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ABSTRACT 18	

Olivine group minerals are ubiquitous in extrusive igneous rocks, and play an important 19	

role in constraining equilibria for samples in the upper mantle and above. All Raman spectra of 20	

the olivine group minerals in the solid solution between forsterite (Fo, Mg2SiO4) and fayalite (Fa, 21	

Fe2SiO4) have a high intensity doublet between 800 and 880 cm-1. Previous studies used small 22	

sample suites with limited compositional ranges and varying spectrometers to relate energy shifts 23	

of these two bands to Mg/Fe contents. In this work, Raman spectra of 93 olivine samples were 24	

acquired on either Bruker’s 532 nm (laser wavelength) Senterra or BRAVO (785/852.3 nm) 25	

spectrometer. This paper compares the two-peak band shift univariate method with two 26	

multivariate methods: partial least squares (PLS) and the least absolute shrinkage operator 27	

(Lasso). Datasets from several instruments are also examined to assess the most accurate method 28	

for predicting olivine composition from a Raman spectrum. 29	

Our 181-spectra PLS model is recommended for use when determining olivine 30	

composition from a Raman spectrum. For Raman spectra of mixed phases where only the olivine 31	

doublet can be identified, composition can best be determined using the position of the peak ca. 32	

838-857 cm-1 through use of the equation %Fo = -0.179625x2 +310.077x -133717 regression 33	

equation (where x = DB2 centroid in units of cm-1). 34	

In situ methods for predicting mineral composition on planetary surfaces are critically 35	

important to extraterrestrial exploration going forward; of these, Raman spectroscopy is likely 36	

the best, as evidence by the impending deployment of several Raman instruments to Mars 37	

(ExoMars and Mars 2020). More broadly, application of machine learning methods to spectral 38	

data processing have implications to multiple fields that use spectroscopic data. 39	

Keywords: Raman spectroscopy, olivine, forsterite, fayalite, PLS, Lasso	  40	



 
	

3	
	

INTRODUCTION 41	

Olivine group minerals control many of the properties of Earth’s upper mantle, affect 42	

rheology, and may be diagnostic of crystallization temperature in terrestrial and extraterrestrial 43	

rocks. Their solid solution commonly spans the range between forsterite (Fo, or Mg2SiO4) and 44	

fayalite (Fa, or Fe2SiO4) with minor substitutions of alternative cations such as Mn and Ni. 45	

Because olivine composition provides an important petrogenetic indicator, development of 46	

convenient methods to measure it without microanalytical techniques that require sample 47	

preparation are desirable. This paper focuses on determination of olivine composition using 48	

Raman spectroscopy for this purpose. It has the potential to enable compositions to be 49	

conveniently determined in the laboratory, in field identifications with portable units, and on 50	

other planets such as Mars.  51	

This problem has been extensively studied using conventional regression-based 52	

approaches, but generalization of their results is arguable given their very small (<20) sample 53	

suites and coverage of olivine composition. These prior studies (Kuebler et al. 2006, Foster et al. 54	

2007, Gaisler and Kolesov 2007, Mouri and Enami, 2008, Yasuzuka et al. 2009, Ishibashi et al. 55	

2011) have related olivine composition to the peak positions of a high intensity doublet in the 56	

range of 800-880 cm-1 (Figure 1). Peak centroids are regressed against composition to obtain an 57	

equation suitable for prediction of composition in unseen samples. Previous workers have used 58	

R2 values to characterize their prediction algorithms, making their accuracy difficult to quantify 59	

and comparisons across models impossible. Moreover, a variety of Raman instruments with 60	

varying resolution and laser wavelength, and a combinations of single crystal and powdered 61	

samples, were used. It is thus difficult to assess which model to use to estimate olivine 62	

composition on unseen data from a different spectrometer than the one used in each study. 63	
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In this study, all known publicly-accessible olivine Raman data are considered. In 64	

addition, new Raman spectra were acquired from a suite of 93 well-characterized synthetic and 65	

naturally-occurring olivines using Bruker BRAVO and Senterra spectrometers. The accuracies of 66	

linear regression (univariate) methods for various datasets are quantified to enable useful 67	

comparisons. Univariate methods are compared and contrasted with two multivariate analysis 68	

approaches: partial least squares (Stone and Brooks 1990) and the least absolute shrinkage 69	

operator (Hastie et al. 2009) to evaluate the best prediction models for use with Raman spectra of 70	

olivines to determine composition with known accuracy. 71	

BACKGROUND 72	

Assignments of Raman active forsterite and fayalite modes have evolved over time 73	

(Table 1). Generally, forsterite Raman bands above 500 cm-1 can be classified as internal 74	

movement within the (SiO4)4- tetrahedra. Below this threshold energy, peaks are caused by 75	

rotation and translation of the tetrahedra as well as divalent cation motion. Forsterite and fayalite 76	

have 84 vibrational modes; only 36 are Raman active (11Ag + 11 B1g + 7B2g + 7B3g) (Mckeown 77	

et al. 2010). 78	

Key to this study are the two principle Raman bands that form a doublet composed of 79	

five vibrational modes (2Ag + 2B1g + B2g) (Table 1). This doublet occurs between ~815-825 cm-1 80	

(DB1) and ~838-857 cm-1 (DB2) (Kuebler et al. 2006) and is primarily attributed to Ag, though 81	

B1g and B2g also affects the shape and intensity of the spectrum. The energy shift of the Ag 82	

stretch from the SiO4 tetrahedra is caused by changes in site geometry due to cation substitutions 83	

in adjacent sites. Cation substitutions between forsterite and fayalite thus result in band shifts 84	

(Figure 2) as well as changes in the shape and intensity of the peaks. Many previous workers 85	

(Table 2) have used the peak centroids of the DB1 and DB2 doublet peaks to derive olivine 86	
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composition. However, this practice does not allow other information in the spectra to be 87	

utilized, such as shifts arising from minor modes that affect the shape of the primary doublet and 88	

give rise to other, more subtle features elsewhere in the wavenumber range. 89	

Other peaks within olivine spectra have been utilized rarely for prediction of 90	

composition, such as ~200-230 cm-1, ~290-310 cm-1, ~410-440 cm-1, ~540-553 cm-1, ~881-883 91	

cm-1, ~914-920 cm-1, 950-966 cm-1 (Table 2). However, these features are relatively low in 92	

intensity compared to those of the DB1 and DB2 doublet, making fitting of peak centroids 93	

difficult and less accurate. Raman bands caused by different vibrational modes should not be 94	

affected by octahedral substitutions. For example, features between 400 and 700 cm-1 have been 95	

attributed to the internal bending modes of the anion, which have minimal centroid shifts 96	

(Chopelas, 1991; Kuebler et al., 2006).  97	

This study evaluates the relative usefulness of the most prominent bands in the Raman 98	

spectra of olivine group minerals using a combination of conventional regression/peak fitting 99	

methods and more recently-developed multivariate methods. The latter have the advantage of 100	

weighing the relative importance of different spectral energies in determining Fe/Mg ratio, 101	

enhancing our understanding of the underlying physical processes that give rise to the features. 102	

METHODS 103	

Sample provenance 104	

Natural samples (Table 3) came from collections of the Mineral Spectroscopy Lab at 105	

Mount Holyoke, the National Museum of Natural History (NMNH, Smithsonian), and from S.A. 106	

Morse (University of Massachusetts Amherst) (Morse 2001). This is the largest suite of naturally 107	

occurring olivine samples studied by Raman (or any other type of) spectroscopy. Roughly one-108	

third of the natural samples came from previous studies of olivines from mantle xenoliths 109	
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(McGuire et al. 1991, Dyar et al. 1989, Dyar et al. 1992) or Fe3+-bearing samples studied by 110	

