Revision 2

Nuwaite (Ni$_6$GeS$_2$) and butianite (Ni$_6$SnS$_2$), two new minerals from the Allende meteorite: Alteration products in the early solar system

Chi Ma* and John R. Beckett

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA

ABSTRACT

Nuwaite (Ni$_6$GeS$_2$, IMA 2013-018) and butianite (Ni$_6$SnS$_2$, IMA 2016-028), are two new chalcogenide minerals, occurring as micrometer-sized crystals with grossular, Na-bearing melilite, heazlewoodite, and Ge-bearing Ni-Fe alloys in veins and as mono-mineralic crack-filling material in igneous diopside in the Type B1 Ca-Al-rich inclusion (CAI) ACM-2 from the Allende CV3 carbonaceous chondrite. The chemical composition of type nuwaite is (wt%) Ni 65.3, S 10.3, Ge 8.2, Te 7.9, Sn 5.1, and Fe 1.7, with a sum of 98.5 and an empirical formula of (Ni$_{5.95}$Fe$_{0.16}$)(Ge$_{0.60}$Sn$_{0.23}$)(S$_{1.72}$Te$_{0.33}$). The simplified formula is Ni$_6$(Ge,Sn)(S,Te)$_2$, leading to an end-member of Ni$_6$GeS$_2$.

The chemical composition of type butianite is (wt%) Ni 62.1, Sn 8.9, Te 10.3, S 8.9, Ge 5.3, Fe 1.3, sum 99.1, giving rise to an empirical formula of (Ni$_{5.93}$Fe$_{0.13}$)(Sn$_{0.52}$Ge$_{0.41}$)(S$_{1.56}$Te$_{0.45}$). Butianite’s simplified formula is Ni$_6$(Sn,Ge)(S,Te)$_2$ and the end-member formula is Ni$_6$SnS$_2$. Both nuwaite and butianite have an $I4/mmm$ intergrowth structure with $a = 3.65\AA$, $c = 18.14\AA$, $V = 241.7\AA^3$, and $Z=2$. Their calculated densities are 7.24 and 7.62 g/cm3, respectively.

Nuwaite and butianite are the first known meteoritic and solar minerals with high Ge and Sn concentrations.

Nuwaite and butianite are very late-stage, vapor-deposited, alteration products, filling in pores within preexisting grossular-rich alteration veins and cracks in igneous Al,Ti-diopside. These phases and associated heazlewoodite and Ge-bearing alloys are observed only within the Ca-, Al-rich inclusion (CAI) and not outside it or at the inclusion-matrix interface. As only sections in one half of ACM-2 contain nuwaite/butianite, they were probably derived through a relatively low fO_2-
fS$_2$ sulfidation process, in which a highly-localized, low-temperature Ge-, Sn-bearing fluid interacted with a portion of the host CAI. It is likely that the fluid became relatively more Sn- and Te-enriched with time and that crack fillings post-date vein fillings, possibly due to a late remobilization of vein sulfides.

Keywords: Nuwaite, Ni$_6$GeS$_2$, butianite, Ni$_6$SnS$_2$, new minerals, Allende meteorite, CV3 carbonaceous chondrite, Ca-Al-rich inclusions.

E-mail: chi@gps.caltech.edu

INTRODUCTION

The alteration of Ca-Al-rich inclusions (CAIs) in meteorites is a story of secondary processes during the early evolution of the solar system. New secondary minerals can provide special insight because they sample special environments not encountered by most inclusions (e.g., Ma et al. 2011) or because they respond to aspects of an environment that was encountered by other phases but poorly recorded (e.g., Ma et al. 2014a). In this work, we report two new chalcogenide minerals, nuwaite (Ni$_6$GeS$_2$) and butianite (Ni$_6$SnS$_2$), which were discovered in alteration veins and filling cracks in pyroxene phenocrysts within the Type B1 CAI ACM-2 from the Allende CV3 chondrite. Nuwaite and butianite are the first minerals observed in meteorites that contain structurally essential Ge (nuwaite) and Sn (butianite). In addition to nuwaite and butianite, ACM-2 is the source of three previously described new minerals, grossmanite (CaTi$_{3+}$AlSiO$_6$), monipite (MoNiP), and majindeite (Mg$_2$Mo$_3$O$_8$) (Ma and Rossman 2009b; Ma et al. 2014a; Ma and Beckett 2016), two of which (monipite and majindeite) are alteration phases after refractory metals.

