1	Revision 2
2	
3	High-pressure study of dravite tourmaline: Insights into the accommodating nature of the
4 5	Earl O'Bannon III, ^{1*} Christine M. Beavers ^{2,3} , Martin Kunz ³ , and Quentin Williams ²
6 7	¹ Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA ² Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA
9	³ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
10	USA
11	*Corresponding Author
12	Abstract
13	The high-pressure behavior of dravite tourmaline [Na(Mg ₃)Al ₆ (Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ (OH)]
14	has been studied using luminescence spectroscopy and synchrotron based single-crystal
15	diffraction up to ~65 and ~24 GPa, respectively. Two emission bands associated with Cr^{3+}/V^{2+}
16	substitution are constant in energy up to ~9.0 GPa, and shift to longer wavelength at higher
17	pressures, suggesting that a change in compressional mechanism could occur at this pressure.
18	Single-crystal diffraction data show subtle changes in ring ditrigonality occur near 9.0 GPa which
19	could cause the observed change in luminescence. Near 15 GPa, a splitting of one of the
20	emission bands is observed, suggesting that a phase transition occurs at this pressure and that
21	two unique octahedral sites are present in the high-pressure phase. Hysteresis is not observed
22	on decompression, which indicates that this is a second order transition, and the high-pressure
23	structure appears to be metastable up to ~65 GPa. Single-crystal diffraction measurements
24	show that a phase transition from rhombohedral R3m to rhombohedral R3 occurs at pressures
25	near 15.4 GPa. The high-pressure phase is characterized by a distorted Si_6O_{18} ring (e.g. the Si-Si-
26	Si angles deviate from 120°), and the Si, Al, O6, O7, and O8 sites of the low-pressure phase split,

27	implying that the high-pressure phase of tourmaline is a higher entropy phase. The large X-site
28	exerts the primary control on compressibility, and the substitution of larger cations into this site
29	will likely lower the pressure at which this transition occurs. Dravite tourmaline shows
30	anisotropic compression with the <i>c</i> -axis being more compressible than the <i>a</i> -axis. The pressure
31	volume data up to ~15.4 GPa were fit with 2^{nd} and 3^{rd} order Birch-Murnaghan equations of
32	state. We obtain a bulk modulus, K_0 = 109.6(3.2) GPa, and a pressure derivative K_0 ' = 4.6(8) GPa,
33	and with the pressure derivative set to 4, a bulk modulus of 112.0(1.0) GPa is derived.
34	Moreover, our high-pressure results show that massive overbonding of the X and Y sites can be
35	accommodated by the tourmaline structure. This unexpected result may explain the
36	extraordinary structural tolerance with respect to chemical substitution on the X, Y, and Z sites.
37	Key Words: dravite; High-pressure; Single-crystal diffraction, luminescence, phase transitions
38	Introduction
39	Tourmaline is a supergroup of minerals that is chemically complex and is divided into
40	different varieties based on chemical composition (Hawthorne and Henry 1999; Henry et al.
41	2011). This group of minerals is so complex and chemically variable that an entire
42	subcommittee on tourmaline nomenclature exists. These minerals are categorized using the
43	generalized tourmaline structural formula $XY_3Z_6(T_6O_{18})(BO_3)_3V_3W$ where X = Na, Ca, K; Y = Fe,
44	Mg, Mn, Al, Li; Z = Al, Fe, Mg, Cr; T = Si, Al; B= B; V = (OH), O; and W = (OH), O, F (Hawthorne
45	and Henry 1999; Henry et al. 2011). From a compositional perspective, most of the variability
46	occurs in the X, Y, and Z sites; more information on the classification of tourmaline supergroup
47	minerals can be found in Hawthorne and Henry (1999) and Henry et al. (2011). Tourmaline is

