Archaean hydrothermal fluid modified zircons at Sunrise Dam and Kanowna Belle gold deposits, Western Australia: Implications for post-magmatic fluid activity and ore genesis

Rui Wang*, Heejin Jeonb, Noreen J. Evansc

aState Key Laboratory of Geological Processes and Mineral Resources, and School of Scientific Research, China University of Geosciences, Beijing 100083, China
bDepartment of Geosciences, Swedish Museum of Natural History, Box 50 007, SE-10405 Stockholm, Sweden
cSchool of Earth and Planetary Sciences, John de Laeter Centre, TIGeR, Curtin University, Perth, WA 6102, Australia

*Corresponding author.
Email: rw@cugb.edu.cn (Rui Wang)

Professor, School of Scientific Research, China University of Geosciences, Beijing 100083, China
In order to further our knowledge of ore genesis in one of Australia’s preeminent ore districts, we have completed a comprehensive geochemical study of ore-related porphyritic intrusions from the Archaean Kanowna Belle and Sunrise Dam gold deposits (both > 10 Moz), Eastern Goldfields, Western Australia. Zircons (including samples from the newly developed Velvet mine) with ages ranging from 2.8 to 2.2 Ga, were investigated for O-OH isotopic signatures, trace element abundance, and U-Th-Pb compositions in order to elucidate the nature of the magmatic source and ore-related fluid. These intrusions have similarly high Sr/Y and La/Yb ratios to adakites from the Aleutian and Cook Islands, but lower Mg values and higher K₂O contents, suggesting they were derived from partial melts in a thickened crust. The modern analogues are postcollisional, high-Sr/Y granitoid porphyries in southern Tibet. Magmatic zircons have intermediate δ¹⁸O values (+5‰ to +6.3‰), and estimated magmatic crystallization temperatures (Ti-in-zircon) in between 660–760°C. They are interpreted as having crystallized from positive δ¹⁸O magmas during water-fluxed melting of juvenile lower crust. Hydrothermal fluid modified zircons are texturally indistinguishable from magmatic zircons, but their trace element, OH, and isotopic compositions are distinct. The involvement of hydrothermal fluid in zircon growth is evidenced by a negative correlation between OH content and δ¹⁸O. In addition, the studied hydrothermal fluid modified zircons are characterized by high La contents, flat rare earth element patterns, weak Ce anomalies, and high Eu/Eu⁺ ratios, suggesting they were related to a high-temperature, Zr-saturated, high-Eu, Cl-rich, and low-pH hydrothermal fluid. Such fluids are common in eastern Yilgarn gold camps.
INTRODUCTION

The Eastern Yilgarn Craton is one of the largest gold camps in the world, with many giant gold deposits (e.g., Blewett et al., 2010; Goldfarb and Groves, 2015; Wang et al., 2017). In order to improve our understanding of gold genesis in the Eastern Yilgarn Craton, more precise geochronological and isotopic data are needed. Zircon is generally resistant to post-crystallization alteration, so the timing of gold mineralization can be either directly determined on hydrothermal zircon or indirectly constrained using magmatic zircon (Claoué-Long et al., 1988; Pelleter et al., 2007; Zhou et al., 2012). Zircon O-Hf isotopic signatures are widely used to indicate magmatic source composition. However, the effect of fluids on the U-Th-Pb and O isotope systems in pre-Proterozoic zircons has only been sparsely studied (Pidgeon et al. 2013). Pidgeon et al. (2017) proposed that low temperature fluids affected both the U-Th-Pb ages and O-OH isotopic compositions of zircons from Jack Hills. However, the effect of higher temperature ore fluids or post-magmatic fluids on Archaean zircons has not been well investigated.

Two Archaean gold deposits (Sunrise Dam and Kanowna Belle), that formed at sub-amphibolite metamorphic facies conditions (~greenschist) in the Eastern Goldfields of Western Australia, show close association with Archaean felsic intrusions (Wang et al., 2017) and were subjected to a significant number of hydrothermal events. Zircons from these deposits were selected for detailed elemental and isotopic study in order to better understand the nature of post-magmatic fluids and their effect on zircon growth. This approach has enormous potential for determining fluid source and constraining the timing of mineralization.
GEOLOGICAL SETTING OF THE EAST YILGARN CRATON (EYC)

The Yilgarn craton is composed of six tectonostratigraphic terranes (Narryer, South West Gneiss, Youanmi, Kalgoorlie, Kurnalpi, and Burtville; Cassidy et al., 2006). The last three of these terranes constitute the EYC or Eastern Goldfields superterrane (Fig. 1), which is bounded by interconnected, NNE-striking and E-dipping crust-penetrating structures (Ida, Ockerburry, and Hootanui faults; Swager et al., 1995; Swager, 1997; Goleby et al., 2002, 2003; Cassidy et al., 2006; Blewett et al., 2010) that intersect the Moho. The deformation history of the EYC comprised six events identified as D1 (or DE), D2, D3, D4, D5, and D6 (Blewett et al., 2010).

The EYC is a major producer of Au, Ni, and Ta, as well as Al, Fe, Cu, W, Mo, Sn, Li, V, U, rare earth elements (REE) and Zr, and hosts many world-class gold and nickel deposits at Kalgoorlie and Kambalda, respectively. The gold mineralization is typically related to faults and shear zones that were initially established during D2 (~2670 Ma), but were then reactivated and became the focus for mineralizing fluid movement during D4 (~2625 Ma). Peak metamorphism during D2 to D6 was typically greenschist, although grades of amphibolite and even granulite facies were locally developed (Bateman and Bierlein, 2007; Vielreicher et al., 2010). Porphyries, albitites and lamprophyres are commonly found in the gold deposits, with the porphyries being broadly synchronous with Au (Vielreicher et al., 2015 and references therein). Traditionally, these deposits have been described as orogenic in style (e.g. Groves, 2003; Witt and Vanderhor, 1998; Goldfarb et al., 2015), however, some gold deposits with strong affinities to neighboring felsic intrusions could, in theory, be classified as skarn-, porphyry-, or epithermal-gold types (e.g. Mueller et al., 2008). Sulphur isotope signatures vary widely (-10 ‰ to +12.6 ‰ δ³⁴S), indicating multiple mechanisms of gold precipitation in a range of structural settings (Hodkiewicz et al., 2009 and references therein).
DEPOSIT GEOLOGY

Sunrise Dam

The Sunrise Dam deposit is located at the eastern margin of the Kurnalpi Terrane (Fig. 1). The basal stratigraphy of the Kurnalpi terrane is mainly composed of mafic volcanic rocks, intermediate calc-alkaline complexes, and feldspathic sedimentary rocks. The overlying stratigraphy is bimodal, high-field-strength-element (HFSE) enriched rhyolite-basalt and intermediate-felsic calc-alkaline complexes (Cassidy, 2006). The Laverton domain includes mafic and ultramafic volcanic rocks, banded iron formation (BIF) and fine-grained tuffaceous sediments at the base. The Nd T_{DM2} ages (2.95–2.72 Ga) are younger than those from the Kalgoorlie terrane (Champion and Cassidy, 2007) and the Sunrise Dam deposit is mainly hosted within greenschist-facies basalts, doleritic sills, BIF, and volcanic sediments. A protracted deformation history with structural reactivation resulted in multiple phases of gold mineralization. There are several inter-connected orebodies within Sunrise Dam, including Astro, Cosmo, GQ, and Vogue and the intrusions selected for this study are located within the Vogue body (Fig. 2).