Germanium is an unusual element in having highly variable behavior depending on physical and redox conditions (e.g., Bernstein 1985; Rouxel and Luais 2017), which can sometimes be harnessed to explore environment. For example, variations in trace Ge as a function of Ni content form the basis for classification and a delineation of fractionation processes within individual groups of iron meteorites (e.g., Scott and Wasson 1975). In terrestrial aqueous systems, Ge commonly co-precipitates in low concentrations with iron oxy(hydroxy) oxides, opaline silica, or organic material and is sometimes tapped as an environmental tracer (e.g., Bernstein 1985; Bernstein and Waychunas 1987; Froehlich et al.
In hydrothermal systems, Ge (and Sn) are often present in small concentrations in sphalerite, wurtzite, and chalcopyrite (e.g., Johan 1988; Reiser et al. 2011; Frenzel et al. 2014; Evrard et al. 2015). Occasionally, Ge concentrations in a phase are high enough to produce minerals with Ge as a structurally important constituent. In rare examples, minerals with structurally important Ge are even encountered at commercially viable concentrations, the most famous example being in the oxidative alteration zone of a sulfide body at Tsumeb, Namibia (Frondel and Ito 1957; Melcher et al. 2006).

Tin, in the form of Cu-Sn alloys (i.e., bronze), is the technological basis for many early civilizations. Tin mineralization on Earth is most commonly associated with oxides from late-stage granitic liquids and low-sulfide hydrothermal fluids derived from silicic intrusions (e.g., Mlynarczyk and Williams-Jones 2006) but it can also occur in the form of tin sulfides in sulfide bodies, especially where there has been hydrothermal reworking (Evrard et al. 2015; Liu et al. 2016; Shimizu and Shikazono 1987). As noted above, Sn is often present with Ge as a minor constituent in ore sulfides such as sphalerite and it can substitute into Ge-sulfides (and visa versa).

Tin-enriched phases have not been previously reported in a meteorite. Germanium-bearing alloys (up to 1.7 wt% Ge; Armstrong et al. 1985b) are occasionally reported, usually associated with opaque assemblages (also known as Fremdlinge) in CAIs from carbonaceous chondrites (El Goresy et al. 1978; Wark and Lovering 1978; Armstrong et al. 1985b) but also in the R chondrite Rumuruti (Schulze et al. 1994). Armstrong et al. (1985b) described a Ge-sulfide phase with an approximate formula of Ni_5GeS in an opaque assemblage from the CV3 chondrite Bali but this phase was not fully characterized. In this work, we describe the first natural occurrence of $\text{Ni}_6\text{Ge}_2\text{S}_2$ and Ni_6SnS_2, as new secondary minerals in a CAI from the Allende CV3 carbonaceous chondrite. Preliminary results are given by Ma (2015a, 2017).

MINERAL NAME AND TYPE MATERIAL

The minerals and corresponding mineral names (nuwaite, IMA 2013-018; butianite, IMA 2016-028) have been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (Ma 2013, 2016). The names are derived from the story of “Nu Wa Bu Tian” in ancient Chinese mythology. The goddess Nu Wa patched the fractured wall of Heaven to save the early World after Pan Gu’s
creation. Nuwaite was named after “Nu Wa” in allusion to this secondary mineral filling cracks
in a primitive refractory inclusion in the early solar system. Butianite was named after the
Chinese words “Bu Tian”, meaning patching the sky. Butianite is the Sn-analog of nuwaite and
another secondary phase that fills cracks in the same refractory inclusion in Allende.

The holotype materials for nuwaite and butianite occur within an optically-thick polished
section of the CV3 carbonaceous chondrite Allende (Caltech sample Allende 12, section D2) in
the type B1 CAI ACM-2, which is deposited under catalog # USNM 7616 in the Smithsonian
Institution’s National Museum of Natural History, Washington DC, USA. Butianite is restricted
to this section. Nuwaite was identified in two additional sections from the Caltech collection
(Allende 12, sections B2 and F) and from USNM 7554, which also sections ACM-2. In addition
to nuwaite and butianite, holotype material for three recently described new minerals,
grossmanite and monipite in section USNM 7554 and majindeite in section USNM 7615, are
present in the same CAI (Ma and Rossman 2009b; Ma et al. 2014a; Ma and Beckett 2016).

OCCURRENCE

The Allende meteorite fell in and near Pueblito de Allende, Chihuahua, Mexico on
February 8, 1969 (Clarke et al. 1971). It is a CV3 carbonaceous chondrite and, due to the large
amount of fresh material (total known weight ~ 2 tons), is probably the most heavily studied
meteorite in existence; results from the study of Allende samples have greatly influenced current
thinking about processes, timing, and chemistry in the primitive solar nebula and in small
planetary bodies. Moreover, Allende continues to be a source of information for new-to-science
materials produced in the early solar system more than four decades after its fall (e.g., Ma et al.
2014b; Ma 2015b). Nuwaite and butianite are just two of nineteen new minerals discovered in
Allende since 2007.