Schaefer (1983), Banfield et al. (1992), and Dyar et al. (1998). Another group of samples was 111	

provided by S.A. Morse of the University of Massachusetts Amherst. They come from the 112	

Kiglapait layered mafic body, a large 1.3 Ga layered intrusion on the coast of Labrador, Canada 113	

(Morse 1996, Morse 2001). As the original melt crystalized, the Fe/Mg ratio of the remaining 114	

liquid changed, so a range of olivine compositions were produced. Lower Mg and higher Fe 115	

contents occurred successively higher within the intrusion. Finally, several samples came from 116	

the NMNH (see Table 3).  117	

Naturally occurring olivine typically has high Fo content of roughly 89.5%. For a solid 118	

%Fo prediction model, wide representation of the Fo-Fa continuum is needed. Because samples 119	

with intermediate Fo/Fa content are rare in nature (except at specific localities such as the 120	

Kiglapait, as noted above), synthetic samples were added to our collection of naturally formed 121	

olivines to represent %Fo from 0 to 100 (see Dyar et al. 2009 for sample descriptions). Synthetic 122	

samples were synthesized by Donald Lindsley in his laboratory at SUNY Stony Brook. First, a 123	

silicon and hematite mixture was ground for 1-2 hours with ethanol. Next, an iron sponge was 124	

added and for less than one hour grinding continued. The product was enveloped in silver foil 125	

and put in a glass silicon capsule. The center of the capsule was drawn out into a capillary while 126	

one end of the capsule was sealed, leaving the sample by the sealed end. Near the open end of 127	

the capsule, and Fe getter was placed. For 10-20 minutes, the capsule was placed into a ~800°C 128	

vertical tube furnace (the Fe getter remained at ~600°C). Finally, the capsule was removed from 129	

the furnace and sealed across the capillary. The completely sealed capsule section, which 130	

contained the sample, was next cooked for 10 days in a horizontal tube furnace at ~920-940°C 131	

(Sklute, 2006). This sample suite has been studied with a wide range of other spectroscopic 132	
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techniques (Dyar et al. 2009, Lane et al. 2011, Isaacson et al. 2014).  133	

Sample characterization 134	

Olivines examined were either a single crystal or powdered samples. To produce a 135	

powdered sample, each sample was first visually inspected and handpicked for purity. Then each 136	

grain was treated using oxalic acid (2 tsp. in 2 gal. of water) for one hour to remove surface 137	

weathering, followed by three cycles of washing and rinsing with clean water. As needed, 138	

samples were either crushed in a tungsten shatterbox or ground by hand in a diamonite mortar. 139	

Because crystal orientation affects the Raman spectrum, we chose to study both single crystals 140	

and powders (Price et al. 1987), affording the opportunity to compare those results. The spot 141	

sizes of the Senterra and BRAVO spectrometers differ, so that single crystals were analyzed with 142	

the Senterra while the BRAVO examined powders. However, repeated analyses of the same 143	

sample on each instrument showed no evidence for heterogeneity, as expected given our careful 144	

sample preparation and use of homogeneous starting material. The only difference was a 145	

consistent offset (as discussed below) due to differences in calibration. 146	

Many natural samples from Dyar’s collections already had published compositions 147	

(Table 3) that included Mössbauer studies to determine Fe3+ contents. Where needed, additional 148	

samples were analyzed by Mössbauer spectroscopy using standard methods (Sklute, 2006). Rh 149	

was used on a WEB Research Co. model W100 spectrometer equipped with a Janus closed-cycle 150	

He refrigerator. Run times ranged from 2-12 hours; results were calibrated against α-Fe foil. 151	

Typical count rates were between 500,000 and 900,000 non-resonant counts/hour. Most samples 152	

contained no Fe3+. 153	

As needed, new electron microprobe analyses of 10 spots on each sample were acquired 154	

either by Molly McCanta at the University of Tennessee in Knoxville or at Brown University by 155	
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Joseph Boesenberg; in both cases, standard operation conditions were used. Figure 3 shows the 156	

calculated %Fo for each sample that was determined by normalizing the contents to contain only 157	

Mg and Fe, as commonly done with the formula %Fo = (100×Mg)/(Mg+Fetotal), where 158	

Fetotal=ƩFe2++Fe3+. This represented only a minor adjustment because only very minor 159	

substitutions of other cations were observed, as seen in compositions of the natural samples as 160	

given in Table S1. Synthetic samples are as-named in Dyar et al. (2012a). 161	

Raman measurements 162	

Spectra of powdered samples were acquired on a BRAVO dual laser (785 and 852.3 nm 163	

simultaneous DuoLaserTM) system (2.0 cm-1/channel spectral resolution) with three sample scans 164	

and an integration time of 10s. Because the BRAVO samples a large area (~2 mm diameter), it 165	

required sample masses of >100 mg, which were only available for 25 samples. The remainder 166	

of the sample suite (68 samples) was run on a Bruker Senterra spectrometer using the 532 nm 167	

laser and a microscope attachment to probe single grains. The Senterra used 10 mW laser power 168	

for two sample scans and integrated for 10s, analyzed through a 20× objective. The highest 169	

Senterra resolution available of 0.5 cm-1/channel was utilized. 170	

The Senterra calibration was performed automatically and was anchored by the NIST 171	

standards, acetaminophen and silicon, resulting in a wavelength accuracy of 0.2 cm-1.  The 172	

photometric accuracy was verified using NIST traceable glass (Allen et al. 2000).  The BRAVO 173	

wavelength was similarly calibrated with the wavelength accuracy being 1 cm-1 or better. 174	

Multiple sample scans were acquired for each sample ensuring reproducibility of the spectral 175	

data acquired. Pre-processed data that included dark subtractions and baseline removal were 176	

converted from Bruker’s Opus format into ascii files and uploaded to the lab web site, currently 177	

at nemo.cs.umass/edu:54321. 178	
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Data analysis 179	

Because many spectra showed residual features after the baseline was mostly removed by 180	

the Opus algorithm, we applied additional baseline removal using the adaptive iteratively 181	

reweighted penalized least squares (AirPLS) method (Zhang et al. 2010), which uses the sum of 182	

differences between signal and baseline to adjust weights intelligently. Smoothness is the 183	

adjustable baseline removal parameter, for which a value of 100 was used. Multiple types of 184	

normalization were tested on these data including normalizing to the maximum value (L∞norm), 185	

the sum of absolute values (L1 norm), the sum of squared values (L2 norm), and scaling to 186	

intensity at several specific energies. Normalization to the maximum peak intensity 187	

outperformed all other methods and therefore it was used in subsequent analyses throughout. 188	

Normalization was executed to account for arbitrary intensity differences between the two 189	

spectrometers. DB1 and DB2 were peak fitted for each spectrum using Gaussian and Lorentzian 190	

peak shapes and a method that simply sums all the counts in the region of interest (e.g., 800-880 191	

cm-1). Pre-processing of spectra used the superman website nemo.umass.cs.edu:54321 (Carey et 192	

al. 2017).  193	

 Next, PLS and Lasso models were applied for multivariate analysis of %Fo. PLS 194	

regresses one response variable (%Fo) against multiple explanatory variables (intensity at each 195	

channel of the spectra). PLS predictions utilize every channel of the spectral range, assigning 196	

coefficients to every single channel. Because PLS utilizes all available variables (channels) and 197	

eliminates multicollinearity (peaks whose intensities are dependent, as is the case for the doublet 198	

in the Raman spectra of olivine). This algorithm was created for the analysis of data with high 199	

collinear explanatory (p) variables, which are significantly greater in number compared to the 200	

observations (N). Therefore, p >> N (Butler and Denham 2000). PLS can predict multiple 201	
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dimensional datasets and has been utilized for the specific application of spectroscopy (Wold et 202	

al. 1983). This paper utilizes PLS2 (hereafter referred to as PLS) rather than alternative versions. 203	

