites in difference Fourier maps. Data collection and refinement details are given in Table 3,195atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5196and a bond valence analysis in Table 6.	180	crystals. This fragment, measuring only $80 \times 80 \times 30 \ \mu\text{m}$, provided usable data only to a
empirical absorption correction using the multi-scan method with ABSCOR (Higashi, 2001). The space group P_{2_1}/n was suggested by the Rigaku XPlain program, which readily led to a structure solution using SIR2011 (Burla <i>et al.</i> , 2012). It should be noted that numerous reflections violated the extinction conditions for space group P_{2_1}/n , and particularly for the <i>n</i> glide; however, efforts to obtain viable structure models in other space groups were unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal fragment, as noted above, and this also led us to omit five poorly fitting reflections that did not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6.	181	resolution of 0.88 Å. The Rigaku CrystalClear software package was used for processing the
The space group $P_{2_1/n}$ was suggested by the Rigaku XPlain program, which readily led to a structure solution using SIR2011 (Burla <i>et al.</i> , 2012). It should be noted that numerous reflections violated the extinction conditions for space group $P_{2_1/n}$, and particularly for the <i>n</i> glide; however, efforts to obtain viable structure models in other space groups were unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal fragment, as noted above, and this also led us to omit five poorly fitting reflections that did not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6.	182	structure data, including Lorentz and polarization corrections, and the application of an
structure solution using SIR2011 (Burla <i>et al.</i> , 2012). It should be noted that numerous reflections violated the extinction conditions for space group $P2_1/n$, and particularly for the <i>n</i> glide; however, efforts to obtain viable structure models in other space groups were unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal fragment, as noted above, and this also led us to omit five poorly fitting reflections that did not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6.	183	empirical absorption correction using the multi-scan method with ABSCOR (Higashi, 2001).
reflections violated the extinction conditions for space group $P2_1/n$, and particularly for the <i>n</i> glide; however, efforts to obtain viable structure models in other space groups were unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal fragment, as noted above, and this also led us to omit five poorly fitting reflections that did not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6.	184	The space group $P2_1/n$ was suggested by the Rigaku XPlain program, which readily led to a
glide; however, efforts to obtain viable structure models in other space groups were unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal fragment, as noted above, and this also led us to omit five poorly fitting reflections that did not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6.	185	structure solution using SIR2011 (Burla et al., 2012). It should be noted that numerous
unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal fragment, as noted above, and this also led us to omit five poorly fitting reflections that did not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6.	186	reflections violated the extinction conditions for space group $P2_1/n$, and particularly for the <i>n</i>
fragment, as noted above, and this also led us to omit five poorly fitting reflections that did not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H ₂ O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6.	187	glide; however, efforts to obtain viable structure models in other space groups were
 not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H₂O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6. 	188	unsuccessful. We attribute the space-group violations to the imperfect nature of the crystal
 refinement of the structure. The limited data set allowed refinement with anisotropic displacement parameters for all fully occupied sites, but not for four approximately half- occupied H₂O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6. 	189	fragment, as noted above, and this also led us to omit five poorly fitting reflections that did
 displacement parameters for all fully occupied sites, but not for four approximately half- occupied H₂O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6. 	190	not violate the extinction conditions. SHELXL-2013 (Sheldrick, 2015) was used for the
 occupied H₂O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6. 	191	refinement of the structure. The limited data set allowed refinement with anisotropic
 sites in difference Fourier maps. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6. 	192	displacement parameters for all fully occupied sites, but not for four approximately half-
 atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond valence analysis in Table 6. 	193	occupied H_2O sites (OW14, OW15, OW16 and OW17). It also did not allow the location of H
196 and a bond valence analysis in Table 6.	194	sites in difference Fourier maps. Data collection and refinement details are given in Table 3,
	195	atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5
197	196	and a bond valence analysis in Table 6.
	197	

198

DISCUSSION

199	There are three U sites in the structure of meyrowitzite. Two (U1 and U2) are
200	surrounded by eight O atoms forming a squat UO_8 hexagonal bipyramid; the other (U3) is
201	surrounded by seven O atoms forming a squat UO7 pentagonal bipyramid. The two short
202	apical bonds of all three bipyramids constitute the UO_2^{2+} uranyl group. Of the six CO_3^{2-}
203	groups in the structure, three centered by C1, C2 and C3 share alternating equatorial edges of
204	the U1 hexagonal bipyramid, thereby forming the well-known uranyl tricarbonate (UTC) unit.
205	The other three, centered by C4, C5 and C6, share alternating equatorial edges of the U2
206	hexagonal bipyramid, forming a second UTC unit. The five equatorial corners of the U3
207	pentagonal bipyramid are shared with O atoms of the C1, C2, C3, C4 and C6 carbonate
208	groups. These linkages create a unique corrugated uranyl carbonate heteropolyhedral sheet
209	parallel to {10-1} (Figure 5). The U2 UTCs are oriented perpendicular to the plane of the
210	sheet (Figure 6) with the unshared corner of the C5 carbonate group pointing away from the
211	sheet. Three Ca atoms (Ca1, Ca2 and Ca3) are eight-coordinated to O atoms in the sheets and
212	to OW atoms, although Ca3 is effectively only seven-coordinated because two of its ligands
213	(OW15 and OW16) are only half-occupied. The Ca polyhedra do not link to one another;
214	instead, they share edges and corners with the polyhedra in the uranyl carbonate
215	heteropolyhedral sheets, thereby linking the sheets into a framework (Figure 7). The fully
216	occupied OW9 through OW13 sites and the half-occupied OW14 and OW17 sites are located
217	in the cavities in this framework.
218	Minerals with structures containing both UO7 pentagonal bipyramid and UO8
219	hexagonal bipyramid are rare. Other examples include ewingite,
220	Mg ₈ Ca ₈ (UO ₂) ₂₄ (CO ₃) ₃₀ O ₄ (OH) ₁₂ (H ₂ O) ₁₃₈ , (Olds et al., 2017) and fontanite,
221	$Ca[(UO_2)_3(CO_3)_2O_2](H_2O)_6$, (Hughes and Burns, 2003). The structure of ewingite is based on
222	a large and complex uranyl carbonate polyhedral cluster that bears no similarity to the
223	structure of meyrowitzite. Fontanite has uranyl carbonate sheets that are linked by CaO_8