Coarse-grained CAIs are classically divided according to mineralogy and mode into types
A (melilite dominant), B (subequal amounts of clinopyroxene + melilite), and C (significant
amounts of anorthite). Types B1 and B2 inclusions are distinguished by the presence (B1) or
absence (B2) of a melilite-rich mantle. In general, coarse-grained CAIs are characterized by high
concentrations of elements that are refractory in a cooling gas of solar composition and in ratios
suggesting that they captured the ~4% most condensable elements from a gas of solar
composition (e.g., Grossman and Ganapathy 1976).
The minerals nuwaite and butianite are present within the CAI, ACM-2, which was serially sectioned from a ~1 cm diameter fragment of Allende (Caltech Meteorite Collection No. Allende12A). Ma and Rossman (2009b) and Ma et al. (2014a) provide petrographic descriptions of the inclusion and its constituent phases. Only a small portion of a once much larger inclusion bounded by a matrix of mostly fine-grained olivine and troilite still exists in fragment 12A and, therefore, sections of it, which leads to ambiguity concerning the nature of the host inclusion. Ma et al. (2014a) argued, based primarily on geometric considerations and the presence of low-Ti clinopyroxene phenocrysts, that ACM-2 was a large type B1 CAI, ~7 mm in diameter, and that the presence of a Wark-Lovering rim where the inclusion contacts matrix implies that the remaining material is a portion of the melilitie-rich mantle. We accept this designation in the present work and refer the reader to Ma and Rossman (2009b), Ma et al. (2014a), and Ma and Beckett (2016) for additional mineral compositions and a general petrographic description of this inclusion. All of the observed nuwaite and butianite occurs in sections from one half of ACM-2. This localization of occurrence points to a correspondingly localized source of Ge and Sn within or outside the CAI, and/or a precipitation/condensation process dictated by localized conditions within the CAI.

Figure 1a shows a back-scatter electron (BSE) image of the region containing the holotype material for both of the new minerals. Locations of type nuwaite and butianite are indicated. The type nuwaite occurs ~700 μm from the rim of ACM-2 in a grossular-rich vein that also contains Na-bearing melilitie and Ge-bearing Ni-Fe alloy (Fig. 1b). Host melilitie is ~Ak24. Nuwaite is also found filling cracks in Al,Ti-diopside within 300-600 μm of the Wark-Lovering rim. Type butianite is ~350 μm from the Wark-Lovering rim and occurs in cracks within one Al,Ti-diopside crystal (Fig. 1c).

APPEARANCE, PHYSICAL, AND OPTICAL PROPERTIES

Nuwaite occurs as irregular grains, 1-6 μm in size (Figs. 1b). Butianite occurs as irregular grains, 0.5 to 1.4 μm in width and 1-8 μm long, the longest, shown in Fig. 1c, occurs in a crack. Both minerals are opaque. Color, luster, streak, hardness, tenacity, cleavage, fracture, density, and optical properties could not be determined because of the small grain size. The density, calculated from its crystal structure and the empirical formula, as described below, is 7.24 g/cm³ for nuwaite, and 7.62 g/cm³ for butianite.
ANALYTICAL TECHNIQUES

Chemical analyses of nuwaite and butianite were carried out using a JEOL 8200 electron microprobe interfaced with the Probe for EPMA program from Probe Software, Inc. and operated in focused beam mode at 15 kV or 10 kV and 10 nA. Quantitative elemental microanalyses were processed with the PAP correction procedure (Pouchou and Pichoir 1991) and analytical results are given in Table 1. Standards were Ni, Ge, Sn, Te, Co, Pt, and Ru metals and FeS$_2$ (for Fe and S). An Oxford INCA X-ray energy dispersive spectrometer (EDS) on a ZEISS 1550VP field emission SEM was also used for elemental analysis of associated alloys, sulfides, oxides and silicates. These data were processed using the XPP correction procedure of Pouchou and Pichoir (1991) and Oxford factory internal standards. Electron back-scatter diffraction (EBSD) analyses were obtained using an HKL EBSD system mounted on the ZEISS 1550VP field emission SEM. Details of operating conditions for EBSD are given below.

CHEMICAL COMPOSITION

The type nuwaite (Fig. 1a & 1b) has an empirical formula of

$$(\text{Ni}_{5.95}\text{Fe}_{0.16})(\text{Ge}_{0.60}\text{Sn}_{0.23})(\text{S}_{1.72}\text{Te}_{0.33})$$

with a simplified formula of $\text{Ni}_6(\text{Ge},\text{Sn})(\text{S},\text{Te})_2$. The end-member formula for nuwaite is Ni_6GeS_2, which requires (wt%) Ni 72.03, Ge 14.85, S 13.12, total 100 wt%. The type butianite (Fig. 1a & 1c) has an empirical formula of

$$(\text{Ni}_{5.93}\text{Fe}_{0.13})(\text{Sn}_{0.52}\text{Ge}_{0.41})(\text{S}_{1.56}\text{Te}_{0.45})$$