Lasso is a continuous shrinkage, which allows for the production of coefficient values 204	

to be reduced even to as small as zero (Tibshirani 1995). This shrinkage is in agreement with the 205	

shrinkage parameter t, by shrinking the residual sum of squares based upon the sum of the 206	

absolute value of the coefficients. In other words, this method selects a subset of predictors with 207	

the strongest effect on the response variable. Unlike PLS, the Lasso produces a sparse models 208	

with few coefficients (depending on the value of the α parameter), with most channel intensities 209	

set to zero. The relative merits of PLS versus Lasso in spectroscopic methods (e.g., Dyar et al. 210	

2012a) are just beginning to be explored and there is as yet no consensus for which method is 211	

better; their usefulness appears to be highly variable for each dataset and application-dependent. 212	

Model comparisons 213	

Use of the R2 parameter to describe the fit of a regression model (here %Fo is the 214	

dependent variable and peak centroid is the independent variable) is not helpful for drawing 215	

comparisons between different models because R2 depends on the error associated with each 216	

measurement. A more appropriate metric for cross-comparison is root mean square error 217	

(RMSE), which calculates the square root of the average difference between predicted and true 218	

%Fo. RMSE is useful in this application because it is expressed in the same unit as the 219	

measurement – in our case, %Fo. This paper uses RMSE in three different ways. Internal RMSE 220	

describes the prediction error of an expression that is created using all the data in the dataset. In 221	

other words, if there are 25 samples, the regression expression utilizes all of them. Internal 222	

RMSE is useful in comparing one model to another, but inappropriate for evaluating errors on 223	

unseen data. In contrast, leave-one-out cross-validated RMSE (LOO RMSE-CV) removes one 224	
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sample at a time, uses a regression model based on the other n-1 samples to predict the nth 225	

sample, and then repeats the process n times, where n is the number of samples in the dataset. 226	

Thus LOO RMSE-CV gives the best estimate of how the model will perform on unseen data. 227	

Finally, RMSE-test is used to describe the RMSE of comparisons between true and predicted 228	

values in completely unseen data. 229	

UNIVARIATE (PEAK CENTROID) ANALYSIS 230	

Univariate methods focus entirely on the two principle Raman bands in the five-mode 231	

doublet between ~815-825 cm-1 (DB1) and ~838-857 cm-1 (DB2), as discussed above and used 232	

by prior workers. Peak centroid positions (Tables S2 and S3) of the Raman spectra of our 93 233	

synthetic and naturally-occurring olivines (Figure 2) were utilized for univariate predictions, 234	

along with data from the RRUFF database and other publications for which data were provided. 235	

There were 25 olivines for which there was sufficient sample to make measurements on the 236	

Bruker BRAVO instrument, and those 25 samples plus an additional 68 were also run on the 237	

Bruker Senterra spectrometer, which has a microbeam to enable analysis of individual grains or 238	

small clumps. Different Raman instruments can produce spectra with equivalent bands at slightly 239	

different wavenumber positions due to varying calibration protocols. Therefore, all spectra were 240	

analyzed as raw data as well as after the BRAVO dataset was aligned to the Senterra data. This 241	

was accomplished by aligning corresponding bands within spectra of 25 samples acquired on 242	

both the BRAVO and Senterra spectrometers using a method described in Mullen et al. (2018). 243	

These raw and aligned data results are compared to fits made to data taken from the RRUFF 244	

database (Table S4). Two different sets of data from RRUFF were tested: all 188 spectra of 245	

olivine group minerals, and a subset of 156 spectra designated as RRUFF*. The former group 246	

includes 32 spectra from the RRUFF site listed as “broad scan with spectral artifacts,” while the 247	
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other 156 spectra lack that designation. This annotation refers to spectra acquired over a broad 248	

energy range versus one with higher resolution. It is important to note that these data do not 249	

represent 188 different samples, but in many cases include spectra of the same samples acquired 250	

on multiple instruments, with depolarized versus polarized lasers, and on single crystals with 251	

varying orientations. Comparisons are also made to RMSE values calculated using peak 252	

positions given in papers by Kuebler et al. (2006), Yasuzuka et al. (2009) and Ishibashi et al. 253	

(2011). The equations of the first-, second-, and third-order polynomial fits are reported for the 254	

DB1 and DB2 in Table S5. 255	

Univariate results from second-order polynomial fits to peak position versus %Fo content 256	

are summarized in Table 4, which also includes the resolution of the spectra from each dataset 257	

along with values for R2 (coefficient of determination) of the internally cross-validated data, the 258	

internal RMSE values and LOO RMSE-CV. Linear, second-, and third-order polynomial fits 259	

relating peak centroid position to composition were created for the BRAVO and Senterra data by 260	

Breitenfeld (2017). In all cases, second-order polynomial fits to the data produced more accurate 261	

RMSE values than linear ones. Third-order polynomials produced identical or slightly better fits 262	

than second-order ones, but the improvement was negligible and not significant. Thus results in 263	

Table 4 use second-order fits, following the precedent of Kuebler et al. (2006).  264	

While the DB1 BRAVO data conspicuously lie on a polynomial curve (Figure 4), results 265	

from the Senterra for DB1 and DB2 (both spectrometers) produce trends that are closer to linear. 266	

These differences may result from experimental parameters such as variable resolutions, 267	

excitation laser wavelength, and detector sensitivities, all of which impact the consistency of 268	

these univariate predictions. 269	
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Figure 5 displays data from sources other than this study, including the RRUFF* data, all 270	

RRUFF olivine data and results of Kuebler et al. (2006), Yasuzuka et al. (2009), and Ishibashi et 271	

al. (2011). Previous Raman studies of olivine that did not report peak centroids could not be 272	

included on this plot, such as those in Wang et al. (2004), Gaisler and Kolesov (2007), and 273	

Mouri and Enami (2008). In Figure 5, the Ishibashi et al. (2011) model predicts %Fo most 274	

accurately. It is quickly apparent that the models based on RRUFF* data perform poorly in 275	

comparison to the other univariate models, perhaps because that database combines spectra 276	

acquired on different instrument using several excitation lasers for the model. 277	

The usefulness of applying Kuebler et al.’s (2006) models to other datasets was evaluated 278	

through the prediction of two aggregate datasets. When the Senterra + BRAVO + RRUFF* 279	

(>50%Fo) dataset is predicted using the models of Kuebler et al. (2006), the RMSE-test values 280	

for DB1 and DB2 are 9.99 and 8.10 %Fo, respectively. For the aligned Senterra + BRAVO data, 281	

the RMSE-test values for DB1 and DB2 are 19.42 and 14.64%Fo, respectively. These RMSE-282	

test values are larger than the internal or LOO RMSE-CV values of the Kuebler et al. (2006) 283	

dataset alone (Table 4). 284	

MULTIVARIATE (MACHINE LEARNING) ANALYSIS 285	

In other types of spectroscopy, it has been shown that multivariate predictions using the 286	

entire spectrum produce more accurate predictions of composition. This has been demonstrated 287	

for laser-induced breakdown spectroscopy (Tucker et al. 2010, Dyar et al. 2016a) and x-ray 288	

absorption spectroscopy (Dyar et al. 2012b, Dyar et al. 2016b). Given the similarities between 289	

those data and our Raman spectra, it was expected that Raman predictions of olivine composition 290	

might follow this trend. Accordingly, both PLS and Lasso regression methods were tested on our 291	

datasets using Raman spectra acquired on the BRAVO and Senterra, along with RRUFF and 292	
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RRUFF* data for which the full spectra are available online. Because these predictions require 293	

use of the entire spectrum rather than just peak centroids, no other publicly accessible olivine 294	

