This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6576

1	Revision 1	
2		
3	To: American Mineralogist	7/6/18
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14	Solution mechanisms of COHN fluids in melts to upper mantle	
15	temperature, pressure, and redox conditions	
16		
17		
18		
19		
20 21	Bjorn Mysen Geophysical Laboratory	
22	Carnegie Instn. Washington	
23	Washington DC 20015	
24	USA	
25		

26 Abstract

27 In order to advance our knowledge of speciation among volatiles during melting and 28 29 crystallization in the Earth's interior, the nature of carbon-, nitrogen-, and hydrogen-bearing 30 species was determined in COHN fluids and dissolved in coexisting aluminosilicate melts. 31 Micro-Raman characterization of fluids and melts were conducted in-situ while samples were at 32 temperature up to 825°C and pressure up to ~1400 MPa under redox conditions controlled with 33 the Ti-TiO₂-H₂O hydrogen fugacity buffer. The fluid species are H₂O, H₂, NH₃, and CH₄. In contrast, under oxidizing conditions the species are H₂O, N₂ and CO₂. 34 35 The equilibria among silicate structures (Q-species) and reduced carbon and nitrogen species are, $2NH_3 + 4Q^n \rightleftharpoons 2Q^{n-1}(NH_2) + 2Q^{n-1}(OH)$, and $2CH_4 + 4Q^n \rightleftharpoons 2Q^{n-1}(CH_3) + 2Q^{n-1}(CH_3)$ 36 ¹(OH). The Qⁿ- and Qⁿ⁻¹ denote silicate species with, respectively, n and n-1 bridging oxygens. 37 The formulation in parentheses, (NH₂), (CH₃), and (OH), is meant to indicate that those 38 39 functional groups replace one or more oxygen in the silicate tetrahedra. There is no evidence for 40 O-NH₂ or O-CH₃ bonding. Therefore, solution of reduced C- and N-species species in the COHN 41 system results in depolymerization of silicate melts. The Δ H-values derived from the X_{NH2}/X_{NH3} 42 and X_{CH3}/X_{CH4} evolution with temperature, respectively, were 8.1±2.3 kJ/mol and between -4.9±1.0 and -6.2±2.2 kJ/mol. 43 The fluid/melt partition coefficients, K^{fluid/melt}, of the reduced species, H₂O, H₂, NH₃, and 44 CH₄, remain above unity at all temperatures. For example, for carbon it is in the 6-15 range with 45 46 a $\Delta H = -13.4 \pm 2.4$ KJ/mol. These values compare with a 0.8-3 range with $\Delta H = -19 \pm 2.4$ kJ/mol in N-free silicate-COH systems. The K^{fluid/melt} -values for reduced nitrogen and molelcular 47 hydrogen are in the 6-10 and 6-12 range with Δ H-values of -5.9±0.9 kJ/mol and =8±6 kJ/mol, 48 49 respectively.

A change in redox conditions during melting and crystallization in the Earth sufficient to alter oxidized to reduced carbon- and nitrogen-bearing species will affect all melt properties that depend on melt polymerization. This implies that changing redox conditions during melting of a COHN-bearing mantle can have profound effect on physical and chemical properties of melts and on melting and melt aggregation processes.

56 Introduction

57 An understanding of the behavior of COHN volatiles in magatic systems at high temperature and 58 pressure is central to characterization of processes that describe formation and evolution of the 59 solid Earth, recycling of volatiles, and interaction between the solid Earth and its oceans and 60 atmosphere (Zhang and Zindler, 1993; Miyazaki et al., 2004; Adler and Williams, 2005; Sata et 61 al., 2010). These processes and the underlying materials properties needed for modeling are 62 governed by temperature, pressure, redox conditions, and bulk chemistry. Redox conditions can 63 affect the carbon and nitrogen distribution and recycling because they can exist in different 64 oxidation states within the range of redox conditions in the Earth's interior (Miyazaki et al., 65 2004; Mysen et al., 2008; Mysen and Fogel, 2010; Kadik et al., 2011, 2015). Under highly 66 reducing conditions, molecular H₂ also becomes an important species. 67 Under reducing conditions, distribution of nitrogen in the Earth is governed in part by its solubility in crystalline phases where NH_4^+ functional groups can substitute for K⁺ in the crystal 68 69 structure of mica and amphibole, for example (Duit et al., 1986; Watenpuhl et al., 2009) and in 70 part by solubility of (N...H) complexes in melts and fluids. The nitrogen partitioning behavior 71 between and solubility in minerals, melts, and fluids at high pressure and temperature also is 72 important, and depends on the oxidation state of nitrogen (Libourel et al., 2003; Miayzaki et al., 73 2004; Bebout et al., 2013). Redox-dependent speciation of C-bearing volatile components also affects properties of 74 magmatic systems. For example, melting of oxidized CO_2 - and CO_3^{2-} -bearing upper mantle 75 76 yields silica-undersaturated melts such as alkali olivine basalt and nephelinite and perhaps even 77 carbonatite (Hirose, 1997; Dalton and Wood, 1993). However, with the hydrogen fugacity 78 conditions greater than that of the MW (Fe₃O₄/FeO/H₂O) buffer, the stable C-species in COH-

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6576

4

79	bearing melts at high pressure and temperatures are CH ₄ and CH ₃ ⁻ groups (Mysen et al., 2011).
80	Such redox conditions are not unusual in the mantle of the present Earth (Carmichael and
81	Ghiorso, 1990). The potential importance of reduced C-bearing species in the modern Earth
82	notwithstanding, only a handful of experimental studies aimed to characterize the melting
83	behavior of methane-bearing silicate systems at high pressure has been reported. What is known
84	suggests that methane lowers activity coefficients of silica, which would drive composition of
85	partial melt towards silica enrichment, for example (Eggler and Baker, 1982; Taylor and Green,
86	1989).
87	Molecular H ₂ is a major component under hydrogen fugacity conditions equivalent to the IW
88	(Fe/FeO)+H2O buffer and above. It may, therefore, have been an important fluid component at
89	the redox conditions of the early Earth. Significant concentrations of molecular H_2 is less
90	important in the modern Earth (O'Neill, 1991) where the necessary high f_{H2} -conditions are rare.
91	An understanding of the role of COHN volatiles during the formation and evolution of the
92	Earth requires experimentally-determined speciation (structure) of volatiles in and their
93	partitioning between fluids and melts under conditions of the Earth's interior. Recently developed
94	methods that rely on externally-heated diamond anvil cell technology coupled with vibrational
95	spectroscopy have made it possible to obtain such data (Bassett et al., 1994; Zotov and Keppler,
96	2002; Mibe et al., 2008). In the present report, fluid and melt structure and fluid/melt partitioning
97	of volatile components silicate- COHN systems have been carried out with such techniques.
98	
99	Experimental Methods

