1	Revision 1
2	
3	The crystal chemistry of the sakhaite-harkerite solid solution
4	
5	R. James Evans, ^{1,*} , Lee A. Groat, ¹ Jan Cempírek, ² Radek Škoda, ² Edward S. Grew, ³
6	AND CYRIELLE BERNARD ⁴
7	
8	
9	¹ Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia,
10	Vancouver, British Columbia V6T 1Z4, Canada
11	
12	² Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
13	
14	³ Department of Earth Sciences, University of Maine, 5790 Bryand Global Sciences Center,
15	Orono, Maine 04469-5790, U.S.A.
16	
17	⁴ Laboratoire de Géologie, Ecole Normale Supérieure, 24, rue Lhomond, Paris, France
18	
19	
20	
21	
22	

*E-mail: rjamesevans@gmail.com

Abstract 23 Sakhaite, c. Ca₄₈Mg₁₆(BO₃)₃₂(CO₃)₁₆(HCl,H₂O)₂, is a rare rock-forming borate-carbonate 24 25 mineral typically occurring in high-temperature, low-pressure calcareous skarns. It forms a complete solid solution with harkerite, c. $Ca_{48}Mg_{16}[AlSi_4(O,OH)_{16}]_4(BO_3)_{16}(CO_3)_{16}(HCl,H_2O)_2$. 26 The solid solution can be described with the general formula 27 28 $Ca_{48}(Mg,Fe,Mn)_{16}(CO_3)_{16}[Al_aSi_{5-a}(O,OH)_{16}]_{\nu}(BO_3)_{32-4\nu}(HCl,H_2O)_n$ where $y_{\text{max}} = 8$ and $n_{\text{max}} = 16 - y$. In this study, we examine samples of sakhaite and harkerite 29 from four localities worldwide: Titovskove deposit, Sakha Republic, Russia (type locality for 30 sakhaite); Solongo B deposit, Buryatia Republic, Russia; Camas Malag, Skye, Scotland (type 31 locality for harkerite); as well as a sakhaite-like mineral from the Kombat Mine, Tsumeb, 32 Namibia. Samples were characterized by electron microprobe analysis and single crystal X-ray 33 diffraction. The Si:B ratios of the samples ranged from that of endmember sakhaite (containing 34 B only) to that of endmember harkerite (Si:B = 1:1), with several intermediate compositions. All 35 36 samples were deficient in B relative to the ideal composition, implying significant substitution for borate groups. The Si:Al ratio of silicate-containing samples ranged from the ideal 4:1 to 37 4:1.5, implying substitution of Al at the Si site. 38 39 Structures of 14 crystals were refined with *R*1 ranging from 3 to 7%. All crystals showed cubic symmetry (space group $Fd\overline{3}m$) except for a harkerite composition approaching the end 40 member from Camas Malag, which showed rhombohedral symmetry (space group $R\bar{3}m$). The 41

cubic unit cell parameter was found to increase linearly with increasing Si content, except for the 42 43 sakhaite-like mineral from Tsumeb. This mineral was found to have significant substitution of Pb 44 for Ca (0.4-0.5 apfu) and was poor in Cl, which in most sakhaite and harkerite samples occupies

45 the interstitial site surrounded by four borate groups. This interstitial site in the Tsumeb samples

- 46 appears to instead be mainly occupied by H_2O , which may qualify the mineral as a distinct
- 47 species.
- 48
- 49 *Keywords*: sakhaite, harkerite, solid solution, crystal structure

INTRODUCTION

50 51 52 The solid solution between sakhaite, ca. $Ca_{48}Mg_{16}(BO_3)_{32}(CO_3)_{16}(HCl,H_2O)_6$, and 53 harkerite, ca. $Ca_{48}Mg_{16}[AlSi_4(O,OH)_{16}]_4(BO_3)_{16}(CO_3)_{16}(HCl,H_2O)_2$ is distinctive in that the 54 substitution involves entire clusters of polyhedra, instead of one or two sites as is typical of most 55 natural solid solutions. The sakhaite-harkerite series is close to unique in containing essential 56 carbonate, borate, and silicate groups; among other minerals, only britvinite and the related 57 mineral roymillerite (IMA No. 2016-061) contain all three of these anion complexes. Originally the main structural difference between sakhaite and harkerite was interpreted to be a partial 58 59 substitution of isolated BO_3 triangles with isolated SiO_4 tetrahedra (Ostrovskaya et al. 1966; Davies and Manchin 1970). Subsequent crystallographic studies of synthetic sakhaite 60 (Chichagov et al. 1974) and natural harkerite and sakhaite (Manchin and Miehe 1976; 61 Giuseppetti et al. 1977; Yakubovich et al. 1978, 2005), as well as the anomalous sakhaite-like 62 63 mineral reported by Dunn et al. (1990), have revealed a far more complex relationship, which induced us to undertake this study of the crystal chemistry of the sakhaite-harkerite series. 64 Sakhaite and harkerite have been described from 14 localities worldwide, of which 11 are 65 66 skarns and other calcareous rocks formed at low pressures and high temperatures, whereas two are Mn-rich rocks metamorphosed under greenschist and amphibolite facies conditions, and one 67

is a deep-seated granulite facies complex (e.g., Grew 1996; Grew et al. 1999). 68

70

PREVIOUS STRUCTURAL STUDIES

71

72 Ostrovskaya (1969) was the first to consider the structures of sakhaite and harkerite. making use of powder X-ray diffraction, chemical, and infrared data. However, the sakhaite 73 74 structure (Fig. 1) was revealed only in single-crystal refinements of synthetic sakhaite 75 (Chichagov et al. 1974) and of natural sakhaite from Solongo, Buryatia, Russia (Yakubovich et 76 al. 1978). This structure was found to be a framework composed of columns of Ca polyhedra 77 oriented in all three crystallographic directions. The other constituents, i.e., Mg octahedra, BO₃ 78 and CO₃ triangles, occupy the interstices of the framework, leaving two types of cavities, the larger of which is partly occupied by H₂O groups. Neither refinement located Cl, which is 79 present in the synthetic sakhaite (Nekrasov and Malinko 1973) as well as in the natural material. 80 Manchin and Miehe (1976) and Giuseppetti et al. (1977) reported that harkerite has a similar 81 82 structure, but with partial substitution of four BO₃ triangles by a zunylite-like aluminosilicate 83 pentamer (Fig. 2). In endmember harkerite, this substitution is ordered, with layers of borate 84 groups alternating with layers of aluminosilicate pentamers normal to one of the cubic body diagonals of the sakhaite unit cell (Fig. 3), a threefold axis of symmetry. This substitution results 85 in decreased symmetry from $F4_132$ to $R\overline{3}m$, with the harkerite unit-cell volume being ~50% 86 larger due to a doubling of the *c* parameter. The same substitution occurs without ordering in 87 sakhaites with low Si contents. Both minerals were found to show a marked pseudo-symmetry in 88 space group $Fd\bar{3}m$ (a = 14.7 Å). Chlorine was located in the smaller cavities (Giuseppetti et al. 89 90 1977).

Citing the limitations of X-ray diffraction instrumentation in the 1970s, Yakubovich et al.
(2005) newly refined the crystal structure of the Solongo sakhaite, but in space group *Fd*3*m*,

which is in accord with systematic absences of reflections. They proposed the following generalformula for the series:

95	$Ca_{48}(Mg,Fe,Mn)_{16}(CO_3)_{16}\{Al[SiO_3(O,OH)]_4\}_{y}(BO_3)_{32-4y} \cdot n(H_2O,HCl) $ (1)
96	$Z = 1$ for $Fd\overline{3}m$ ($Z = 1.5$ for $R\overline{3}m$ to maintain consistency with the proposed formula), where
97	$y_{\text{max}} = 8$ and $n \le 16 - y$ (this is a correction to the formula as published in Yakubovich et al.
98	2005, where the subscript to the BO ₃ group was given as $32 - y$.) At $y = 0$ this formula
99	corresponds to the composition of synthetic sakhaite (Chichagov et al. 1974). Up to at least $y =$
100	1.5 the structure has cubic symmetry, but near $y = 2$, Yakubovich et al. (2005) reported the
101	presence of weak reflections and peak shifts in powder diffraction patterns that indicate the
102	presence of a pseudoperiod $a' = a/2$ and possibly presage rhombohedral symmetry. Tilley (1951)
103	reported rhombohedral symmetry for harkerite ($y = 4$) from Scotland where the borate and
104	aluminosilicate groups are ordered (Giuseppetti et al. 1977).
105	The main substitution described by the parameter y is the replacement of four independent
106	BO ₃ triangles (Fig. 2A) by a pentamer of tetrahedra composed of four SiO ₄ tetrahedra sharing
107	corners with a central AlO ₄ tetrahedron (Fig. 2B),
108	$\Box(\Box BO_3)_4 \to Al(OSiO_3)_4 \tag{2}$
109	As this substitution is not charge-balanced as written, it must be accompanied by another
110	substitution in the structure such as $O^{2-} \rightarrow OH^-$ or $M^{2+} \rightarrow M^{3+}$.
111	The tetrahedral pentamer is unusual in silicates, only known to occur in harkerite, in
112	zunyite (Dirken et al. 1995) as Si_5O_{16} , and in rondorfite as $MgSi_4O_{16}$ (Mihajlović et al. 2004).
113	Grew et al. (1999) found that in harkerite from the Isle of Skye, Crestmore Quarry in California,
114	and Cascade Slide in New York, Al increased with Si in a ratio near 1:6 rather than the ideal 1:4,
115	resulting in a substitution approaching

(3)

116
$$(BO_3)_4 \rightarrow (Al_{0.75}Si_{0.25})Si_4O_{15.25}(OH)_{0.75}$$

117 Note that this substitution is charge balanced.

118 Yakubovich et al. (2005) pointed out that compositions with y > 4, i.e., with SiO₄ 119 tetrahedra dominant over BO₃ triangles, "should lead to the formation of new defects and 120 structural order", and that at y = 8 (the borate-free composition) "one might expect a new ordered 121 structure". Natural or synthetic compounds of compositions with y > 4 have yet to be found or 122 synthesized.

Neutral H₂O and HCl molecules can be incorporated into small and large cavities in the 123 structure (Yakubovich et al. 2005), but this has not been studied in any detail. The large cavities 124 125 in sakhaite are surrounded by BO_3 triangles with an interstitial site near the center of the cavity 126 partially occupied by H₂O or HCl. In harkerite half of the large cavities are occupied by the Al(Si₄O₁₆) groups (Fig. 2A). At most, 8 - y of the large cavity interstitial sites may thus be 127 occupied per formula unit, although usually not all of these interstitial sites are occupied. An 128 129 additional eight small cavities per formula unit could potentially host an additional interstitial 130 site, but this has not been unambiguously observed in crystal structure refinements. Dunn et al. (1990) reported a highly hydrated sakhaite-like material from the Kombat Mine, Namibia, with a 131 132 cubic space group and approximate composition Ca₄₈Mg₁₆[AlSi₄(O,OH)₁₆]₁₅(BO₃)₂₆(CO₃)₁₆·14-16H₂O, which may necessitate additional interstitial sites beyond those in the large cavities. 133 134 Yakubovich et al. (2005) also noted that Fe and Mn replace Mg at the Mg site, but representatives of this mineral family with dominance of either cation over Mg have yet to be 135 136 found. Some replacement of Ca by rare earth elements (REEs) has also been reported (Barbieri et 137 al. 1977, Galuskina et al. 2008). Some analyses have shown CO₃ in excess of the 16 per formula 138 unit (pfu) of formula 1 (Machin and Miehe 1976; Barbieri et al. 1977). Machin and Miehe (1976)