Kanowna Belle

The Kanowna Belle deposit is located on the eastern edge of the Kalgoorlie terrane and the adjacent ‘Velvet’ discovery is the target of recent mining (Fig. 1). The basal stratigraphy of the Kalgoorlie terrane is composed of tholeiitic and komatiitic mafic-ultramafic rocks, which constitutes the Kambalda Group. Overlying the Kambalda Group is the Kalgoorlie sequence, made up of a complex volcanioclastic succession known as the Black Flag Group (BFG) (Barley et al., 2002; 2003). The Mount Shea porphyry, which intruded into the BFG, has a minimum SHRIMP U-Pb age of 2658±3 Ma (Krapež et al., 2000) and Nd depleted-
mantle model ages (T_{DM}) ranging from 3.10 Ga to 2.95 Ga (Champion and Cassidy, 2007).

The locally NE-SW trending Fitzroy fault and the later reactivated faults with NE-SW orientation host the majority of gold mineralization (Wang et al., 2017). The Kanowna Belle deposit is mainly hosted within felsic volcaniclastic rocks and porphyries but rare gold grains are located in fragments of veins, and in altered rocks that form clasts within the BFG volcaniclastic rocks (Fig. 3, Wang et al., 2017).

The summarized geochronological sequence for lithology and gold mineralization ages for the Sunrise Dam and Kanowna Belle is illustrated in Figure 4.

SAMPLING STRATEGY

Granitoid porphyries related to gold mineralization from two giant orogenic gold deposits were collected for lithogeochemical studies. Fresh or minimally altered intrusions were targeted, although nearly all samples are somewhat altered with pervasive white micas (paragonite, muscovite or phengite, Wang et al., 2017). Sample UGD 2419 (proximal to the orebody, Fig. 2) from Sunrise Dam, samples GDD 438 (proximal to the orebody, Fig. 3) and VD10_20 (from the recent Velvet discovery, Fig. 1) from the Kanowna Belle were selected for zircon separation.

ANALYTICAL TECHNIQUES

Lithogeochemical analysis

Fresh samples of igneous rock were prepared by crushing (using corundum plates) and grinding in an agate disk mill. The expected contamination of Si and Al by these methods is estimated to be less than one weight percent (as assessed from analyses of standards and blanks). All samples were analyzed at the LabWest, Perth, Australia. Major elements were
analyzed by wavelength dispersive X-ray fluorescence spectrometry. Accuracy for major elements, as determined by reproducibility of standards and duplicates, is typically within five relative percent (< 2 relative % for SiO$_2$ and Al$_2$O$_3$). Trace elements were analyzed with a Finnigan MAT inductively coupled plasma mass spectrometer (ICP-MS, Thermo Scientific X Series 2). Analytical accuracy for most trace elements is better than five relative percent.

Zircon U-Pb dating

Zircons were separated from 2–3 kg of crushed rock samples by heavy-liquid and magnetic methods followed by hand-picking at the Hebei Geological Survey Laboratory, China. Selected crystals were typical of magmatic zircons: euhedral, clear, colorless, devoid of mineral and fluid inclusions, and 50–150 μm in diameter. The zircons were mounted in epoxy and polished to reveal interior grain surfaces. Cathodoluminescence (CL), backscattered electron (BSE), and secondary electron (SE) images were obtained prior to analysis, in order to reveal internal zonation and enhance analytical targeting. Zircon U-Pb dating was firstly scrutinized using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), at the GeoHistory Facility, John de Laeter Centre, Curtin University, Perth, Australia. The zircons with concordant results from LA-ICPMS were selected for further SHRIMP dating with higher precision.

LA-ICP-MS data collection for both ages and trace element abundance was performed simultaneously at the GeoHistory Facility in the John de Laeter Centre, Curtin University, Perth, Australia. Individual zircon grains (mounted and polished in 1” epoxy rounds) were ablated using a Resonetics RESOlution M-50A-LR, incorporating a Compex 102 excimer laser, with a 33 μm diameter laser spot, 7 Hz laser repetition rate, and laser energy of 1.5 J cm$^{-2}$. Isotopic intensities were measured using an Agilent 7700s quadrupole ICP-MS. Two cleaning pulses were fired before 10 s of background analysis, 30 s of ablation and a further
10 s of baseline signal collection. The sample cell was flushed with ultrahigh purity He (350
mL min\(^{-1}\)) and N\(_2\) (3.8 mL min\(^{-1}\)) and high purity Ar was employed as the plasma carrier gas
(flow rate 0.98 L min\(^{-1}\)). For this work, \(^{28}\)Si, \(^{29}\)Si, \(^{31}\)P, \(^{39}\)K, \(^{44}\)Ca, \(^{45}\)Sc, \(^{49}\)Ti, \(^{57}\)Fe, \(^{71}\)Ga,
\(^{85}\)Rb, \(^{85}\)Sr, \(^{90}\)Y, \(^{90}\)Zr, \(^{95}\)Nb, \(^{135}\)Cs, \(^{137}\)Ba, \(^{139}\)La, \(^{140}\)Ce, \(^{141}\)Pr, \(^{146}\)Nd, \(^{147}\)Sm, \(^{151}\)Eu, \(^{157}\)Gd, \(^{159}\)Tb,
\(^{163}\)Dy, \(^{165}\)Ho, \(^{166}\)Er, \(^{169}\)Tm, \(^{172}\)Yb, \(^{175}\)Lu, \(^{178}\)Hf, \(^{181}\)Ta, \(^{202}\)Hg, \(^{204}\)Pb, \(^{206}\)Pb, \(^{207}\)Pb, \(^{208}\)Pb, \(^{232}\)Th,
and \(^{238}\)U were monitored for 0.01 s each. Given our inability to correct for the double charged
\(^{90}\)Zr interference on \(^{45}\)Sc, data was not utilized for this element. For trace element analysis,
international glass standard NIST 610 was used as the primary standard to calculate most
elemental concentrations (using \(^{29}\)Si as the internal standard element and assuming 14.76% Si
assumed in zircon) and to correct for instrument drift. Hf abundances were determined
against zircon GJ-1 (Liu et al., 2010) assuming 43.14% \(^{90}\)Zr in unknowns. Secondary
standard NIST 612 was analyzed as an unknown and yielded abundances within 4% of
recommended values for most elements. The primary geochronology reference material used
in this study was GJ-1 (601.92±0.7 Ma; Jackson et al., 2004), with Plešovice treated as a
secondary age standard (\(^{206}\)Pb/\(^{238}\)U age of 339.5±4.2Ma obtained, within uncertainty of
recommended value of 337.13±0.37 Ma; Sláma et al., 2008). The time-resolved mass spectra
were reduced using the U_Pb_Geochronology4 data reduction scheme in Iolite (Paton et al,
2011 and references therein).