Experiments were carried out with the samples contained in a 500 µm diameter central hole of a
101 125 µm thick Ir gasket placed between the diamonds culets in the hydrothermal diamond anvil

102	cell (Bassett et al., 1994). Starting materials were glass chips of the alkali aluminosilicate	
103	composition $(Na_2Si_4O_9)_{90}(Na_2(NaA1)_4O_9)_{10}$ that were mixed with $Ag_2C_2O_4$ and AgN_3 and $low and agN_3$ and $low again a gradient and a gr$	ided
104	into the hydrothermal diamond anvil cell together with double-distilled, dionized H_2O and su	nall
105	pieces of Ti metal. Carbon dioxide and N_2 were formed from decomposition of the silver oxa	late
106	$(Ag_2C_2O_4)$ and silver azide (AgN_3) , which takes place near 200°C. Condensed materials (sili	cate
107	+ $Ag_2C_2O_4$ + AgN_3 +Ti metal) represented about 50% of the starting composition together w	ith
108	about 50% liquid H_2O . However, these proportions could not be determined with precision	
109	because of the small sample volume ($<0.0 \mu \text{m}^3$).	
110	During an experiment, the Ti metal reacted with H ₂ O to control the hydrogen fugacity vi	a the
111	reaction:	
112		
113	$Ti + 2H_2O \Leftrightarrow TiO_2 + 2H_2.$	(1)
114		
115	This CO_2 and N_2 were transformed to CH_4 and NH_3 by reaction with H_2 from the f_{H2} buffer	
116	reaction [eqn. (1)] (Mysen and Fogel, 2010; Foustoukos and Mysen, 2013);	
117		
118	$CO_2 + 3H_2 \Leftrightarrow CH_4 + H_2O$,	(2)
119		
120	$N_2 + 4N_2 \Leftrightarrow 2NH_3 + H_2O.$	(3)

121

122	Molybdenum wire wrapped around each of two SiC diamond seats was used to form heaters.
123	Temperature was monitored with two K-type thermocouples touching the diamonds about 1-1.5
124	mm from the sample. Temperature variations, determined with the melting point of NaCl
125	(800.5°C at ambient pressure), is $\sim \pm 2$ °C. Pressure, generated by the fluid at essentially constant
126	volume in the sample chamber, changed with temperature. It was monitored with the one-phonon
127	Raman shift of synthetic ¹³ C diamond added as small chips to the sample volume (Schiferl et al.,
128	1997). Pressure was, therefore, a temperature-dependent variable (Table 1). The ¹³ C diamond
129	was used in order to avoid interference from the Raman spectra from the natural diamonds in the
130	diamond anvil cell itself. Pressure/temperature-dependence of the one-phonon Raman shift was
131	calibrated against the equation-of-state of pure H_2O by Mysen and Yamashita (2010). The
132	pressure uncertainty, which includes both spectrometer precision and fitting errors in the
133	calibration, is about ± 110 MPa. The spectrometer precision alone translates to a pressure
134	precision of ± 40 MPa. Pressure does not decrease monotonously with decreasing temperature
135	because there was some deformation of the Ir gasket hole, which, therefore, resulted in sample
136	volume changes and, therefore, pressure variations.

Fluid and melt structure was evaluated from Raman spectra recorded with a JASCO model NRS-3100 confocal microRaman spectrometer. With this system, a 2.5 cm working-distance 50X by 0.42 N.A. objective lens was used. The samples were excited with the 490 nm line of a solid-state laser operating at \sim 30 mW at the sample. With this spectrometer set-up, the optical resolution was 2-3 µm across by about 30 µm depth. The spectrometer is equipped with a single monochromator, holographic notch filter, and holographic gratings. Gratings with 1200 and 2400 grooves/mm were employed. The 2400 grooves/mm gratings were used together with Ne

emission lines for frequency reference to collect high-precision carbon-13 diamond spectra with 144 ± 0.1 cm⁻¹ uncertainty. Measurements of the melt and fluid samples were carried out with 1200 145 grooves/mm and 2-3 cm⁻¹ frequency uncertainty. The data were recorded with an Andor Model 146 147 DV401-F1 Peltier-cooled CCD. Several temperature/pressure series of measurements were carried out. For each series, the 148 149 sample was first brought to the highest planned temperature and pressure and kept at this 150 condition (825°C and \sim 1400 MPa in the present case) for \sim 60 minutes, which is sufficient to 151 attain equilibrium for which only several minutes are needed (Horita, 2014). Spectroscopic measurements of the sample (fluid, melt, and/or supercritical fluid) and the ¹³C diamond were 152 153 carried out at the highest planned temperature and pressure before the temperature was reduced 154 at 1°C/s cooling rate to the next temperature. Pressure decreased accordingly (Table 1). The 155 measurement protocol was then repeated. Each experimental data point was 75°C apart with the last measurements at 525°C and 634 MPa. Ambient conditions Raman measurements of the ¹³C 156 diamond were carried before and after a series of high-temperature and -pressure experiments. 157 158 159 Results For each temperature and pressure, spectra were recorded from about 400 cm⁻¹ to 4200 cm⁻¹ in 160

161 order to include frequencies of most (Si,Al)-O vibrations and vibrations in species involving

162 COHN components (Fig. 1). The band assignments in this and subsequent figures are based

163 predominantly on Nakamoto (1997). The peaks marked 1^{st} and 2^{nd} order diamond are from the

diamonds in the diamond anvil cell itself. There are no ¹³C diamond signals the Raman spectra of

165 fluids and melts because carbon-13 diamond spectra were recorded separately.