139	suggested that the replacement of $(BO_3)_4^{12-}$ by Al $(SiO_4)_3^{13-}$ was charge-balanced by the
140	replacement of an additional BO_3^{3-} by a CO_3^{2-} group.
141	
142	Experimental
143	
144	Samples from several world localities were obtained from a variety of sources (Table 1).
145	All members of the sakhaite-harkerite series have been reported to fluoresce, thus all samples
146	were initially examined with ultraviolet light. Polished thin sections of all samples were
147	investigated with a petrographic microscope, and all samples were examined with a Philips
148	XL30 scanning electron microscope (SEM) equipped with an energy-dispersion X-ray
149	spectrometer (EDS) at the University of British Columbia.
150	Electron microprobe compositions were obtained from carbon-coated polished grain
151	mounts with a Cameca SX100 electron microprobe at the Laboratory of Electron Microscopy
152	and Microanalysis, Department of Geological Sciences, Masaryk University, Brno, in
153	wavelength-dispersive mode. Content of elements with $Z \ge 9$ were measured using an
154	accelerating voltage of 15 kV, a beam current of 10 nA, and a beam spot-size of 5 μ m. The
155	following standards and X-ray lines were used: topaz (FK α), albite (NaK α), olivine (MgK α),
156	sanidine (Al $K\alpha$, Si $K\alpha$, K $K\alpha$), vanadinite (Cl $K\alpha$, Pb $M\alpha$), wollastonite (Ca $K\alpha$), titanite (Ti $K\alpha$),
157	spessartine (MnK α), almandine (FeK α), fluorapatite (PK α), SrSO ₄ (SK α , SrL α), lammerite
158	(AsL α), yttrium-aluminum-garnet (YL α), baryte (BaL α), LaPO ₄ (LaL α), CePO ₄ (CeL α), and
159	NdPO ₄ (NdL α). The peak counting time was 10 s for the majority of elements and 30 s for F and
160	Pb. The background counting time was one-half of the peak counting time at the high- and low-
161	energy background positions. Boron was analyzed in peak-area mode from a BK α line using a

162	danburite standard and accelerating voltage of 5 kV, beam current of 100 nA, beam diameter of
163	10 μ m, and a Ni/C multilayered monochromator with 2 <i>d</i> = 95 Å (CAMECA PC2). Peak-area
164	integration was carried out in the range 62-74 Å for 120 s over 1000 steps. The first and the last
165	100 steps were used for background determination. Data were processed using the X-Phi matrix
166	correction of Merlet (1994). The detection limit for B is \sim 2500 ppm and the relative error
167	expressed as 3σ is ~10 relative% for 15 wt% B ₂ O ₃ content. We chose to operate in peak-area
168	mode because McGee and Anovitz (1996) showed that the effect of differences in the
169	composition and structure of the standard and unknown on the shape and position of the BK α
170	peak, especially the B coordination (tetrahedral in danburite, trigonal in the unknowns), is
171	reduced when the peak area is measured. Interference of the BK α peak with the ClLl and ClLn
172	lines was corrected using empirically determined correction factors. Carbon could not be
173	analyzed due to the use of carbon coating on the samples to provide electrical conductivity, and
174	due to CO ₂ contamination of the vacuum chamber during analysis.
175	Single-crystal X-ray diffraction measurements were obtained in the Department of
176	Chemistry at UBC using either a Bruker X8 diffractometer with graphite-monochromated Mo $K\alpha$
177	radiation or a Bruker DUO APEX II diffractometer with TRIUMPH monochromated $MoK\alpha$
178	radiation. The data were collected at room temperature to maximum 2θ values between 55.1° and
179	89.6° for different crystals. Data were collected with a series of ϕ and ω scans in 0.50°
180	oscillations with 10 to 20 s exposure depending on the strength of the diffraction spots. The
181	crystal-to-detector distance was between 37.6 and 40.0 mm. Data were collected and integrated
182	using the Bruker SAINT software package (Bruker 2007). The program CELL_NOW (Sheldrick
183	2008) was used to check for twinning and to separate reflections from different domains if twins

184	were present. Data were corrected for absorption effects using the multi-scan technique
185	(SADABS, Sheldrick 1996) and were corrected for Lorentz and polarization effects.
186	All refinements were performed using the SHELXTL crystallographic software package
187	(Sheldrick 2008) of Bruker AXS. Neutral atom scattering factors were taken from Cromer and
188	Waber (1974). The weighting scheme was based on counting statistics. Anomalous dispersion
189	effects were included in F_{calc} (Ibers and Hamilton 1964); the values for $\Delta f'$ and $\Delta f''$ were those of
190	Creagh and McAuley (1992). The values for the mass attenuation coefficients are those of
191	Creagh and Hubbell (1992). The crystal structures were initially solved and refined in space
192	group $Fd\overline{3}m$ (cubic) or $R\overline{3}m$ (rhombohedral). Images of the post-refinement structures were
193	drawn with the software VESTA 3.3 (Momma and Izumi 2011).
194	
195	RESULTS
196	Fluorescence
196 197	Fluorescence All of the samples identified as being from the Sakha Republic in Russia exhibited a weak
196 197 198	Fluorescence All of the samples identified as being from the Sakha Republic in Russia exhibited a weak purple fluorescence in UV light. None of the other samples examined in this study fluoresced.
196 197 198 199	Fluorescence All of the samples identified as being from the Sakha Republic in Russia exhibited a weak purple fluorescence in UV light. None of the other samples examined in this study fluoresced.
196 197 198 199 200	Fluorescence All of the samples identified as being from the Sakha Republic in Russia exhibited a weak purple fluorescence in UV light. None of the other samples examined in this study fluoresced. Compositions
196 197 198 199 200 201	Fluorescence All of the samples identified as being from the Sakha Republic in Russia exhibited a weak purple fluorescence in UV light. None of the other samples examined in this study fluoresced. Compositions Electron microprobe compositions for 13 single crystals are listed in Tables 2 and 3.
196 197 198 199 200 201 202	Fluorescence All of the samples identified as being from the Sakha Republic in Russia exhibited a weak purple fluorescence in UV light. None of the other samples examined in this study fluoresced. Compositions Electron microprobe compositions for 13 single crystals are listed in Tables 2 and 3. Samples measured were HS1-D (135 × 150 µm), HS10-1 (270 × 755 µm), HS10-2 (410 × 240
196 197 198 199 200 201 202 202 203	Fluorescence All of the samples identified as being from the Sakha Republic in Russia exhibited a weak purple fluorescence in UV light. None of the other samples examined in this study fluoresced. Compositions Electron microprobe compositions for 13 single crystals are listed in Tables 2 and 3. Samples measured were HS1-D (135 × 150 µm), HS10-1 (270 × 755 µm), HS10-2 (410 × 240 µm), H10-3 (two crystallites 400-500 µm diameter), HS10-4 (605 × 250 µm), HS11-A (46 × 77
196 197 198 199 200 201 202 203 203 204	FluorescenceAll of the samples identified as being from the Sakha Republic in Russia exhibited a weakpurple fluorescence in UV light. None of the other samples examined in this study fluoresced.CompositionsElectron microprobe compositions for 13 single crystals are listed in Tables 2 and 3.Samples measured were HS1-D (135 × 150 µm), HS10-1 (270 × 755 µm), HS10-2 (410 × 240µm), H10-3 (two crystallites 400-500 µm diameter), HS10-4 (605 × 250 µm), HS11-A (46 × 77µm), HS11-B (50 µm diameter), HS11-C (five crystallites between 150 and 400 µm diameter),
196 197 198 199 200 201 202 203 203 204 205	FluorescenceAll of the samples identified as being from the Sakha Republic in Russia exhibited a weakpurple fluorescence in UV light. None of the other samples examined in this study fluoresced.CompositionsElectron microprobe compositions for 13 single crystals are listed in Tables 2 and 3.Samples measured were HS1-D (135 × 150 µm), HS10-1 (270 × 755 µm), HS10-2 (410 × 240µm), H10-3 (two crystallites 400-500 µm diameter), HS10-4 (605 × 250 µm), HS11-A (46 × 77µm), HS11-B (50 µm diameter), HS11-C (five crystallites between 150 and 400 µm diameter),HS12-A (2100 × 250 µm), HS14-A (55 × 108 µm), HS14-B (50 µm dianmeter), HS14-C (two

207	these crystals were also measured by single crystal diffraction, but not all, while some single	
208	crystal diffraction samples were not available for EMPA. Raw totals ranged from 78.6 to 83.1	
209	oxide wt%, as CO ₂ and H ₂ O, both significant components of sakhaite-harkerite, were not	
210	detectable by electron microprobe analysis (EMPA). The following structural formula, based or	1
211	Equation 1 above, was used to calculate the compositions:	
212	$X_{48} Y_{16} Al_{ay} Si_{(5-a)y} B_{32-4y} C_{16} O_{144+4y} (HCl)_n $ (HCl)	4)
213	where $X = Ca$, Na, K, Pb, Sr, Ba, or REEs; $Y = Mg$, Ti, Fe, or Mn; and $O^* = O$, OH, or F. The	
214	EMPA data were normalized on 16 cations at the Y site for most compositions; if this	
215	normalization resulted in a total at the X site greater than 48, the formula was re-normalized	
216	based on 48 cations at the X site. Carbon was calculated based on 16 C per formula unit.	
217	Aluminum and silicon were assumed to substitute for each other at both sites of the	
218	aluminosilicate pentamer with no vacancies,	
219	$T^{Al}T^{Si}_{4}O_{16}^{*} = Al_{1+a}Si_{4-a}O_{16}^{*} $	5)
220	where Al substitutes for Si if $a > 0$ and vice versa if $a < 0$; thus the number of pentamers per	
221	formula unit (y) was calculated as $1/5(Al + Si)$.	
222	Assuming no vacancies at either the trigonal B site (T^B) or the tetrahedral Si site (T^{Si}) , the	
223	structure requires	
224	$T^{B} + T^{Si} = 32 $	6)
225	and a minimum of $144 + T^{Si}$ anions (O*) per formula unit (excluding Cl). Calculating T^{Si} as	
226	above, the boron content as determined by EMPA is too low by 5% to 45% (average 26%) to	
227	satisfy this structural requirement. The required boron content B* was calculated as $32 - T^{Si} = 3$	32
228	-4/5(Al + Si). All Cl in the structure was assumed to be present as HCl, and additional H ₂ O as	

230	
231	DISCUSSION
232	The crystal structure of sakhaite-harkerite
233	The sakhaite structure is cubic with a unit cell parameter of approximately 14.7 Å. The
234	structure is based on a framework of face-sharing CaO ₉₋₁₁ (X) polyhedra. In the cubic structure
235	there is one such symmetrically independent polyhedron which is stacked in columns parallel to
236	the crystal axes (Fig. 1A). Each CaO ₉₋₁₁ polyhedron sits at the intersection of three orthogonal
237	columns. Small and large cavities in the framework are each surrounded by six CaO ₉₋₁₁
238	polyhedra. The Mg (Y) site is six-coordinated and shares multiple faces with CaO ₉₋₁₁ polyhedra
239	(Fig. 1B); four Mg octahedra border the small cavity, but none border the large cavity.
240	The triangular borate and carbonate groups reinforce the Ca-Mg framework, sharing edges
241	with the CaO ₉₋₁₁ polyhedra. Ideally the C site is at the Wyckoff 16 <i>c</i> position ($\frac{1}{4}$, $\frac{1}{4}$, 0)
242	(Yakubovich et al. 2005), coordinated by six O2 positions at a Wyckoff 96g position. The O2
243	position is therefore only half-occupied. In practice we find that the C site is shifted to a 32e
244	position by $(\frac{1}{4} - z, \frac{1}{4} - z, z)$; the O2 site remains half-occupied, but now the C site is half-
245	occupied as well to prevent unrealistically short distances between adjacent C sites. The CO ₃
246	group orientations in sakhaite are therefore completely disordered.
247	While initial refinements of the synthetic sakhaite structure by Chichagov et al. (1974) and
248	a natural sakhaite structure by Yakubovich et al. (1978) indicated a space group of $F4_132$ for
249	synthetic sakhaite, all cubic structures in the current study refined in $Fd\overline{3}m$. Space group $F4_132$
250	is a subgroup of $Fd\overline{3}m$ of index 2; $Fd\overline{3}m$ is obtained from $F4_132$ by the addition of a $\overline{4}$ axis
251	along the crystal axes. No sites are split in the sakhaite structure in lowering the symmetry from
252	$Fd\overline{3}m$ to $F4_132$, so the difference is not in the chemical ordering of any one specific site in the

253 structure. Yakubovich et al. (2005) suggested that the assignment of $F4_132$ to natural sakhaite 254 was most likely erroneous, although evidence for the synthetic material being acentric seems 255 unambiguous, based on extinction of the reflections 00ℓ (0k0, h00) with $\ell \neq 4n$. If there is a true difference in symmetry between natural and synthetic sakhaite, it seems likely that it is due to an 256 257 averaging over many minor chemical substitutions and other defects present in natural materials 258 that are absent in synthetic materials with more rigorously controlled environments of formation. 259 In harkerite, an ordered substitution as in Equation 2 changes the crystal symmetry from cubic $(Fd\bar{3}m)$ to rhombohedral $(R\bar{3}m)$. Alternating layers of large cavities containing 260 $(HCl,H_2O,\Box)(BO_3)_4$ and $Al(SiO_4)_4$ groups are arranged normal to the rhombohedral c axis (Fig. 261 3). The c dimension of the rhombohedral unit cell corresponds to twice the body diagonal of the 262 cubic unit cell of sakhaite, thus $c_{\text{harkerite}} \approx 2\sqrt{3}a_{\text{sakhaite}}$ and $a_{\text{harkerite}} \approx a_{\text{sakhaite}}/\sqrt{2}$. There is 263 also some ordering of the CO₃ groups. Two of the three crystallographically distinct CO₃ groups 264 have completely disordered orientations, as in sakhaite; the third, in a layer separating the borate 265 266 and silicate layers, has an ordered orientation.