224	polyhedra; however, the UO7 and UO8 polyhedra form edge-sharing chains within these
225	sheets and there are no UTC units, but rather uranyl dicarbonate units.
226	Meyrowitzite has a crystal structure based on a unique corrugated uranyl carbonate
227	heteropolyhedral sheet. Meyrowitzite is apparently dimorphous with zellerite (Coleman et al.,
228	1966); however, the structure of zellerite is not known. The PXRD patterns for meyrowitzite
229	and zellerite, compared graphically in Figure 4, are quite different. Although the strongest
230	peaks in the zellerite pattern are represented in the meyrowitzite pattern, the four strongest
231	lines in the meyrowitzite pattern are not in the zellerite pattern. Comparative data for
232	meyrowitzite and zellerite are provided in Table 7. In the Strunz system, meyrowitzite and
233	zellerite both belong in class 5.EB: uranyl carbonates with $UO_2:CO_3 > 1:1$ to 1:2.
234	
235	Implications
236	Numerous studies conducted over the past 50 years have led to a well-developed
237	understanding of the geochemistry of U-CO ₃ systems (Langmuir, 1978; Chopin and Jensen,
238	2010; Maher et al., 2013). All acknowledge that carbonate binds to uranium strongly and that
239	uranyl-carbonate complexes are among those most relevant to the environmental chemistry of
240	uranium. One of the most common species, the uranyl-tricarbonate complex (UTC), is
241	exceptionally stable in aqueous solutions and it is known to occur in 33 different uranyl-
242	carbonate minerals. Significant evidence suggests that additional polymeric UTC-hydrolyzed
243	U complexes are prevalent species in some systems (Müller et al., 2008; Saini et al., 1989;
244	Ciavatta et al., 1980), and this combination is known in several exceptionally rare minerals,
245	including fontanite, Ca[(UO ₂) ₃ (CO ₃) ₂ O ₂](H ₂ O) ₆ (Hughes and Burns, 2003), roubaultite,
246	Cu ₂ (UO ₂) ₃ (CO ₃) ₂ O ₂ (OH) ₂ (H ₂ O) ₄ (Ginderow and Cesbron, 1985), wyartite,
247	Ca(CO ₃)[U ⁵⁺ (U ⁶⁺ O ₂) ₂ O ₄ (OH)](H ₂ O) ₇ (Burns and Finch, 1999), bijvoetite-Y
248	[Y ₈ (H ₂ O) ₂₅ (UO ₂) ₁₆ O ₈ (OH) ₈ (CO ₃) ₁₆](H ₂ O) ₁₄ (Li <i>et al.</i> , 2000), kamotoite-(Y),

249	Y ₂ (UO ₂) ₄ O ₂ (OH) ₂ (CO ₃) ₄ (H ₂ O) _{12.54} (Plášil and Petříček, 2017), above-mentioned ewingite
250	(Olds et al., 2017), and herein with the description of meyrowitzite. The structure of ewingite
251	suggests that relatively large polynuclear species containing hydrolyzed uranium and UTC
252	may have assembled in solution prior to crystal growth, or possibly at the crystal-solution
253	interface. Though we recognize the conditions required for their formation are very narrow,
254	these minerals reveal definite gaps in our understanding of uranyl-carbonate-hydroxide
255	equilibria that can be better determined through crystal-chemical studies of natural systems.
256	Crystallization of these minerals offers a diagnostic view into the conditions and speciation of
257	the solutions from which they crystallize. These missing data are necessary for producing
258	accurate models of contamination speciation in repositories for nuclear waste.
259	The fact that meyrowitzite contains a heretofore-unreported type of uranyl-carbonate
260	heteropolyhedral sheet makes its reported occurrence in a natural setting of significant
261	importance in expanding our understanding of uranyl-carbonate interactions in natural
262	systems. Furthermore, although based upon composition alone, meyrowitzite, with a U:C ratio
263	of 1:2, might have been expected to contain the uranyl-dicarbonate complex, $[(UO_2)(CO_3)_2]^{2-}$,
264	it is noteworthy that the determination of its structure shows it to contain instead a uranyl-
265	tricarbonate complex. Based upon this, it is reasonable to conjecture that its dimorph zellerite
266	may also contain a uranyl-tricarbonate complex, rather than a uranyl-dicarbonate complex.
267	
268	ACKNOWLEDGEMENTS
269	Two anonymous reviewers and the Technical Editor are thanked for constructive
270	comments, which improved the manuscript. Associate Editor G. Diego Gatta is thanked for
271	shepherding the manuscript through the review process. Alan Meyrowitz is thanked for

272 providing background information about his father, Robert Meyrowitz. This study was

- 273 funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department
- 274 of the Natural History Museum of Los Angeles County.
- 275

276 **References**

- 277 Anderson A., Chieh Ch., Irish D.E., and Tong J.P.K. (1980) An X-ray crystallographic,
- 278 Raman, and infrared spectral study of crystalline potassium uranyl carbonate,
- 279 K₄UO₂(CO₃)₃. *Canadian Journal of Chemistry*, **58**, 1651–1658.
- 280 Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths
- 281 in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure,
- **193**, 295–300.
- 283 Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C.,
- 284 Mallamo, M., Mazzone, A., Polidori, G., and Spagna, R. (2012) SIR2011: a new package
- for crystal structure determination and refinement. *Journal of Applied Crystallography*,
- **45**, 357–361.
- 287 Burns, P.C. and Finch, R.J. (1999) Wyartite: crystallographic evidence for the first
- 288 pentavalent-uranium mineral. American Mineralogist, 84, 1456–1460.
- Čejka J. (1999) Infrared and thermal analysis of the uranyl minerals. *Reviews in Mineralogy*,
 38, 521–622.
- 291 Čejka J. (2005) Vibrational spectroscopy of the uranyl minerals infrared and Raman spectra
- of the uranyl minerals. II. Uranyl carbonates. Bulletin mineralogicko-petrologického
- 293 *oddělení Národního muzea (Praha)*, **13**, 62–72 (in Czech).
- 294 Chenoweth, W.L. (1993) The Geology and Production History of the Uranium Deposits in the
- 295 White Canyon Mining District, San Juan County, Utah. Utah Geological Survey
- 296 *Miscellaneous Publication*, **93–3**.