The individual Raman band intensities differ significantly (Fig. 1). Therefore, in order to
make the topology of the peaks and their variations with temperature and pressure more visible,
the spectra have been divided into 4 segments, marked A, B, C, and D as indicated in Fig. 1, and
expanded in separate figures.
The frequency region, A, is from about 400 cm⁻¹ to the strong one-phonon band from
diamond located near 1300 cm⁻¹ (Figs. 1 and 2). It comprises signals assigned to (Si,Al)-O

vibrations as well as some of the bending modes of COHN species. In the spectra of fluids (Fig.

173 2A), this frequency regime is dominated by three bands, near 600, 800, and 1030 cm^{-1} . At the

highest temperatures, there is also a weak shoulder near 770 cm⁻¹. The integrated intensities of

the three main bands decrease with decreasing temperature and pressure while their frequencies

remain essentially constant (average frequencies: 591 ± 2 , 813 ± 3 , and 1030.4 ± 0.5 cm⁻¹,

177 respectively). The 591 cm⁻¹ band is assigned to Si-CH₃ stretching, and the other two to bending

178 vibrations in NH₂ functional groups (Fig. 2A). Additional support for Si-CH₃ bonds can be found

in recent ¹³C MAS NMR data from quenched aluminosilicate melts equilibrated with

180 $CH_4+H_2O+H_2$ fluid at 1.5 GPa and 1400°C under reducing conditions (Mysen et al., 2011). The

181 770 cm⁻¹ shoulder is assigned to Si-O⁻ stretching in isolated SiO₄ entities (also denoted Q^0).

182 The spectra of melt are dominated by a broad band (FWHH ~ 80 cm⁻¹) at 885 cm⁻¹ and

weaker and broad bands near 485, 570, and 1035 cm^{-1} (Fig. 2B). The 885 cm^{-1} band is assigned

to Ti-O vibrations from Ti^{4+} dissolved formed by oxidation of Ti metal [eqn. (1)].

185 The 485 cm⁻¹ band is assigned to Si-O-Si rocking in Q^4 species and the 570 cm⁻¹ band to Si-

186 O-Si bending most likely in Q^3 species (Furukawa et al., 1981; McMillan et al., 1992). The

187 existence of polymerized silicate species in the melts also is indicated by the broad band above

1000 cm⁻¹ (FWHH near 100 cm⁻¹), which is assigned to Si-O stretching in polymerized species in
melts, most likely dominated by Q³ type (McMillan et al., 1992). A more detailed review of the
band assignments assigned to (Si,Al)-O vibrations can be found in chapters 7 and 12 of Mysen
and Richet (2005).

192 The region between the 1st and 2nd order Raman peaks from the diamond cell diamonds (near 1330 and 2600 cm⁻¹, respectively) is denoted segment B (Figs. 1 and 3). The spectra of 193 fluid are dominated by a sharp peak (FWHH: 10-15 cm⁻¹) near 1440 cm⁻¹ (Fig. 3A). Its intensity 194 195 decreases with decreasing temperature. In melt spectra, this peak is only seen in those from the highest temperature and pressure (825°C/1400 MPa; see Fig. 3B). It is assigned NHN bending in 196 NH₃ molecules (Nakamoto, 1997). The fluid spectra also show a sharp peak near 1640 cm⁻¹, 197 198 which could be assigned to HNH bending vibrations in NH₃ molecules (Colthup et al., 1990; Nakamoto, 1997). The fluid spectra at 825° and 750°C also show a sharp peak slightly above 199 1800 cm⁻¹. Although an assignment is quite uncertain, it cannot be ruled out that this is from C-O 200 201 vibrations in CO groups perhaps from carboxylic acid (Colthup et al., 1990). The only other peak common to spectra of both fluids and melts in the B-region occurs near 1550 cm⁻¹ (Figs. 3A, B), 202 203 which is assigned HOH bending in H₂O molecules (Nakamoto, 1997; Efimov and Pogareva, 204 2006).

In the spectra of fluid, the C-region extends from the high-frequency side of the 2nd-order peak of diamond cell diamonds near 2600 cm⁻¹ to the beginning of the low-frequency tail of the strong peak centered between 3500 and 3600 cm⁻¹ (Figs. 1 and 4). There are two peaks, near 208 2900 cm⁻¹ and 3320 cm¹, in the spectra of melts and fluids (Figs. 4A and B). There is also a weak and broad band centered near 3240 cm⁻¹ in the spectra of fluids (Fig. 4A). The 2900 cm⁻¹ band is asymmetric toward lower frequency. This asymmetry can be accommodated by fitting

211	two Gaussian lines, near 2895 cm ⁻¹ and 2910 cm ⁻¹ (Fig. 6). These two peaks are assigned to C-H
212	stretching in, respectively, CH ₃ groups and CH ₄ molecules (Nakamoto, 1997), similar to that
213	reported from Raman spectra of Al-free melts by Mysen and Yamashita (2010) and in the Raman
214	and ¹³ C MAS NMR spectra of aluminosilicate glasses equilibrated as melts under reducing
215	conditions and temperature-quenched to glass (Mysen et al., 2011).
216	The two peaks near 3300 cm ⁻¹ are expanded with Gaussian lines fitted to spectra in the
217	example in Fig. 6. The strongest band, at 3325 cm ⁻¹ , is assigned to N-H stretching in NH_3
218	molecules, whereas the weaker and broader band, near 3230 cm ⁻¹ , is assigned to N-H stretching
219	in NH ₂ groups (Yeo and Ford, 1994; Nakamoto, 1997; Mysen et al., 2008). There is no evidence
220	for NH_4^+ because the N-H stretch frequencies from this functional group is in the 3000-3200 cm ⁻
221	¹ frequency range (Socrates, 2001; Mysen et al., 2008), in which range there are no Raman bands
222	in the present spectra.
223	Frequency region D extends from the intense band centered between 3500 and 3600 cm ⁻¹ and
224	a group of bands of lesser intensities near 4100-4150 cm ⁻¹ (Fig. 7). This latter group is assigned
225	the Q-branch of H ₂ reflecting vibrational to rotational transitions (Veirs and Rosenblatt, 1987;
226	Schmidt et al., 1998). The 3500-3600 cm ⁻¹ peak is assigned to OH stretching in OH groups
227	bonded to cations such as Si^{4+} , Al^{3+} , and Na^+ as well as OH groups in molecular H ₂ O (see also