267

268 **Compositions**

The 13 single crystal compositions range from sakhaite to harkerite endmembers. The 70

270 microprobe analyses show that the samples analyzed fall into four categories, which are color-

coded in Figures 4-6 and 10: HS12, 14, and 15 are near-endmember sakhaite, with

approximately 0 to 3.2 Si sites pfu (blue points); HS10 is the sakhaite-like mineral from Tsumeb,

- 273 Namibia (Dunn et al. 1990), with 3.8 to 6.1 Si sites pfu (green points); HS1 is an intermediate
- sakhaite (yellow points), with 5.8 to 8.6 Si sites pfu; and HS11 from Camas Malag (Giuseppetti

et al. 1977) is near-endmember harkerite, with 12.2 to 14.0 Si sites pfu (red points). Ideal endmember harkerite contains 16 Si^{4+} pfu.

277 Figure 4A shows the variance of measured B and Si contents, with the solid line representing the ideal B + Si = 32 (Eq. 6). All points fall well below the line. The ratio of 278 279 measured to calculated boron, B/B*, is shown versus calculated boron, B*, in Figure 4B. The 280 spread in measured B appears to increase with the expected amount of B, that is, it decreases 281 with increasing Si. Crystal-structure refinements do not indicate significant vacancies at Si or B 282 sites, nor is there a variation in the O-O edge length of the trigonal B site, consistent with 283 substitution of C (or another cation different in radius to B) for B. This suggests that the B site actually is fully occupied by B, and that B is not being well determined by EMPA. This is likely 284 285 due to differences in the coordination of B and surrounding matrix between sakhaite-harkerite 286 and the B standard, danburite.

287 Figure 5 shows the variance of Al on Si content. The solid line shows the Si:Al ratio of 4:1 288 expected for the ideal $Al(SiO_4)_4$ pentamer. Points for the sakhaite-like mineral and nearendmember harkerite are close to this ideal line; the harkerite points fall slightly below the line, 289 suggesting an excess of Si like that observed by Grew et al. (1999). Points for near-endmember 290 291 sakhaite, however, fall consistently above the 4:1 line, closer to a Si:Al ratio of 4:1.5 (dashed line 292 in Fig. 5B). This suggests a substitution for Si at the tetrahedral sites; assuming that Al only 293 substitutes for Si, this corresponds to an average aluminosilicate pentamer similar to 294 $Al[(Si_{0.9}Al_{0.1})O_4]_4$. Points for sakhaite intermediate in Si content plot between the two lines. The interstitial HCl/H₂O site in the large cavity is only occupied when the cavity is 295 surrounded by four BO₃ triangles, since the AlO₄ tetrahedron occupies the same space when the 296 aluminosilicate pentamer is present. The amount of Cl measured pfu should therefore decrease 297

298	with increasing Si content, and be less than 1/4 the total occupancy of the B site; in terms of
299	Equations 1 and 4, $n \le 8 - y$. Figure 6 shows that Cl and Si do indeed have an inverse
300	relationship in most sakhaites and harkerites. For all samples except HS10, the fraction Cl / (1/4 $$
301	B) = $n / (8 - y)$ is between 0.38 and 0.69. The sakhaite-like mineral HS10 (green points),
302	however, is unique in containing almost no Cl (less than 0.25 wt%), and Figure 6 shows that
303	what Cl it does possess is not tied to the Si content. Structure refinements do show that the
304	interstitial site is occupied (see below), so the site must be dominated by H ₂ O instead.
305	Sample HS-10 is the same sakhaite-like mineral studied by Dunn et al. (1990) who
306	reported 15.9 wt% B ₂ O ₃ by wet chemistry, well above our EMPA values and somewhat below
307	our calculated values. Dunn et al. (1990) also reported 12.6 wt% CO2 by wet chemistry, in
308	agreement with our calculated values, and 4.8 wt% H ₂ O, much higher than our calculated values
309	of 0.21-0.54 wt%. Our EMPA analysis of HS-10 showed significant substitution of Ca by the
310	heavier cations Pb^{2+} (0.39-0.52 atoms pfu, apfu), Sr^{2+} (0.43-0.77 apfu), and rare earth elements
311	(REEs) La^{3+} , Ce^{3+} , and Nd^{3+} (0.06-0.20 apfu total), not observed in other sakhaite compositions.
312	

313 Structure refinement

Stable crystal-structure refinements were derived from X-ray diffraction data for 14 single
crystals: HS1-A, HS1-B, HS1-C, HS1-D, HS2-A, HS10-A, HS10-C, HS11-A, HS11-B, HS14-A,
HS14-B, HS15-A, HS15-B, and HS18-A; *R*1 values ranged from 0.0296 to 0.0706. For those
refinements with the lowest *R*1 for each category of sakhaite-harkerite – HS15-A and HS14-B
(near-end member sakhaites), HS10-A (sakhaite-like mineral), HS1-A (intermediate sakhaite),
and HS11-A (near-endmember harkerite) – the refinement parameters, coordinates, and thermal
displacement parameters are given in Tables 6, 7, and 8. The crystal structures of samples HS11-

321 A and HS11-B were best fit with the rhombohedral space group R3m, while the rest were best fit 322 with the cubic space group $Fd\overline{3}m$. The generally high R1 values are due to the large amount of structural disorder in the sakhaite-harkerite series. 323 During refinement the population of the Al site in the cubic structures was set to exactly 324 1/4 of the Si site and that of the O3 site (which coordinates the Al site) was set equal to that of 325 the T^{Si} site. In refinements of the HS2-A, HS10-C, HS11-A, HS11-B, and HS15-B crystals the 326 327 population of (each) B site and its corresponding Si site were constrained to have a total occupancy of 1, while B and Si were allowed to vary independently in the remaining crystals. 328 329 All structures except HS14-A and HS14-B have both B and Si sites. In HS14-A and HS14-330 B, which are near-endmember sakhaites, the Si and Al content in the crystal was too low to 331 refine Si or Al sites. In the near-endmember harkerites HS11-A and HS11-B, the majority Si and B sites were ordered, leading to rhombohedral symmetry. However, the ordering was not perfect. 332 333 A small number of borate groups (the B1A and B2A sites) occurred in the aluminosilicate layer 334 (occupied by Si1, Si2, and Al sites), while a small number of aluminosilicate groups (the Si1A, Si2A, and AlA sites) occurred in the borate layer. These correspond to ordering defects in the 335 crystal where (B1A, B2A) are occupied instead of (Si1, Si2, Al), or where (Si1A, Si2A, AlA) are 336 occupied instead of (B1, B2). These minority sites account for 5% of total Si and 12% of total B 337 338 in HS11-A, and 10% of total Si and 19% of total B in HS11-B. That there is approximately twice the fraction of minority B as minority Si in both structures suggest that these are truly disordered 339 sites, as opposed to a second uniform component with opposite ordering to the majority. 340 341 Selected bond lengths are given in Table 9. No splitting of the O1 site, which coordinates the Y/Mg site and forms the triangular base of the B/Si coordination polyhedra, was observed. 342 Yakubovitch et al. (2005) reported such a splitting related to replacement of BO₃ triangles by Si 343

344	tetrahedra. Instead there is an increase in the O-O distance or side length of the BO ₃ triangles
345	with increasing Si content (Fig. 7A, B) as the average position of the O1 site (or equivalent in
346	rhombohedral harkerite) shifts to accommodate the larger Si ⁴⁺ cation. In HS11-A, where Si and
347	B are ordered, O-O side lengths at the T^B sites are consistent with pure B occupation, while basal
348	O-O side lengths at the T ^{Si} sites are consistent with pure Si occupation (or mixed Si/Al
349	occupation). Figure 7C shows the mean bond length at the T ^{Si} sites for those structures where
350	they could be refined, showing an increase of the bond length with refined T ^{Si} occupation. This is
351	certainly in part because as the fraction of Si sites increases, the mean O1 position becomes
352	closer to the local position of a basal O in an SiO_4 tetrahedron, and so the mean $T^{Si}\!-\!O$ distance is
353	closer to the preferred Si-O bond length. Conversely, as the Si fraction decreases, the mean O1
354	position becomes closer to the local position of an O atom in a BO ₃ triangle with its shorter O-O
355	sides, and so the mean T^{Si} -O distance is closer to the distance between the T^{Si} site position and
356	the boron-bonded O, which is shorter than the preferred Si-O bond length. However, a second
357	possibility is that in B-rich compositions, the T ^{Si} site may be partly occupied by tetrahedral B, so
358	that the mean T ^{Si} -O distance is a weighted average of both Si-O and tetrahedral B-O bond
359	lengths. If the B, Si, and O3 site occupations are not linked in a structure refinement, this would
360	lead to an under-populated $T^{\rm Si}$ site if the site was only fit using Si, so that $T^{\rm B}+T^{\rm Si}$ $<$ 32 and O3 $<$
361	T^{Si} . In practice this is difficult to detect, because it is usually necessary to set the O3 and T^{Si} site
362	occupations equal and/or $T^{Si} + T^B = 32$ to converge the structure. Alternatively, tetrahedral B
363	could be detected using infrared spectroscopic methods.

- Bond lengths in the minority B and Si sites in harkerite are quite irregular, partly due to their low occupation and high thermal parameters. The Si1A and Si2A tetrahedral sites, which
 - 17

366 occur in the otherwise-ordered borate layers, are good potential candidates to actually be

tetrahedral B instead of Si, due to their low average bond lengths.

368 Chemical formulae for seven single crystals with both X-ray structure refinements (SREF) 369 and EMPA data are given in Table 10. For HS10, the EMPA formula is the median of 22 analyses of four crystals (HS10-1, -2, -3, and -4), and the SREF formula is the mean of results 370 371 for crystals HS10-A and HS10-C. Note that the SREF formulae will not be charge balanced; the 372 net formula charge is between -1.9 and -3.8, while the error in the calculated charge is of a 373 similar magnitude. Except for HS10, the EMPA formulae have a net charge between +0.04 and -374 0.05, because the atomic proportions are medians multiple analysed points over the crystal, as in table 3; the HS10 formula is a median over different crystals, and so has net charge of -2.4 with 375 error 2.7. There is generally good agreement between the SREF and EMPA formulae. 376 Agreement between SREF and EMPA for the Cl/interstitial site is fair except for HS10-A, which 377 378 is discussed below. The occupancy of the interstitial site refined by SREF is consistently higher 379 for near-endmember and intermediate sakhaite samples HS1-D, HS14-A, HS14-B, and HS15-A. 380 This may suggest that both HCl and H₂O are present at the interstitial site in most sakhaites, with HCl dominating. The near-endmember harkerite HS11-A and HS11-B crystals show the opposite 381 382 trend, with the EMPA occupancy higher than the refined occupancy; the reason for this is unknown. 383 384 From the EMPA data, HS-10 has a very low Cl content compared to other sakhaites, only

around 0.3 apfu. However, the interstitial site in HS10-A has a refined occupancy of 2.0(2) apfu
Cl and for HS10-B, the refined occupancy is 3.6(7) apfu Cl. The interstitial site in the sakhaite-

 $_{\rm 287}$ like mineral must therefore be dominated by $\rm H_2O$. If the sakhaite-like mineral has the interstitial

site dominated by H₂O while HCl dominates in other sakhaites, it may qualify as a distinct
mineral.

Figure 8 shows a distinct linear dependence of the cubic unit-cell parameter *a* (or equivalent for rhombohedral near-endmember harkerite) with the refined Si content. The unitcell dimension increases as the Si content increases, with a fitted trend of

393
$$a = 0.19 \frac{\text{Si}}{16} + 14.63 \text{ Å} \quad (R^2 = 0.992)$$
 (6)

As the Si content increases, the structure expands to accommodate more Al(SiO₄)₄ pentamers. The sakhaite-like mineral HS10 is the exception to this trend, having much higher unit-cell parameters than predicted by Equation 6 based on Si content. The expansion of the unit cell in comparison to other sakhaites with comparable Si content may be due to substitution of Ca by Pb, Sr, or other heavy cations.