- 297 Choppin, G. R. and Jensen, M. P. (2010) Actinides in Solution: Complexation and Kinetics.
- In Morss, L. R., Edelstein, N. M. and Fuger, J. (eds) The Chemistry of the Actinide and
- 299 *Transactinide Elements*, 4th edition. Springer, Dordrecht, the Netherlands, pp. 2524–2621.
- 300 Ciavatta, L., Ferri, D., Grenthe, I., and Salvatore, F. (1981) The first acidification step of the
- 301 tris(carbonato)dioxouranate(VI) ion, $UO_2(CO_3)_3^{4-}$. *Inorganic Chemistry*, **20**, 463–467.
- Coleman, R.G., Ross, D.R., and Meyrowitz, R. (1966) Zellerite and metazellerite, new uranyl
- 303 carbonates. *American Mineralogist*, **51**, 1567–1578.
- 304 Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O...O hydrogen bonds.
- 305 *Acta Crystallographica*, **B44**, 341–344.
- Frost, R.L., Dickfos, M.J., and Čejka, J. (2008) Raman spectroscopic study of the uranyl
- 307 carbonate mineral zellerite. *Journal of Raman Spectroscopy*, **39**, 582–586.
- 308 Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence
- 309 parameters for ion pairs involving oxygen. *Acta Crystallographica*, **B71**, 562–578.
- 310 Ginderow, D. and Cesbron, F. (1985) The structure of roubaultite,
- 311 Cu₂(UO₂)₃(CO₃)₂O₂(OH)₂·4H₂O. *Acta Crystallographica*, C41, 654–657.
- 312 Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C., and Weaver, R. (2004) Results
- from a McCrone spindle stage short course, a new version of EXCALIBR, and how to
- build a spindle stage. *The Microscope*, **52**, 23-39.
- 315 Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
- 316 Hughes, K.-A. and Burns, P.C. (2003) A new uranyl carbonate sheet in the crystal structure of
- fontanite, $Ca[(UO_2)_3(CO_3)_2O_2](H_2O)_6$. American Mineralogist, **88**, 962–966.
- 318 Kampf, A.R., Kasatkin, A.V., Čejka, J., and Marty, J. (2015) Plášilite,
- $Na(UO_2)(SO_4)(OH) \cdot 2H_2O$, a new uranyl sulfate mineral from the Blue Lizard mine, San
- Juan County, Utah, USA. *Journal of Geosciences*, **60**, 1–10.

- 321 Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J., and Čejka, J. (2018) Markeyite, a new
- 322 calcium uranyl tricarbonate mineral from the Markey mine, San Juan County, Utah, USA.
- 323 *Mineralogical Magazine* **82**, (in press)
- 324 Koglin E., Schenk H.J., and Schwochau K. (1979) Vibrational and low temperature optical
- 325 spectra of the uranyl tricarbonato complex $[UO_2(CO_3)_3]^{4-}$. Spectrochimica Acta, **35A**,
- 326 <u>641–647</u>.
- 327 Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with
- 328 applications to sedimentary ore. *Geochimica et Cosmochimica Acta*, **42**, 547–569.
- 329 Larsen, E.S. (1921) The microscopic determination of the nonopaque minerals. U.S.
- 330 Geological Survey, Bulletin 679.
- 331 Li, Y., Burns, P.C., and Gault, R.A. (2000) A new rare earth-element uranyl carbonate sheet
- in the structure of bijvoetite. *Canadian Mineralogist*, **38**, 153–162.
- 333 Maher, K., Bargar, J.R., and Brown, G.E., Jr. (2013) Environmental speciation of actinides.
- *Inorganic Chemistry*, **52**, 3510–3532.
- 335 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- mineral species for further study. Canadian Mineralogist, 45, 1307-1324.
- 337 Meyrowitz, R. and Larsen, E.S., Jr. (1951) Immersion liquids of high refractive index.
- *American Mineralogist*, **36**, 746–750.
- 339 Müller, K., Brendler, V., and Foerstendorf, H. (2008) Aqueous uranium(VI) hydrolysis
- 340 species characterized by attenuated total reflection Fourier-transform infrared
- 341 spectroscopy. *Inorganic Chemistry*, **47**, 10127–10134.
- 342 Olds, T.A., Plášil, J., Kampf, A.R., Burns, P.C., Simonetti, A., and Sadergaski, L.R. (2017)
- Ewingite: Earth's most complex mineral. *Geology*, **45**, 1007–1010.
- Olds, T., Sadergaski, L.R., Plášil, J., Kampf, A.R., Burns, P., Steele, I.M., Marty, J., Carlson,
- 345 S.M., and Mills, O.P. (2017) Leószilárdite, the first Na,Mg-containing uranyl carbonate

- from the Markey Mine, San Juan County, Utah, USA. *Mineralogical Magazine* 81, 743–
- 347 754.
- 348 Plášil, J. and Petříček, V. (2017) Crystal structure of the (*REE*)-uranyl carbonate mineral
- 349 kamotoite-(Y). *Mineralogical Magazine*, **81**, 653–660.
- 350 Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 351 microvolumes applying the model "PAP." In: Heinrich, K.F.J. and Newbury, D.E. (eds)
- 352 *Electron Probe Quantitation.* Plenum Press, New York, pp. 31–75.
- 353 Saini, R.D., Bhattacharyya, P.K., and Iyer, R.M. (1989) Photoluminescence studies of the
- 354 uranyl carbonate system. Journal of Photochemistry and Photobiology, A: Chemistry, 47,
- 355 65-81.
- 356 Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica,
- **C71**, 3–8.
- 358

359	FIGURE CAPTIONS
360	Figure 1. Meyrowitzite on asphaltum. The field of view is 0.5 mm across.
361	Figure 2. Crystal drawing of meyrowitzite, clinographic projection in nonstandard
362	orientation, b vertical.
363	Figure 3. Raman spectrum of meyrowitzite recorded using a 785 nm diode laser.
364	Figure 4. Comparison of powder X-ray diffraction patterns for meyrowitzite and zellerite.
365	Figure 5. The uranyl carbonate sheet in the structure of meyrowitzite viewed down [10-1].
366	Figure 6. The structure of meyrowitzite viewed down [010]. The O atoms of isolated H_2O
367	groups are shown as white balls. The unit cell outline is shown by dashed lines.
368	Figure 7. The structure of meyrowitzite viewed down [100]. The O atoms of isolated H_2O
369	groups are shown as white balls. The unit cell outline is shown by dashed lines.
370	

Constituent	stituent Mean		Stand. Dev.	Probe Standard	Normalized
CaO	12.67	12.51-12.93	0.22	diopside	10.18
UO ₃	68.77	68.14–69.86	0.95	syn. UO ₂	55.23
CO ₂ *					17.00
H ₂ O*					17.60
Total					100.01

372 Table 1. Analytical results for meyrowitzite.

373 * based on structure.