The coupled U-Pb isotopic and trace element analyses by LA-ICPMS have divided
zircons into two groups of igneous zircons and hydrothermal fluid modified zircons. We
select zircons with concordant results from each group for further U-Pb age dating and trace
element analysis. The U–Pb isotopic analyses were performed using the Sensitive High
Resolution Ion Microprobe (SHRIMP II) in the John de Laeter Centre, Curtin University,
Australia. The OG1 standard was used to monitor instrument induced mass fractionation of
\(^{207}\)Pb/\(^{206}\)Pb ratio (3465 Ma; Stern et al., 2009). The \(^{207}\)Pb/\(^{206}\)Pb dates (mean age = 3471.3 Ma)
obtained on OG1 zircons during the SHRIMP session matched the 207Pb/206Pb standard age within uncertainty and no fractionated correction was warranted. The TEMORA standard with an age of 417 Ma (Black et al., 2004) was used to monitor performance. Analyses of the OG1 standard were interspersed with those of unknown zircon grains during each measurement session. Data processing was carried out using Squid 2 (Wingate and Lu, 2017), and data were plotted with Isoplot 4.15 (Ludwig, 2012). The uncertainty for individual analyses is quoted at the 1σ level, and the errors on weighted mean ages are at the 95% confidence level.

Secondary ion mass spectrometry: O isotope, ¹⁶O/¹⁸O, Ti and REE

The oxygen isotopic compositions and Ti, REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Y, and Lu), Y and Hf concentrations were measured using secondary ion mass spectrometry (SIMS) Cameca IMS-1280 at the Centre for Microscopy, Characterisation and Analysis (CMCA), University of Western Australia. The polished sample mount was coated with 30 nm Au and analyses were performed after polishing to remove the previously measured spots. Although these REE elements have already been measured by LA-ICPMS, La and Pr are very low in abundance and cannot be accurately measured by LA-ICPMS. Therefore, we conduct the REE analysis on representative zircons via SIMS.

SIMS ¹⁶O/¹⁸O

The in-situ oxygen isotopic ratio (¹⁸O/¹⁶O) was measured together with ¹⁶O/¹⁸O. The sample mount was outgassed inside the 1280 storage under vacuum for three days prior to the analyses to get as low an OH background as possible. A ca. 3 nA focused Cs⁺ primary beam was operated at 10 kV and the secondary ion beam was extracted at -10 kV. The analysis area was pre-sputtered using a 20 × 20 μm raster for 40 seconds followed by automated secondary...
centering in the field aperture (FA; 4000 μm) and entrance slit (ES; 60 μm). The analysis used a 15 μm raster employing dynamic transfer at a 130 × field magnification for 12 × 4 second integrations. Two oxygen isotopes and OH were measured simultaneously in mono-multi mode: multicollector Faraday Cup (FC) detectors with amplifiers of 10^{10} and 10^{11} Ω resistor collected 16O and 18O, respectively, and a mono-axial FC with an amplifier of 10^{11} Ω resistor collected OH. Exit slits of 500 and 200 μm were used on each of the multicollector detectors, providing a nominal mass resolving power (MRP) of ca. 2500 and 6000 (17O is resolved from OH with this MRP), respectively. The magnetic field was regulated using nuclear magnetic resonance (NMR). A normal incidence electron gun was used for charge compensation in all analyses. Typical 16O count rate was $> 2 \times 10^9$ cps. Bracketing of standards permits instrumental mass fractionation (IMF) and drift to be assessed and corrected. IMF was corrected using Geostandard 91500 (Widenbeck et al., 2004). The external reproducibility was 0.31 ‰ (2 sd). Corrected 18O/16O ratios are reported in δ^{18}O notation, in per mil variations relative to Vienna standard mean ocean water (VSMOW). The accuracy of the O isotopic analysis in this study can be assured as we measured secondary zircon standards (Temora 2 and Penglai) during the other sessions before and after this measurement, which yielded the accurate reference values within uncertainty. It also agrees to the long-term zircon oxygen measurement results in the CMCA IMS-1280 lab.

Ti

Titanium concentration was measured using a similar analytical method as described by Kenny et al (2016), as summarized below. A ca. 7 nA projected O$_2^-$ primary beam (ca. 20 μm in diameter) was operated at -13 kV and the secondary ion beam was extracted at 10 kV. The analysis area was pre-sputtered using a 25 μm raster for 90 seconds followed by automated
secondary centering in the field aperture (FA; 4000 μm), energy centering and mass calibration scanning. Entrance and exit slits of 60 and 400 um (MRP ca. 3000) were used with a 130 × field magnification. 49Ti was analyzed because 46Ti, 47Ti, 48Ti and 50Ti have interferences or possible interferences. Two silicon isotopes (28Si and 30Si) were collected, with the former used for beam centering and the latter used to normalize the Ti signal. Using magnet peak jumping, the axial FC2 with the 10^{11} Ω resistor and electron multiplier (EM) measured 28Si, and 30Si and 49Ti, respectively, for 12 cycles. NIST610 glass (434 ± 18 ppm, Pearcer et al., 1997) was analyzed as the reference material to calibrate Ti concentration, and 91500 (5.2 ± 1.5 ppm, Fu et al., 2008; 5.0 ± 0.2 ppm, Kenny et al. 2016) as the secondary standard to monitor the accuracy of the session. No post-analysis correction for the difference in matrix between NIST610 and 91500 was required with -45 eV energy offset applied (30 eV energy window and 5 eV gap). The external reproducibility for 91500 was <0.5 % (1 sd; 4.5 ± 0.2 ppm).

Rare Earth Element Content

Eleven REE (La, Ce, Pr, Nd, Eu, Sm, Gd, Dy, Er, Yb, and Lu), together with Y and Hf, were measured using a similar analytical method as that described in detail by Whitehouse (2004), as summarized below. A ca. 6 nA projected O$_2^-$ primary beam (ca. 20 um in diameter) was operated at -13 kV and the secondary ion beam was extracted at 10 kV. The analysis area was pre-sputtered using a 25 μm raster for 60 seconds followed by automated secondary centering in the field aperture (FA; 4000 μm; 130 × field magnification used), energy centering and mass calibration scanning. As REE concentration levels are quite low (in particular for the trivalent light REEs (LREE; La, Pr, Nd, Sm), all species were collected using EMs (low-noise, ion-counting) and their backgrounds and yields were carefully measured prior to the session. Six LREEs were measured simultaneously using the mono-
axial EM (144Nd; axial exit slit 800 um; MRP ca. 1500) and multicollector EMs

(139La, 140Ce, 141Pr, 152Sm, 153Eu; multicollector exit slit 250 um; MRP ca. 4500) with -45 eV energy offset applied (30 eV energy window and 5 eV gap). The multicollection detector background level is significantly low, less than 0.01 cps: the L2 and C detectors collecting La and Pr had the background count rates of 0.002 and 0.008 cps in particular. The other REEs, Y, Hf, the matrix reference 30Si (used to normalize the REE signals) and the mass peak reference 90Zr28Si16O$_2$ were analyzed using the axial-EM in the magnet peak jumping mode, and the energy offsets were applied differently for each species according to Whitehouse (2004). Eight cycles were run for an individual analysis. Similar to the Ti measurements, NIST610 glass was analyzed as the reference material to calibrate REEs concentration, and 91500 as the secondary standard to monitor the accuracy of the session. No post-analysis correction for the difference in matrix between NIST610 and 91500 was required.