228 Nowak and Behrens, 1994; Kawamoto et al., 2004).

230

231 Discussion

232 Solution mechanisms of reduced COHN species

- 233 The solution mechanisms of reduced carbon and nitrogen in silicate-COH melts and silicate-
- NOH melts, respectively, involve various combinations of C..H and N..H complexes (Kadik et
- al., 2004; Mysen et al., 2008, 2011; Ni and Keppler, 2013; Armstrong et al., 2015). For melts and
- fluids in silicate-COHN systems, little is known except for some recent data obtained in-situ
- under oxidizing conditions (Mysen, 2018). In the latter case, the sole nitrogen species was N_2 so
- that nitrogen simply acted as a diluent of the other gas species. Carbon existed as CO_2 and as

239 CO_3^{2-} groups.

The solution behavior of reduced carbon-bearing species has been developed with the aid of the simple expressions based on the interpretation of 13 C MAS NMR spectra of quenched silicate melt-COH (e. g., Mysen et al., 2011);

243

$$244 \quad 2CH_4 + O^{2-} \Leftrightarrow 2CH_3 + H_2O, \tag{4}$$

245

and for reduced nitrogen in silicate melt-NOH systems (Mysen et al., 2008);

$$248 \quad 2NH_3 + O^{2-} \Leftrightarrow 2NH_2^- + H_2O. \tag{5}$$

249

- 250 In equations (4) and (5), O^{2-} represents oxygen in the silicate structural network. It is linked to
- 251 silicate speciation via the expression,

252

$$253 2Q^{n} + O^{2-} \Leftrightarrow 2Q^{n-1}, (6)$$

254

- where Q^n and Q^{n-1} denote silicate species with, respectively *n* and *n-1* bridging oxygen, and,
- therefore, *4-n* and *3-n* nonbridging oxygen.
- 257 By combining equations (4) and (6), we have;

258

259
$$2CH_4 + 4Q^n \Leftrightarrow 2Q^{n-1}(CH_3) + 2Q^{n-1}(OH),$$
 (7)

260

which describes the relations between dissolved CH_3 groups and the silicate structure. From the carbon-13 MAS NMR and Raman spectroscopic data of quenched melts, Mysen et al., (2011) concluded that CH_3 groups thus formed substitute for oxygen in the silicate tetrahedra because there was evidence of CH_3 and CH_4 groups, but no evidence for Si-O-C bonding environments. Therefore, $2Q^{n-1}(CH_3)$ and $2Q^{n-1}(OH)$ denote depolymerized silicate tetrahedra with at least one of the oxygens replaced by CH_3 and OH groups, respectively. This interpretation is also consistent with the assignment of the Raman band near 600 cm⁻¹(Fig. 2).

268	For reduced nitrogen-bearing components, by combining equations (5) and (6), we have;
269	
270	$2NH_3 + 4Q^n \Leftrightarrow 2Q^{n-1}(NH_2) + 2Q^{n-1}(OH). $ (8)
271	
272	The Si-NH ₂ interpretation relies on the assignment of the ~800 cm ⁻¹ band in Fig. 2 to be an NH ₂
273	bending mode (Nakamoto, 1997). In other words, the exchange of NH_2 groups for oxygen in
274	silicate tetrahedra cleaves oxygen bridges to form Si-NH ₂ and Si-OH bonds, which results in
275	silicate depolymerization.
276	There is also the equilibrium between molecular H_2O and OH^2 groups that describes a
277	principal solution mechanism of H ₂ O in melts (e.g., Stolper, 1982);
278	
279	$H_2O + O^2 \Leftrightarrow 2OH^2.$ (9)
280	
281	Equation (9) combined with equation (6), yields the equilibria involving silicate (Q-species)
282	H ₂ O, and OH groups;
283	
284	$H_2O + 4Q^n \Leftrightarrow 4Q^{n-1}(OH). $ ⁽¹⁰⁾

By combining equations (7) and (8), the solution equilibrium among COHN species in

silicate fluids (and probably melts) under reducing conditions becomes;

288

289
$$CH_4 + NH_3 + 4Q^n \Leftrightarrow Q^{n-1}(CH_3) + Q^{n-1}(NH_2) + 2Q^{n-1}(OH).$$
 (11)

290

Equation (11) does not take into account interaction of H₂ with the silicate network. Such interaction, through formation of Si-H and Si-OH bonds, is possible via a schematic formulation such as (Van der Steen and Van den Boom, 1977);

294

295
$$\text{Si-O-Si} + \text{H}_2 \Leftrightarrow \text{Si-OH} + \text{Si-H}.$$
 (12)

296

Si-H stretch vibrations would result in Raman bands in the 2100-2200 cm⁻¹ region (Schmidt et al., 1998) in addition to the OH fundamental stretch vibrations giving rise to the 3500-3600 cm⁻¹ envelope. The former frequency is within the frequency range of 2nd-order Raman scattering of diamonds from the diamond cell, whereas the OH vibrations yield the same signal as OH vibrations from the other H₂O in the system. Whether or not there are contributions from Si-H and Si-OH from eqn. (12) cannot, therefore, be ascertained. Given this lack of information, further speculation and adjustments to eqn. (11) does not seem justified. This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6576