Table 2. Powder X-ray data (d in Å) for meyrowitzite. Only calculated lines with $I \ge 10$ are 375 listed

listee	1.										
$I_{\rm obs}$	$d_{ m obs}$		$d_{ m calc}$	I_{calc}	hkl	I_{obs}	$d_{\rm obs}$		$d_{ m calc}$	I_{calc}	hkl
100	12.11	5	53	12.3263	011	12	2.636	5	13	2.6529	-433
100	12.11	Ì	47	11.7651	-101	12	2.030	Ì	26	2.6283	-425
48	9.52	5	24	9.5916	002	21	2.593	5	20	2.6044	402
40	9.32	J	27	9.4964	-111	21	2.393	J	24	2.5940	027
59	8.19		54	8.2383	012	12	2.534	5	14	2.5328	324
20	7.74		26	7.7718	-112	12	2.334	J	15	2.5302	-246
		(17	6.0527	112				10	2.5070	-237
68	5.96	{	51	5.9603	-122	24	2.476	5	38	2.4791	-163
			26	5.8826	-202	24	2.470)	10	2.4745	431
15	5.54		32	5.5357	210	9	2.380	5	23	2.4406	260
			18	5.1643	031	9	2.380)	16	2.3890	334
79	5.04		19	5.0709	122	13	2.292		23	2.2962	-328
			18	5.0604	-123				10	2.2630	520
			52	5.0186	103	10	2 224	5	12	2.2439	-532
30	4.77		34	4.7908	113	10	2.224	Ì	15	2.2187	-109
			12	4.5898	-132	12	2 1 9 5	ſ	12	2.1861	442
		(46	4.3721	221	13	2.185	Ì	12	2.1824	353
45	4.359	{	22	4.3614	-223	6	2.143		15	2.1370	-507
			12	4.2784	-214	10	2 0 7 9 2	5	14	2.0884	-174
21	4 105	ſ	22	4.2491	-124	12	2.0782	ì	12	2.0691	443
21	4.195	Ì	20	4.1448	132	16	2 0 4 9 2	Ś	12	2.0544	066
		(21	4.1033	-301	16	2.0482	ì	24	2.0500	-604
32	4.057	{	19	4.0524	-231			Ì	20	2.0176	208
			24	4.0217	040	22	2.0006	{	10	2.0129	-2 0 10
		(17	3.9760	-311				29	1.9999	081
31	3.944	{	20	3.9361	041			1	13	1.9827	-373
			19	3.9217	-303	20	1.0((2))	10	1.9814	-464
16	2 001	ſ	18	3.8101	-313	20	1.9662	1	14	1.9790	119
16	3.801	Ì	15	3.8055	-141				11	1.9587	-167
27	2 (52	Ś	16	3.6586	-134			(10	1.8988	406
27	3.652	Ì	20	3.6528	-322	15	1.8847	{	14	1.8871	-547
22	2 2 6	ſ	11	3.3721	-241				15	1.8862	-635
23	3.368	ĺ	29	3.3604	105			1	17	1.8264	-644
		1	17	3.3200	-242				20	1.8054	-382
10	2 204		10	3.3069	-324	27	1.8087	{	10	1.8034	248
19	3.294	1	16	3.2894	115				26	1.8013	-561
			15	3.2551	-206				25	1.7998	184
25	3.118		13	3.1383	143			(10	1.7901	365
			11	3.1202	035	26	1.7835	{	11	1.7848	-1 4 10
1.5	2 000	6	13	3.0047	-334				12	1.7756	-285
15	2.989	ì	19	2.9711	026			Ì	12	1.7243	-701
		Ž	20	2.8710	-342	18	1.7171	{	19	1.7175	382
26	0.050		15	2.8486	144				13	1.7121	-722
26	2.852	1	11	2.8452	-145	11	1 (771	Ì	10	1.6868	-369
			14	2.8242	250	11	1.6771	í	10	1.6833	-726
10	2.763		16	2.7557	-245	10	1 (202	Ì	13	1.6312	481
18	2.690		26	2.6821	225	13	1.6282	ì	10	1.6276	-4 0 12
								1			

Diffract	ometer	Rigaku R-Axis Rapid II
X-ray ra	diation/power	MoK α ($\lambda = 0.71075$ Å)/50 kV, 40 mA
Temper	ature	293(2) K
Structur	al Formula	$Ca(UO_2)(CO_3)_2 \cdot 5H_2O$
Space g		$P2_{1}/n$
Unit cel	l dimensions	a = 12.376(3) Å
		b = 16.0867(14) Å
		c = 20.1340(17) Å
V		$\beta = 107.679(13)^{\circ}$ 3819.3(12) Å ³
V Z		12
	(for above formula)	2.714 g cm^{-3}
•	ion coefficient	13.207 mm^{-1}
F(000)		2796
Crystal	size	$80 \times 80 \times 30 \mu\text{m}$
θ range		3.07 to 22.44°
Index ra	inges	$-13 \le h \le 13, -17 \le k \le 16, -21 \le l \le 21$
	collected / exposure	36 / 25 min.
Reflecti	ons collected / unique	$17068 / 4874; R_{\rm int} = 0.085$
Reflecti	ons with $I > 2\sigma I$	3559
Comple	teness to $\theta = 27.48^{\circ}$	98.1%
Refinen	nent method	Full-matrix least-squares on F^2
Paramet	ter / restraints	459/0
GoF		1.052
Final <i>R</i>	indices $[I > 2\sigma I]$	$R_1 = 0.0553, wR_2 = 0.1296$
R indice	es (all data)	$R_1 = 0.0818, wR_2 = 0.1469$
Largest	diff. peak/hole	$+2.05/-1.37 \text{ e A}^{-3}$
$R_{\rm int} = \Sigma$	$ F_{o}^{2}-F_{o}^{2}(\text{mean}) /\Sigma[F_{o}^{2}].$	GoF = $S = \{\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)\}^{1/2}$. $R_1 = \Sigma F_o - F_c /\Sigma F_o$
$wR_2 = \{$	$\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]$	$^{2}]^{1/2}; w = 1/[\sigma^{2}(F_{o}^{2})+(aP)^{2}+bP]$ where <i>a</i> is 0.057, <i>b</i> is 98.
and P is	$[2F_{c}^{2}+Max(F_{o}^{2},0)]/3.$	

Table 3. Data collection and structure refinement details for meyrowitzite.