49	Tourmaline typically crystallizes in the rhombohedral crystal system with R3m symmetry
50	(Hawthorne and Henry 1999; Henry et al. 2011), although other crystal systems have been
51	reported (Akizuri et al. 2001; Shtukenberg et al. 2007). It is typically considered a ring-silicate
52	with six corner-shared TO ₄ tetrahedral sites that form a hexagonal ring, a nine-fold <i>X</i> -site, two
53	six-fold octahedral Y- and Z-sites, and a trigonal planar B-site (Figure 1). Although the T-sites are
54	dominantly occupied by Si, B and Li substitution into them has been reported (Rosenberg and
55	Foit 1979; Hughes et al. 2000). Interestingly, the first reported structure of tourmaline
56	presented the Si_6O_{18} ring as ditrigonal in symmetry (Hamburger and Buerger 1948). However, it
57	was later shown to be hexagonal in symmetry (Ito and Sadanaga 1951), and all subsequent
58	studies agree that the Si_6O_{18} ring is hexagonal at ambient conditions.
59	Tourmaline is the most widespread borosilicate mineral in natural rocks and the
60	dominant carrier of B in many rock types (Henry and Dutrow, 1996), and is found in subduction
61	zone environments (Nakano and Nakamura 2001; Bebout and Nakamura 2003; Ota et al. 2008).
62	B isotope systematics in tourmalines have been used to elucidate crust-mantle recycling
63	processes in subduction zones (Nakano and Nakamura, 2001). Petrologic studies have shown
64	that dravite tourmaline breaks down at ~7.0 GPa and ~900 °C (Werding and Schreyer 1996) and
65	$^{ m 2}$ -5 GPa and $^{ m 1000}$ °C (Krosse 1995) and that breakdown pressures and temperatures are
66	dependent on its precise composition (Ota et al. 2008). The decomposition products associated
67	with tourmaline breakdown are complex, but one decomposition product, phengite, is
68	important from a deep Earth boron and water cycling perspective; phengite could transport B
69	to depths >300 km (Domanik and Holloway 1996; Marschall et al. 2007). Higher pressure
70	studies (e.g. > 7.0 GPa) on tourmaline are scarce, and only two studies appear to have been

71	reported: Li et al., (2004) and Xu et al., (2016). Li et al. (2004) conducted high-pressure powder
72	diffraction experiments on schorl tourmaline $[Na(Fe_3)Al_6(Si_6O_{18})(BO_3)_3(OH)_3(OH)]$ up to 27.8
73	GPa, with no phase transitions being reported. Xu et al. (2016) reported high-pressure and
74	temperature powder diffraction experiments on uvite tourmaline
75	$[Ca(Mg_3)MgAl_5(Si_6O_{18})(BO_3)_3(OH)_3(OH)]$ up to ~18.4 GPa and 723 K and again, no phase
76	transitions were observed. These powder diffraction studies provide insights into how the unit
77	cell responds to compression, but they do not elucidate the positional changes of the individual
78	atoms in the unit cell (Li et al. 2004; Xu et al. 2016).
79	This is in contrast to other ring-silicates such as cordierite [(Mg, Fe) ₂ Al ₃ (AlSi ₅ O ₁₈)] and
80	beryl [$Be_3Al_2(Si_6O_{18})$] which each show extensive high-pressure polymorphism (Prencipe et al.
81	2011; Miletich et al. 2014; Scheidl et al. 2014; Finkelstein et al. 2015; O'Bannon and Williams
82	2016b). Both cordierite and beryl undergo high-pressure phase transitions that involve
83	distortion of the Si_6O_{18} ring. The main structural difference between tourmaline and these
84	other ring silicates is that tourmaline does not have open channels in its structure like cordierite
85	and beryl. Thus, it is possible that the denser-packed configuration of the Si_6O_{18} rings in
86	tourmaline produces a structure that is more stable under compression than open channel ring
87	silicates like cordierite or beryl.
88	Tourmaline is also both pyroelectric and piezoelectric, and has been used in industrial
89	applications such as pressure gauges and air and water purifiers (Frondel 1948; Lameiras et al.
90	2010). Growing synthetic tourmalines >1 mm in diameter has not yet been achieved, and thus