304	The equilibrium among silicate melt and COHN volatiles under reducing conditions differs
305	significantly from that under oxidizing conditions where nitrogen simply dissolves as molecular
306	N_2 and acts as a diluent (Mysen, 2018). The H ₂ O equilibrium remains same, and molecular CO ₂
307	is in equilibrium with carbonate groups, CO_3^{2-} (Morizet et al., 2015);
308	
309	$CO_2 + O^{2-} \Leftrightarrow CO_3^{2-},$ (13)
310	
311	so that by combining equations (9, 10, 13), we have;
312	
313	$CO_2 + H_2O + N_2 + 4Q^{n-1} \Leftrightarrow 2CO_3^{2-} + 2Q^{n-1}(OH) + N_2 + 2Q^n.$ (14)
314	
315	Here, nitrogen as N_2 is shown on both sides of the equation simply to indicate that it behaves as
316	an inert component. It follows that under oxidizing conditions even in the presence of H ₂ O, in
317	silicate-COHN systems CO_2 dissolves to form CO_3^{2-} , which results in silicate polymerization.
318	The proportion of molecular and structurally bound species such as discussed above can be
319	determined from the Raman spectra with the assumption that for a specific vibration (e.g.,
320	stretching or bending etc.), the Raman cross sections are the same for vibrations in the molecule
321	and structurally bound functional groups (CH_4/CH_3 and NH_3/NH_2) and that the C-H and N-H
322	vibrations in these groups are localized thus not being significantly affected by the neighboring

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6576

323	electronic environments. Ratios of integrated Raman intensity ratios from a given type of
324	vibration in the two species then equals their abundance ratio. For X_{CH3}/X_{CH4} [eqn (4)], for
325	example, this intensity ratio is that of the C-H stretch vibrations near 2900 cm ⁻¹ (2895 and 2910
326	cm ⁻¹);
327	
328	$X_{CH3}/X_{CH4} = A_{2895}/A_{2910}.$ (15)
329	
330	In spectra of fluids, the X_{CH3}/X_{CH4} ratio increases with increasing temperature (Fig. 8), from
331	which an enthalpy of 8.1±2.3 kJ/mol can be extracted. In other words, in COHN fluids in
332	equilibrium with aluminosilicate melts, equation (4) shifts to the right with increasing
333	temperature. The spectra of melts are insufficiently resolved to extract such information.
334	The X_{NH2}/X_{NH3} in fluid was calculated from a similar treatment of the Raman data (Fig. 9).
335	Two sets of X_{NH2}/X_{NH3} data were extracted from the spectra of fluid from bands assigned to NH_2
336	and NH ₃ bending motions in the low-frequency region and from those assigned to N-H stretching
337	in NH ₃ and NH ₂ near 3300 cm ⁻¹ (Fig. 2A). These slopes result in Δ H-values of -4.9±1.9 and -
338	6.2 ± 2.2 kJ/mol. We note here that the temperature evolution of the X_{NH2}/X_{NH3} abundance ratio is
339	opposite of X_{CH3}/X_{CH4} . In other words, whereas equation (4) shifts to the right with temperature
340	thus enhancing the abundance of molecular CH ₄ , equation (5) shifts to the left so that molecular
341	NH ₃ becomes increasingly abundant. Interestingly, under oxidizing conditions, the CO ₂ /CO ₃
342	equilibrium [eqn. (13)] also shifts toward increasing abundance of molecular CO ₂ with
343	increasing temperature (Nowak et al., 2003).

344

345 *Fluid/melt partitioning*

346 Water. The partition coefficient for H₂O between fluid and melt, when calculated from integrated intensity of the 3600 cm⁻¹ band (O-H stretching) in coexisting fluids and melts, is a non-linear 347 348 function of 1/T and less than unity (Fig. 10). This behavior contrasts with the H₂O partitioning in silicate-COHN under oxidizing conditions where $K^{\text{fluid/melt}}_{H2O} > 1$ and is a linear function of 1/T349 350 (Mysen, 2018). This difference likely is because under reducing conditions TiO₂ from the redox 351 reaction (1) dissolves in significant amounts in melts (but not in fluid), which results in the very broad and asymmetric 3600 cm⁻¹ band (Figs. 1 and 10). The TiO₂ concentration in the melt likely 352 353 changes with temperature and pressure. This results in a non-linear temperature-dependent K^{fluid/melt}H2O. 354

355

356 Methane. The partition coefficients for methane between coexisting fluid and melt are expressed in terms as, $\Sigma C = CH_3 + CH_4$ (Fig. 11) because separate contributions from CH₄ and CH₃ cannot 357 be quantified from the spectra of melt. Methane partitions into fluid relative to melt. The 358 partition coefficients for the CH₃+CH₄ components are not necessarily the same as total carbon 359 360 because of the suggested CO groups in the highest-temperature fluids (Fig. 3). However, given 361 the lack of relevant Raman signals in spectra of melts as well as in the low-temperature fluid spectra, contributions from such carbon was not considered. This also means that the $K_{\Sigma C}^{\text{fluid/melt}}$ -362 values (Fig. 11) may be minimum values. 363

364	The partition coefficient decreases with increasing temperature (and pressure), which results
365	in Δ H= - 13.4±2.3 kJ/mol by assuming no pressure effect. This value compares with a Δ H-value
366	of -19±2.9 for the fluid/melt partition coefficient with the same bulk silicate, but without
367	nitrogen in the system (Mysen, 2015). The offset between the two data sets likely reflects the
368	different pressure/temperature paths in the two experimental series as well as the absence of
369	nitrogen species in fluids and melts in the silicate-COH system by Mysen (2015).
370	
371	<u>Ammonia.</u> Qualitatively, the fluid/melt partition coefficient for total reduced nitrogen ($\Sigma N =$
372	NH ₃ +NH ₂) decreases with increasing temperature. This behavior is similar to the temperature-
373	dependent $K_{\Sigma C}^{\text{fluid/melt}}$ (Figs. 11 and 12). The enthalpy value extracted from the temperature-
374	dependence with the assumption of no detectable pressure dependence is -5.9 ± 0.9 kJ/mol.
375	
376	<u>Hydrogen</u> . The H ₂ fluid/melt partition coefficient ranges between \sim 6 and \sim 10 in the temperature
377	and pressure range examined (Fig. 13). There is a slight decrease with increasing temperature
378	and pressure, but the data scatter is significant thus leading to an enthalpy value with large
379	uncertainty, -8±6 kJ/mol.
380	

381 Implications

- 382 Reduction of carbon and nitrogen in silicate-COHN melts at high temperature and pressure
- 383 occurs under conditions near and more reducing those defined by the MW+H₂O buffer (Mysen et

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6576

19

384	al., 2	2008,	2011).	Under	such	conditions	the	dominant	fluid	species	are H	$[_{2}O,$	H ₂ ,	NH ₃ ,	and	CH_4
-----	--------	-------	--------	-------	------	------------	-----	----------	-------	---------	-------	-----------	------------------	-------------------	-----	--------

- 385 That behavior differs from oxidizing conditions where H_2O , N_2 and CO_2 are the principal
- species. and where CO_2 may be in equilibrium with CO_3^{2-} and HCO_3^{-} groups, or both.