Raman spectra could be included in the multivariate analyses. Model comparisons included R2, 295	

internal PLS or Lasso RMSE, and LOO RMSE-CV, keeping in mind the caveats just discussed 296	

(Table 5). 297	

Choice of adjustable parameter is important to the outcomes of both multivariate 298	

techniques. For PLS, the number of components in each model were tested using components 299	

ranging from 1 to 10. The value producing the lowest (best) prediction accuracy over this range 300	

was chosen (first local minimum); generally this value was 4-7 components (Table 5). Numbers 301	

of components greater than 10 might produce more accurate predictions of %Fo but they 302	

dramatically reduce the generalizability of the model to unseen data, so they were not 303	

considered. This is comparable to the concept of using very high-order polynomials to predict 304	

data – they can be quite accurate but not applicable to any other datasets. 305	

For Lasso models, a value of α was chosen for each prediction to train the model 306	

depending on the desired “sparseness” of the model – i.e., how few channels needed to employ 307	

to predict %Fo. Variations in the value of α change the number of channels used by the model. 308	

As α increases, fewer channels are examined in the multivariate analysis prediction (Figure 6). 309	

As the number of channels in a model increases, the value of LOO RMSE-CV also decreases, 310	

showing the importance of models with a large number of channels (small α). Use of large 311	

numbers of channels may overtune the model and reduce its generalizability. 312	

Multivariate models can be set up to use all or any subset of the spectral 313	

data/wavenumber range. As discussed above and shown in Table 2, useful wavelength ranges for 314	

prediction of olivine composition have been proposed to occur at ~200-230 cm-1, ~290-310 cm-1, 315	
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~410-440 cm-1, ~540-553 cm-1, ~881-883 cm-1, ~914-920 cm-1, and 950-966 cm-1. Each of these 316	

ranges was tested individually along with models covering all five of those regions as well as the 317	

range from 400-700 cm-1 and 300-1500 cm-1. Internal RMSE model accuracies are given in 318	

Table 6 for BRAVO data only, Senterra data only, and then the combined datasets. 319	

For the small wavelength regions taken individually, the best prediction accuracy is 320	

results from the energy range between 800 and 880 cm-1; although this was known from practice, 321	

our data show the advantage quantitatively. The range between 400 and 700 cm-1, attributed to 322	

the internal bending modes of the anion as mentioned above, should cause minimal centroid 323	

shifts (Chopelas, 1991; Kuebler et al., 2006), and this is reflected in the observed high RMSE 324	

values for that range. 325	

Interestingly, the best prediction accuracy comes from models that cover energy ranges 326	

that include multiple peaks. The 300-1500 cm-1 PLS model resulted in RMSE values of ±3.87, 327	

±4.52, and ±5.48 %Fo for the BRAVO, Senterra, and BRAVO + Senterra models, respectively. 328	

Better or comparable performance was found using only the five “useful” regions noted above: 329	

±1.67, ±4.40, and ±5.79 %Fo for PLS models and ±7.13, ±3.93, and ±5.06 %Fo for Lasso 330	

models. The superiority of the five-region models over the whole-spectrum models was most 331	

dramatic for the Lasso models in larger datasets.  332	

DISCUSSION 333	

Understanding centroid variability for equivalent %Fo 334	

This study deliberately chose to include both natural and synthetic olivine samples. 335	

Minor cation substitutions within the natural samples cause variations within the band centroid 336	

positions affecting the accuracy of the models. Therefore samples with the same %Fo can 337	

produce bands at slightly different wavenumber positions. This could be mitigated by reducing 338	
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the size of the model to only include samples that fall along the prediction line or by acquiring 339	

many spectra of the same sample to build the model. However, the goal of this study was to 340	

create a broadly applicable model to predict olivine composition in natural samples, so we chose 341	

not to remove samples that did not fall on the line of a perfect fit. 342	

Additionally, this study intentionally acquired data on multiple spectrometers to 343	

understand the implications of making composition predictions across different laboratories. 344	

Variations observed between the two spectrometers used in this study are likely typical of 345	

comparisons that would be encountered in comparisons to data from other spectrometers (see 346	

Dyar et al. 2016c). This dilemma justifies using multivariate analysis rather than the univariate 347	

band shift method and can be mitigated by spectrometer alignment. 348	

Restricting energy range to common compositions 349	

The vast majority of naturally-occurring olivines contain relatively high Mg contents 350	

(Figure 3), commonly around Fo80-90. So a test was developed to determine if improved accuracy 351	

could be obtained by limiting samples in the training set to those with Fo contents greater than 352	

50%. An aggregated model of Senterra, BRAVO and RRUFF* data with %Fo values greater 353	

than 50% was constructed. The LOO RMSE-CV of this model (±4.22 for the five-region PLS 354	

model) was smaller than the original dataset (±9.45 %Fo). Model accuracy likely improves 355	

because the fayalite doublet is often poorly resolved. Therefore, in the vast majority of 356	

applications, it may only be necessary to distinguish between the compositional variations of 357	

forsterite rather than the entire olivine solid-solution. In these cases, the >50% Fo model would 358	

be preferable because of its smaller error.  359	

Univariate analyses 360	
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Because the DB2 peak centroid covers a much wider energy shift with changing 361	

composition (compare x-axis limits in Figure 4 top and bottom), it might be expected that its use 362	

would result in better prediction accuracy than using the DB1 peak. This is indeed observed for 363	

data from nearly all the datasets studied (Table 4). The exceptions are in the combined BRAVO 364	

+ Senterra datasets and for the datasets extracted from published papers by Kuebler et al. (2006) 365	

and Yasuzuka et al. (2009), but there is no apparent effect due to dataset size and resolution. It is 366	

notable that for the largest and most diverse datasets, DB2 fits always produce the best prediction 367	

accuracy. In particular, the model utilizing all available data, including those from the Senterra, 368	

and BRAVO instruments plus RRUFF* and other data from Kuebler et al. (2006), Yasuzuka et 369	

al. (2009), and Ishibashi et al. (2011) for which forsterite composition is >50%Fo produces the 370	

best prediction accuracy for univariate analyses, and thus its DB2 regression equation (%Fo = -371	

0.179625x2 +310.077x -133717) is recommended for use in applications where only peak 372	

centroids can be resolved, as might be the case in a rock spectrum where the region of interest is 373	

highly overlapped. 374	

Multivariate analyses 375	

It is apparent from Table 4 that both DB1 and DB2 peaks contain information about 376	

composition, so using only one of them for predictions discards useful information. In contrast, 377	

multivariate analyses offer the possibility to leverage information from anywhere in the spectra. 378	

Table 5 shows the relative accuracies of the BRAVO, Senterra, and RRUFF predictions 379	

individually and collectively in different combinations. The latter include all 188 of the RRUFF 380	

olivine data and the RRUFF*, in combinations with the BRAVO and Senterra data acquired for 381	

this project (Figure 7). As observed in the previous section, five-region models covering the 382	
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known olivine peaks show superior prediction performance over the whole-spectrum models. 383	

Why? 384	

The answer to this question can be seen in Figure 8, which shows the magnitudes of the 385	

PLS coefficients for models covering the 300-1500 cm-1 range along with the channels chosen by 386	

a Lasso model with α= 0.001 for the combined BRAVO and Senterra models. It is clear that the 387	

entire range from 300-1500 cm-1 is rich with information about olivine composition that has been 388	

previously unutilized in models that employ only restricted energy ranges. However, the five-389	

region models likely outperform the whole-spectrum models because the latter may inadvertently 390	

include to unwanted features resulting from sample heating, fluorescence and, cosmic spikes. 391	