Here, the simplified formula is $\text{Ni}_6(\text{Sn},\text{Ge})(\text{S},\text{Te})_2$ with an end-member formula of Ni_6SnS_2, which requires (wt%) Ni 65.83, Sn 22.18, S 11.99, for a total of 100.00. Observed compositions of nuwaite-butianite in ACM-2 span a range in Ge# [100*Ge/(Ge + Sn)] on a molar basis] from 10-90 (Fig. 2a). Given that the endmember Ni_6SnS_2 is stable at 540°C (Baranov et al. 2003), there is likely to be a complete solid-state solution between nuwaite and butianite over some temperature range. Tellurium/sulfur ratios are also variable, ranging over a factor of three (0.1 – 0.3). The most Te-enriched nuwaite-butianite in ACM-2 are crack-filling butianites (Fig. 2c) and the most Te-depleted are Ge-rich nuwaites in sections that contain no butianite (Fig. 2b). We note that the Ge-sulfide described by Armstrong et al. (1985b), $(\text{Ni},\text{Fe},\text{Co})_{5.00}(\text{Ge},\text{Sn})_{0.94}(\text{S},\text{Te})_{1.00}$ has a molar $(\text{Ge+Sn})/(\text{S+Te}) = 0.9$ that is much higher than expected for nuwaite, ~0.5. Moreover, $(\text{Ni+Fe+Co})/\text{Ge} = 5.2$ with very low Sn is significantly lower than expected for a Sn-poor nuwaite (≥ 6). The Armstrong et al. phase is not
nuwaite. It may be related to Ni$_9$Ge$_2$S$_2$ (Ni/Ge =4.5), which would be the Ge-analog of Ni$_9$Sn$_2$S$_2$, a known synthetic material (Baranov et al. 2003). Butianite may be related to an unnamed mineral with a formula of (Ni,Cu,Fe,Co)$_{5.43}$(Sn,Sb)$_{1.04}$(S,Te)$_{2.00}$ that was observed as an inclusion in heazlewoodite from a serpentinized peridotite by Hudson and Travis (1981). However, the Ni+Cu+Fe+Co content appears to be too low for a butianite.

COEXISTING PHASES

Ma and Rossman (2009b), Ma et al. (2014a), and Ma and Beckett (2016) give compositions of the major igneous phases in ACM-2 and of various phases associated with the Mo-oxides majindeite and kamiokite. Nuwaite occurs with grossular ((Ca$_{2.92}$Mn$_{0.07}$)Al$_2$$_2Si_{2.99}O_{12}$], Na-bearing melilite [((Ca$_{1.82}$Na$_{0.14}$)Al$_{0.99}$(Si$_{1.23}$Al$_{0.77}$))O$_7$], Fe-, Zn-bearing spinel [(Mg$_{0.92}$Fe$_{0.05}$Zn$_{0.05}$)Al$_2$O$_4$], and Ge-bearing Ni-Fe alloys (e.g., Ni$_{0.82}$Fe$_{0.12}$Ge$_{0.02}$Pt$_{0.02}$, Ni$_{0.83}$Fe$_{0.11}$Co$_{0.03}$Ge$_{0.01}$) in alteration veins within igneous melilite (~Ak24), or filling cracks alone in melilite or Al-, Ti-diopside. Butianite only occurs within cracks in Al-, Ti-rich diopside [(Ca$_{1.01}$(Mg$_{0.46}$Al$_{0.31}$)Ti$_{4.14}^{4+}$Ti$_{3.08}^{3+}$)(Si$_{1.43}$Al$_{0.57}$)O$_6$], which also contain nuwaite, heazlewoodite (Ni$_3$S$_2$), Ge-bearing Ni-Fe alloy (Ni$_{0.84}$Fe$_{0.12}$Ge$_{0.02}$Co$_{0.01}$) and, possibly, monticellite (CaMgSiO$_4$). Representative analyses of Ge-bearing alloys and of heazlewoodite are given in Table 1. Note that the alloy composition is at the Ni-rich extreme for ACM-2, consistent with late-stage alteration and not with likely Fe-rich condensates (Ma and Beckett 2016). Heazlewoodite and Ni-rich alloys are usually isolated but are occasionally observed in contact.

CRYSTALLOGRAPHY

Conventional X-ray studies could not be carried out on either nuwaite or butianite because of the small crystal and aggregate size. We were, however, able to obtain EBSD analyses at a submicrometer scale on the vibration-polished section USNM 7616 using methods described in Ma and Rossman (2008, 2009a). An HKL (now Oxford) EBSD system on a Zeiss 1550VP scanning electron microscope was used for these measurements and operated at 20 kV and 6 nA in a focused beam configuration with a 70° tilted stage and variable pressure (25 Pa) mode. The EBSD system was calibrated using a single-crystal silicon standard, an approach that allows the study of uncoated specimens. The structures of nuwaite and butianite were determined.
and cell parameters obtained by matching the observed EBSD patterns with structures of
synthetic Ni$_6$SnS$_2$ and Ni$_9$Sn$_2$S$_2$ (Baranov et al. 2003), and synthetic Ni$_{8.21}$Ge$_2$S$_2$ and Ni$_{8.45}$Ge$_2$Se$_2$
(Isaeva et al. 2009).