387 A change in redox conditions sufficient to alter oxidized to reduced carbon- and nitrogen-

388 bearing species during melting and crystallization in the Earth will affect all melt properties that

depend on melt polymerization [see solution mechanisms illustrated with equations (9) and (12)].

Examples of such melt properties are viscosity, diffusion, and density (Baker et al., 2005;

Behrens, 2010; Seifert et al., 2013). Crystal/melt element partitioning also is linked to melt

392 polymerization (Jaeger and Drake, 2000) and, therefore, the redox conditions during melting and

393 crystallization in the presence of COHN fluids. Melt polymerization is also linked to activity of

silicate, which means a change in redox conditions will lead to a change in melting and

395 crystallization phase relations (Moretti and Papale, 2004). This latter feature sometimes is termed

396 redox melting.

397

398 Acknowledgments

399 This research was conducted with support from NSF grant EAR-1212754.

401 **References**

- 402 Adler, J.F., and Williams, O. (2005) A high-pressure X-ray diffraction study of iron 403 nitrides: Implications for Earth's core. J. Geophys. Res., 110, DOI: 404 10.1029/2004JB003103. 405 Armstrong, L.S., Hirschmann, M.M., Stanley, B.D., Falksen, E.G., and Jacobsen, S.D. 406 (2015) Speciation and solubility of reduced C-O-H-N volatiles in mafic melt: 407 Implications for volcanism, atmospheric evolution, and deep volatile cycles in the 408 terrestrial planets. Geochimica et Cosmochimica Acta, 171, 283-302. 409 Baker, D.R., Freda, C., Brooker, R.A., and Scarlato, P. (2005) Volatile diffusion in 410 silicate melts and its effects on melt inclusions. Annalen Geophysik, 48, 699-717. 411 Bassett, W.A., Shen, A.H., Bucknum, M., and Chou, I.M. (1994) A new diamond cell for 412 hydrothermal studies to 2.5 GPa and from -190°C to 1200°C. Reviews of Scientific 413 Instruments 64, 2340-2345. 414 Bebout, G.E., Fogel, M.L., and Cartigny, P. (2013) Nitrogen: Highly Volatile vet 415 Surprisingly Compatible. Elements, 9, 333-338. 416 Behrens, H. (2010) Ar, CO₂ and H₂O diffusion in silica glasses at 2 kbar pressure. 417 Chemical Geology, 272(1-4), 40-48. 418 419 Carmichael, I.S.E., and Ghiorso, M.S. (1990) Controls on oxidation-reduction relations in magmas. In J. Nicholls, and J.K. Russell, Eds. Modern Methods of Igneous 420 Petrology: Understanding Magmatic processes, p. 191-212. The Mineralogical 421 Society of America, Washington, DC. 422 Colthup, N.B., Daly, L.H., and Wiberley, S.E. (1990) Introduction to Infrared and Raman 423 Spectroscopy. 542 p. Academic Press, San Diego, CA. 424 Dalton, J.A., and Wood, B.J. (1993) The compositions of primary carbonate melts and 425 their evolution through wall rock reaction in the mantle. Earth and Planetary 426 Science Letters 119, 511-525. 427 Duit, W., Jansen, J.B.H., Van Breemen, A., and Bos, A. (1986) Ammonium micas in 428 metamorphic rocks as exemplified by Done de l'Agout (France). American Journal 429 of Science., 286, 702-732. 430 Efimov, A.M., and Pogareva, V.G. (2006) IR absorption spectra of vitreous silica and 431 silicate glasses: The nature of bands in the 1300 to 5000 cm⁻¹ region. Chemical 432 Geology, 229, 198-217. 433 Eggler, D.H., and Baker, D.R. (1982) Reduced volatiles in the system C-H-O: 434 Implications to mantle melting, fluid formation and diamond genesis. High-435 Pressure Research in Geophysics, 12, p. 237-250. D. Reidel / Kluwer Academic 436 Publishers, Boston / Dordrecht. 437 Foustoukos, D.I., and Mysen, B.O. (2013) Condensed-phase isotope effects on H/D 438 methane isotopologues dissolved in supercritical aqueous solution. American 439
- 440 Mineralogist, 98, 946-954.