ANALYTICAL RESULTS

Whole-rock geochemical results

All granitoids have SiO$_2$ contents between 58.68 and 70.30 wt. % (Table 1). The Kanowna Belle intrusions plot in the quartz diorite to granite fields while the Velvet porphyries show more compositional variation, plotting as syeno-diorite, quartz diorite, and granite. The Sunrise Dam porphyry is granitic in composition (Fig. 5A) with calc-alkaline K$_2$O contents. The Kanowna Belle and Velvet porphyries are calc-alkaline to high K calc-alkaline (Fig. 5B), while all samples have relatively high Sr/Y ratios (36–169) and La/Yb (36–69) (Fig. 5C, D), plotting in the adakitic field. All samples show significant enrichments of LREE relative to heavy REE (HREE) on chondrite-normalized diagrams (Fig. 6A). They also show relative depletions in Nb, Ta, P, and Ti, and enrichments in Rb, Ba, Th, U, K, Pb, Zr, and Hf on a primitive mantle-normalized trace element diagrams (Fig. 6B), similar to arc-related igneous
rocks worldwide (Perfit et al., 1980; Pearce, 1982; Arculus and Powell, 1986) and post-
collisional adakite-like (high-Sr/Y) granitoids in Gangdese belt of southern Tibet (Wang et al.,
2014, 2015; Fig. 6). Most sample have weakly negative Eu anomalies (0.70–0.96, Fig. 6A).

LA-ICPMS U-Pb dating and trace element results

Three samples were selected for LA-ICPMS U-Pb, and the results are listed in Table A1
and illustrated in Fig. A1.

Zircons have been divided into four groups based on the results. Analyses >10%
discordant or high common-Pb (f204>1%) are Group D (unreliable analyses); analyses <10%
discordant can be divided into three groups including Group I of igneous zircons (the main
group), Group X of xenocrystic zircons, and Group P of radiogenic Pb loss (those <10%
discordant but younger than Group I). The weighted average $^{207}\text{Pb}/^{206}\text{Pb}$ ages for the Group I
of UGD 2419, GDD 438, and VD10_20 are 2677 ± 29 Ma, 2685 ± 34 Ma, 2703 ± 13 Ma,
respectively.

The coupled trace element data obtained by LA-ICPMS for zircons from the three samples
are reported in digital appendix Table A1. The Group I zircons show typical magmatic
features. The hydrothermal fluid modified zircons with younger ages (Group P) or radiogenic
Pb loss (Group D) incline to have flat REE patterns, and higher La contents.

SHRIMP U-Pb dating and SIMS trace element results

The zircons with concordant results from LA-ICPMS were selected for further SHRIMP
dating with higher precision. Three samples were selected for SHRIMP U-Pb dating, and the
results are listed in Table A2. Following the similar grouping criteria to LA-ICPMS dating
results, zircons have been divided into four groups based on the results. Analyses >5 %
discordant or high common-Pb (f204>1%) are Group D (unreliable analyses); analyses <5 %
discordant can be divided into three groups including Group I of igneous zircons (the main
group), Group X of xenocrystic zircons, and Group P of radiogenic Pb loss (those <5 %
discordant but younger than Group I).

Sample UGD2419 was collected from a granite porphyry in the Sunrise Dam deposit. This
sample also contains a wide range of ages (Fig. 7A), and therefore no concordia intercept age
was obtained. The weighted average $^{207}\text{Pb}/^{206}\text{Pb}$ age for the Group I is 2654 ± 25 Ma, and the
rest of grains are scattered between 2660 Ma and 2239 Ma (Fig.8A–C). Sample GDD 438
was collected from the Kanowna Belle granite porphyry. This sample contains several
populations of zircons (Fig. 7B), and therefore no concordia intercept age was obtained. The
weighted average $^{207}\text{Pb}/^{206}\text{Pb}$ age for the Group I is 2678 ± 6.6 Ma (Fig. 8D–F), and several
grains show ages as young as 2263 Ma (Fig. 7B). Sample VD10_20 was collected from a
granite porphyry in the Velvet mine adjacent to Kanowna Belle. This sample contains several
populations of zircons with a range of ages (Fig. 7C), and therefore no concordia intercept
age was obtained. The weighted average $^{207}\text{Pb}/^{206}\text{Pb}$ age for the Group I is 2675 ± 6.6 Ma,
and the other Groups P + D are centered on 2280Ma and 2480 Ma, respectively (Fig. 7C).
All analyzed zircon grains show similar age distributions, including a main population group
around 2680 Ma and four post-magmatic groups (Fig. 7D).

Although REE and Ti element have already been measured by LA-ICPMS, La and Pr are
very low in abundance and cannot be accurately measured by LA-ICPMS. In addition, SIMS
analysis applied a smaller 15 spot size, which avoids the mixing of igneous core and
hydrothermal fluid modified rim during the analysis. Trace element data obtained by SIMS
for zircons from the three samples are illustrated on Figures 9, 10 and reported in digital
appendix Table A2. Some zircon grains show positive chondrite-normalized Ce anomalies,
small to significant negative Eu anomalies, and enrichments in heavy rare earth elements
(HREEs; Fig. 9), which are typical of igneous zircons (Hoskin and Schaltegger, 2003; Lu et
al., 2016). However, some grains have no chondrite-normalized Ce and Eu anomalies, flat REE patterns with weak enrichment of HREEs compared to LREEs, typical of hydrothermal zircons (Pelleter et al., 2007). These grains are free of fluid inclusions, and the previous LA-ICPMS trace element analysis shows no evidence of apatite and fluid inclusions. Since all these zircon grains have typical igneous concentric zoning and generally lack of fluid inclusions, they are more likely hydrothermal fluid modified zircons.

Comparison of zircon LA-ICPMS and SIMS trace element data

Although zircon LA-ICPMS trace element data have shown the large difference of group I zircons from groups P and D, SIMS data show better grouping. With application of LA-ICPMS (45 um spot size), there are significant overlaps of REE patterns (Fig. 9A, C, and E) and trace element plots (Fig. 10A, C, E, G) of igneous zircons and hydrothermal fluid modified zircons. The overlaps are likely caused by mixture of igneous zircon core and hydrothermal fluid altered rims during analysis. In addition, the poor analysis on elements with low abundance, such as La and Pr, can lead to the overlaps. For these reasons, we applied the trace element analysis with SIMS because of smaller spot size of 15 um and better precision for La and Pr. The new data of group I zircons show more concentrated and homogeneous geochemical compositions (Figs. 9B, D, F; 10B, D, F). The groups P and D zircons suffered from hydrothermal alteration show much higher La contents, high Eu/Eu* ratios, and lower (Sm/La)N and Ce/Ce* ratios than Group I zircons.

Zircon O isotopic compositions and 16O/18O contents

Zircon O isotopic and OH results from this study are listed in Tables A3, and are illustrated in Figure 11.
All three samples show a similar range of zircon O isotopic compositions. Sample GDD 438 has zircon δ^{18}O values between +3.4 ‰ and +5.9 ‰. Sample VD10_20 has zircon δ^{18}O values between +4.7 ‰ and +6.3 ‰. Sample UGD2419 has zircon δ^{18}O values between +3.8 ‰ and +6.1 ‰. In contrast, their OH contents are different with 0.00031–0.00579 for GDD 438, 0.00029–0.00327 for VD10_20, and 0.00031–0.01024 for UGD2419.

DISCUSSION

Geochronology

Previous studies have demonstrated the challenge in correctly dating felsic porphyries in the Eastern Goldfield Province (Ross et al., 2004). The zircons in these rocks commonly have high-U and are metamict, while xenocrysts are common, and many zircons have overgrowth and recrystallization patterns. Without BSE and CL imaging to aid in identification of zircon xenocrysts or overgrown rims, many grains would have been mistaken for magmatic zircons. A cautionary approach to interpreting zircon ages from Eastern Goldfield Province is critical.