These types of noise are not consistent for each spectrum and they do not relate to Raman 392	

features resulting from compositional variations. So there is justification for using as many 393	

regions that correspond to known olivine modes as possible, and thus five-region models are 394	

used for full LOO RMSE-CV models given in Table 5.  395	

It must be noted that use of this approach will make composition difficult to predict in 396	

practice because pure olivine is rarely encountered in field applications. In practice (as when 397	

deployed on a planetary surface), it is far more likely that the olivine will be mixed in with other 398	

phases such as glass and other minerals. Thus it is desirable to have an alternate method for 399	

predicting %Fo that isolates the olivine part of the spectra, for which the range from 800 to 880 400	

cm-1 is recommended if there is no overlap from other non-olivine features. 401	

In the largest datasets, PLS has comparable error to univariate band shift predictions, 402	

while being significantly less time consuming. Thus the most accurate %Fo prediction based on 403	

Raman spectra of pure olivine samples would be acquired at the highest resolution data possible, 404	
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pre-processed to remove baseline, normalized, and predicted using a PLS algorithm built from 405	

the maximum number of samples (here, 281). 406	

Using solely the peak centroid to model olivine composition does not utilize information 407	

contained in other characteristics within the spectrum such as band shape, intensity, FWHM, area 408	

and anomalies/noise within the spectra. Multivariate analyses appear to overcome these effects.  409	

PLS and Lasso models examine multiple channels within the spectra to build a %Fo 410	

prediction model. The number of coefficients per model is based on the assigned number of 411	

components from the alpha value. As the number of channels in a Lasso model increases, 412	

RMSE-CV decreases, showing the importance of models with a large number of channels. 413	

However, there is a trade-off between the generalizability of the model that is optimized by 414	

smaller numbers of channels versus improved accuracy from using larger numbers of channels.  415	

Factors influencing prediction accuracy 416	

Both dataset size and spectral resolution influence prediction accuracy for both univariate 417	

and multivariate models. Results presented in Table 5 inform the effects of these factors. 418	

To test the effect of resolution, spectral data and models were resampled to 3.0 419	

cm-1/channel resolution and compared against the native resolution of each instrument, which is 420	

2.0, 0.5 and 0.48-2.0 cm-1/channel for the BRAVO, Senterra (532 nm) and RRUFF datasets, 421	

respectively. For comparison, the SuperCam instrument on Mars will have a pixel resolution of 422	

2.5 cm-1 (Wiens et al. 2017), while the ExoMars RLS will use <1 cm-1 (Moral et al. 2018). Based 423	

on the data in this study, there is no systematic effect of spatial resolution on prediction accuracy.  424	

The effects of dataset size can also be roughly evaluated using the data collected here. 425	

Individual datasets produce smaller (more accurate) LOO RMSE-CV values than aggregated 426	

ones because the instrument and operating conditions are identical. For example, the combined 427	
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BRAVO and Senterra datasets had PLS LOO RMSE-CV values of 7.69 for the 800-880 cm-1 428	

range, while their individual, independently produced PLS LOO RMSE-CVs are 6.85 (BRAVO) 429	

and 7.06 (Senterra) (Table 5). However, these single instrument models are less generalizable. 430	

As the aggregated models increase in size and spectral diversity (i.e., instrument, laser 431	

wavelength), the LOO RMSE-CV for the multivariate models decreases and the advantages of a 432	

sole-source dataset diminish. Additionally, LOO RMSE-CV values can be reduced for aggregate 433	

datasets by aligning the spectral data of the multiple instruments (Table 5). 434	

A five-region PLS model of the collective Senterra, BRAVO, and RRUFF* datasets with 435	

solely spectra corresponding to >50%Fo is recommended for future work. PLS (LOO RMSE-CV 436	

is 4.22 %Fo) is less time-consuming than univariate analyses (LOO RMSE-CV 4.58 %Fo), gives 437	

comparable accuracy, and is more generalizable. The PLS prediction model will aid workers 438	

using different spectrometers, incident laser wavelengths and other operating conditions. 439	

Additionally, a %Fo prediction for forsterite is more likely necessary than that of fayalite, 440	

especially for applications to Mars. 441	

It is hoped that future workers will add Raman spectral data to the recommended models 442	

presented here, for which data are available on the lab website (nemo.cs.umass.edu:54321) 443	

(Carey et al. 2017). Increasing the number of spectra within the models on additional instruments 444	

will likely improve the accuracy of prediction results. Future workers with Raman spectra of 445	

olivines with known compositions are encouraged to contact these authors so that a new, 446	

expanded olivine prediction model can be created. Current and future improved PLS models will 447	

be available from the authors. 448	

Parameters for model comparisons 449	
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Tabulated R2 values in Table 4 and S5 make it apparent that R2 is a biased and potentially 450	

misleading parameter when used to compare models of differing data. In this application, R2 is a 451	

measure of the proportion of the total variation of peak position from the average peak position 452	

in that dataset that is explained by the regression line (McKillip and Dyar 2010). For example, if 453	

all the samples in the dataset have comparable %Fo contents, then the deviation from that 454	

average will be small, and R2 may be misleadingly high. Moreover, R2 cannot be used to 455	

evaluate whether the calculated regression function is a correct description of the relationship 456	

between peak position and %Fo. Finally, the R2 statistic does not evaluate potential performance 457	

of the linear or polynomial trend when applied to unseen (i.e., from a different dataset or 458	

instrument) results. 459	

The importance of this point is reinforced by the data in Table 4, in which only RMSE 460	

can be used to make apples-to-apples comparisons among models. For example, Kuebler et al. 461	

(2006) modeled %Fo using a second-order polynomial fit to the DB1 and DB2 centroids plotted 462	

against %Fo, yielding regression lines with R2 values of 0.98 (DB1) and 0.97 (DB2) %Fo, 463	

respectively. When these data were used to calculate LOO RMSE-CV, a different story emerges. 464	

Corresponding LOO RMSE-CV values are ±4.33 and ±4.57 %Fo units. The inaccuracy of this 465	

model becomes even more apparent when it is used to predict a different dataset (RMSE-test 466	

values). These results underscore the importance of evaluating model accuracies based on use of 467	

leave-one-out cross-validation and/or “unseen” external data. Failure to do so invalidates any 468	

claims of accuracy for application to other datasets, such as those on Mars.  469	

Future work 470	

In a study using 3,950 RRUFF spectra to test for matching accuracy, Carey et al. (2015) 471	

tested the effects of common spectrum pre-processing steps, such as intensity normalization, 472	
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smoothing, squashing, and customized baseline removal (Giguere et al. 2017). Although 473	

differences in sample crystal orientation, laser polarization, focus, and other instrumental 474	

parameters can have major effects on spectra, even on the same samples and identical 475	

instruments, Carey et al. (2015) showed that pre-processing techniques can effectively 476	

ameliorate these differences and improve mineral identification. It is likely that optimizing pre-477	

processing of olivine spectra from disparate sources might also improve prediction accuracy for 478	

obtaining %Fo from Raman spectra of olivine. 479	

However, time did not permit testing of various pre-processing techniques on our own 480	

datasets, though this is obviously an area ripe for research. In future work, effects of baseline 481	

removal methods, alternate methods for normalization, and squashing and smoothing techniques 482	

will be evaluated. Although olivine is an important rock-forming mineral group, there are many 483	

other mineral groups that will need to be evaluated and quantitatively described through Raman 484	

spectroscopy. Given the ubiquitous presence of species from the pyroxene and feldspar mineral 485	

groups in igneous rocks and on planetary surfaces, creation of equivalent multivariate Raman 486	

models for these groups should be a high priority for further research. Eventually, bringing our 487	

results together with those analogous models for other phases will make it possible to identify 488	

and quantify compositions of these phases in mineral mixtures. 489	

IMPLICATIONS 490	

As the technology for micro-Raman, reductions in the price of lasers, and 491	

implementations for portable and remote instruments continue, Raman spectroscopy should play 492	

an increasingly important role in geosciences and planetary exploration. Studies such as this one 493	

that relate prominent Raman peaks to mineral identification and composition are needed to 494	

enhance the capabilities of Raman instruments across those many applications. This paper lays a 495	
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foundation for future analogous studies of important rock-forming minerals by demonstrating 496	

that specific features and energy ranges can be mined for accurate predictions of chemistry. This 497	

project focuses on olivine, a common liquidus phase in magmatic systems that is present in most 498	

basalts, in meteorites, and on terrestrial surfaces beyond Earth. Characterizing the ratio of Fe to 499	