399 The rhombohedral harkerite structure with the lowest Si content is HS11-B, with 14.0 Si pfu, while the cubic sakhaite structure with the highest Si content is HS1-C, with 7.7 Si pfu. The 400 structural transition from cubic to rhombohedral symmetry lies somewhere in between. The 401 presence of minority Si in the borate layer and B sites in the aluminosilicate layers of 402 rhombohedral harkerite suggests this transition may be gradual. Endmember harkerite is defined 403 404 with Si = B = 16; equal proportions allows perfect ordering, which leads to rhombohedral symmetry. Although a harkerite composition with Si > B has not been observed, presumably at a 405 406 high enough Si content the structure would revert back to cubic. There is no a priori reason that a 407 composition with equal proportions of Si and B must be ordered; such a composition could be disordered, with borate and aluminosilicate groups distributed randomly rather than in layers, 408 409 and therefore maintain cubic symmetry. Under the current definition of harkerite, it is not clear if 410 this hypothetical composition would be "cubic harkerite" or "high-silicate sakhaite".

411

412 Coordination geometry of the C and X sites

413 The X site in sakhaite and harkerite is usually dominated by Ca. In sakhaite, it is coordinated by the O1 and O2 oxygen sites; O1 also coordinates the octahedral Y (Mg), T^B, and 414 T^{Si} sites while O2 coordinates the C site. In most sakhaite compositions, X is coordinated by six 415 416 O1 and six O2 each (Table 9A), and since the O2 site is half occupied, the average X site is nine-417 coordinated. However Table 9B shows that in the sakhaite-like material HS10, X is coordinated 418 by four O1 and eight O2, and so on average is only eight-coordinated. Why the difference? The 419 local symmetry of the C site, and whether the orientation of the CO₃ triangle is ordered or disordered, affects the coordination geometry of the X site. 420 In the near-endmember and intermediate sakhaites, represented here by HS1-A, the C site 421 (Fig. 9A) is offset from space group $Fd\overline{3}m$'s Wyckoff 16c position at (1/4, 1/4, 0) to 32e at (1/4 – 422 x, 1/4 - x, x). If the C and O2 sites are fully occupied, there are two parallel CO₃ triangles, 423 424 oriented in opposite directions, separated by 0.71(2) Å. The two triangles cannot be present simultaneously, therefore the C and O2 sites must be half occupied. The orientation of the CO₃ 425 triangle is thus disordered, with 50% pointing in either direction. The distance from a C site to 426 the next nearest set of O2 sites is 1.470(8) Å; the C site could thus potentially accommodate a 427 slightly larger cation, such as B, in trigonal pyramidal coordination. 428 429 The local environment of the X site in HS1-A is shown in Figure 9B. The X site is 430 coordinated by six O1 and six O2 sites. The O1 sites are all fully occupied and arranged in a 1 + 4 + 1 configuration around the X site. The O2 sites are arranged in groups of 3 (O2a, O2b, and 431 O2c in Fig. 9B) on either side of the X site. Here the X polyhedra shares either an edge (O2a-432 O2b) or a corner (O2c) with a CO₃ triangle, depending on the orientations of the surrounding 433

triangles. With randomly oriented CO₃ triangles, 25% of the X sites are eight-coordinated, 50%
are nine-coordinated, and 25% are 10-coordinated, for an average coordination number of nine.
In the sakhaite-like material, represented here by HS10-A, there are also closely spaced,
paired C sites (Fig. 10A), but an additional displacement of the O2 site from Wyckoff 96g to
192*i* introduces additional disorder, doubling the O2 site, which now must be only one-quarter
occupied. The CO₃ triangles may now point in either orientation, as well as being on either side
of the 16*c* position.

441 The X site in HS10-A is split into Ca-dominated and Pb/Sr-dominated sites. The X sites

442 (both Ca and Pb) are now adjacent to six fully occupied O1 sites and 12 partially occupied O2

sites (Fig. 10B, C). The O2a, O2b, and O2c sites in Figure 9B become O2a', O2b', O2c' and

444 O2a", O2b", O2c" in Figure 10B. The displacement of the O2 site also causes rotation of the CO₃

triangles with respect to the X polyhedra, moving O2a' and O2b" towards and O2a" and O2b'

away from the cation. The consequence is that O2a" and O2b' are no longer at bonding distances

[3.266(9) Å] to Ca, and so the Ca polyhedra only share corners (O2c', O2c'', O2a', or O2b'') with

448 adjacent CO₃ triangles. All Ca polyhedra in HS10-A are therefore eight-coordinated.

449 The Pb site is shifted from the Ca site by 0.41(8) Å, away from the rectangular face

450 bounded by four O1 atoms (see Fig. 10B, C). This significantly shortens bonds with O2 from

451 2.38(1) and 2.394(9) Å to 2.17(1) and 2.28(1) Å, but lengthens the four O1 bonds from 2.524(2)

452 Å to 2.81(2) Å. The Pb site also gains bonds of 2.80(2) Å with O3 when the latter site is present

453 [the minimum Ca-O3 distance site is 3.045(2) Å]. Taking into account occupation of the O2 and

454 O3 sites, the mean Pb-O bond length is 2.60 Å, approximately 4% larger than the mean Ca-O

bond length. The incorporation of larger cations like Pb^{2+} , Sr^{2+} , and rare earths at the Pb site may

456 be responsible for the rotation of the CO₃ triangles that eliminates edge-sharing.

457	In near-endmember harkerites such as HS11-A, the C site is split into three positions. The
458	structure contains 12 C1 sites pfu, and 2 sites pfu each of C2 and C3. The C1 site (Fig. 11A) is
459	located at a Wyckoff 18 <i>h</i> position (point group symmetry <i>m</i>) in space group $R\overline{3}m$, coordinated
460	by two O10 and one O11 site. None of these sites are duplicated and all are fully occupied, so the
461	(C1)O ₃ triangle is ordered with just a single orientation. The C2 site (Fig. 11B) is located at a
462	Wyckoff $3a$ site (symmetry $\overline{3}2/m$) and is coordinated by six O12 sites at 1.273 Å. As in HS10-A,
463	only three O12 sites can be occupied at a time to avoid unrealistically short O-O distances. The
464	O12 sites must be half occupied, and the (C2)O ₃ triangles will have two possible orientations.
465	The C3 site (Fig. 11C) is located at a Wyckoff 6 <i>c</i> position (point group 3 <i>m</i>), and as in HS1-A
466	both C3 and the coordinating O13 sites are half-occupied. Two orientations are possible for the
467	(C3)O ₃ triangles, separated by 1.04 Å. The C3 site is only 1.78 Å from the closest Cl site, which
468	is a bonding distance for C-Cl [the C-Cl bond length calculated from Shannon and Prewitt
469	(1976) is 1.73 Å; in organic molecules, C-Cl bonds range from 1.63-1.78 Å (Sutton 1958)]. The
470	shortest C-Cl distance in HS1-A is 2.11(3) Å. There is no apparent distortion of the $(C3)O_3$
471	triangle away from planar, however, which suggests that C-Cl bonding is not significant. It
472	seems likely that the Cl and C sites are populated such that a short C-Cl distance is avoided,
473	which suggests that C-Cl bonding is not significant.
474	As with the C site, the X (Ca) site is split in the rhombohedral structure. The Ca1-Ca4 sites
475	each contribute 12 sites pfu. They differ in coordination, because they share elements with
476	different CO ₃ triangles. The simplest case is the Ca4 site (Fig. 12D), which shares a corner (O10)
477	with two C1 triangles. As the O10 site is always occupied, the Ca4 site is always eight-
478	coordinated. Similarly, Ca3 shares O10-O11 edges with two C1 triangles, and so is always at
479	least 10-coordinated. When the O15 site (grey sphere in Fig. 12C), which coordinates the

480	minority Si2A and AlA sites, is present, it also is within bonding distance (< 3 Å) of Ca3, and so
481	Ca3 is occasionally 11-coordinated. The Ca1 site (Fig. 12A) shares corners with a C1 triangle
482	(O11) and a C2 triangle (O12) which may be of either possible orientation. The Ca1 polyhedron
483	thus occurs in two mirror-image forms with 50% probability, both of which are eight-
484	coordinated. Finally, the Ca2 site (Fig. 12B) coordination is the most complex, with 13 oxygen
485	sites within bonding distance. The Ca2 site shares an edge (O10-O10) with a C1 triangle and
486	either an edge or a corner with a (C3)O ₃ triangle, depending on the latter's orientation. Ca2 may
487	also bond to adjacent O14 sites (grey spheres in Fig. 12B), sharing edges (O1-O14) with two
488	Si1A sites and the AlA site of a minority aluminosilicate pentamer. The minimum O14-O15
489	distance of 2.04 Å is unrealistically short, however, so when Ca2 bonds to the two O14 sites it
490	must only share a corner with the (C3)O ₃ triangle. In other words, the presence of the minority
491	aluminosilicate pentamer forces the orientation of the $(C3)O_3$ triangle. As a result the Ca2 site is
492	either nine-, 10-, or infrequently 11-coordinated.
493	For comparison, the X site in the $F4_132$ structure of synthetic sakhaite from Chichagov et
494	al. (1974) is shown in Figure 13. The C site (not shown) in the $F4_132$ structure is missing a
495	mirror through the C site in the $Fd\overline{3}m$ structure that causes the doubling of the coordinating O2
496	seen in Figures 11 and 12; as a result there is only a single orientation for the CO ₃ triangles as
497	opposed to the multiple possible orientations in variations of the $Fd\overline{3}m$ structure. The O2 site is
498	fully occupied. The X site in the F4132 structure shares corners with two CO3 triangles, and so
499	there is a unique, non-mirror symmetric eight-coordinate polyhedron. The implication is that
500	synthetic sakhaite has ordered CO3 triangles, lacking in natural sakhaite with non-zero Si
501	content, which leads to the lower space group.

503 **Implications**

The harkerite-sakhaite series is unique among minerals both in containing essential 504 505 carbonate, borate, and silicate groups and as being a solid solution involving clusters of polyhedra instead of single polyhedra or anions. The substitution $(\Box, \text{HCl}, \text{H}_2\text{O})(\text{BO}_3)_4 \rightarrow$ 506 $Al_{1+a}Si_{4-a}O_{16}^*$ summarizes this solid solution. In endmember harkerite, 50% of the borate groups 507 508 are replaced by aluminosilicate groups in an ordered substitution that reduces the space group 509 symmetry from cubic to rhombohedral. The change in symmetry is constrained to lie between 510 7.7 and 14.0 Si pfu, i.e., not necessarily at the midpoint of 8.0 Si pfu (for a = 0) between end 511 member sakhaite and harkerite. Further complications are introduced by partial disordering of 512 aluminosilicate layers and borate layers induced by mixing of borate groups and aluminosilicate 513 groups in individual layers, thereby implying the possibility of a disordered phase with the symmetry of sakhaite and the composition of harkerite. The current definition of harkerite relies 514 515 on composition only and does not specify whether rhombohedral symmetry is essential to the 516 mineral's identity.