The EBSD patterns of both nuwaite and butianite (Fig. 3) match well to the tetragonal
I$4/mmm$ Ni$_6$SnS$_2$ superstructure (Baranov et al. 2003) with mean angular deviations of 0.33 ° to
0.39°. The corresponding cell parameters are $a = 3.650$ Å, $c = 18.141$ Å, $V = 241.68$ Å3, and $Z = 2$. To our knowledge, nuwaite has not been synthesized. It is, however, isostructural with
synthetic Ni$_6$SnS$_2$, so a description based on Baranov et al.’s (2003) study of butianite suffices
for both phases. The crystal structure of nuwaite-butianite is characterized by alternating layers
of metal, Ni$_5$(Ge,Sn) in a Cu$_3$Au-type configuration, with two crystallographically distinct Ni$_{0.5}$S
slabs. Roughly equal amounts of each type of Ni$_{0.5}$S slab are stacked statistically perpendicular
to the crystallographic c-axis. Only $\frac{1}{4}$ of the possible Ni sites in any given slab are occupied
with Ni, which forms either distorted NaCl- or Li$_2$O-arrangements with S. NaCl-, Li$_2$O-, and
Cu$_3$Au-type building blocks are observed in a broad range of chalcogenides (e.g., Baranov et al.
2003; Isaeva et al. 2009; Kuznetsov et al. 2017). The physical properties of nuwaite and
butianite have not been studied but, based on the metal-sulfide layering, they are likely to be
strongly anisotropic.

X-ray powder-diffraction data (in Å for CuKα1, Bragg-Brentano geometry) are calculated
from the cell parameters from Baranov et al. (2003) with the empirical formula of type nuwaite
and butianite from this study, using Powder Cell version 2.4. The strongest calculated X-ray
powder diffraction lines [d in Å, (I), hkl] are 4.535 (100) (004), 3.024 (9) (006), 1.963 (10) (116),
1.825 (31) (200), 1.704 (10) (118), 1.693 (24) (204), 1.291 (10) (220) for nuwaite, and 4.535
(100) (004), 3.024 (12) (006), 1.963 (14) (116), 1.825 (38) (200), 1.704 (10) (118), 1.693 (30)
(204), 1.291 (12) (220), 1.241 (11) (224) for butianite.

DISCUSSION

Germanium and tin commonly substitute together as minor constituents in sulfides such
as sphalerite and chalcopyrite (e.g., Gill et al. 2016; Maiken et al. 2003; Reiser et al. 2011) but
they also form sulfides wherein Ge or Sn is structurally required and there are several natural
sulfides for which there are isostructural Ge and Sn end-member minerals: argyrodite -
canfieldite [Ag$_8$(Ge,Sn)S$_6$]; briartite - stannite [(Cu$_2$Fe(Ge,Sn)S$_4$]; germanite - ferrokesterite
[[Cu_{26}Fe_{4}(Ge,Sn)_{4}S_{32}]; omariniite - stannoidite [Cu_{6}Cu_{4}^{2+}(Fe, Zn)(Ge,Sn)S_{12}]]. Reported descriptions of these phases tend to be either Ge- or Sn-enriched but intermediate compositions do occur for some pairs, suggesting that complete solid solutions may exist. Nuwaite – butianite [Ni_{6}(Ge,Sn)S_{2}] represents a new Ge-Sn sulfide solid solution. Compositions of nuwaite-butianite in ACM-2 have Ge#s from 10 – 90%, consistent with a complete solid solution under the conditions encountered in that inclusion. The large range in Ge/Sn in nuwaite-butianite directly reflects differences in Ge/Sn in the local fluid, although equilibrium constants relating these ratios are currently unknown. Nuwaite and butianite are the first known meteoritic minerals with high Ge and Sn concentrations. In the following paragraphs, we explore the significance of sulfides and alloys in ACM-2 and place nuwaite-butianite within the framework of Fe-Ni-S evolution in this and other CAIs.

Type B1 inclusions like ACM-2 were partially to completely melted one or more times under reducing conditions with volatilization that led to crystallization of a melilite-rich mantle (Mendybaev et al. 2006; MacPherson 2014). One might reasonably expect concentrations of moderately to highly volatile elements to be depleted in such objects but there is abundant evidence that many CAIs have relatively high concentrations of relatively volatile elements. These features of the bulk chemistry are thought to indicate secondary processing at low temperatures, either in the solar nebula or on parent bodies (e.g., Krot et al. 1995; MacPherson 2014). We are not aware of bulk Ge concentrations for CAIs or their components but some data are available for Sn. These data show that, on average, bulk Sn concentrations in Allende CAIs are only depleted by a factor of two relative to bulk Allende (Mason and Martin 1977; Fehr et al. 2009).