Previous dating work has constrained granitic magmatism in the Eastern Goldfields Province to between 2720 and 2630 Ma (Ross et al., 2004 and references therein). Zircon xenocrysts are common in the granitoid rocks, and their ages are normally > 2.69 Ga with some > 2.9 Ga (Hill and Campbell, 1993; Nelson, 1997). The main episode of gold mineralization in the Yilgarn Craton is between 2650 and 2625 Ma (Groves et al., 2000, 2003)

The Dolly porphyry in the Sunrise Dam mine yielded a SHRIMP II U-Pb age of 2674±3 Ma (Brown, 2002). The mineralization ages were inferred from several radiometric systems (Fig. 4), including a molybdenite Re-Os age of 2663±11 Ma, Cr-mica Ar-Ar age of 2667±8 Ma (from the Sunrise Shear Zone), and a hydrothermal xenotime and monazite
SHRIMP II U-Pb age of 2654±8 Ma (from Western Shear Zone; Brown, 2002). Lamprophyre dykes postdate gold mineralization (phlogopite Ar-Ar age of 2080±4 Ma; Brown, 2002). The porphyritic intrusion collected from this study gives a weighted mean $^{207}\text{Pb}*/^{206}\text{Pb}*$ age of 2654 ± 25 Ma, which is slightly younger than previously obtained ages. This sample shows a variety of young ages from 2660 to 2220 Ma, suggesting several complicated hydrothermal or metamorphic events after formation. These young zircons are characterized by high U (>250 ppm) and high La (>0.1 ppm) contents.

The felsic volcaniclastic unit at Kanowna Belle yields a SHRIMP U-Pb age of 2668±9 Ma, with xenocrystic zircons with ~2.68, 2.70 and 2.71 Ga (Ross et al., 2004; Wang et al., 2017). A sample of the mineralized Kanowna Belle porphyries gives a weighted mean $^{207}\text{Pb}*/^{206}\text{Pb}*$ age of 2655±6 Ma (Ross et al., 2004), which is considered to be the maximum age for epigenetic gold mineralization. The main gold mineralization age is constrained by resetting of high-U zircon grains (2.63 Ga) and ore-related Pb-Pb galena (2.63 Ga) (Ross, 2002). In addition, monazite and xenotime from a gold mineralized, altered porphyry give a weighted mean $^{207}\text{Pb}*/^{206}\text{Pb}*$ age of 2640 ±8 Ma (Vielreicher et al., 2015). The main zircon group in sample GDD 438 has a weighted mean $^{207}\text{Pb}*/^{206}\text{Pb}*$ age of 2678 ±6.6 Ma, which is thought to be the formation age of the porphyritic intrusion. The young grains have high U (>300 ppm) and La (>0.3 ppm) contents (Table A1, A2), typical characteristics of hydrothermal zircons. We can name them as hydrothermal fluid modified zircons because all these zircon grains have typical igneous concentric zoning. The recently discovered Velvet mine is adjacent to Kanowna Belle, and no ages have been reported to date. Sample VD10_20 has several xenocrystic zircons with ages of ~2.8 Ga, and the main group has a weighted mean age of 2678 Ma, similar to the porphyries at Kanowna Belle. More young grains are found in the Velvet porphyries. They are characterized by high U (>300 ppm) and La (>1 ppm) contents, similar to zircons from the Kanowna Belle porphyries. The ages of...
these hydrothermal fluid modified zircon grains suggest that hydrothermal alteration
postponed the crystallization of porphyries, and lasted until ~2260 Ma.

The hydrothermal fluid modified zircons show a complicated range of ages. Although it
might suggest that several fluid pulses occurred after porphyry emplacement, the scatter of
these younger ages may simply indicate variable degrees of ancient radiogenic Pb loss. The
main stages are identified at ~2600 Ma, 2500 Ma, 2400 Ma, 2350 Ma, and 2250 Ma, however
it is not possible to link a particular fluid pulse with the timing of gold mineralization.

Petrogenesis

Granitoid plutons from Kanowna Belle and Sunrise Dam have calc-alkaline to high-K
calc-alkaline (rare shoshonitic), syeno-dioritic, quartz dioritic, and granitic compositions (Fig.
5A, B). They have high Sr/Y and La/Yb ratios (Fig. 5C, D) and pronounced, steep
normalized REE patterns from high LREE to low HREE (Fig. 6A). On a primitive mantle-
normalized trace element diagram, these samples show relative depletions in Nb, Ta, P, and
Ti, and enrichments in Th, U, Pb, and K (Fig. 6B). They are classified as tonalite-
trondhjemite-granodiorite (TTG) given the high-Sr/Y and La/Yb ratios, intermediate to felsic
(> 65 wt. % SiO₂), high Na₂O/K₂O (0.55–1.87) ratios, and Nd-Ta negative anomalies. They are
high-Al TTGs because Al₂O₃ values are > 15 wt. % at 70 wt. % SiO₂ (Champion or Smithies,
2003). These intrusive rocks can be simply named as “potassic high-Sr/Y granites” (Lu et al.,
2018).

The origin of these high-Sr/Y granitoids is restricted to either slab melting or melting in
thickened crust. Slab melting has been proposed by numerous authors (e.g. Martin, 1986) to
accommodate high pressure and basaltic source. The modern analogues are adakitic rocks
(Kay, 1978; Drummond and Defant, 1990, 1996; Martin, 1999). However, experimental
evidence, low Mg# and high SiO₂ content, and high K contents are consistent with melting in
thickened crust (Rapp et al., 1991; Smithies, 2000). The modern analogues are post-
collisional high-Sr/Y granitoids in southern Tibet (Hou et al., 2004; Wang et al., 2014, 2015),
as they have a similar trace element distribution (Fig. 6). The Mg\# of granitoid plutons at
Kanowna Belle and Sunrise Dam are mostly between 43.1 and 59.1, with the exception of
except one sample with a value of 74.1. Such Mg\# values are much lower than those of the
adakites from the Aleutian and Cook Islands. In addition, they have higher K_2O contents
(2.16–5.16 wt. %). These features suggest they were derived from partial melts in thickened
crust, similar to the high-Sr/Y granitoids in southern Tibet (Hou et al., 2004; Wang et al.,
2014, 2015). In addition, similar to zircons from high-Sr/Y granitoids in southern Tibet, the
magmatic zircons from these Archaean granitoids have intermediate δ^{18}O values (+5‰ to
+6.3‰). These features suggest the Archaean lower crust was newly formed, and therefore
the primary magmas have δ^{18}O values similar to those of the mantle (+5.3±0.3 ‰; Valley et
al., 1998). Subsequent mixing and contamination during magma emplacement would elevate
the δ^{18}O values up to +6.3‰. The estimated magmatic crystallization temperatures (Ti-in-
zircon) are all below 800°C. The consistently low temperatures for these Archaean granitoids
requires additional water-fluxed melting (cf. Lu et al., 2015; Weinberg and Hasalová, 2015;
Collins et al., 2016; Wang et al., 2018), because dehydration melting of the crust requires
temperatures of at least 850°C to generate reasonable granitic magma volumes.