517 Potential for species diversity is not limited to the substitution $(\Box, HCl, H_2O)(BO_3)_4 \rightarrow$ 518 $Al_{1+a}Si_{4-a}O_{16}^{*}$ and symmetry changes tied to order/disorder. The interstitial site surrounded by 519 borate groups appears to be dominated by HCl when occupied in most sakhaite-harkerite 520 compositions, whereas it contains little HCl in the sakhaite-like mineral from Tsumeb, Namibia 521 (Dunn et al. 1990), in which H₂O appears to be dominant instead. If the interstitial site can be 522 used to distinguish species, the number of potential species increases to 6: two sets of H₂O-, HCl- and □-dominant species, of which the "sakhaite-like" mineral would a new H₂O-dominant 523 524 analogue of sakhaite. The Si-free sakhaite synthesized by Nekrasov and Malinko (1973) contains

525	1.57 wt% Cl, corresponding to about 2.4 Cl pfu, insufficient to fill 50% of the interstitial site,
526	and thus the Si-free compound could be the synthetic analogue of the "sakhaite-like" mineral.
527	However, recognizing new species based on occupancy of the interstitial site is premature;
528	this site is one of the least well understood aspects of the sakhaite-harkerite series. Are we
529	dealing with only HCl and H_2O , or could Cl^- and OH^- be playing a role? Our analyses suggest
530	the possible presence of F^- and/or HF as well. Moreover, other questions remain concerning
531	H ₂ O: Nekrasov and Malinko (1973) reported 3.5 wt%, corresponding to over 10 H ₂ O pfu. Unless
532	this H_2O determination is greatly in error, the calculated H_2O content exceeds the $4H_2O$ pfu
533	(allowing for 2 Cl pfu in the analysis) available according to the formula for sakhaite. Where
534	could this "excess" H_2O be located in the structure? Given the current interest in microporous
535	materials and practical applications, the sakhaite-harkerite series have potential for detailed
536	experimental studies of various compositions including other cations such as Pb and REE, which
537	are present in the "sakhaite-like" mineral, as well as halogens and H ₂ O.
538	
539	ACKNOWLEDGMENTS
540	
541	The authors thank Mackenzie Parker and Jordan Roberts for help preparing the manuscript,
542	the reviewers, Associate Editor G. Diego Gatta, and the Editor for their comments. We
543	acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
544	(NSERC), funding reference 06434. The following institutions and individuals are thanked for
545	samples: National Museum of Natural History (Smithsonian Institution), Pavel M. Kartashov,
546	and Nikolai N. Pertsev.
547	

548	R EFERENCES CITED
549	
550	Barbieri, N., Cozzupoli, D., Federico, M., Fornaseri, M., Merlino, S., Orlandi, P., and Tolomeo,
551	L. (1977) Harkerite from the Alban Hills (Italy). Lithos, 10, 133-141.
552	Bruker (2007) SAINT. Bruker AXS Inc., Madison, Wisconsin.
553	Chichagov, A.V., Simonov, M.A., and Belov, N.V. (1974) Crystal structure of sakhaite
554	Ca ₃ Mg(BO ₃) ₂ CO ₃ · <i>x</i> H ₂ O. Doklady Akademii Nauk SSR, 218, 576–579.
555	Creagh, D.C. and Hubbell, J.H. (1992) International Tables for Crystallography, vol. C., p. 200-
556	206. Kluwer Academic Publishers, Boston.
557	Creagh, D.C. and McAuley, W.J. (1992) International Tables for Crystallography, vol C., p.
558	219–222. Kluwer Academic Publishers, Boston.
559	Cromer, D.T. and Waber, J.T. (1974) International Tables for X-ray Crystallography, Vol. IV.
560	The Kynoch Press, Birmingham, England.
561	Davies, W.O. and Machin, M.P. (1970) Isomorphous replacements in harkerite and the relation
562	of sakhaite to harkerite. Canadian Mineralogist, 10, 689–695.
563	Dirken, P.J., Kentgens, A.P.M., Nachtegaal, G.H., van der Eerden, A.M.J., and Jansen, J.B.H.
564	(1995) Solid-state MAS NMR study of pentameric aluminosilicate groups with 180°
565	intertetrahedral Al-O-Si angles in zunyite and harkerite. American Mineralogist, 80, 39-
566	45.
567	Dunn, P.J., Peacor, D.R., Nelen, J.A., Ramik, R.A., and Innes, J. (1990) A sakhaite-like mineral
568	from the Kombat Mine in Namibia. Mineralogical Magazine, 54, 105–108.
569	Galuskina, I.O., Kadiyski, M., Armbruster, T., Galuskin, E.V., Pertsev, N.N., Dzierzanowski, P.,
570	and Wrzalik, R. (2008) A new natural phase in the system Mg ₂ SiO ₄ -Mg ₂ BO ₃ F-

- 571 Mg₂BO₃(OH): Composition, paragenesis and structure of OH-dominant pertsevite.
- 572 European Journal of Mineralogy, 20, 951–964.
- Giuseppetti, G., Mazzi, F., and Tadini, C. (1977) The crystal structure of harkerite. American
 Mineralogist 62, 263–272.
- 575 Grew, E. S. (1996) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in
- 576 metamorphic environments. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy,
- 577 Petrology and Geochemistry, 33, p. 387-502. Reviews in Mineralogy, Mineralogical
- 578 Society of America, Chantilly, Virginia.
- 579 Grew, E.S., Yates, M.G., Adams, P.M., Kirkby, R., and Wiedenbeck, M. (1999) Harkerite and
- associated minerals in marble and skarn from Crestmore Quarry, Riverside County,
- 581 California, and Cascade Slide, Adirondack Mountains, New York. Canadian Mineralogist,
 582 37, 277–296.
- Ibers, J.A. and Hamilton, W.C. (1964) Dispersion corrections and crystal structure refinements.
 Acta Crystallographica, 17, 781–782.
- 585 Machin, M.P. and Miehe, G. (1976) [Al(SiO₄)₄]₁₃- tetrahedral pentamers in harkerite. Neues
- 586 Jahrbuch für Mineralogie Monatshefte, 5, 228–232.
- Malinko, S.V. and Kuznetsova, N.N. (1973) A new find of sakhaite. Zapiski Vsesoyuznogo
 Mineralogicheskogo Obshchestva, 102(2), 164–170.
- 589 McGee, J.J. and Anovitz, L.M. (1996): Electron probe microanalysis of geologic materials for
- boron. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy, Petrology and
- 591 Geochemistry, 33, p. 771-788. Reviews in Mineralogy, Mineralogical Society of America,
- 592 Chantilly, Virginia.

- 593 Merlet, C. (1994) An accurate computer correction program for quantitative electron-probe
- 594 microanalysis. Microchimica Acta, 114, 363–376.
- Mihajlović, T., Lengauer, C.L., Ntaflos, T., Kolitsch, U., and Tillmanns, E. (2004) Two new
 minerals, rondorfite, Ca₈Mg[SiO₄]₄Cl₂, and almarudite,
- 597 $K(\Box, Na)_2(Mn, Fe, Mg)_2(Be, Al)_3[Si_{12}O_{30}]$, and a study of iron-rich wadalite,
- 598 Ca₁₂[(Al₈Si₄Fe₂)O₃₂]Cl₆, from the Bellerberg (Bellberg) volcano, Eifel, Germany. Neues
- Jahrbuch für Mineralogie Abhandlungen, 179, 265–294.
- 600 Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,
- volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.
- Nekrasov, I.Ya. and Malinko, S.V. (1973) Experimental study of the conditions of formation of
- sakhaite. Doklady Akademii Nauk SSSR, 210, 1427–1430.
- Ostrovskaya, I.V. (1969) Crystal structure of harkerite and sakhaite. Trudy Mineralogicheskogo
 Muzeya Akademii Nauk SSR, 19, 197–201.
- 606 Ostrovskaya, I.V., Pertsev, N.N., and Nikitina, I.B. (1966) Sakhaite, a new carbonatoborate of
- calcium and magnesium. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 95,
 193–202.
- 609 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
- distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.
- 611 Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.
- 612 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- 613 Sutton, L.E. (1958) Tables of Interatomic Distances and Configuration in Molecules and Ions,
- 614 The Chemical Society, London.

615	Tilley, C.E. (1951) The zoned contact-skarns of the Broadford area, Skye: A study of boron-
616	fluorine metasomatism on dolomites. Mineralogical Magazine, 29, 640-667.
617	Yakubovich, O.V., Yegorov-Tismenko, Y.K., Simonov, M.A., and Belov, N.V. (1978) The
618	crystal structure of natural sakhaite Ca ₃ Mg[BO ₃] ₂ [CO ₃]·0.36H ₂ O. Doklady Akademii
619	Nauk SSR, 239, 1103–1106.
620	Yakubovich, O.V., Still, I.M., Gavrilenko, P.G., and Urusov, V.S. (2005) Crystal structure of
621	sakhaite from the Solongo deposit in connection with the crystallochemical interpretation
622	of the sakhaite-harkerite mineral series. Crystallography Reports, 50, 194-202.

624	FIGURE CAPTIONS
625	
626	FIGURE 1. The crystal structure of sakhaite. (A) A single layer of the CaO ₉₋₁₁ polyhedral
627	framework, showing cavities. (B) Two layers of the framework, showing adjacent MgO_6
628	octahedra. (C) The endmember sakhaite structure with MgO ₆ octahedra hidden, showing
629	positions of the BO ₃ triangles, CO ₃ triangles, and HCl/H ₂ O at the interstitial sites.
630	
631	FIGURE 2. The substitution in the sakhaite-harkerite series involves replacement of four
632	BO_3 triangles (A) with a pentamer consisting of four SiO_4 tetrahedra surrounding an AlO_4
633	tetrahedron (B). The cavity surrounded by the BO_3 groups contains HCl or H_2O (dotted circle)
634	displaced from the center of the cavity.
635	
636	FIGURE 3. Borate and aluminosilicate layers in harkerite. Only the interstitial sites (green
637	spheres) in the midst of the borate triangles and AlO ₄ tetrahedra (pink tetrahedra) are shown for
638	clarity.
639	
640	FIGURE 4. (A) B vs. Si content in atoms per formula unit (apfu). The solid line indicates
641	the ideal $B + Si = 32$ apfu. (B) Ratio of measured boron (B) to calculated boron (B*) vs.
642	calculated boron (B*).
643	
644	FIGURE 5. Al vs. Si content in apfu. The solid line indicates the ideal Si:Al ratio of 4:1, the
645	dashed line represents a ratio of 4:1.5.
646	

647	FIGURE 6. Cl vs. Si content in apfu.
648	
649	FIGURE 7. O-O edge distance in T ^B triangles / T ^{Si} tetrahedra versus Si (apfu) determined
650	from (A) EMPA and (B) structure refinement (SREF). (C) Average T ^{Si} -O distance versus Si
651	(apfu) from structure refinement.
652	
653	FIGURE 8. Cubic a unit-cell parameter vs. refined Si for all sakhaite-harkerite structures.
654	For the rhombohedral cells, an equivalent a_{cubic} is calculated as the mean of $\sqrt{2}a$ and $\frac{1}{2\sqrt{3}}c$.
655	
656	FIGURE 9. (A) C site and (B) X (Ca) site in HS1-A. Brown spheres are C, blue-green
657	sphere is Ca, red spheres are O1, magenta spheres are O2.
658	
659	FIGURE 10. (A) C site, (B) X (Ca) site, and (C) X (Pb) site in HS10-A. Brown spheres are
660	C, blue-green sphere is Ca, dark grey sphere is O3, red spheres are O1, magenta spheres are O2,
661	purple spheres are O3.
662	
663	FIGURE 11. C sites in HS11-A. Brown spheres are C; cyan spheres are oxygen
664	coordinating site C1; magenta spheres are oxygen coordinating C2; yellow spheres are oxygen
665	coordinating C3; green spheres are Cl. (A) C1, (B) C2, (C) C3.
666	
667	FIGURE 12. The X (Ca) sites in HS11-A. The blue-green spheres are Ca; cyan spheres are
668	oxygen coordinating site C1; magenta spheres are oxygen coordinating C2; yellow spheres are

- oxygen coordinating C3; red spheres are oxygen shared with Mg, B, and Si sites; and grey
- spheres are oxygen shared with Si and Al sites. (A) Ca1, (B) Ca2, (C) Ca3, (D) Ca4.
- 671
- **FIGURE 13.** The X (Ca) site in the synthetic sakhaite composition of Chichagov et al.
- 673 (1974). Blue-green sphere is Ca, red spheres are O1, magenta spheres are O2.
- 674

Fig. 1.

FIG. 4.

Fig. 7.

FIG. 13.

675 **TABLE 1.** Samples used in this study

676

Identifier	Species	Given locality	Source	Reference
HS1	sakhaite	Titovskoye B deposit, Sakha Republic, Russia	N.N. Pertsev	1
HS2	harkerite	Titovskoye B deposit, Sakha Republic, Russia	N.N. Pertsev	1
HS10	sakhaite-like mineral	Kombat Mine, Tsumeb, Namibia	NMNH 163833	2
HS11	harkerite	Camas Malag, Skye, Scotland	NMNH 106676	3
HS12	sakhaite	Solongo B deposit, Buryatia Republic, Russia	NMNH 153362	4
HS14	sakhaite	Titovskoye B deposit, Sakha Republic, Russia	NMNH 160105	1
HS15	sakhaite	Siberia, Russia*	NMNH 142161	_
HS18	sakhaite	Titovskoye B deposit, Sakha Republic, Russia	N.N. Pertsev #B-330 from P.M. Kartashov	1

677 NMNH – National Museum of Natural History (Smithsonian Institution). References for

678 background on localities: [1] Ostrovskaya et al. (1966); [2] Dunn et al. (1990); [3] Tilley (1951); [4]

679 Malinko and Kuznetsova (1973).

680 *No other locality information available.