91 industrial applications require natural tourmalines (Shekhar Pandey and Schreuer 2012). Thus,

92 despite its widespread use in industrial applications and as a geochemical probe, tourmaline's

high-pressure stability/polymorphism is poorly understood. Hence, our experiments are 93 oriented towards understanding the trace element behavior and the bulk structural response of 94 dravite tourmaline to compression by combining the results of luminescence and single-crystal 95 96 diffraction studies to provide an integrated picture of structural changes in dravite tourmaline 97 under compression. Methods 98 99 2.1 Sample characterization The natural light green gem quality tourmaline sample used in this study is from the 100 Lengenbach Quarry, Switzerland. We characterized the sample with single-crystal X-ray 101 diffraction, Raman, and luminescence spectroscopy, which all agree well with previous studies 102 (Hawthorne et al. 1993; Gasharova et al. 1997; Gaft et al. 2005). Ambient pressure single-crystal 103 X-ray measurements were conducted on Beamline 11.3.1 at the Advanced Light Source (ALS) at 104 Lawrence Berkeley National Lab in Berkeley, CA. We modeled our tourmaline as an endmember 105 dravite and our ambient structure refines with an R₁ of 1.85% when refined anisotropically and 106 2.99% when refined isotropically. Its crystal system, spacegroup and unit cell parameters are: 107 rhombohedral R3m, a-axis 15.9370(6) Å, c-axis 7.1749(3) Å, and volume 1578.19(14) Å³, 108 respectively. For the ambient structure refinement, we fixed the O1-H1 and O3-H3 bond 109 lengths to 0.958(8) and 0.972(2) Å, respectively. These bond lengths were determined from 110 previous neutron diffraction results on tourmaline (Gatta et al. 2014). Trace element 111 concentrations of dravite tourmaline were measured with a PhotonMachines Analyte 193H, 112 113 which is a 193-nm ArF excimer laser system coupled with a ThermoScientific ElementXR single-114 collect or magnetic sector ICP-MS. The instrument was calibrated with a SRM 610 trace element