410											
411		x/a	y/b	z/c	$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
412	Ca1	0.7593(4)	0.3457(2)	0.7368(2)	0.0290(10)	0.036(3)	0.019(2)	0.030(2)	0.0017(18)	0.0074(19)	0.0002(18)
413	Ca2	0.6749(4)	0.5508(2)	0.4255(2)	0.0331(10)	0.046(3)	0.018(2)	0.039(2)	0.0028(19)	0.019(2)	0.0009(19)
414	Ca3	0.1484(5)	0.1091(3)	0.6308(3)	0.0581(14)	0.075(4)	0.030(3)	0.080(4)	-0.001(3)	0.040(3)	0.005(3)
415	U1	0.60111(7)	0.34393(4)	0.52659(4)	0.0276(2)	0.0375(5)	0.0153(4)	0.0270(4)	0.0009(3)	0.0054(4)	-0.0003(3)
416	U2	0.05568(7)	0.33897(5)	0.68741(5)	0.0377(3)	0.0420(6)	0.0198(4)	0.0570(6)	-0.0047(4)	0.0237(4)	-0.0035(4)
417	U3	0.76212(6)	0.59814(4)	0.74902(4)	0.0262(2)	0.0357(5)	0.0129(4)	0.0273(4)	-0.0021(3)	0.0056(3)	0.0001(3)
418	C1	0.5974(16)	0.1959(12)	0.6060(10)	0.028(5)	0.031(13)	0.025(12)	0.023(11)	0.015(10)	0.000(9)	-0.018(9)
419	C2	0.5142(19)	0.6277(15)	0.6177(11)	0.042(6)	0.044(15)	0.049(15)	0.027(13)	-0.015(12)	0.001(11)	-0.002(12)
420	C3	0.7143(18)	0.4874(12)	0.6019(11)	0.035(5)	0.037(14)	0.020(12)	0.034(13)	-0.008(11)	-0.012(10)	0.006(10)
421	C4	0.9818(18)	0.4932(12)	0.7280(10)	0.031(5)	0.033(14)	0.028(13)	0.032(12)	0.001(10)	0.008(10)	-0.012(10)
422	C5	0.253(2)	0.3137(14)	0.6425(13)	0.051(7)	0.058(18)	0.033(14)	0.068(17)	-0.010(12)	0.027(14)	-0.020(13)
423	C6	0.5804(19)	0.6933(13)	0.8124(12)	0.040(6)	0.033(15)	0.026(13)	0.059(15)	-0.006(11)	0.012(12)	0.006(11)
424	01	0.8909(12)	0.6293(7)	0.8609(7)	0.039(4)	0.059(10)	0.008(7)	0.041(8)	-0.013(6)	0.003(7)	0.014(6)
425	O2	0.5428(13)	0.2016(8)	0.5410(7)	0.042(4)	0.066(11)	0.020(7)	0.035(9)	0.001(7)	0.009(8)	-0.014(7)
426	O3	0.6485(12)	0.2641(7)	0.6336(6)	0.036(4)	0.058(10)	0.016(7)	0.024(7)	0.016(6)	-0.004(7)	-0.005(7)
427	O4	0.5196(13)	0.6974(8)	0.5892(7)	0.040(4)	0.060(11)	0.025(8)	0.030(8)	0.003(7)	0.005(7)	-0.012(7)
428	05	0.5694(10)	0.6083(8)	0.6814(7)	0.034(3)	0.016(7)	0.030(8)	0.047(9)	0.015(7)	-0.002(7)	-0.008(6)
429	06	0.4405(12)	0.5750(8)	0.5799(6)	0.035(3)	0.043(9)	0.029(8)	0.028(8)	0.004(7)	0.003(7)	-0.008(7)
430	07	0.7502(12)	0.5550(7)	0.6335(6)	0.034(3)	0.062(10)	0.009(7)	0.029(7)	-0.002(6)	0.013(7)	0.002(6)
431	08	0.6969(12)	0.4220(8)	0.6329(6)	0.036(4)	0.068(11)	0.014(7)	0.020(7)	-0.006(6)	0.006(7)	-0.024(7)
432	09	0.6874(12)	0.4815(8)	0.5351(6)	0.034(3)	0.054(10)	0.024(7)	0.022(8)	-0.010(6)	0.008(7)	-0.003(7)
433	O10	0.0716(13)	0.4899(8)	0.7085(8)	0.047(4)	0.051(11)	0.025(8)	0.069(11)	-0.009(7)	0.024(9)	-0.005(7)
434	011	0.9489(12)	0.5639(8)	0.7482(8)	0.042(4)	0.044(10)	0.011(7)	0.070(11)	0.003(7)	0.014(8)	0.009(6)
435	012	0.9290(12)	0.4250(8)	0.7304(8)	0.044(4)	0.045(10)	0.023(8)	0.071(11)	-0.009(8)	0.029(8)	0.005(7)
436	013	1.3390(14)	0.3058(9)	0.6225(8)	0.052(4)	0.056(11)	0.035(9)	0.079(12)	0.018(8)	0.041(10)	0.010(8)
437	014	0.1918(13)	0.2544(9)	0.6539(9)	0.052(4)	0.046(10)	0.033(9)	0.095(13)	-0.006(9)	0.048(10)	-0.003(8)
438	015	0.2133(13)	0.3884(8)	0.6514(8)	0.045(4)	0.056(10)	0.014(7)	0.077(11)	-0.001(7)	0.039(9)	0.002(7)
439	016	0.6442(12)	0.6321(8)	0.8209(7)	0.037(4)	0.039(9)	0.025(8)	0.051(9)	0.006(7)	0.022(7)	0.010(7)
440	017	0.9005(12)	0.2643(8)	0.7108(8)	0.045(4)	0.043(10)	0.025(9)	0.074(11)	-0.015(8)	0.031(8)	-0.013(7)
441	O18	0.0126(13)	0.1893(8)	0.6706(9)	0.050(4)	0.036(10)	0.020(8)	0.104(13)	-0.010(8)	0.036(9)	-0.013(7)
442	O19	0.7239(12)	0.3057(8)	0.5103(7)	0.038(4)	0.040(9)	0.031(8)	0.041(8)	-0.015(7)	0.007(7)	-0.008(7)