Hydrothermal fluid modified zircons and post-magmatic fluids

Most hydrothermal zircons can be identified based on hydrothermal mineral inclusions
or a spongy texture (Kerrich and King, 1993). However, for hydrothermal fluid modified
zircons, textural evidence is insufficient to distinguish them from magmatic zircons. Most
exhibit oscillatory zoning, and are similar to magmatic zircons. The age of magmatic and
hydrothermal fluid modified zircons is indistinguishable, as the latter can be precipitated
from a fluid evolved from the magma during the final stages of crystallization (Hoskin, 2005). Trace-element compositions such as REE patterns of zircons are not indicative of geological environment (Pettke et al., 2005; Fu et al., 2009), although the hydrothermal zircons commonly have flat REE patterns with low (Sm/La)$_N$ ratios (Hoskin, 2005).

δ^{18}O signatures of igneous zircons are generally above $+5.5$ ‰ (Bindeman and Valley, 2001). Zircons with values below $+5.5$ are commonly thought to have been formed in the presence of, or exchanged with, surface water or high temperature fluid (Bindeman and Valley, 2001). Most of igneous zircons from this study have relatively homogeneous δ^{18}O ratios between $+5$ to $+6$ (Fig. 11A). In contrast, the low-O zircons ($+5$ to $+3$) are associated with high La and OH contents. For example, one grain in sample GDD 438 with low δ^{18}O has high La$_N$ content (up to 43.7) and some grains have high OH content (up to 5.8×10^{-3}). These features suggest that additional water has been involved in the formation of zircon. The weathering of zircons can significantly lower the δ^{18}O values to less than 1% (Trail et al., 2007; Pidgeon et al., 2013). However, no zero age discordia intersection for U-Pb analyses is observed in our samples (Fig. 8). Therefore, we suggest the change in δ^{18}O is related to high temperature fluid alteration and that these zircons should be called “hydrothermal fluid modified zircons”. They show distinct REE patterns with flat LREE, and weak Ce and Eu anomalies, in contrast to igneous zircons. The magmatic zircons have higher δ^{18}O ratios (>5), low La contents (< 1 ppm), low OH contents (<0.5×10^{-3}), and relatively homogeneous T (ti-zr) (650–800°C). In contrast, the hydrothermal fluid modified zircons have low and variable δ^{18}O ratios (3–5), high La contents (1 to 60 ppm), high OH contents (>0.5 $\times 10^{-3}$), and more scattered T (ti-zr) (550–950°C). The Ti-in-zircon thermometer applied to hydrothermal zircons has little geological significance as such temperature estimates are inaccurate.

Three distinct mechanisms have been proposed for the formation of hydrothermal-fluid modified zircon: (i) dissolution-precipitation, documented for high-pressure/low-temperature
meta-igneous rocks (Tomaschek et al., 2003; Van Lankvelt et al., 2016); (ii) ion-exchange
during weathering (low-temperature 120 to 200°C) with percolating water reacting with the
metamict zircon structure (Pidgeon et al., 2013, 2017); and (iii) direct crystallization by a
zircon-saturated fluid (Hoskin, 2005). Low-temperature weathering is not considered here,
because near-zero age discordance was not observed in our samples (Fig. 8), similar to Jack
Hills (Pidgeon et al., 2017). Dissolution-precipitation textures were not observed in these
zircons (Fig. A2–A4), so it is likely that the studied hydrothermal fluid modified zircons
crystallized from post-magmatic fluids saturated in Zr and Ti.

Ce\(^{4+}\)/Ce\(^{3+}\) ratios and Eu\(_N\)/Eu\(_N^*\) ratios have been used to distinguish relatively oxidized,
ore-bearing porphyries (Ce\(^{4+}\)/Ce\(^{3+}\) mostly > 50 and Eu\(_N\)/Eu\(_N^*\) ratios > 0.5) from more
reduced, barren intrusive suites (Ballard et al., 2002; Wang et al., 2014). Eu\(_N\)/Eu\(_N^*\) ratios in
zircons are also related to plagioclase crystallization, which preferentially partitions Eu\(^{2+}\)
relative to Eu\(^{3+}\). In hydrous magmas, plagioclase crystallization has minimal effect on zircon
because plagioclase fractionation is suppressed (Dilles et al., 2015; Lu et al., 2016). Igneous
zircons are characterized by low La contents, high Ce/Ce* ratios, and low Eu/Eu* ratios,
while hydrothermal fluid modified zircons all have high Eu/Eu* ratios (> 0.5) and low
Ce/Ce* ratios (<0.5). Low Ce/Ce* ratios might be related to reduced fluid environments, and
if so, the Eu/Eu* ratios should be low. Thus, oxidation conditions cannot be the only control
on the observed compositions. A reduced, Eu-enriched fluid is necessary for generation of
these zircons. Such fluids have been described as high-temperature, Cl-rich and low pH
hydrothermal fluids with extremely high Eu anomalies (Pelleter et al., 2007 and references
therein). Zircons that grow in the high-Eu fluids would have high Eu/Eu* ratios, which mask
the redox effect on zircon. Meteoric fluid is not considered here, because it commonly
imparts a negative Eu anomaly (Michard and Albarede, 1986; Michard, 1989) and higher
\(\delta^{18}O\) ratios.
Metallogenic implications

The porphyritic intrusions in Kanowna Belle and Sunrise Dam show similar whole rock geochemistry, zircon O isotopic compositions, and crystallization temperatures as high-Sr/Y granitoids in southern Tibet. This suggests the water-fluxed partial melting of lower crust is common in the Cenozoic and is probably a ubiquitous mechanism for forming TTGs in the Archaean. The partial melts of some regions of the lower crust are fertile, and we suggest that the sulphides and their metals were trapped within the roots of the lower crust given the reduced conditions prevailing from previous magmatism. Water-fluxed partial melting of such sulfide-rich lower crust was capable of forming water-rich magmas and transporting metals, giving rise to PCDs (Richards, 2011; Chiaradia et al., 2012; Wang et al., 2014) and likely, some of the studied Archaean gold deposits (e.g., Mueller et al., 2008).

The discovery of hydrothermal fluid modified zircons in Archaean gold deposits has important implications for mineralization. Determining the emplacement age of intrusions and the timing of gold mineralization is a challenge for Archaean gold deposits. Textural evidence cannot distinguish between hydrothermal fluid modified zircons and magmatic zircons, and some hydrothermal fluid modified zircons show similar ages to magmatic zircons. Our investigation of the relationship between zircon O-OH isotopic compositions, trace elements, U-Pb discordance, and zircon textures revealed by CL and BSE imaging demonstrates that the impact of hydrothermal alteration on zircons and can be used to improve the precision of dating magmatic and hydrothermal processes. In addition, the characterization of hydrothermal fluid modified zircons in gold camps can provide a better understanding of the nature of ore-related fluids. In this case, those fluids were high-temperature, Cl-rich and low pH with an extremely high Eu anomaly. Such fluids are common in the eastern Yilgarn goldfields (Groves et al., 2003; Wang et al., 2017).
CONCLUSIONS

Orogenic gold deposits reflect one of the great events of gold metallogeny in Earth’s history. However, despite extensive work there is still debate about the source of gold, nature of the fluid(s) and mechanisms of precipitation for these systems. Zircons of ore-related intrusions from the Archaean Kanowna Belle and Sunrise Dam gold deposits (both > 10 Moz) in one of the Australia’s preeminent ore district were investigated for O-OH isotopic signatures, trace element abundance, and U-Th-Pb compositions in order to elucidate the nature of the magmatic source and ore-related fluid. Hydrothermal fluid modified zircons are texturally indistinguishable from magmatic zircons, but their trace element, OH, and isotopic compositions are distinct. Magmatic zircons have higher δ¹⁸O ratios (>5), low La contents (<1 ppm), low OH contents (<0.5 x 10⁻³), and relatively homogeneous T (ti-zr) (650–800°C). In contrast, the hydrothermal fluid modified zircons have discordant U-Pb ages, low and variable δ¹⁸O ratios (3–5), high La contents (1 to 60 ppm), high OH contents (>0.5 x 10⁻³), and more scattered T (ti-zr) (550–950°C). Magmatic zircons are interpreted as having crystallized from positive δ¹⁸O magmas during water-fluxed melting of juvenile lower crust.