441	Furukawa, T., Fox, K.E., and White, W.B. (1981) Raman spectroscopic investigation of
442	the structure of silicate glasses. III. Raman intensities and structural units in
443	sodium silicate glasses. Journal of Chemical Physics, 153, 3226-3237.
444	Hirose, K. (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of
445	CO_2 in alkali basalt generation. Geophysical Research Letters, 2837-2840.
446	Horita, J. (2014) Oxygen and carbon isotope fractionation in the system dolomite-water-
447	CO_2 to elevated temperatures. Geochim. Cosmochim. Acta, 129, 111-124.
448	Jaeger, W.L., and Drake, M.J. (2000) Metal-silicate partitioning of Co, Ga, and W;
449	dependence on silicate melt composition. Geochimica et Cosmochimica Acta,
450	64(22), 3887-3895.
451	Kadık, A., Pineau, F., Litvin, Y., Jendrzejewski, N., Martinez, I., and Javoy, M. (2004)
452	Formation of carbon and hydrogen species in magmas at low oxygen fugacity.
453	Journal of Petrology, 45, 1297-1310.
454	Kadik, A.A., Kurovskaya, N.A., Ignat'ev, Y.A., Kononkova, N.N., Koltashev, V.V., and
455	Plotnichenko, V.G. (2011) Influence of Oxygen Fugacity on the Solubility of
456	Nitrogen, Carbon, and Hydrogen in FeO-Na ₂ O-SiO ₂ -Al ₂ O ₃ Melts in Equilibrium
457	with Metallic Iron at 1.5 GPa and 1400 degrees C. Geochemistry International, 49,
458	429-438.
459	Kadik, A.A., Koltashev, V.V., Kryukova, E.B., Plotnichenko, V.G., Tsekhonya, T.I., and
460	Kononkova, N.N. (2015) Solubility of nitrogen, carbon, and hydrogen in FeO-
461	$Na_2O-Al_2O_3-SiO_2$ melt and liquid iron alloy: Influence of oxygen fugacity.
462	Geochemistry International, 53, 849-868.
463	Kawamoto, T., Ochiai, S., and Kagi, H. (2004) Changes in the structure of water deduced
464	from the pressure dependence of the Raman OH frequency. Journal of Chemical
465	Physics, 120, 5867-5870.
466	Libourel, G., Marty, B., and Humbert, F. (2003) Nitrogen solubility in basaltic melt. Part
467	I. Effect of oxygen fugacity. Geochimica et Cosmochimica Acta, 67, 4123-4136.
468	McMillan, P.F., Wolf, G.H., and Poe, B.T. (1992) Vibrational spectroscopy of silicate
469	liquids and glasses. Chemical Geology, 96, 351-366.
470	Mibe, K., and Bassett, W.A. (2008) In situ Raman spectroscopic investigation of the
471	structure of subduction-zone fluids. Journal of Geophysical Research, 113. DOI:
472	10.1029/2007JB005179.
473	Miyazaki, A., Hiyagon, H., Sugiura, N., Hirose, K., and Takahashi, E. (2004) Solubilities
474	of nitrogen and noble gases in silicate melts under various oxygen fugacities:
475	Implications for the origin and degassing history of nitrogen and noble gases in the
476	earth. 10.1029/2009GC002783, 68, 387-401.
477	Moretti, R., and Papale, P. (2004) On the oxidation state and volatile behavior in
478	multicomponent gas-melt equilibria. Chemical Geology, 213, 265-280.
479	Morizet, Y., Vuilleumier, R., and Paris, M. (2015) A NMR and molecular dynamics
480	study of CO_2 -bearing basaltic melts and glasses. Chemical Geology, 418, 89-103.

481 482	Mysen, B. (2015) Carbon speciation in silicate-C-O-H melt and fluid as a function of redox conditions: An experimental study in situ to 1.7 GPa and 900 degrees C
483	American Mineralogist 100 872-882
484	Mysen, B. O. (2018) Mass Transfer in the Earth's Interior: Fluid-melt interaction in
485	aluminosilicate-C-O-H-N systems at high pressure and temperature under
486	oxidizing conditions. Progress in Earth and Planetary Science 5. DOI:
487	10.1186/s40645-017-0161-6
488	Mysen, B.O., and Fogel, M.L. (2010) Nitrogen and Hydrogen Isotope Compositions and
489	Solubility in Silicate Melts in Equilibrium with Reduced (N+H)-bearing Fluids at
490	High Pressure and Temperature: Effects of Melt Structure. American Mineralogist,
491	95, 987-999.
492	Mysen, B.O., Kumamoto, K., Cody, G.D., and Fogel, M.L. (2011) Solubility and solution
493	mechanisms of C-O-H volatiles in silicate melt with variable redox conditions and
494	melt composition at upper mantle temperatures and pressures. Geochimica et
495	Cosmochimica Acta. 75, 6183-6199.
496	Mysen, B.O., and Richet, P. (2005) Silicate Glasses and Melts - Properties and Structure.
497	548 p. Elsevier, New York.
498	Mysen, B.O., and Yamashita, S. (2010) Speciation of reduced C-O-H volatiles in
499	coexisting fluids and silicate melts determined in-situ to \sim 1.4 GPa and 800°C.
500	Geochimica Cosmochimica Acta, 74, 4577-4588.
501	Mysen, B.O., Yamashita, S., and Chertkova, N. (2008) Solubility and Solution
502	Mechanisms of NOH Volatiles in Silicate Melts at high Pressure and Temperature
503	- Amine Groups and Hydrogen Fugacity. American Mineralogist, 93, 1760-1770.
504	Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination
505	Compounds.Part B. Applications in Coordination, Organometallic, and Bioorganic
506	Chemistry. 384 p. John Wiley & Sons, Inc., New York.
507	Ni, H.W., and Keppler, H. (2013) Carbon in Silicate Melts. Reviews in Mineralogy and
508	Geochemistry, 75, 251-287.
509	Nowak, M., and Behrens, H. (1995) The speciation of water in haplogranitic glasses and
510	melts determined by in-situ near-infrared spectroscopy. Geochimica et
511	Cosmocnimica Acta, 59, 5445-5450.
512	Nowak, M., Pordatzki, D., Spickendom, K., and Diedrich, O. (2003) Cardon dioxide
513	speciation in sincate ments, a restart. Earth and Planetary Science Letters, 207, 151-
514	O'Neill H S C (1001) The origin of the Moon and the early history of the Earth a
515	chemical model Part 2: The Earth Geochinica et Cosmochimica Acta Acta 55
510	1159-1172
518	Sata N Hirose K Shen G Nakajima Y Ohishi Y and Hirao N (2010)
519	Compression of FeSi Fe ₂ C Fe _{0.05} O and FeS under the core pressures and
	c_{1}