409 Table 4. Atom coordinates and displacement parameters $(Å^2)$ for meyrowitzite.

443	O20	0.4758(12)	0.3843(9)	0.5419(7)	0.041(4)	0.047(10)	0.041(9)	0.034(8)	0.005(7)	0.014(7)	-0.001(7)
444	O21	0.1367(14)	0.3260(8)	0.7743(8)	0.052(4)	0.068(12)	0.017(8)	0.076(11)	-0.008(8)	0.032(9)	0.001(7)
445	O22	0.9722(14)	0.3546(9)	0.5997(8)	0.052(4)	0.063(12)	0.036(9)	0.057(10)	-0.007(8)	0.020(9)	-0.016(8)
446	O23	0.7814(12)	0.7007(7)	0.7220(7)	0.038(4)	0.056(10)	0.009(7)	$0.047(9)^{-1}$	0.005(6)	0.011(8)	0.005(6)
447	O24	0.7443(11)	0.4941(7)	0.7771(6)	0.026(3)	0.039(9)	0.011(6)	0.021(7)	-0.002(5)	0.000(6)	0.001(6)
448	OW1	0.8697(14)	0.3414(8)	0.8553(7)	0.050(4)	0.077(12)	0.021(8)	0.044(9)	-0.005(7)	0.008(8)	0.014(8)
449	OW2	0.4310(12)	0.4793(9)	0.6980(7)	0.039(4)	0.034(9)	0.042(9)	0.043(9)	-0.003(7)	0.015(7)	-0.006(7)
450	OW3	0.5835(14)	0.3514(9)	0.7589(9)	0.060(5)	0.056(11)	0.037(9)	0.097(13)	0.013(9)	0.040(10)	0.004(8)
451	OW4	0.7873(15)	0.6445(10)	0.5215(9)	0.069(5)	0.065(13)	0.047(10)	0.076(12)	0.014(9)	-0.005(10)	-0.026(9)
452	OW5	0.2297(14)	0.0784(11)	0.7529(9)	0.071(5)	0.058(12)	0.073(13)	0.091(14)	0.030(11)	0.034(10)	0.017(10)
453	OW6	0.3441(18)	0.1329(14)	0.6280(13)	0.102(8)	0.089(17)	0.094(16)	0.15(2)	-0.015(15)	0.082(16)	0.000(13)
454	OW7	0.981(2)	0.0218(13)	0.6179(14)	0.116(9)	0.099(18)	0.075(14)	0.19(3)	-0.056(16)	0.074(17)	-0.031(13)
455	OW8	0.832(2)	0.4624(15)	0.4427(15)	0.130(9)	0.11(2)	0.100(18)	0.18(3)	-0.006(18)	0.032(18)	0.043(16)
456	OW9	0.225(3)	-0.0284(16)	0.6251(17)	0.162(12)	0.21(3)	0.082(18)	0.21(3)	-0.031(19)	0.08(3)	0.05(2)
457	OW10	0.455(3)	0.2152(16)	0.7872(19)	0.166(13)	0.15(3)	0.080(18)	0.29(4)	0.00(2)	0.10(3)	-0.014(18)
458	OW11	0.241(4)	0.1914(18)	0.8534(16)	0.193(16)	0.31(5)	0.10(2)	0.14(3)	0.027(19)	0.02(3)	0.08(3)
459	OW12	0.505(3)	0.0168(16)	0.4186(17)	0.199(18)	0.24(4)	0.086(19)	0.18(3)	0.00(2)	-0.07(3)	-0.05(2)
460	OW13	0.290(3)	0.1861(15)	0.4748(15)	0.141(11)	0.21(3)	0.079(17)	0.16(3)	-0.001(17)	0.10(2)	-0.019(18)
461	OW14*	0.966(5)	0.325(3)	0.465(3)	0.127(18)						
462	OW15*	0.011(7)	0.186(5)	0.517(4)	0.21(3)						
463	OW16*	0.101(5)	0.128(4)	0.514(3)	0.14(2)						
464	<u>OW1</u> 7*	0.046(7)	0.160(5)	0.374(4)	0.20(3)						
465	* 0.5 as	signed occupa	ancy.								