Germanium and tin are moderately volatile elements in a nebular setting (Lodders 2003), although this follows from an assumption that Fe-Ge and Fe-Sn alloys form ideal solutions. Given the low predicted condensation temperatures, even referenced to a high nebular pressure \{[577°C(Sn)-597°C(Ge) for a total pressure of 10^{-3} \text{ atm}]; Lodders 2003\}, nonideality and magnetic contributions to the free energy are likely important (e.g., Capobianco et al. 1999; Hari Kumar et al. 1998). These factors could be sufficient to change the order of condensation (i.e., make Ge more volatile than Sn) but they do not obviate the basic conclusion that both Ge and Sn are moderately volatile elements in a nebular setting and that the formation of nuwaite-butianite, if nebular, occurred at low temperatures. Thus, they are not part of the high-temperature
melting/evaporation event(s) that led to the formation of the refractory igneous portions of ACM-2. The localized distribution of nuwaite-butianite might seem to argue against a strictly nebular origin because a nebular vapor would have had access to the entire surface of the CAI. One might, therefore, expect nuwaite-butianite to be broadly distributed in cracks and veins throughout ACM-2 and not restricted a small portion of the inclusion. However, Ma and Beckett (2016) pointed out that Ni enrichment in alloys from ACM-2 reflected local exhaustion of magnetite in opaque assemblages. Local environments within the CAI were dictated by the local presence or absence of magnetite-bearing phase assemblages with easy access to local cracks and veins. Volatilization of high S phases similarly fed the local vapor and their exhaustion would have led to locally low S fugacities. The presence of heazlewoodite and Ge-bearing Ni-rich alloys only in sections that contain nuwaite-butianite could, in fact, be consistent with a nebular environment.

In ACM-2, nuwaite-butianite and associated Ge-bearing, Ni-rich alloys and heazlewoodite occur in existing alteration veins and cracks that post-date all melting events, which implies a low-temperature origin. The range of sulfide-bearing phase assemblages suggests a large range in f_S^2. The sulfur-rich phase molybdenite (MoS_2; sulfur/metal = 2) and pentlandite [(Fe,Ni)$_9$S$_8$; sulfur/metal = 0.9] are observed in one opaque assemblage, where the evolution of the phase assemblage is largely constrained by the presence or absence of magnetite as discussed by Ma and Beckett (2016). Heazlewoodite (Ni$_3$S$_2$; sulfur/metal = 0.7) is the most common sulfide in veins and cracks in ACM-2 and f_S^2 values for heazlewoodite plus awaruite are lower than those needed to stabilize pentlandite (e.g., Alt and Shank 1998). Nuwaite-butianite is even less S-rich than heazlewoodite (sulfur/metal = 0.3). From Baranov et al. (2003), butianite + heazlewoodite + alloy is a stable phase assemblage at 540°C. This implies that butianite is limited to f_S^2 values equal to or lower than those needed to stabilize heazlewoodite + alloy (e.g., 2Ni$_3$S$_2$ + Ge = Ni$_6$GeS$_2$ + S$_2$ at the same temperature). The presence of incompatible sulfides in ACM-2 implies that the degree of reaction varies locally. Overall, the process is one of reduction and volatilization of Fe and S with sulfide/metal ratios decreasing progressively as S is stripped from the sulfides. There are abundant examples of disequilibrium over the short spatial scales offered by ACM-2 (e.g., monipite-tugarinovite and apatite; the presence of molybdenite and pentlandite + magnetite in the same inclusion that has kamiokite+awaruite and heazlewoodite+alloy) have been described by Ma et al. (2014a) and Ma and Beckett (2016).
Although the specific Ge-sulfide for the occurrence of Armstrong et al. (1985b) is unknown, it has a similar key phase assemblage (i.e., Ge-sulfide, heazlewoodite, Ni-rich alloy), so that a similar origin is implied. Equilibria such as $2\text{Ni}_5\text{GeS}_2(\text{nuwaite}) + \text{S}_2 = \text{Ni}_5\text{GeS}_2(\text{Armstrong phase}) + \text{Ni}_3\text{S}_2(\text{heazlewoodite})$ presumably control which chalcogenide appears. The higher sulfur/Ni ratio for the Armstrong et al. (1985b) phase suggests that it requires a higher $f\text{S}_2$ than does nuwaite.

For both nuwaite and butianite, the source of the Ge and Sn, as well as the significant concentrations of Te, is problematic. We observed no potential Sn- or Ge-source phases in or immediately outside ACM-2 but the fact that nuwaite occurs in only one half of the CAI implies a local source or a unique fluid altering phase assemblage that caused precipitation. Given that type B1 inclusions are relatively common in Allende and nuwaite-butianite has been observed in only one (i.e., ACM-2), it seems likely that the source of the Ge, Sn, and Te is external to the CAI. We also note that nuwaite and butianite are not observed outside the Wark-Lovering rim (i.e., in the matrix) but nuwaite is observed inside multiple sections of ACM-2 (Sn concentrations are high enough for butianite only in one section). This suggests that the source (or the transport medium) was highly localized. Ge-bearing alloys have been previously reported (Armstrong et al. 1985a; El Goresy et al. 1978; Wark and Lovering 1978) but these are usually associated with opaque assemblages and were likely produced as part of the oxidation-sulfidation processes that affected these objects (e.g., Armstrong et al. 1985a; 1987; Blum et al. 1989). ACM-2 was extensively metasomatized such that the stable Fe-Ni alloys became extremely Ni-rich and Ni-sulfides appeared. Sulfur-rich sulfides like pentlandite and molybdenite are rare in ACM-2 and troilite is not observed. Heazlewoodite is generally not observed in Allende CAIs but it is the most common sulfide in veins of ACM-2 although it appears only in sections containing nuwaite-butianite. Germanium- and Sn-chalcogenides have only been reported in ACM-2 and a CAI from Bali (Armstrong et al. 1985b). In most sulfidized CAIs, nuwaite and butianite are not observed because the $f\text{S}_2$ was too high and in sulfide-free CAIs, the local $f\text{S}_2$ was too low.