Mg in olivine constrains phase relations and crystallization conditions, and is feasible in both 500	

pure spectra of olivine and in mixtures where the most prominent olivine doublet can be 501	

resolved. Algorithms presented here will assist the ExoMars and Mars 2020 mission teams in 502	

recognizing olivine and determining its composition with known accuracy. We recommend use 503	

of either our PLS model if pure olivine is encountered, or the recommended %Fo = -0.179625x2 504	

+310.077x -133717 regression equation (where x = DB2 in units of cm-1) for olivine that is 505	

present in mixtures. 506	
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Figure captions 680	

Figure 1. High intensity Raman doublet (815-857 cm-1) of forsterite (purple) and fayalite (green). 681	

Figure 2. Unaligned Raman spectra of olivine doublet (DB1 and DB2) of 93 samples acquired on 682	

Bruker’s Senterra and BRAVO spectrometers. All spectra were baseline removed using Air-PLS 683	

and normalized to a maximum intensity of 1. Spectra are color-coded based on Fo content, where 684	

forsterite is represented with yellow, fayalite with purple, and intermediate compositions in 685	

between. 686	

Figure 3. Histogram of 93 synthetic (blue) and natural (red) samples on the Fo-Fa series. Natural 687	

olivines typically form with a %Fo of ~89.5 resulting in an unbalanced distribution on the Fo-Fa 688	

series. 689	

Figure 4.  Fo by EMPA versus peak centroids of DB1 and DB2. Second order polynomial fits 690	

and RSME-CV values are included for the unaligned data acquired on Bruker’s BRAVO (n=25) 691	

and Senterra (n=68) spectrometers. Error bars are smaller than the symbols and are given in 692	

Tables S3 and S4. 693	

Figure 5. %Fo by EMPA versus peak centroids positions of (a) DB1 and (b) DB2 for data 694	

acquired in other studies. Including results from the RRUFF* database (see text for explanation 695	

of notation), and studies by Kuebler et al. (2006), Yasuzuka et al. (2009), and Ishibashi et al. 696	

(2011). 697	

Figure 6. Variations in Lasso model accuracy as a function of the number of coefficients. As α 698	

increases, fewer channels are examined: (a) 38 channels for α = 0.001, (b) 27 channels for α = 699	

0.01, and (c) 10 channels for α = 0.1. As the number of channels examined is decreased (fewer 700	
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coefficients within the model), the RMSE-CV of the models increases in value (gets worse). This 701	

demonstrates the value of a models that examines a high number of channels, which is achieved 702	

in a small α value Lasso model or PLS models. 703	

Figure 7.  Bar graph comparing results from Tables 4 and 5. When the dataset is small and/or all 704	

the data are acquired on the identical instrument, then univariate methods produce better results 705	

than those using multivariate analyses.  However, as the number of samples and instruments used 706	

increase, PLS methods generally produce more accurate results. 707	

Figure 8. (top) Plot of BRAVO and Senterra unaligned data in Table 6, along with circles 708	

indicating the magnitude of PLS coefficients (right-hand y axis units).  Note that PLS 709	

coefficients are proportional to spectral intensity at each wavenumbers, so absolute values cannot 710	

be compared on this plot.  However, the PLS coefficients do demonstrate that the entire 711	

wavenumber range contains information useful to predicting composition. (bottom) Analogous 712	

plot for the same data but showing Lasso coefficients for a model with α = 0.001. 713	
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Table 1.   Assignment of Raman Modes in Olivine 
~Band (cm

-1
) Symmetry Assignment Literature 

815-825
(DB1)

Ag 

n.a. Servoin et al. (1972) 
v1+v3 Paques-Ledent and Tarte (1973) 
v1 Iishi (1978) 
v1 +v3 Piriou (1983) 
v1+v3 Chopelas et al. (1991) 
SiO4

2- stretching Kolesov and Tanskaya (1996) 
v1+v3 Kolesov and Geiger (2004) 
Si-O stretch, ν3 McKeown et al. (2010) 

838 B1g 
v1 Iishi (1978) 
v1 (+v3) Chopelas et al. (1991) 
v1 (+v3) Kolesov and Geiger (2004) 
v1 McKeown et al. (2010) 

837-857
(DB2) Ag 

n.a. Servoin et al. (1972) 
v1+v3 Paques-Ledent and Tarte (1973) 
v3 Iishi (1978) 
v1 (+v3) Piriou (1983) 
v3 Price et al. (1987) 
v1+v3 Chopelas et al. (1991) 
SiO4

2- stretching Kolesov and Tanskaya (1996) 
v1+v3 Kolesov and Geiger (2004) 
Si-O stretch; SiO4 breathing ν3 McKeown et al. (2010) 

866 B1g 
v3 Iishi (1978) 
v3 Price et al. (1987) 
v3 (+v1) Chopelas et al. (1991) 
v3 (+v1) Kolesov and Geiger (2004) 

882 B2g 

v3 McKeown et al. (2010) 
v3 Paques-Ledent and Tarte (1973) 
v3 Iishi (1978) 
v3 Chopelas et al. (1991) 
v3 Kolesov and Geiger (2004) 
v3 McKeown et al. (2010) 
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Table 2. Summary of %Fo prediction models using band shift method 
Paper # samples*  Bands (cm

-1
) 

Iishi (1978) 1  All bands 
Guyot et al. (1986) 4  815-825, 837-857, 881-883, 914-920, 950-966 
Chopelas et al. (1991) 1  All bands 
Mohanan et al. (1993) 1  All bands from 200-1000 
Kolesov and Tanskaya, (1996) 2  All bands from 200-1000 
Wang et al. (2004) 0  815-825, 837-857  
Kuebler et al. (2006) 10  815-825, 837-857 
Foster et al. (2007) 2  815-825, 837-857 
Gaisler and Kolesov (2007) 0  200-230, 290-310, 410-440, 815-825, 837-857 
Mouri and Enami (2008) 0  815-825, 837-857 
Ishibashi et al. (2008) 1  815-825, 837-857 
Yasuzuka et al. (2009) 10  540-553, 815-825, 837-857 

McKeown et al. (2010) 1  All bands 
Abdu et al. (2011) 3  815-825, 837-857 
Ishibashi et al. (2011) 15  815-825, 837-857, 881-883, 914-920, 950-966 
Weber et al. (2014) 5  815-825, 837-857 
Note: *Number of samples with reported centroid positions and compositions. 
  3 
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Table 3. Natural Samples Studied 