466 Table 5. Selected bond distances (Å) for meyrowitzite.

466	Table 5. Sel	ected bond distances	(A) for mey	owitzite.		
467	Ca1–O8	2.345(13)	Ca2–OW8	2.35(2)	Ca3–OW16	2.27(5)
468	Cal-OW3	2.351(16)	Ca2–O20	2.396(15)	Ca3–OW5	2.409(18)
469	Cal-OW1	2.362(15)	Ca2–O9	2.435(13)	Ca3–O14	2.412(15)
470	Cal-O17	2.365(15)	Ca2–O6	2.461(14)	Ca3–OW9	2.43(2)
471	Ca1–O3	2.489(13)	Ca2–OW2	2.482(14)	Ca3–O18	2.439(16)
472	Cal-O12	2.494(15)	Ca2–O13	2.487(15)	Ca3–OW7	2.45(2)
473	Cal-O24	2.546(12)	Ca2–OW4	2.512(17)	Ca3–OW6	2.47(2)
474	Cal-O23	2.575(13)	Ca2–O15	2.565(14)	Ca3–OW15	2.81(8)
475	<cal-o></cal-o>	2.441	<ca2–o></ca2–o>	2.461	<ca3–o></ca3–o>	2.461
476						
477	U1–O19	1.760(14)	U2–O21	1.745(17)	U3–O23	1.775(12)
478	U1–O20	1.792(14)	U2–O22	1.773(16)	U3–O24	1.801(11)
479	U1–O3	2.422(11)	U2–O15	2.412(14)	U3–O5	2.366(12)
480	U106	2.428(12)	U2–O14	2.415(14)	U3–O11	2.382(14)
481	U1–O9	2.440(13)	U2–O17	2.430(13)	U3–O1	2.385(13)
482	U1–O2	2.444(13)	U2–O12	2.438(13)	U3–O7	2.388(12)
483	U1–O4	2.448(13)	U2–O10	2.463(13)	U3–O16	2.410(13)
484	U1–O8	2.454(11)	U2–O18	2.467(13)	$<\!\!U3-\!O_{Ur}\!>$	1.788
485	<u1-o<sub>Ur></u1-o<sub>	1.776	$<\!\!U2\!-\!\!O_{Ur}\!>$	1.759	<u3–o<sub>eq></u3–o<sub>	2.386
486	<u1-0<sub>eq></u1-0<sub>	2.439	<u2–o<sub>eq></u2–o<sub>	2.438		
487						
488	C101	1.25(2)	C2–O4	1.27(3)	C3–O7	1.27(2)
489	C1–O2	1.28(2)	C2–O5	1.29(2)	C3–O8	1.27(2)
490	C1–O3	1.30(2)	C2–O6	1.31(2)	C3–O9	1.29(2)
491	<c1–o></c1–o>	1.28	<c2–o></c2–o>	1.29	<c3–o></c3–o>	1.28
492						
493	C4–O12	1.29(2)	C5–O13	1.25(3)	C6–O16	1.24(2)
494	C4–O10	1.29(2)	C5–O14	1.28(3)	C6–O17	1.28(2)
495	C4–O11	1.31(2)	C5–O15	1.33(3)	C6–O18	1.30(3)
496	<c4–o></c4–o>	1.30	<c5–o></c5–o>	1.29	<c6–o></c6–o>	1.27
497						

498

500

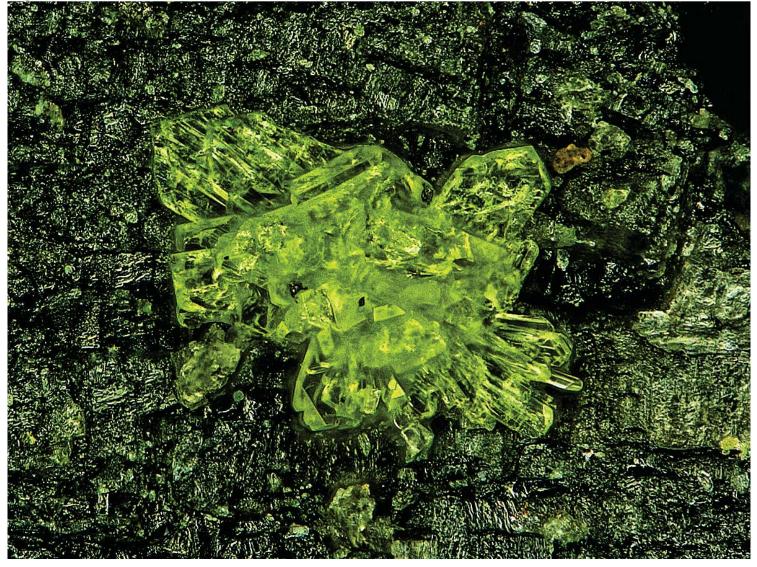
Table 6. Bond-valence analysis for meyrowitzite. Values are expressed in valence units.*

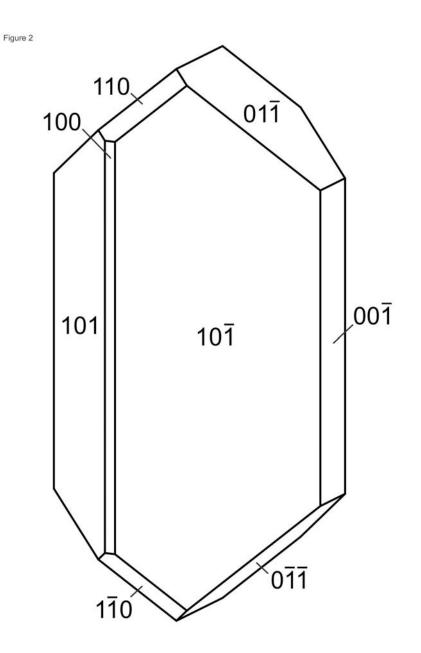
~	Λ	1
<u>م</u>		1
0	υ	1

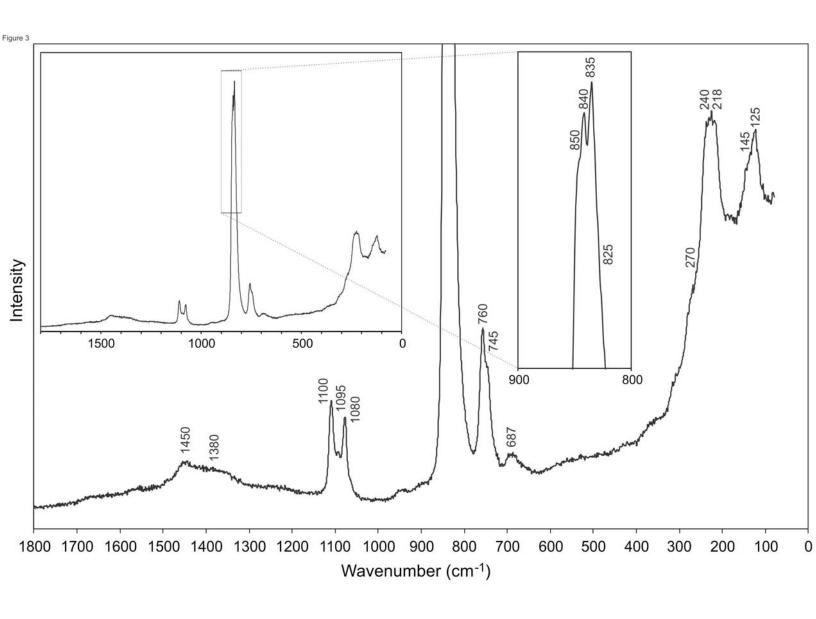
	Ca1	Ca2	Ca3	U1	U2	U3	C1	C2	C3	C4	C5	C6	H bonds	Σ
01						0.53	1.46						0.18	2.17
O2				0.47			1.35						0.13	1.94
03	0.23			0.49			1.28							1.99
04				0.47				1.38					0.20	2.05
05						0.55		1.31					0.19	2.05
06		0.24		0.48				1.24						1.97
07						0.52			1.38				0.17	2.08
08	0.34			0.46					1.38					2.18
09		0.26		0.47					1.31					2.05
O10					0.45					1.31			0.21	1.97
011						0.53				1.31			0.16	1.99
012	0.22				0.47					1.24				1.94
013		0.23									1.46		0.19	1.88
014			0.28		0.50						1.35			2.12
015		0.18			0.50						1.18		0.13	1.99
016						0.50						1.50		2.00
O17	0.32				0.48							1.35		2.15
O18			0.26		0.45							1.28		1.98
019				1.75										1.75
O20		0.29		1.65										1.94
O21					1.80								0.20	2.00
O22					1.71								0.11	1.81
O23	0.18					1.70							0.15	2.03
O24	0.19					1.62							0.13	1.94
OW1	0.32													
OW2		0.23												
OW3	0.33													
OW4		0.21												
OW5			0.28											
OW6			0.24											
OW7			0.25											
OW8		0.33												
OW9			0.27											
OW15			0.05											
OW16			0.21											
Σ				6.24										
* Catio	n–Oł	ond v	valend	e par	amete	rs are	from	Gagr	ié and	Haw	thorn	e (201	5). BVS 1	to OV