The involvement of hydrothermal fluid in zircon growth is evidenced by a negative correlation between OH content and δ¹⁸O. The studied hydrothermal fluid modified zircons were likely related to a high-temperature, Zr-saturated, high-Eu, Cl-rich, and low-pH hydrothermal fluid. Such fluids are common in eastern Yilgarn gold camps.

ACKNOWLEDGEMENT

This research was financially co-supported by the MOST of China (2016YFC0600304 and 2016YFC0600407), the Chinese National Natural Science Foundation (91755207 and 41225006), and the 111 Project (B18048). We thank Jianwei Zi for processing the SIMS U-Pb data, and Bob Pidgeon for insightful comments on an early version. Bradley McDonald is
thanked for assistance with LA-ICPMS zircon U-Pb dating and trace element analysis.

GeoHistory Facility instruments were funded via an Australian Geophysical Observing
System grant provided to AuScope Pty Ltd. by the AQ44 Australian Education Investment
Fund program. We also thank Celestine Mercer for handling our manuscript. Dr. Yongjun Lu
and the other anonymous reviewer are thanked for constructive reviews.

REFERENCES

Arculus, R., and Powell, R. (1986) Source component mixing in the regions of arc magma

inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of

Baker, T., Bertelli, M., Blenkinsop, T., Cleverley, J.S., Mcelellan, J., Nugus, M., and Gillen,
D. (2010) P-T-X conditions of fluids in the Sunrise Dam gold deposit, Western Australia,
and implications for the interplay between deformation and fluids: Economic Geology, v.
105, p. 873 – 894.

integrated architecture of the world-class gold mineral systems of the Archaean Eastern

Black, L.P., Kamo, S.L., Allen, C.M., Davis, D., Aleinikoff, J.N., Valley, J.W., Mundil, R.,
microprobe geochronology by the monitoring of a trace-element-related matrix effect;
SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of

integrated architecture of the world-class gold mineral systems of the Archaean eastern

Geochronological constraints on pre-, syn-, and postmineralization events at the world-
class Cleo gold deposit, Eastern Goldfields province, Western Australia: Economic
Geology, v. 97, p. 541–559.

Cassidy, K.F. (2006) Geological evolution of the eastern Yilgarn craton (EYC), and terrane,
domain and fault nomenclature: Geoscience Australia Record 2006/04, p. 1–19.

greenstones resolved by ion-microprobe: Implications for Archaean dating methods. Earth

cratons, Western Australia. In K.F. Cassidy, J.M. Dunphy and M.J. Van Kranendonk
(Editors), 4th International Archaean Symposium 2002, Extended abstracts. AGSO
Geoscience Australia, Record 2001/37, 134-136.

Granites and Associated Metallogenesis, 13–17.

Chiaradia, M. (2014) Copper enrichment in arc magmas controlled by overriding plate

and crustal growth via slab melting. Archaean to modern comparisons. Journal of
trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of

Fu, B., Page, F.Z., Cavosie, A.J., Clechenko, C.C., Fournelle, J., Kita, N.T., Lackey, J.S.,

magnetic zircon from hydrothermal zircon: A case study from the Gidginbung high-

Goleby, B.R., Blewett, R.S., Champion, D.C., Korsch, R.J., Bell, B., Groenewald, P.B.,
profiling in the NE Yilgarn: Insights into its crustal architecture: Australian Institute of

Groves, D.I., Goldfarb, R.J., Knox-Robinson, C.M., Ojala, J., Gardoll, S., Yun, G., and
Holyland, P. (2000) Late-kinematic timing of orogenic gold deposits and its significance
for computer-based exploration techniques with emphasis on the Yilgarn block, Western

metamorphic belts: overview of current understanding, outstanding problems, future

Influence of structural setting on sulphur isotopes in Archean orogenic gold deposits,

recycled crustal and supracrustal sources of Archaean metasedimentary sequences, Eastern
Goldfields Province, Western Australia: evidence from SHRIMP zircon dating:
Tectonophysics, v. 322, p. 89–133.
Reappraisal and refinement of zircon U-Pb isotope and trace element analyses by LA-
generated postcollisional high-Sr/Y copper ore-forming water-rich magmas in Tibet,
Lu, Y.J., Loucks, R.R., Fiorentini, M.L., McCuaig, T.C., Evans, N.J., Yang, Z.M., Hou, Z.Q.,
Pathfinder for Porphyry Cu± Mo ± Au Deposits, Society of Economic Geologists Special
Publication 19, p. 329–347.
Lu, Y.J., Smithies, R.H., Wingate, M.T.D., Evans, N.J., Morris, P., Champion, D., and
McCuaig, T.C. (2018) Zircon composition as fertility indicator of Archean granite,
Geological Survey of Western Australia, Record 2018/2, p. 18–23.
Microsoft Excel: Berkeley Geochronology Center Special Publication, Berkeley, CA,
USA. no. 5 (75 pp.).
p. 411–429.
Cosmochimica Acta 53, 745–750.

Decoding zircon geochronology of igneous and alteration events based on chemical and microstructural features: a study from the western superior province, Canada. Journal of Petrology, v. 57, p. 1309–1334.

91500 zircon crystal. Geostandards and Geoanalytical Research, v. 28, p. 9–39.

Captions:

Fig. 1. Map indicating major tectonic units, boundaries, and Kanowna Belle, Sunrise Dam, and Velvet deposits within Yilgarn Craton (modified from Blewett et al., 2010; Wang et al., 2017).

Fig. 2. North facing, east-west, composite cross section through the Sunrise Dam, showing the key lithologies, shear zones, and mineralized domains (modified after Nugus et al., 2009; Baker et al., 2010; Wang et al., 2017). No vertical exaggeration. The black stepped line is the outline of the open pit.

Fig. 3. Map indicating major faults, lithology, and gold orebodies and grades in the Kanowna Belle mine (modified from Neumayr et al., 2005 and Wang et al., 2017).
Fig. 4. Summarized geochronological sequence for lithology and gold mineralization ages for the Sunrise Dam and Kanowna Belle (see Wang et al., 2017 and references therein and this study). Metamorphic events and corresponding time periods (Blewett et al., 2010) are shown as reference. SSZ = Sunrise shear zone, WSZ = Western shear zone.