Butianite was synthesized by Baranov et al. (2003) at 540°C in the system Ni-Sn-S. They observed a stable field for butianite - Ni metal – heazlewoodite, which is the collection of phases observed in ACM-2, albeit with significant Fe in the alloy and no example of all three phases in contact. However, neither upper nor lower temperature limits on the stability of butianite (or nuwaite) are known. Thus, just how low a temperature might be represented by...
nuwaite-butianite is difficult to quantify based on the available data. Where Ge- and Sn-sulfides are observed in terrestrial rocks, emplacement temperatures in the range of 200-400°C have been inferred (Chetty and Frimmel 2000; Melcher et al. 2006; Shimizu and Shikazano 1987).

Taking aside the unnamed mineral described by Hudson and Travis (1981), the closest terrestrial analog for heazlewoodite and nuwaite-butianite in ACM-2 would seem to be the heazlewoodite-awaruite assemblage commonly observed in serpentinized peridotites (Alt and Shanks 1998; Eckstrand 1975; Gole 2014; Klein and Bach 2009; Sciortino et al. 2015; Tzamos et al. 2016; Williams 1960). Serpentinization of mafic and ultramafic rocks is a large-scale, ongoing process in oceanic environments. Here, large volumes of ocean water oxidize Fe\(^{2+}\) from silicates, releasing H\(_2\), which creates reducing conditions. Where the water-rock ratio is high, these reduced fluids strip S and Fe from sulfides so that stable heazlewoodite-awaruite is produced at 200-300° and relatively shallow depths. The assemblage reflects low \(f_{S_2}\) and relatively (for a terrestrial system) low \(f_{O_2}\) (see Fig. 8 of Alt and Shanks 1998). The nature of the fluid that produced nuwaite-butianite is poorly constrained. The lack of hydrated phases in ACM-2 suggests that this was not an aqueous solution at near-ambient temperatures.

The presence of significant concentrations of Te in nuwaite-butianite also provides a clue to origin because Te is generally more volatile than S in terrestrial environments and tellurides are generally very late stage products. From Fig. 2, Te/S is generally higher in cracks than in veins and it increases with increasing Sn/Ge. It is likely that increasing Te/S is associated with lower temperatures and, since Te/S correlates with Sn/Ge, it follows that butianite is probably a lower temperature phase than nuwaite and that crack filling nuwaite-butianite post-dates vein-filling nuwaite.

IMPLICATIONS

Nuwaite and butianite are opportunistic late-stage alteration products that fill pores and fractures in an Allende CAI. Their absence in most other CAIs is likely due to the high \(f_{S_2}\) governed by S-rich phases like pentlandite that are incompatible with low-S chalcogenides like nuwaite-butianite. They formed after the commonly observed secondary grossular in alteration veins and are likely vapor-deposited phases at low temperatures. Nuwaite-butianite reflect the last stage of alteration for ACM-2. Sn-Te enrichment occurred at lower temperatures than Ge (i.e., butianite is later) with balancing of low \(f_{S_2}\) with high enough temperature and Ni.
Nuwaite-butianite is an end-stage condensate produced during desulfurization of a CAI. Generally, this process does not proceed in most CAIs to the point where heazlewoodite and nuwaite-butianite are stabilized, so these phases are rare. Nuwaite also represents a previously unknown material and may be exploited for developing functional materials with intergrowth structures.

ACKNOWLEDGEMENTS
SEM, EBSD and EPMA analyses were carried out at the Caltech GPS Division Analytical Facility, which is supported, in part, by NSF Grants EAR-0318518 and DMR-0080065. JRB acknowledges NASA grant NNG04GG14G. We thank Klaus Keil, Mike Zolensky and associate editor Steven Simon for helpful reviews.

REFERENCES
Bernstein, L.R. and Waychunas, G.A. (1987) Germanium crystal chemistry in hematite and
goethite from the Apex Mine, Utah, and some new data on germanium in aqueous solution

opaque assemblages in C3V meteorites: Implications for nebular and planetary processes.

Capobianco, C.J., Drake, M.J., and de’Aro, J. (1999) Siderophile geochemistry of Ga, Ge, and
Sn: Cationic oxidation states in silicate melts and the effect of composition in iron-nickel

mineralisation in the Northern Platform of the Pan-African Damara Belt, Namibia:
geochemical and fluid inclusion evidence from carbonate wall rock alteration. Mineralium
Deposita 35, 364-376.