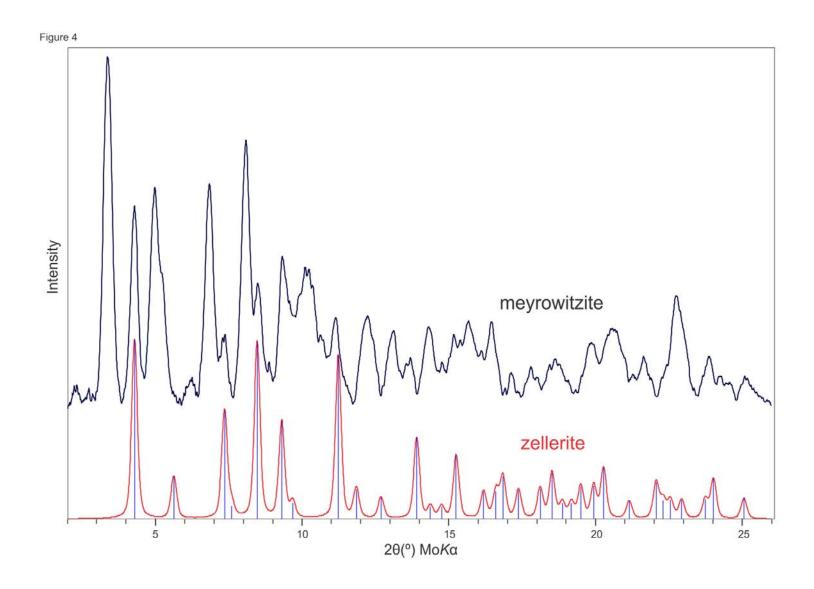
502

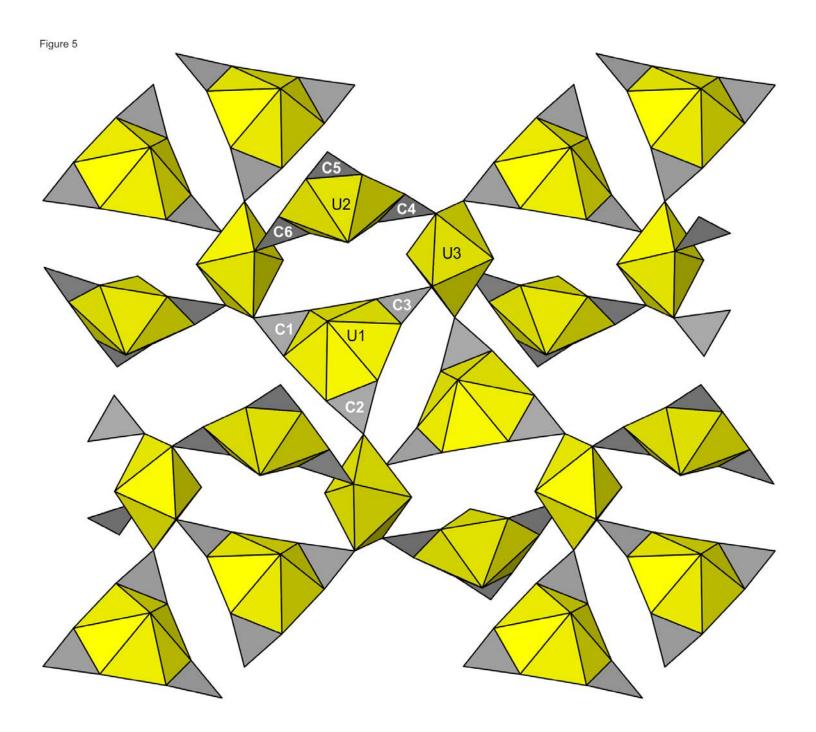
V sites are not included, but hydrogen bond contributions to other O sites are included. Hydrogen-bond 503 strengths based on O-O bond lengths from Ferraris and Ivaldi (1988). The isolated OW sites are 504


505 not included.


506


	Meyrowitzite	Zellerite
Ideal formula	$Ca(UO_2)(CO_3)_2 \cdot 5H_2O$	$Ca(UO_2)(CO_3)_2 \cdot 5H_2O$
Space group	$P2_{1}/n$	<i>Pmn</i> 2 ₁ or <i>Pmnm</i> (probable)
<i>a</i> (Å)	12.376(3)	11.220(15)
<i>b</i> (Å)	16.0867(14)	19.252(16)
<i>c</i> (Å)	20.1340(17)	4.933(16)
β (°)	107.679(13)	
$V(\text{\AA}^3)$	3819.3(12)	1065(2)
Ζ	12	4
Density _{meas.} $(g \cdot cm^{-3})$	2.70(2)	3.25(1)
Optical character	biaxial (+)	biaxial (+)
α	1.520(2)	1.536(5)
β	1.528(2)	1.559(5)
γ	1.561(2)	1.697(5)
2V(°)	53.0(6)	30–40
Reference	This study	Coleman <i>et al.</i> , 1966


508 Table 7. Comparative data for meyrowitzite and zellerite.


Figure 1