TABLE 6. Data measurement and refinement information for sakhaite and harkerite

	HS15-A	HS10-A	HS1-A	HS11-A	HS14-B
a (Å)	14.6466(3)	14.7579(3)	14.7044(9)	10.4397(4)	14.7103(3)
V (Å ³)	3142.0(8)	3214.2(3)	3179.4(6)	4854.4(6)	3183.2(3)
Space group	Fd 3m	Fd3m	Fd 3m	R3m	Fd 3m
Ζ	4	4	4	3/2	4
Radiation	Μο <i>Κ</i> α				
Monochromator	graphite	graphite	graphite	graphite	graphite
Total <i>F</i> _o	7637	30797	5464	24073	8487
Unique <i>F</i> o	209	417	324	2352	645
$F_{\rm o}$ > 4 σ $F_{\rm o}$	184	414	288	1576	522
R _{int}	0.0365(8)	0.024(5)	0.03(2)	0.07(3)	0.020(9)
L.s. parameters	34	45	39	167	31
R_1 for $F_0 > 4\sigma F_0$	0.0293	0.0309	0.0400	0.0622	0.0539
R_1 , all unique F_0	0.0340	0.0310	0.0443	0.1016	0.660
wR ₂	0.0483	0.0777	0.0850	0.1554	0.1332
а	0.0000	0.0208	0.000	0.0493	0.0352
b	44.23	21.55	48.35	82.0	46.54
GooF (= S)	1.118	1.318	1.134	1.111	1.110

682 683

Note: $w = 1/[\sigma^2(F_o^2) + (a \times P)^2 + b \times P]$ where $P = [Max (F_o^2, 0) + 2 \times F_c^2)]/3$

684

TABLE 7A. Atomic parameters for sakhaite and harkerite

		HS15-A	HS10-A	HS1-A	HS14-B
Са	Х	1/8	0.3658(1)	1/8	-0.12257(6)
	У	0.3776(1)	1/8	0.37647(8)	5/8
	z	1/8	1/8	1/8	1/8
	Осс	0.955(7)	0.984(2)	0.964(7)	0.984(8)
Pb	Х		0.394(1)		
	У		1/8		
	z		1/8		
	Осс		0.016(2)		
Mg	x	0	1⁄4	0	0
	У	1/2	1/4	1/2	1/2
	z	0	0	0	0
	Осс	0.91(1)	0.99(1)	1	0.969(8) Mg+ 0.031 Fe
В	х	-0.0338(4)	0.2154(2)	-0.0352(5)	0.0335(2)
	У	0.2838(4)	0.0346(2)	0.2852(5)	0.7165(2)
	z	-0.0338(4)	0.0346(2)	-0.0352(5)	0.0335(2)
	Occ	0.94(3)	0.81(2)	0.794(4)	1
Si	x	-0.007(3)	0.2435(2)	-0.0073(3)	
	У	0.257(3)	0.0065(2)	0.2573(3)	
	z	-0.007(3)	0.0065(2)	-0.0073(3)	
	Occ	0.032(5)	0.183(5)	0.215(7)	
Al	x	1/8	1/8	1/8	
	У	1/8	1/8	1/8	
	Ζ	1/8	1/8	1/8	
	Occ	0.032(5)	0.183(5)	0.215(7)	
С	x	1/4	0.0108(3)	0.2360(5)	1/4
	У	1/4	0.5108(3)	0.2360(5)	1/4
	Ζ	0	0.0108(3)	0.0140(5)	0
01	x	0.0046(1)	0.2552(1)	0.0054(1)	0.1100(1)
	У	0.3606(1)	-0.0052(1)	0.3613(2)	0.75493(9)
	Ζ	0.0046(1)	0.1110(1)	0.0054(1)	-0.00493(9)
02	x	0.2290(3)	0.0758(5)	0.2314(3)	0.2721(3)
	У	0.3321(4)	0.4575(5)	0.3358(4)	0.2721(3)
	Ζ	0.0213 (3)	0.0019(8)	0.0186(3)	0.0825(4)
O3	x	0.056(4)	0.307(1)	0.0566(6)	
	У	0.194(4)	-0.057(1)	0.1934(6)	
	Z	0.056(4)	-0.057(1)	0.0566(6)	
	Occ	0.032(5)	0.183(5)	0.215(7)	
CI / OW	x	1/8	0.155(2)	0.097(1)	0.1511(9)
	У	1/8	0.655(2)	0.097(1)	0.1511(9)
	Ζ	1/8	0.095(2)	0.097(1)	0.0989(9)
	Осс	0.73(3)	0.063(7)	0.125(7)	0.18(1)

687 688

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

689

TABLE 7B. Atomic parameters for sakhaite and harkerite

690

		HS11-A
Ca1	x	0.83989(6)
	У	0.6798(1)
	Ζ	0.35310(2)
	Occ	1.0
Ca2	X	0.17329(7)
	У	0.3466(1)
	z	0.14466(2)
	Occ	1.0
Ca3	х	0.16140(7)
	V	0.3228(2)
	Z	0.39677(2)
	Occ	1.0
Ca4	X	0.82891(7)
	У	0.6578(1)
	Ζ	0.10574(2)
	Occ	1.0
Mg1	x	1/3
	У	1/6
	Z	1/6
	Occ	0.944(9)
Fe1	x	1/3
	У	1/6
	Ζ	1/6
	Occ	0.056(9)
Mg2	x	2/3
	У	5/6
	z	1/3
	Occ	0.954(9)
Fe2	x	2/3
	У	5/6
	Z	1/3
	Occ	0.046(9)
Mg3	X	0
	У	0
	z	0.24846(5)
	Occ	0.96(1)
Fe3	x	0
	У	0
		0.24846(5)
	Z	••=••(•)
	z Occ	0.04(1)
Si1	z Occ x	0.04(1) 0.84389(9)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

DOI: http:	s://doi.org/10	0.2138/am-2018-6563
	Occ	0.863(6)
Si2	x	0
0.2	V	0
	7	0 12970(6)
	000	0.88(1)
Δ11	v	0
	N N	0
	у 7	0 06421(5)
	000	1.06(1)
	000	0.880(2)
DIA	X	0.000(2)
	у -	0.759(5)
	2	0.2900(7)
	Occ	0.137(6)
BZA	X	0
	У	0
	Z	0.141(2)
	Occ	0.12(1)
B1	X	0.1177(3)
	У	0.2354(6)
	Z	0.20037(9)
	Occ	0.946(4)
B2	X	0
	У	0
	Ζ	0.3541(2)
	Occ	0.959(6)
Si1A	x	0.151(1)
	У	0.303(3)
	Z	0.2058(4)
	Occ	0.054(4)
Si2A	X	0
	У	0
	Ζ	0.369(1)
	Occ	0.041(6)
AI1A	x	0
	У	0
	Ζ	0.437(1)
	Occ	0.050(8)
C1	X	0.1896(3)
	У	0.3792(6)
	Z	0.08602(9)
C2	x	0
	У	0
	Z	0
C3	x	0
	V	0

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

DOI: http	z	0.4884(3)
01	x	0.9335(3)
	V	0.3551(3)
	z	0.14523(5)
02	x	0.0512(3)
	V	0.6513(3)
	7	0.35838(5)
03	- x	0.0925(2)
00	N N	0.1851(4)
	y 7	0.1001(4) 0.22471(7)
04	 	0.9013(2)
04	× V	0.8026(4)
	y Z	0.26750(6)
05	2	0.0752(2)
05	~	0.0752(2)
	у 	0.1304(4)
06	2	0.33433(0)
06	X	0.9170(2)
	У	0.8340(4)
	Z	0.13954(7)
CI	X	0
	У	0
	z	0.4555(1)
	Occ	0.42(1)
08	x	0.9071(2)
	У	0.8141(5)
	Z	0.05426(8)
	Occ	0.863(6)
09	x	0
	У	0
	Z	0.0980(1)
	Occ	0.88(1)
O10	x	0.0734(4)
	У	0.3565(4)
	Z	0.09742(7)
011	x	0.2166(3)
	У	0.4333(5)
	Z	0.06342(7)
012	x	0.878(1)
	У	0
	Z	0
013	x	0.0702(4)
	У	0.1404(8)
	Ζ	0.4881(2)
014	x	0.245(7)
	У	0.49(1)
	Z	0.213(2)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6563

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

38

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. D

DOI: https://doi.org/10.2138/am-2018-6	563
--	-----

	Occ	0.054(4)
O15	х	0
	У	0
	Ζ	0.403(2)
	Occ	0.041(6)

692

6	q	2
0	-	-

TABLE 8A. Atomic displacement parameters for sakhaite and harkerite

		HS15-A	HS10-A	HS1-A	HS14-B
Са	<i>U</i> ₁₁	0.0159(3)	0.0164 (5)	0.0158(3)	0.0327(4)
	U_{22}	0.033(1)	0.0123(2)	0.0461(6)	0.0158(2)
	<i>U</i> ₃₃	0.0159(3)	0.0123(2)	0.0158(3)	0.0158(2)
	U_{12}	0	0	0	0
	<i>U</i> ₁₃	-0.0051(3)	0	-0.0034(3)	0
	U_{23}	0	0.0019(2)	0	-0.0070(2)
	$U_{ m eq}$	0.0216(3)	0.0137(2)	0.0259(3)	0.0214(2)
Pb	<i>U</i> ₁₁		0.012(5)		
	U ₂₂		0.040(5)		
	U ₃₃		0.040(5)		
	U_{12}		0		
	U_{13}		0		
	U ₂₃		0.005(4)		
	U _{eq}		0.030(4)		
Mg	<i>U</i> ₁₁	0.0074(6)	0.0079(4)	0.0090(5)	0.0070(4)
U U	U ₂₂	0.0074(6)	0.0079(4)	0.0090(5)	0.0070(4)
	<i>U</i> ₃₃	0.0074(6)	0.0079(4)	0.0090(5)	0.0070(4)
	U_{12}	-0.0005(5)	-0.0006(2)	0.0009(4)	-0.0006(2)
	<i>U</i> ₁₃	-0.0005(5)	0.0006(2)	0.0009(4)	-0.0006(2)
	U_{23}	-0.0005(5)	0.0006(2)	0.0009(4)	-0.0006(2)
	$U_{\rm eq}$	0.0074(6)	0.0079(4)	0.0090(5)	0.0070(4)
В	<i>U</i> ₁₁	0.014(2)	0.009(1)	0.018(2)	0.0118(8)
	U_{22}	0.014(2)	0.009(1)	0.018(2)	0.0118(8)
	U_{33}	0.014(2)	0.009(1)	0.018(2)	0.0118(8)
	U_{12}	-0.003(2)	-0.001(1)	-0.004(2)	-0.0022(6)
	U_{13}	-0.003(2)	-0.001(1)	0.004(2)	0.0022(6)
	U_{23}	-0.003(2)	0.001(1)	-0.004(2)	-0.0022(6)
	$U_{\rm eq}$	0.014(2)	0.009(1)	0.018(2)	0.0118(8)
Si	<i>U</i> ₁₁	0.014(5)	0.008(1)	0.006(1)	
	U_{22}	0.014(5)	0.008(1)	0.006(1)	
	U ₃₃	0.014(5)	0.008(1)	0.006(1)	
	U_{12}	-0.003(2)	-0.001(1)	0.002(1)	
	<i>U</i> ₁₃	-0.003(2)	-0.001(1)	-0.002(1)	
	U_{23}	-0.003(2)	0.001(1)	0.002(1)	
	$U_{\rm eq}$	0.014(5)	0.008(1)	0.006(1)	
Al	$U_{ m eq}$	0.006	0.015	0.006	