Sample Name Locality Chemistry Mössbauer Raman Instrument 

Ba-1-61 Dish Hill, CA UTK [12] Senterra 
Ba-1-74 Dish Hill, CA UTK [12] Senterra 
Ba-2-1 WR1 Dish Hill, CA Brown [6] Senterra 
Ba-2-1 WR2 Dish Hill, CA Brown [6] Senterra 
Ba-2-1 WR3 Dish Hill, CA Brown [6] Senterra 
Ba-2-1 WR4 Dish Hill, CA Brown [6] Senterra 
Ba-2-1 D-1 Dish Hill, CA [1] [6] Senterra 
Ci-1-183 Dish Hill, CA [12] [12] Senterra 
Ci-1-25 Dish Hill, CA [12] [12] Senterra 
DH101-B Dish Hill, CA Brown [6] Senterra 
DH101-C Dish Hill, CA Brown [6] Senterra 
DH101-D Dish Hill, CA Brown [6] Senterra 
DH101-E Dish Hill, CA Brown [6] Senterra 
Dyar 89-190 unknown Brown [12] BRAVO 
Dyar 89-12 unknown Brown [12] BRAVO 
Dyar 89-187 unknown Brown [12] BRAVO 
Dyar 89-194 unknown Brown [12] BRAVO 
Ep-1-13 Potrillo maar, NM [12] [7] BRAVO 
Ep-3-139-C Kilbourne Hole, NM Brown [8] Senterra 
Ep-3-139-D Kilbourne Hole, NM Brown [8] Senterra 
Ep-3-44 Kilbourne Hole, NM UTK [12] Senterra 
Ep-3-46 Kilbourne Hole, NM UTK [12] Senterra 
Ep-3-72 Kilbourne Hole, NM UTK [12] Senterra 
Ep-3-7A Kilbourne Hole, NM Univ. Houston [12] Senterra 
KI-3003 Kiglapait Formation Brown [12] Senterra 
KI-3373 Kiglapait Formation Brown [12] Senterra 
NMNH 112085 Red Rock Ridge UTK, Brown [12] Senterra 
NMNH 1210672 Germany Greifensteiner Kalk UTK, Brown [12] Senterra 
NMNH 135841 Sweden Nykopig Tunaberg Brown [12] Senterra 
NMNH 85539 unknown UTK, Brown [12] Senterra 
Rockport Rockport Brown [9] Senterra 
Globe Globe, AZ [1] [12] BRAVO 
H279-12 Harrat al Kishb, Saudi Arabia [12] [12] Senterra 
H30-82-8 Harrat al Kishb, Saudi Arabia UTK [12] Senterra 
H30-B1 Harrat al Kishb, Saudi Arabia Brown [10] BRAVO 
H30-B2 Harrat al Kishb, Saudi Arabia [12] [7] BRAVO 
H30-B3 Harrat al Kishb, Saudi Arabia UTK [12] Senterra 
H30-B4 Harrat al Kishb, Saudi Arabia UTK, Brown [12] Senterra 
H30-B5 Harrat al Kishb, Saudi Arabia UTK [12] Senterra 
H312-1 Harrat Uwayrid, Saudi Arabia [12] [12] Senterra 
H366-28 Harrat Hutaymah, Saudi Arabia [12] [12] BRAVO 
H366-30 Harrat Hutaymah, Saudi Arabia [12] [12] Senterra 
NMNH 9140 Orange Co. NY UTK, Brown [12] Senterra 
KBH-94-23-B Kilbourne Hole, NM UTK [12] Senterra 
KBH-94-23-E Kilbourne Hole, NM UTK [12] Senterra 
Notes: Sources are abbreviated  as follows: [1] Byrne et al. (2015), [2]  Floran et al. (1978), [3]  McSween 
and Jarosewich (1983), [4]  McCanta et al. (2008), [5]  Mikouchi and Kurihara (2008), [6]  McGuire et al. 
(1991), [7] Dyar et al. (1989), [8] Dyar et al.(1992), [9] Schaefer (1983), [10]  McGuire et al. (1992), [11]  
Dyar (2003), [12] this study. 
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Table 3. (continued).  Natural Samples Studied 

Sample Name Locality Chemistry Mössbauer Raman Instrument 

KBH-94-23-E Kilbourne Hole, NM UTK [12] Senterra 
KI-3005 Kiglapait Formation Brown [12] Senterra 
KI-3289 Kiglapait Formation Brown [12] Senterra 
KI-3362 Kiglapait Formation Brown [12] Senterra 
KI-3648 Kiglapait Formation UTK [12] Senterra 
KI-4030 Kiglapait Formation Brown [12] Senterra 
Ki-5-16 Cima volcanic field, CA [12] [12] Senterra 
Ki-5-235 Cima volcanic field, CA UTK [12] Senterra 
Ki-5-35 Cima volcanic field, CA UTK [12] Senterra 
Ki-5-62 Cima volcanic field, CA UTK [12] BRAVO 
Pakistan  Pakistan Sapatime Kohistan District Brown [12] BRAVO 
San Carlos AZ San Carlos AZ [1] [12] BRAVO 
ALHA 77005 Mars UTK [11] Senterra 
ALHA-77005-193 Mars UTK [11] Senterra 
Chassigny USNM E24 Mars [2] [11] Senterra 
EETA-79001 60B Mars [3] [11] Senterra 
EETA-79001-A Mars [3] [11] Senterra 
LAP-0484016 Mars [4] [12] Senterra 
NWA2737 Mars Brown [12] Senterra 
Y000097 86 Mars [5] [12] Senterra 
Notes: Sources are abbreviated as follows: [11] Dyar (2003), [12] this study. 
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Table 4. Model accuracy by LOO RMSE-CV for univariate analyses using 2nd order polynomial fits 

Data #Spectra 
Resolution 

(cm
-1

 /channel) 
Model 

Internal

R
2
 

Internal 

RMSE 

LOO 

RMSE-CV 

BRAVO 25 2.0 DB1 0.88 9.87 7.69 
DB2 0.97 5.26 4.35 

Senterra 68 0.5 DB1 0.94 7.38 4.94 
DB2 0.97 5.20 3.35 

Senterra + BRAVO 93 0.5 / 2.0 DB1 0.89 10.23 7.43 
DB2 0.89 10.20 7.91 

Senterra + BRAVO aligned 93 0.5 / 2.0 DB1 0.92 8.72 5.64 
DB2 0.94 7.36 5.05 

Kuebler et al. (2006) 13 6.2 DB1 0.98 8.63 4.33 
DB2 0.97 5.05 4.57 

Yasuzuka et al. (2009) 10 0.05 DB1 0.97 1.49 1.68 
DB2 0.97 1.57 1.84 

Ishibashi et al. (2011) 15 1.5 DB1 0.98 1.30 1.32 
DB2 0.99 0.92 0.84 

RRUFF* 156 0.48 - 1.4 DB1 0.92 11.58 8.75 
DB2 0.94 9.93 8.28 

RRUFF (all) 188 2.0 DB1 0.86 15.50 11.29 
DB2 0.93 10.70 8.86 

Senterra + BRAVO+RRUFF* 249 0.5/2.0 /0.48 – 1.4 DB1 0.90 12.04 9.36 
DB2 0.92 10.58 8.91 

Senterra + BRAVO 
+ RRUFF (all) 281 0.5/2.0 /0.48 – 2.0 DB1 0.86 14.35 10.55 

DB2 0.92 11.02 9.20 
Senterra + BRAVO+RRUFF* 
(>50%Fo) 181 0.5/2.0 /0.48 – 1.4 DB1 0.56 6.60 5.01 

DB2 0.61 6.20 4.58 

All data (only RRUFF*) 287 see above DB1 0.90 11.49 8.70 
DB2 0.92 10.26 8.56 

All data for samples >50%Fo 
(only RRUFF*) 213 see above DB1 0.64 6.30 4.86 

DB2 0.69 5.85 4.27 
*Includes all olivine group spectra on RRUFF except those designated as “Broad Scan with Spectral Artifacts.” 
  8 



 
 