Clarke, R.S., Jarosewich, E., Mason, B., Nelen, J., Gomez, M., and Hyde, J.R. (1971) The
Allende, Mexico, meteorite shower. Smithsonian Contributions to the Earth Science, 5, 1–
53.

mineral assemblages by alteration reactions in ultramafic rocks. Economic Geology, 70,
183-201.

concentration in hydrothermal sulphides related to ultramafic rocks along the mid-Atlantic

isotope compositions of calcium-aluminum-rich inclusions. Meteoritics & Planetary
Science, 44, 971-984.

Mineralium Deposita, 49, 471-486.

Table 1. EPMA data for the type nuwaite and butianite, associated Ge-bearing alloys and heazlewoodite in Allende.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Nuwaite</th>
<th>Butianite</th>
<th>Alloy 1</th>
<th>Alloy 2</th>
<th>Heazlewoodite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt%</td>
<td>n=5</td>
<td>n=4</td>
<td>n=5</td>
<td>n=4</td>
</tr>
<tr>
<td>Ni</td>
<td>65.3(0.3)</td>
<td>62.1(0.7)</td>
<td>72.6(0.8)</td>
<td>78.0(0.7)</td>
<td>68.5(0.8)</td>
</tr>
<tr>
<td>Fe</td>
<td>1.72(0.07)</td>
<td>1.3(0.2)</td>
<td>10.0(0.2)</td>
<td>10.8(0.3)</td>
<td>b.d.</td>
</tr>
<tr>
<td>Ge</td>
<td>8.2(0.2)</td>
<td>5.3(0.2)</td>
<td>2.7(0.6)</td>
<td>2.68(0.06)</td>
<td>b.d.</td>
</tr>
<tr>
<td>Sn</td>
<td>5.10(0.03)</td>
<td>11.1(0.2)</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
</tr>
<tr>
<td>S</td>
<td>10.3(0.2)</td>
<td>8.9(0.1)</td>
<td>b.d.</td>
<td>b.d.</td>
<td>26.7(0.1)</td>
</tr>
<tr>
<td>Te</td>
<td>7.9(0.2)</td>
<td>10.3(0.2)</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
</tr>
<tr>
<td>Co</td>
<td>b.d.</td>
<td>b.d.</td>
<td>1.6(0.2)</td>
<td>0.8(0.2)</td>
<td>b.d.</td>
</tr>
<tr>
<td>Pt</td>
<td>b.d.</td>
<td>b.d.</td>
<td>4.5(0.3)</td>
<td>b.d.</td>
<td>b.d.</td>
</tr>
<tr>
<td>Ru</td>
<td>b.d.</td>
<td>b.d.</td>
<td>0.4(0.1)</td>
<td>b.d.</td>
<td>b.d.</td>
</tr>
<tr>
<td>Total</td>
<td>98.5</td>
<td>99.1</td>
<td>91.8<sup>d</sup></td>
<td>92.3<sup>d</sup></td>
<td>95.2<sup>d</sup></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of aroms</th>
<th>9</th>
<th>9</th>
<th>1</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>5.95</td>
<td>5.93</td>
<td>0.82</td>
<td>0.84</td>
<td>2.92</td>
</tr>
<tr>
<td>Fe</td>
<td>0.16</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>0.60</td>
<td>0.41</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>0.23</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1.72</td>
<td>1.56</td>
<td></td>
<td></td>
<td>2.08</td>
</tr>
<tr>
<td>Te</td>
<td>0.33</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td></td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

^an=number of analyses.

^bErrors given inside parentheses are one standard deviation of the mean based on all of the analyses.

^cb.d. = below detection limit: 0.2 wt% Fe, 0.1 wt% Fe, 0.1 wt% Sn, 0.1 wt% S, 0.1 wt% Te, 0.3 wt% Co, 0.2 wt% Pt, 0.1 wt% Ru.

^dThe low totals are due to small grain sizes.
Figure 1. (a) Back-scatter electron (BSE) image showing part of the Type B1 CAI ACM-2 in USNM 7616 with locations of type nuwaite and butianite indicated. (b) Enlarged BSE image showing nuwaite coexisting with grossular in an alteration vein in melilite. (c) BSE image showing type butianite filling a crack in Al,Ti-rich diopside.
Fig. 2. (a)
Fig. 2. (b)
Figure 2. Nuwaiite - butianite compositions (molar) in terms of (a) the Ge-Sn-Te ternary, (b) Sn/Ge versus Te/S with compositions coded by section, and (c) Sn/Ge versus Te/S with compositions coded by occurrence in grossular-rich vein or in cracks in pyroxene.
Figure 3. EBSD patterns (left) indexed with the $I4/mmm$ Ni$_6$SnS$_2$ structure (right) for (a) type Nuwaite crystal in Fig. 1b and (b) the type Butianite crystal in Fig. 1c. Crosses indicate the center of a pattern.