520	implication for light element in the Earth's core. Journal of Geophysical Research
521	115. DOI: 10.1029/2009JB006975
522	Schiferl, D., Nicol, M., Zaug, J.M., Sharma, S.K., Cooney, T.F., Wang, SY., and
523	Fleischer, J.F. (1997) The Diamond ¹³ C/ ¹² C Isotope Raman Pressure Sensor
524	System for High Temperature/Pressure Diamond-Anvil Cells with Reactive
525	Samples. Journal of Applied hysics, 82, 3256-3265.
526	Schmidt, B.C., Holtz, F.M., and Beny, J.M. (1998) Incorporation of H ₂ in vitreous silica,
527	qualitative and quantitative determination from Raman and infrared spectroscopy.
528	Journal of Non-Crystalline Solids, 240, 91-103.
529	Seifert, R., Malfait, W.J., Lerch, P., and Sanchez-Valle, C. (2013) Partial molar volume
530	and compressibility of dissolved CO_2 in glasses with magmatic compositions.
531	Chemical Geology 358, 119-130.
532	Stolper, E.M. (1982) The speciation of water in silicate melts. Geochimica et
533	Cosmochimica Acta, 46(12), 2609-2620.
534	Taylor, W.R., and Green, D.H. (1989) The role of reduced C-O-H fluids in mantle partial
535	melting. In J. Ross, Ed. Kimberlites and Related Rocks - Their Composition,
536	Occurrence, Origin, and Emplacement, 1, p. 592-602. Blackwell Scientific
537	Publishers, Carlton Australia.
538	Van der Steen, G.H.A.M., and Van den Boom, H. (1977) Raman spectroscopic study of
539	hydrogen-containing vitreous silica. Journal of Non-Crystalline Solids, 23, 279-
540	286.
541	Veirs, K.D., and Rosenblatt, G.D. (1987) Raman line positions in molecular hydrogen:
542	H ₂ , Howdy!, HT,D ₂ , DT, and T ₂ . Journal of Molecular Spectroscopy, 121, 401-
543	419.
544	Watenpuhl, A., B., W., and Heinrich, W. (2009) High-pressure ammonium-bearing
545	silicates: Implications for nitrogen and hydrogen storage in the Eath's mantle.
546	American Mneralogist, 94, 283-292.
547	Yeo, G.A., and Ford, T.A. (1994) Ab initio molecular orbital calculations of the
548	energetic, structural, vibrational and electronic properties of some hydrogen
549	bonded complexes of water, ammonia and hydroxylamine. Spectrochimica Acta,
550	50A, 5-18.
551	Zhang, Y., and Zindler, A. (1993) Distribution and evolution of carbon and nitrogen in
552	the Earth. Earth and Planetary Science Letters, 117, 331-345.
553	Zotov, N., and Keppler, H. (2002) Silica speciation in aqueous fluids at high pressures
554	and high temperatures. Chemical Geology, 184, 71-82.
555	

556	Table 1. Temperature/pressure conditions of experiments		
557			
558	Temperature, °C	Pressure, MPa	
559	25	0.1	
560	525	634	
561	600	594	
562	675	554	
563	750	1011	
564	825	1414	
565			
566			

567 Figure Captions

- 568 Figure 1 Example of Raman spectra of coexisting melt and fluid at 525°C/634 MPa in the entire
- spectral range studied. Intensity is normalized to cts/s. Band assignments are discussed in the
- 570 text. The frequency ranges marked A, B, C, and D show ranges that are expanded in subsequent
- 571 figures (and discussed in the text) to show better the spectral evolution.
- 572 Figure 2 Raman spectra of coexisting fluid (A) and melt (B) in the frequency regime A (see
- 573 Fig. 1) as a function of temperature as seen on individual spectra and pressure as shown in Table
- 574 1. Band assignments are discussed in the text.
- 575 Figure 3 Raman spectra of coexisting fluid (A) and melt (B) in the frequency regime B (see
- 576 Fig. 1) as a function of temperature as seen on individual spectra and pressure as shown in Table
- 577 1. Band assignments are discussed in the text.
- 578 Figure 4 Raman spectra of coexisting fluid (A) and melt (B) in the frequency regime C (see
- 579 Fig. 1) as a function of temperature as seen on individual spectra and pressure as shown in Table
- 580 1. Band assignments are discussed in the text.
- Figure 5 Example of curve-fitted Raman spectrum of fluid in frequency regime C near 2900
 cm⁻¹ recorded at 825°C/1414 MPa.
- 583 Figure 6 Example of curve-fitted Raman spectrum of fluid in frequency regime C near 3300
- 584 cm^{-1} recorded at 600°C/594 MPa.

- 585 Figure 7 - Raman spectra of coexisting fluid (A) and melt (B) in the frequency regime D (see Fig. 1) as a function of temperature as seen on individual spectra and pressure as shown in Table 586 587 1. Band assignments are discussed in the text. 588 Fig. 8 - Evolution of abundance ratio, CH₃/CH₄, in fluid as a function of temperature from fits to the 2900 cm⁻¹ region (see Table 1 for corresponding pressures). The straight line fit is described 589 with the expression, $\log(CH_3/CH_4) = -977 \pm 276/T(K) + 0.5 \pm 0.3$, $r^2 = 0.81$. 590 Fig. 9 - Evolution of abundance ratio, NH₂/NH₃, in fluid as a function of temperature from fits 591 NHN stretching region between 3300 and 3200cm⁻¹ and NHN bending region between 600 and 592 1000 cm⁻¹ (see Table 1 for corresponding pressures). The straight line fits are described with the 593 expressions: For NHN stretching $log(NH_2/NH_3) = 595\pm230/T(K)-1.1\pm1.2$, r²=0.69, NHN 594 bending $\log(NH_2/NH_3) = 744\pm 265/T(K)-1.2\pm 0.3$, $r^2=0.72$. 595 596 Fig. 10 - Fluid/melt partition coefficient for H₂O as a function of temperature (closed circles) 597 compared with results under oxidizing conditions Fig. 11 - Fluid/melt partition coefficient for total carbon, ΣC , under reducing conditions 598

599 ($K^{\text{fluid/melt}} = 1617 \pm 281/\text{T}-0.6 \pm 0.3, r^2 = 0.92$), under reducing conditions in silicate-COH ($K^{\text{fluid/melt}}$)

 $600 = 2283 \pm 347/\text{T}-2.6 \pm 0.4, \text{ } \text{r}^2 = 0.94) \text{ (open circles; Mysen, 2015), and under oxidizing conditions in}$

601 silicate-COH (K^{fluid/melt} = $-3628 \pm 1630/T + 3.3 \pm 1.6$, r²=0.71) (open diamonds; Mysen, 2015).

602 Fig. 12 - Fluid/melt partition coefficient for total nitrogen, $\sum N$, under reducing conditions 603 (K^{fluid/melt} =709±111+0.2±0.1, r²=0.93).

Fig. 13 - Fluid/melt partition coefficient for H₂ under reducing conditions (K^{fluid/melt} = $1007\pm815-$ 0.1 ±0.8 , r²=0.34).

Figure 1

Figure 2

Figure 3

Figure 5

Figure 6

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13