Fig. 5. A. Total alkali-silica diagram for granitoids from Kanowna Belle, Velvet, and Sunrise Dam. B. SiO$_2$ vs. total K$_2$O. C. Sr/Y ratios vs. Y. D. La/Yb ratios vs. Yb. “Adakite-like rock” field from Defant and Drummond (1990). KB = Kanowna Belle, SD = Sunrise Dam, VD = Velvet drill core.

Fig. 6. (A) Chondrite- and (B) primitive mantle (PM)-normalized trace element diagrams for samples of granitoids from Kanowna Belle, Velvet, and Sunrise Dam. Normalization values of Sun and McDonough (1989). The shade area is for high-Sr/Y granitoids from Gangdese belt (Wang et al., 2014). KB = Kanowna Belle, SD = Sunrise Dam, VD = Velvet drill core.

Fig. 7. Zircon SHRIMP U-Pb 207Pb*/206Pb* age histograms and relative probability curves for granitoids from Sunrise Dam, Kanowna Belle, and Velvet. A. Sample UGD2419. B. Sample GDD 438. C. Sample VD10_20. D. All samples from this study.

Fig. 8. Zircon SHRIMP U-Pb concordia and weighted mean diagrams for granitoids from Sunrise Dam (A-C), Kanowna Belle (D–F), and Velvet (G–I). Analyses of Group I of magmatic zircons are shown with separately.

Fig. 9. Chondrite-normalized trace element diagrams for zircons from granitoids of Sunrise Dam, Kanowna Belle, and Velvet using LA-ICPMS (A, C, E) and SIMS (B, D, F).
Fig. 10. Zircon trace element ratio plots for granitoids from Sunrise Dam, Kanowna Belle, and Velvet. A and B. (Sm/La)_N vs. La. C and D. Ce/Ce* vs. La. E and F. Eu/Eu* vs. La. G and H. Eu/Eu* vs. Ce/Ce*. Here figures A, C, E, G are from LA-ICPMS data and B, D, F, and H are from SIMS data. The shade fields corresponding to the magmatic and hydrothermal fields described by Hoskin (2005). The cycled field is for Group I of magmatic zircons from this study.

Fig. 11. Plots of zircon SIMS trace element, O isotopes, and temperatures estimates for granitoids from Sunrise Dam, Kanowna Belle, and Velvet. A. δ^{18}O vs La, B. δ^{16}O^1H/^{16}O (10^{-3}) vs La, C. δ^{18}O vs δ^{16}O^1H/^{16}O (10^{-3}), and D. T (ti-zr) °C vs La.

Tables

Table 1 Major and trace element compositions of granitoids from Sunrise Dam, Kanowna Belle, and Velvet.

Appendix

Fig. A1. Zircon LA-ICPMS U-Pb concordia and weighted mean diagrams for granitoids from Sunrise Dam (A-C), Kanowna Belle (D–F), and Velvet (G–I). Analyses of Group I of magmatic zircons are shown with separately.

Fig. A2. BSE images of representative analyzed zircons of granitoids from Sunrise Dam (UGD2419) and showing in situ U-Pb ages (Purple dashed circle for LA-ICPMS, red circle for SIMS), O isotope/δ^{16}O^1H/^{16}O (10^{-3}) (yellow cycle), Ti content (blue cycle), and
La content (white square).

Fig. A3. BSE images of representative analyzed zircons of granitoids from Kanowna Belle (GDD 438), and showing in situ U-Pb ages (Purple dashed circle for LA-ICPMS, red circle for SIMS), O isotope/\(^{16}O/^{18}O \times 10^{-3}\) (10\(^{-3}\)) (yellow cycle), Ti content (blue cycle), and La content (white square).

Fig. A4. BSE images of representative analyzed zircons of granitoids from Velvet (VD10_20), and showing in situ U-Pb ages (Purple dashed circle for LA-ICPMS, red circle for SIMS), O isotope/\(^{16}O/^{18}O \times 10^{-3}\) (10\(^{-3}\)) (yellow cycle), Ti content (blue cycle), and La content (white square).

Table A1 Zircon U-Pb SHRIMP analytical data for granitoids from Sunrise Dam, Kanowna Belle, and Velvet.

Table A2 Zircon U-Pb LA-ICPMS analytical data for granitoids from Sunrise Dam, Kanowna Belle, and Velvet.

Table A3 Zircon SIMS REE, Ti, and O/OH compositions of granitoids from Sunrise Dam, Kanowna Belle, and Velvet.
Fig. 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 11
Table 1 Major and trace element compositions of granitoids from Sunrise Dam, Kanowna Belle, Velvet.

<table>
<thead>
<tr>
<th>Number</th>
<th>Location</th>
<th>Lithology</th>
<th>wt. %</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2231-440.7</td>
<td>Sunrise Dam</td>
<td>granite</td>
<td>SiO₂</td>
<td>67.71</td>
</tr>
<tr>
<td></td>
<td>Sunrise Dam</td>
<td>granite</td>
<td>TiO₂</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Kanowna Belle</td>
<td>granite</td>
<td>Al₂O₃</td>
<td>15.77</td>
</tr>
<tr>
<td></td>
<td>Kanowna Belle</td>
<td>granite</td>
<td>FeO</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>Kanowna Belle</td>
<td>syeno-diorite</td>
<td>MnO</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>granite</td>
<td>MgO</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>CaO</td>
<td>2.75</td>
</tr>
<tr>
<td>2419-45.5</td>
<td>Sunrise Dam</td>
<td>granite</td>
<td>Na₂O</td>
<td>4.11</td>
</tr>
<tr>
<td></td>
<td>Kanowna Belle</td>
<td>granite</td>
<td>K₂O</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>Kanowna Belle</td>
<td>granite</td>
<td>P₂O₅</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>Kanowna Belle</td>
<td>granite</td>
<td>Cr₂O₃</td>
<td>0.01</td>
</tr>
<tr>
<td>0.8</td>
<td>Kanowna Belle</td>
<td>granite</td>
<td>LOI</td>
<td>4.49</td>
</tr>
<tr>
<td>GDD438-23</td>
<td>Velvet</td>
<td>granite</td>
<td>Total</td>
<td>100.28</td>
</tr>
<tr>
<td>GDD438-32</td>
<td>Velvet</td>
<td>granite</td>
<td>La</td>
<td>13.7</td>
</tr>
<tr>
<td>GDD438-36</td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Ce</td>
<td>27</td>
</tr>
<tr>
<td>VD10_20-3</td>
<td>Velvet</td>
<td>granite</td>
<td>Pr</td>
<td>2.86</td>
</tr>
<tr>
<td>VD10_20-6</td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Nd</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Sm</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Eu</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Gd</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Tb</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Dy</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Ho</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Er</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Tm</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Yb</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Lu</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Zr</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Hf</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>U</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Th</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>Sc</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Velvet</td>
<td>syeno-diorite</td>
<td>V</td>
<td>25</td>
</tr>
<tr>
<td>Element</td>
<td>Co</td>
<td>Ni</td>
<td>Sb</td>
<td>Ba</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>13</td>
<td>19.1</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>12.8</td>
<td>17</td>
<td>23.6</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>38</td>
<td>22.8</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>22</td>
<td>10</td>
<td>696</td>
</tr>
<tr>
<td></td>
<td>9.1</td>
<td>22</td>
<td>25.3</td>
<td>1110</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>10.6</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>30.4</td>
<td>196</td>
<td>28.9</td>
<td>804</td>
</tr>
</tbody>
</table>