39 
 

Table 5. Model accuracy by LOO RMSE-CV for Multivariate Analyses 

Data # Res. Model  C/ Internal R
2
 

Internal 

RMSE 

LOO 

RMSE-CV 

BRAVO 25 

3.0 PLS 800-880 7 0.99 2.56 6.85 

3.0 Lasso 800-880 0.001 0.99 1.13 6.87 
2.0 PLS 800-880 2 0.96 5.75 7.43 
2.0 Lasso 800-880 0.005 0.99 1.88 9.24 
2.0 PLS 5 regions 9 0.99 1.67 8.17 
2.0 Lasso 5 regions 0.3 0.93 7.13 7.91 

Senterra 68 

3.0 PLS 800-880 6 0.97 5.57 7.06 
3.0 Lasso 800-880 0.01 0.93 8.52 10.62 
0.5 PLS 800-880 7 0.96 5.85 7.31 
0.5 Lasso 800-880 0.008 0.95 7.37 11.75 
2.0 PLS 5 regions 9 0.98 4.40 6.45 

2.0 Lasso 5 regions 0.005 0.98 3.93 7.50 

Senterra 
+ BRAVO 93 

2.0 PLS 800-880 5 0.95 6.63 7.79 

2.0 Lasso 800-880 0.002 0.95 6.95 9.38 
2.0 PLS 5 regions 9 0.96 5.79 7.91 
2.0 Lasso 5 regions 0.006 0.97 5.06 8.72 

Senterra 
+ BRAVO 
aligned 

93 

2.0 PLS 800-880 7 0.97 5.69 6.93 

2.0 Lasso 800-880 0.003 0.95 7.19 9.42 
2.0 PLS 5 regions 8 0.96 5.87 7.90 
2.0 Lasso 5 regions 0.02 0.95 7.07 9.74 

118 

2.0 PLS 800-880 7 0.97 5.56 6.63 

2.0 Lasso 800-880 0.002 0.94 7.34 9.52 
2.0 PLS 5 regions 9 0.96 5.78 7.59 
2.0 Lasso 5 regions 0.015 0.95 7.03 8.96 

RRUFF* 156 

1.5 PLS 800-880 5 0.98 6.10 6.65 
1.5 Lasso 800-880 0.01 0.94 9.97 12.25 
1.5 PLS 5 regions 9 0.99 4.56 5.97 

1.5 Lasso 5 regions 0.008 0.98 6.46 7.02 

RRUFF (all) 188 

2.0 PLS 800-880 10 0.97 7.13 8.34 

2.0 Lasso 800-880 0.001 0.93 11.00 13.15 
2.0 PLS 5 regions 10 0.97 7.30 8.53 
2.0 Lasso 5 regions 0.001 0.96 7.85 10.99 

Senterra  
+ BRAVO 
+ RRUFF* 

249 

2.0 PLS 800-880 10 0.97 6.97 7.83 

2.0 Lasso 800-880 0.002 0.97 6.97 11.94 
2.0 PLS 5 regions 9 0.96 7.12 8.34 
2.0 Lasso 5 regions 0.002 0.97 7.06 11.29 

Senterra 
+ BRAVO 
+ RRUFF 
(all) 

281 

2.0 PLS 800-880 9 0.95 8.87 9.64 
2.0 Lasso 800-880 0.001 0.91 11.77 13.41 
2.0 PLS 5 regions 10 0.95 8.57 9.45 

2.0 Lasso 5 regions 0.015 0.93 10.08 12.14 
Senterra 
+ BRAVO 
+ RRUFF*  
(>50%Fo) 

181 

2.0 PLS 800-880 6 0.82 4.23 4.86 
2.0 Lasso 800-880 0.004 -0.28 11.25 13.74 
2.0 PLS 5 regions 9 0.89 3.30 4.22 

2.0 Lasso 5 regions 0.02 0.24 8.65 13.28 
Notes: # = number of spectra, Res. = Resolution (cm-1 /channel),  = wavenumber range (cm-1), C/a = number of 
components for PLS models and a for Lasso models. Five regions = 410-440 cm-1, 538-556 cm-1, 800-880 cm-1, 908-926 
cm-1and 950-968 cm-1 combined. *Includes all olivine group spectra on RRUFF except those designated as “Broad Scan 
with Spectral Artifacts.” 
  9 
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Table 6. Comparison of Internal RMSE Results by Energy Region with 2.0 cm-1 /channel resolution 
 BRAVO Senterra BRAVO + Senterra 

Number of spectra 25 68 93 

Model used PLS Lasso PLS Lasso PLS Lasso 

410-440 cm-1 18.96 12.70 15.30 16.46 20.87 20.54 
538-556 cm-1 20.82 19.43 22.60 34.09 23.11 31.77 
800-880 cm-1 5.75 1.88 5.44 6.04 6.63 6.95 
908-926 cm-1 16.04 14.46 12.91 14.74 14.45 16.14 
950-968 cm-1 18.24 15.38 19.11 20.97 19.99 24.61 
5 regions above 1.67 7.13 4.40 3.93 5.79 5.06 
400-700 cm-1 17.34 16.99 8.01 6.37 13.07 12.74 
300-1500 cm-1 3.87 6.76 4.52 9.42 5.48 3.74 
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Figure 1. High intensity Raman doublet (815-857 cm-1) of forsterite (purple) and fayalite (green).  12 
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Figure 2. Unaligned Raman spectra of olivine doublet (DB1 and DB2) of 93 samples acquired on 14 

Bruker’s Senterra and BRAVO spectrometers. All spectra were baseline removed using Air-PLS 15 

and normalized to a maximum intensity of 1. Spectra are color-coded based on Fo content, where 16 

forsterite is represented with yellow, fayalite with purple, and intermediate compositions in 17 

between.  18 
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 19 
Figure 3. Histogram of 93 synthetic (blue) and natural (red) samples on the Fo-Fa series. Natural 20 

olivines typically form with a %Fo of ~89.5 resulting in an unbalanced distribution on the Fo-Fa 21 

series.  22 
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 24 

Figure 4.  Fo by EMPA versus peak centroids of DB1 and DB2. Second order polynomial fits 25 

and RSME-CV values are included for the unaligned data acquired on Bruker’s BRAVO (n=25) 26 

and Senterra (n=68) spectrometers. Error bars are smaller than the symbols and are given in 27 

Tables S3 and S4.  28 
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 29 
Figure 5. %Fo by EMPA versus peak centroids positions of (a) DB1 and (b) DB2 for data 30 

acquired in other studies. Including results from the RRUFF* database (see text for explanation 31 

of notation), and studies by Kuebler et al. (2006), Yasuzuka et al. (2009), and Ishibashi et al. 32 

(2011).   33 
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34 
Figure 6. Variations in Lasso model accuracy as a function of the number of coefficients. As  35 

increases, fewer channels are examined: (a) 38 channels for  = 0.001, (b) 27 channels for  = 36 

0.01, and (c) 10 channels for  = 0.1. As the number of channels examined is decreased (fewer 37 

coefficients within the model), the RMSE-CV of the models increases in value (gets worse). This 38 

demonstrates the value of a models that examines a high number of channels, which is achieved 39 

in a small  value Lasso model or PLS models. 40 

41 
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 42 

Figure 7.  Bar graph comparing results from Tables 4 and 5. When the dataset is small and/or all 43 

the data are acquired on the identical instrument, then univariate methods produce better results 44 

than those using multivariate analyses.  However, as the number of samples and instruments used 45 

increase, PLS methods generally produce more accurate results.  46 
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 48 
Figure 8. (top) Plot of BRAVO and Senterra unaligned data in Table 6, along with circles 49 

indicating the magnitude of PLS coefficients (right-hand y axis units).  Note that PLS 50 

coefficients are proportional to spectral intensity at each wavenumbers, so absolute values cannot 51 

be compared on this plot.  However, the PLS coefficients do demonstrate that the entire 52 

wavenumber range contains information useful to predicting composition. (bottom) Analogous 53 

plot for the same data but showing Lasso coefficients for a model with α = 0.001. 54 


	 