40

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

<u></u> O	I: https:/	//doi.org/10.2138/	am-2018-6563		
С	U_{11}	0.053(4)	0.014(1)	0.026(3)	0.057(4)
	U ₂₂	0.053(4)	0.014(1)	0.026(3)	0.057(4)
	U ₃₃	0.053(4)	0.014(1)	0.026(3)	0.057(4)
	<i>U</i> ₁₂	-0.039(5)	0.006(2)	0.010(3)	0.050(4)
	<i>U</i> ₁₃	0.039(5)	0.006(2)	-0.010(3)	-0.050(4)
	<i>U</i> ₂₃	0.039(5)	0.006(2)	-0.010(3)	-0.050(4)
	$U_{ m eq}$	0.053(4)	0.014(1)	0.026(3)	0.057(4)
01	<i>U</i> ₁₁	0.026(1)	0.0239(5)	0.0384(9)	0.0091(6)
	U ₂₂	0.015(1)	0.0239(5)	0.015(1)	0.0230(5)
	<i>U</i> ₃₃	0.026(1)	0.0105(6)	0.0384(9)	0.0230(5)
	U_{12}	-0.003(1)	-0.0053(5)	-0.0004(6)	-0.0037(3)
	<i>U</i> ₁₃	0.003(1)	-0.0041(3)	0.006(1)	0.0037(3)
	<i>U</i> ₂₃	-0.003(1)	0.0041(3)	-0.0004(6)	-0.0030(6)
	$U_{ m eq}$	0.022(1)	0.0194(4)	0.0304(7)	0.0184(4)
02	<i>U</i> ₁₁	0.087(4)	0.040(4)	0.068(3)	0.067(3)
	U ₂₂	0.031(3)	0.056(5)	0.032(3)	0.067(3)
	U ₃₃	0.087(4)	0.044(3)	0.068(3)	0.038(3)
	<i>U</i> ₁₂	0.016(2)	0.037(4)	-0.017(2)	-0.027(3)
	<i>U</i> ₁₃	0.047(5)	0.006(4)	0.022(3)	-0.021(2)
	U ₂₃	-0.016(2)	-0.006(5)	0.017(2)	-0.021(2)
	$U_{ m eq}$	0.068(2)	0.047(3)	0.056(2)	0.057(2)
O3	<i>U</i> ₁₁	0.05(5)	0.030(4)	0.023(4)	
	<i>U</i> ₂₂	0.05(5)	0.030(4)	0.023(4)	
	U ₃₃	0.05(5)	0.030(4)	0.023(4)	
	<i>U</i> ₁₂	0.04(3)	-0.010(3)	0.010(3)	
	<i>U</i> ₁₃	-0.04(3)	-0.010(3)	-0.010(3)	
	<i>U</i> ₂₃	0.04(3)	0.010(3)	0.010(3)	
	$U_{ m eq}$	0.05(5)	0.030(4)	0.023(4)	
CI / OW	<i>U</i> ₁₁		0.4(1)	0.089(9)	0.13(1)
	U ₂₂		0.4(1)	0.089(9)	0.13(1)
	U ₃₃		0.4(1)	0.089(9)	0.13(1)
	<i>U</i> ₁₂		-0.17(6)	-0.013(7)	-0.030(7)
	<i>U</i> ₁₃		0.17(6)	-0.013(7)	0.030(7)
	U_{23}		0.17(6)	-0.013(7)	0.030(7)
	U _{ea}	0.015	0.4(1)	0.089(9)	0.13(1)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

699

TABLE 8B. Atomic displacement parameters for sakhaite and harkerite

		HS11-A
Ca1	<i>U</i> ₁₁	0.0098(4)
	U ₂₂	0.0179(5)
	<i>U</i> ₃₃	0.0170(5)
	<i>U</i> ₁₂	0.0090(3)
	U_{13}	-0.0028(2)
	<i>U</i> ₂₃	-0.0056(4)
	U _{eq}	0.0140(3)
Ca2	<i>U</i> ₁₁	0.0164(4)
	U ₂₂	0.0220(6)
	U ₃₃	0.0223(5)
	U_{12}	0.0110(3)
	<i>U</i> ₁₃	-0.0048(2)
	U_{23}	-0.0096(4)
	$U_{ m eq}$	0.0196(3)
Ca3	<i>U</i> ₁₁	0.0168(4)
	U ₂₂	0.0253(6)
	U_{33}	0.0238(5)
	U_{12}	0.0126(3)
	<i>U</i> ₁₃	-0.0001(2)
	U_{23}	-0.0002(4)
	$U_{\rm eq}$	0.0210(3)
Ca4	<i>U</i> ₁₁	0.0132(4)
	U ₂₂	0.0209(6)
	U_{33}	0.0150(4)
	U_{12}	0.0105(3)
	U_{13}	-0.0055(2)
	U_{23}	-0.0110(4)
	U _{eq}	0.0155(3)
Mg1	U_{11}	0.007(1)
	U_{22}	0.0075(8)
	U_{33}	0.0052(9)
	U_{12}	0.0035(6)
	<i>U</i> ₁₃	-0.0002(7)
	U ₂₃	-0.0001(3)
	U _{eq}	
⊢e1	U_{11}	0.007(1)
	U_{22}	0.0075(8)

42

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am.2018.6563

DOI: https	U_{33}	0.0052(9)
	U_{12}	0.0035(6)
	U_{13}	-0.0002(7)
	U_{23}	-0.0001(3)
	U _{eq}	0.0066(6)
Mg2	U ₁₁	0.004(1)
	U ₂₂	0.0066(8)
	<i>U</i> ₃₃	0.0073(9)
	U_{12}	0.0020(5)
	<i>U</i> ₁₃	-0.0021(7)
	U_{23}	-0.0011(3)
	U_{eq}	0.0063(6)
Fe2	<i>U</i> ₁₁	0.004(1)
	<i>U</i> ₂₂	0.0066(8)
	<i>U</i> ₃₃	0.0073(9)
	<i>U</i> ₁₂	0.0020(5)
	<i>U</i> ₁₃	-0.0021(7)
	U_{23}	-0.0011(3)
	U_{eq}	0.0063(6)
Mg3	<i>U</i> ₁₁	0.0061(9)
	<i>U</i> ₂₂	0.0061(9)
	<i>U</i> ₃₃	0.006(1)
	U_{12}	0.0030(5)
	<i>U</i> ₁₃	0
	U_{23}	0
	U_{eq}	0.0061(8)
Fe3	<i>U</i> ₁₁	0.007(2)
	<i>U</i> ₂₂	0.0061(9)
	U ₃₃	0.006(1)
	<i>U</i> ₁₂	0.0030(5)
	<i>U</i> ₁₃	0
	<i>U</i> ₂₃	0
	$U_{\rm eq}$	0.0061(8)
Si1	<i>U</i> ₁₁	0.0049(5)
	<i>U</i> ₂₂	0.0052(7)
	<i>U</i> ₃₃	0.0059(6)
	<i>U</i> ₁₂	0.0026(4)
	<i>U</i> ₁₃	-0.0003(2)
	<i>U</i> ₂₃	-0.0007(5)
	U_{eq}	0.0053(3)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

43

DOI: https	s://doi.org	g/10.2138/am-2018-6563	
Si2	U_{11}	0.0059(7)	
	<i>U</i> ₂₂	0.0059(7)	
	U ₃₃	0.003(1)	
	U_{12}	0.0030(4)	
	U_{13}	0	
	U_{23}	0	
	U_{eq}	0.0057(7)	
AI1	<i>U</i> ₁₁	0.0100(8)	
	U ₂₂	0.0100(8)	
	U ₃₃	0.009(1)	
	U_{12}	0.0050(4)	
	U_{13}	0	
	<i>U</i> ₂₃	0	
	U _{eq}	0.0098(7)	
B1A	<i>U</i> ₁₁	0.0049(5)	
	<i>U</i> ₂₂	0.0052(7)	
	U ₃₃	0.0059(6)	
	<i>U</i> ₁₂	0.0026(4)	
	<i>U</i> ₁₃	-0.0003(2)	
	U_{23}	-0.0007(5)	
	U_{eq}	0.0053(3)	
B2A	<i>U</i> ₁₁	0.0059(7)	
	U ₂₂	0.0059(7)	
	<i>U</i> ₃₃	0.003(1)	
	U_{12}	0.0030(4)	
	U_{13}	0	
	<i>U</i> ₂₃	0	
	U _{eq}	0.0051(7)	
B1	<i>U</i> ₁₁	0.0049(5)	
	<i>U</i> ₂₂	0.0052(7)	
	U_{33}	0.0059(6)	
	<i>U</i> ₁₂	0.0026(4)	
	U_{13}	-0.003(2)	
	U_{23}	-0.007(5)	
	U _{eq}	0.0053(3)	
B2	<i>U</i> ₁₁	0.0059(7)	
	<i>U</i> ₂₂	0.0059(7)	
	<i>U</i> ₃₃	0.003(1)	
	<i>U</i> ₁₂	0.030(4)	
	U_{13}	0	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

	U_{23}	0
_	U _{eq}	0.0051(7)
Si1A	<i>U</i> ₁₁	0.0049(5)
	<i>U</i> ₂₂	0.0052(7)
	<i>U</i> ₃₃	0.0059(6)
	U_{12}	0.0026(4)
	<i>U</i> ₁₃	-0.0003(2)
	U_{23}	-0.0007(5)
	U_{eq}	0.0053(3)
Si2A	U_{11}	0.0059(7)
	<i>U</i> ₂₂	0.0059(7)
	<i>U</i> ₃₃	0.003(1)
	U_{12}	0.0030(4)
	<i>U</i> ₁₃	0
	U_{23}	0
	U _{eq}	0.0051(7)
AI1A	<i>U</i> ₁₁	0.010(2)
	U_{22}	0.010(2)
	<i>U</i> ₃₃	0.0092(8)
	U_{12}	0.005(1)
	<i>U</i> ₁₃	0
	U_{23}	0
	U _{eq}	0.010(2)
C1	<i>U</i> ₁₁	0.013(2)
	U_{22}	0.015(2)
	U ₃₃	0.012(2)
	<i>U</i> ₁₂	0.008(1)
	U_{13}	-0.0002(9)
	U_{23}	-0.000(2)
	U _{eq}	0.0130(9)
C2	<i>U</i> ₁₁	0.009(3)
	U ₂₂	0.009(3)
	U_{33}	0.013(5)
	<i>U</i> ₁₂	0.004(2)
	<i>U</i> ₁₃	0
	U_{23}	0
	U _{eq}	0.010(2)
C3	<i>U</i> ₁₁	0.009(4)
	<i>U</i> ₂₂	0.009(4)
	U_{33}	0.019(8)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2018-6563

	U ₁₂	0.004(2)
	<i>U</i> ₁₃	0
	U_{23}	0
	U_{eq}	0.012(3)
01	<i>U</i> ₁₁	0.036(2)
	<i>U</i> ₂₂	0.015(1)
	<i>U</i> ₃₃	0.019(1)
	U_{12}	0.012(1)
	<i>U</i> ₁₃	0.010(1)
	U_{23}	0.013(1)
	U_{eq}	0.0234(7)
02	<i>U</i> ₁₁	0.021(1)
	<i>U</i> ₂₂	0.014(1)
	<i>U</i> ₃₃	0.021(1)
	U_{12}	0.011(1)
	U_{13}	0.006(1)
	U_{23}	0.013(1)
	U _{eq}	0.0176(6)
O3	<i>U</i> ₁₁	0.016(1)
	U_{22}	0.013(1)
	<i>U</i> ₃₃	0.021(2)
	U_{12}	0.0066(9)
	<i>U</i> ₁₃	0.0058(7)
	U_{23}	0.012(1)
	U _{eq}	0.0167(8)
O4	<i>U</i> ₁₁	0.032(2)
	U_{22}	0.008(2)
	<i>U</i> ₃₃	0.009(1)
	U_{12}	0.0042(8)
	<i>U</i> ₁₃	0.0023(6)
	U_{23}	0.005(1)
	U _{eq}	0.0191(8)
O5	<i>U</i> ₁₁	0.011(1)
	U ₂₂	0.010(2)
	U ₃₃	0.017(2)
	<i>U</i> ₁₂	0.0048(8)
	<i>U</i> ₁₃	0.0042(7)
	U_{23}	0.008(1)
	U _{eq}	0.0127(7)
O6	U_{11}	0.058(2)

46

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

e as	Authors (Yea DOI: https://	r) Title. doi.org/	American Mineralogist, in pre /10.2138/am-2018-6563
		U ₂₂	0.006(2)
		U ₃₃	0.009(2)
		<i>U</i> ₁₂	0.0032(9)
		<i>U</i> ₁₃	0.0003(7)
		<i>U</i> ₂₃	0.000(1)
		U _{eq}	0.030(1)
	CI	<i>U</i> ₁₁	0.028(2)
		U ₂₂	0.028(2)
		U ₃₃	0.018(3)
		<i>U</i> ₁₂	0.014(1)
		<i>U</i> ₁₃	0
		U ₂₃	0
		U _{eq}	0.025(2)
	08	<i>U</i> ₁₁	0.022(2)
		<i>U</i> ₂₂	0.006(2)
		<i>U</i> ₃₃	0.027(2)
		<i>U</i> ₁₂	0.0029(9)
		<i>U</i> ₁₃	-0.0042(8)
		<i>U</i> ₂₃	-0.008(2)
		U _{eq}	0.0200(10)
	O9	<i>U</i> ₁₁	0.031(3)
		U ₂₂	0.031(3)
		<i>U</i> ₃₃	0.009(3)
		<i>U</i> ₁₂	0.016(2)
		<i>U</i> ₁₃	0
		U ₂₃	0
		U _{eq}	0.024(2)
	O10	<i>U</i> ₁₁	0.020(2)
		U ₂₂	0.042(2)
		<i>U</i> ₃₃	0.055(2)
		<i>U</i> ₁₂	0.007(2)
		<i>U</i> ₁₃	0.023(2)
		U ₂₃	-0.007(2)
		U _{eq}	0.043(1)
	011	<i>U</i> ₁₁	0.051(2)
		U ₂₂	0.031(3)
		U_{33}	0.013(2)
		U_{12}	0.015(1)
		<i>U</i> ₁₃	0.0035(9)
		U ₂₃	0.007(2)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

	U_{eq}	0.034(1)
O12	<i>U</i> ₁₁	0.035(4)
	<i>U</i> ₂₂	0.047(6)
	<i>U</i> ₃₃	0.062(6)
	U_{12}	0.023(3)
	<i>U</i> ₁₃	0.014(2)
	U_{23}	0.028(5)
	U _{eq}	0.047(3)
O13	<i>U</i> ₁₁	0.017(3)
	U ₂₂	0.006(3)
	<i>U</i> ₃₃	0.032(4)
	U_{12}	0.003(2)
	<i>U</i> ₁₃	0.001(1)
	U_{23}	0.003(3)
	U _{eq}	0.020(2)
014	U _{eq}	0.05(3)
O15	U_{eq}	0.05

700

TABLE 9A. Selected bond lengths (Å) for sakhaite and harkerite

			HS1-A	HS15-A	HS14-B
Mg	01	× 6	2.043(3)	2.045(2)	2.050(2)
Ca	02	× 2	2.293(6)	2.248(6)	2.228(5)
	01	× 2	2.498(3)	2.507(2)	2.496(2)
	01	× 4	2.5950(8)	2.5739(9)	2.5727(6)
	02	× 4	2.703(2)	2.722(2)	2.718(2)
< ^[9] Ca-O>			2.564	2.556	2.550
С	02	× 3	1.254(5)	1.281(5)	1.290(5)
В	01	× 3	1.401(2)	1.376(2)	1.373(2)
Si	01	× 3	1.551(4)	1.53(4)	
	O3		1.63(2)	1.62(13)	
<si-0></si-0>			1.570	1.553	
Al	O3	× 3	1.74(2)	1.74(10)	

703

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6563

704

705

706

TABLE 9B. Selected bond lengths (Å) for sakhaite and harkerite

	Н	S10-A	
Mg	01	× 6	2.054(2)
Са	O2	× 4	2.379(10)
	O2	× 4	2.394(9)
	01	× 2	2.524(2)
	O1	× 4	2.530(1)
< ^[8] Ca-O>			2.493
Pb	02	× 4	2.17(1)
	O2	× 4	2.279(10)
	O1	× 2	2.502(2)
	O1	× 4	2.81(2)
	O3	× 2*	2.80(2)
< ^[8-10] Pb-O>			2.60
С	02	× 3	1.247(4)
В	01	× 3	1.400(2)
Si	01	× 3	1.561(3)
	O3		1.63(2)
<si-0></si-0>			1.579
AI	O3	× 3	1.73(2)

mean Pb-O distance.

711 **TABLE 9C.** Selected bond lengths (Å) for sakhaite and harkerite

					HS11-	A					
Mg1	01	× 4	2.030(2)	Ca4	O10	× 2	2.346(3)	Si1A	O3		1.44(2)
	O6	× 2	2.058(4)		O4		2.352(4)		01	× 2	1.52(1)
<mg1-o></mg1-o>			2.039		O6		2.358(4)		014		1.73(12)
					O3	× 2	2.553(1)	<si1a-o></si1a-o>			1.55
Mg2	O5	× 2	1.982(3)		O1	× 2	2.628(3)				
	O2	× 4	2.106(2)	< ^[8] Ca4-O>			2.471	Si2A	O5	× 3	1.55(3)
<mg2-o></mg2-o>			2.064						015		1.71(10)
								<si2a-o></si2a-o>			1.59
Mg3	O4	× 3	2.036(4)	Si1	02	× 2	1.601(2)				
	O3	× 3	2.072(4)		O4		1.604(4)	AI1A	015	× 3	1.79(11)
<mg3-o></mg3-o>			2.054		O8		1.648(4)		014		1.81(12)
				<si1-0></si1-0>			1.613	<ai1a-o></ai1a-o>			1.80
Ca1	O12	× 2	2.357(6)								
	O11		2.378(4)	Si2	O6		1.584(4)	B1A	02	× 2	1.49(2)
	O2	× 2	2.384(3)		O9		1.631(8)		04		1.56(3)
	O5	× 2	2.510(1)	<si2-0></si2-0>			1.596	<b1a-o></b1a-o>			1.51
	O2	× 2	2.675(3)								
< ^[8] Ca1-O>			2.484	Al1	O9		1.737(7)	B2A	O6	× 3	1.502(6)
					O8	× 3	1.757(4)				
Ca2	O13		2.383(8)	<al1-0></al1-0>			1.752				
	O1	× 2	2.550(3)								
	O13	× 2	2.566(2)	B1	O3		1.332(6)				
	01	× 2	2.622(3)		O1	× 2	1.355(4)				
	O10	× 2	2.666(4)	<b1-o></b1-o>			1.348				
	O6	× 2	2.727(1)								
< ^[9½] Ca2-O>			2.620	B2	O5	× 3	1.360(4)				
Ca3	02	× 2	2.607(3)	C1	O10	× 2	1.258(4)				
	O11	× 2	2.610(2)		O11		1.261(6)				
	O10	× 2	2.631(4)	<c1-0></c1-0>			1.259				
	O5		2.673(4)								
	O4	× 2	2.705(1)	C2	012	× 3	1.273(10)				
	O3		2.732(4)								
< ^[10] Ca3-O>			2.651	C3	013	× 3	1.270(8)				

712

713

TABLE 10. Chemical formulae as determined by structure refinement (SREF) versus electron microprobe analyses (EMPA), for crystals
 where both data sets are available.

716

Crystal	SREF	EMPA (average)
HS1-D	$\begin{array}{c} Ca_{46.4(3)} \ Mg_{15.9(2)} \ [AI_{1.85(5)} \ Si_{7.4(2)}] \ B_{25.4(9)} \ C_{16} \ O_{151.4(2)} \\ (HCI)_{3.7(2)} \end{array}$	$ \begin{bmatrix} Ca_{47.97(2)} Na_{0.01(1)} K_{0.01(1)} \end{bmatrix} \begin{bmatrix} Mg_{15.1(2)} Fe_{0.52(2)} Mn_{0.03(3)} \end{bmatrix} \begin{bmatrix} AI_{2.2(3)} Si_{7.0(4)} \end{bmatrix} \\ B_{24.6(3)} C_{16} O_{148.5(7)} (OH)_{2.3(7)} F_{0.55(4)} (HCI)_{3.54(7)} \end{bmatrix} $
HS14-A	$Ca_{46.2(3)} \left[Mg_{15.8(2)} Fe_{0.2(2)}\right] B_{32} C_{16} O_{144} (HCI)_{5.8(3)}$	$ \begin{bmatrix} Ca_{47.1(1.3)} Na_{0.03(3)} K_{0.02(1)} \end{bmatrix} \begin{bmatrix} Mg_{15.17(4)} Fe_{0.73(4)} Mn_{0.08(2)} \end{bmatrix} \begin{bmatrix} AI_{0.49(4)} Si_{1.0(2)} \end{bmatrix} \\ B_{30.8(2)} C_{16} O_{143(1)} (OH)_{1.7(8)} F_{0.58(2)} (HCI)_{4.82(7)} \end{bmatrix} $
HS14-B	$Ca_{47.0(4)} \left[Mg_{15.6(2)} Fe_{0.4(2)}\right] B_{32} C_{16} O_{144} (HCI)_{5.7(3)}$	$ \begin{bmatrix} Ca_{47.4(3)} Na_{0.04(1)} \end{bmatrix} \begin{bmatrix} Mg_{15.10(3)} Fe_{0.83(2)} Mn_{0.07(1)} \end{bmatrix} \begin{bmatrix} AI_{0.13(2)} Si_{0.24(2)} \end{bmatrix} B_{31.70(2)} \\ C_{16} O_{143.0(5)} OH_{0.6(4)} F_{0.64(3)} (HCI)_{5.14(3)} \\ \end{bmatrix} $
HS15-B	$\begin{array}{c} Ca_{46.8(3)} \left[Mg_{14.4(2)} Fe_{1.6(2)}\right] \left[AI_{0.66(3)} Si_{2.6(2)}\right] B_{29.4(1)} C_{16} \\ O_{146.6(1)} (HCI)_{5.1(3)} \end{array}$	$ \begin{array}{l} [Ca_{46.8(6)}Na_{0.01(1)}Sr_{0.039(2)}REE_{0.04(1)}][Mg_{13.9(2)}Fe_{1.59(8)}Mn_{0.52(3)}] \\ [AI_{1.0(1)}Si_{2.5(3)}]B_{29.1(3)}S_{0.11(1)}P_{0.02(2)}C_{16}O_{144(2)}(OH)_{3(1)}F_{0.47(6)} \\ (HCI)_{3.8(1)} \end{array} $
HS11-A	$\begin{array}{c} Ca_{48} \left[Mg_{15.5(2)} Fe_{0.5(2)} \right] \left[AI_{3.76(3)} Si_{15.0(2)} \right] B_{17.0(2)} C_{16} O_{159.0(2)} \\ (HCI)_{1.56(5)} \end{array}$	$\begin{array}{c} Ca_{46.5(2)} \left[Mg_{15.19(3)} Fe_{0.76(3)} Mn_{0.04(1)}\right] \left[AI_{3.12(3)} Si_{13.6(3)}\right] B_{18.6(2)} C_{16} \\ O_{151.0(3)} \left(OH\right)_{5.8(3)} F_{0.50(7)} \left(HCI\right)_{2.14(5)} \end{array}$
HS11-B	$\begin{array}{c} Ca_{48} \left[Mg_{15.4(2)} Fe_{0.6(2)} \right] \left[AI_{3.46(3)} Si_{13.8(2)} \right] B_{18.2(2)} C_{16} O_{157.8(2)} \\ (HCI)_{1.14(4)} \end{array}$	$ \begin{array}{c} [Ca_{47.1(3)}Na_{0.03(2)}K_{0.01(1)}][Mg_{\ 15.25(1)}Fe_{0.70(1)}Mn_{0.05(2)}] & [AI_{2.88(3)}\\ Si_{12.4(2)}]B_{19.8(2)}C_{16}O_{151.6(5)}(OH)_{4.1(5)}F_{0.50(1)}(HCI)_{2.08(5)} \end{array} $
HS10 (avg.)	$\begin{array}{c} [Ca_{47.51(8)}Pb_{0.49(8)}]Mg_{15.7(2)}[AI_{1.29(5)}Si_{5.2(2)}]B_{26.7(5)}C_{16}\\ O_{149.2(2)}(H_2O)_{2.8(5)}\end{array}$	$ \begin{array}{l} & \left[Ca_{47.2(3)}Na_{0.01(1)}Pb_{0.5(1)}Sr_{0.7(2)}Ba_{0.01(1)}REE_{0.13(5)} \right] \left[Mg_{15.5(3)} \\ & Mn_{0.26(3)} \right] \left[AI_{1.3(2)}Si_{5.4(5)} \right] B_{26.6(4)}C_{16}S_{0.21(4)}O_{147.1(7)}(OH)_{1.5(5)}F_{0.47(6)} \\ & \left(HCI \right)_{0.25(4)} \end{array} $