115	glass from NIST, and Al was used as the internal standard. The following trace elements were
116	measured (in ppm): Cr 215 (±19), V 336 (±32), Li 18 (±4.0), Ti 474 (±53), Ca 2183 (±597), and K,
117	Fe, and Mn are below detection limits. The Subcommittee on Tourmaline Nomenclature (STN)
118	of the IMA Commission on New Minerals, Nomenclature and Classification recommends
119	nomenclature of tourmaline supergroup minerals (Novak et al., 2009; Henry et al., 2011;
120	Hawthorne and Dirlam, 2011). Using our single-crystal X-ray results combined with our trace
121	element results, and following STN recommendations, we determined that this tourmaline is of
122	the dravite variety. Dravite variety tourmaline has an ideal chemical formula of
123	[Na(Mg ₃)Al ₆ (Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ (OH)]. Hence, the structures were refined isotropically and
124	modeled as endmember dravite tourmaline: this allowed direct comparisons of the results
125	obtained at each pressure.
126	2.2 Luminescence spectroscopy
126 127	<i>2.2 Luminescence spectroscopy</i> Luminescence spectra were collected from 650-800 nm (15380-12500 cm ⁻¹) with a
126 127 128	2.2 Luminescence spectroscopy Luminescence spectra were collected from 650-800 nm (15380-12500 cm ⁻¹) with a Horiba LabRAM HR Evolution Raman spectrometer with a spectrometer focal length of 800 mm.
126 127 128 129	 2.2 Luminescence spectroscopy Luminescence spectra were collected from 650-800 nm (15380-12500 cm⁻¹) with a Horiba LabRAM HR Evolution Raman spectrometer with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of ~65 GPa and on decompression at 300 K using an
126 127 128 129 130	2.2 Luminescence spectroscopy Luminescence spectra were collected from 650-800 nm (15380-12500 cm ⁻¹) with a Horiba LabRAM HR Evolution Raman spectrometer with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of ~65 GPa and on decompression at 300 K using an excitation wavelength of 532 nm. A symmetric type DAC with 200 µm type-la diamonds was
126 127 128 129 130 131	2.2 Luminescence spectroscopy Luminescence spectra were collected from 650-800 nm (15380-12500 cm ⁻¹) with a Horiba LabRAM HR Evolution Raman spectrometer with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of ~65 GPa and on decompression at 300 K using an excitation wavelength of 532 nm. A symmetric type DAC with 200 µm type-Ia diamonds was used in all high-pressure luminescence experiments, and single crystals of the sample and at
126 127 128 129 130 131 132	2.2 Luminescence spectroscopy Luminescence spectra were collected from 650-800 nm (15380-12500 cm ⁻¹) with a Horiba LabRAM HR Evolution Raman spectrometer with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of ~65 GPa and on decompression at 300 K using an excitation wavelength of 532 nm. A symmetric type DAC with 200 µm type-Ia diamonds was used in all high-pressure luminescence experiments, and single crystals of the sample and at least two ruby spheres (Chervin et al. 2001) were loaded into the sample compartment. Either
126 127 128 129 130 131 132 133	2.2 Luminescence spectroscopy Luminescence spectra were collected from 650-800 nm (15380-12500 cm ⁻¹) with a Horiba LabRAM HR Evolution Raman spectrometer with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of ~65 GPa and on decompression at 300 K using an excitation wavelength of 532 nm. A symmetric type DAC with 200 µm type-Ia diamonds was used in all high-pressure luminescence experiments, and single crystals of the sample and at least two ruby spheres (Chervin et al. 2001) were loaded into the sample compartment. Either 4:1 methanol:ethanol mixtures or Ne was used as the pressure medium depending on the
126 127 128 129 130 131 132 133 134	2.2 Luminescence spectroscopy Luminescence spectra were collected from 650-800 nm (15380-12500 cm ⁻¹) with a Horiba LabRAM HR Evolution Raman spectrometer with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of ~65 GPa and on decompression at 300 K using an excitation wavelength of 532 nm. A symmetric type DAC with 200 µm type-la diamonds was used in all high-pressure luminescence experiments, and single crystals of the sample and at least two ruby spheres (Chervin et al. 2001) were loaded into the sample compartment. Either 4:1 methanol:ethanol mixtures or Ne was used as the pressure medium depending on the target pressure range of the experiment. An Olympus BXFM-ILHS microscope with a 50x long
126 127 128 129 130 131 132 133 134 135	2.2 Luminescence spectroscopy Luminescence spectra were collected from 650-800 nm (15380-12500 cm ⁻¹) with a Horiba LabRAM HR Evolution Raman spectrometer with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of ~65 GPa and on decompression at 300 K using an excitation wavelength of 532 nm. A symmetric type DAC with 200 µm type-Ia diamonds was used in all high-pressure luminescence experiments, and single crystals of the sample and at least two ruby spheres (Chervin et al. 2001) were loaded into the sample compartment. Either 4:1 methanol:ethanol mixtures or Ne was used as the pressure medium depending on the target pressure range of the experiment. An Olympus BXFM-ILHS microscope with a 50x long working distance objective was used to focus the laser beam onto the sample. An 1800

137 nm) was utilized. Combinations of Gaussian and Lorentzian functions were fit to the

- 138 luminescence spectra with Horiba Labspec6 software.
- 139 2.3 High-pressure single crystal diffraction

140 High-pressure single-crystal measurements were carried out using a (DESY) BX90

141 (Kantor et al. 2012) type diamond anvil cell (DAC) equipped with type Ia 500 μm culet Boehler-

142 Almax geometry diamond anvils with 85° angular access (Boehler and De Hantsetters 2004).

143 Rhenium gaskets with a 300 μ m hole were used to contain the samples. Gasket holes were cut

using an Oxford Instruments laser mill at the Advanced Light Source (ALS), Berkeley, CA. Single

145 crystals of dravite tourmaline and two ruby spheres were loaded into the sample compartment

146 with neon as the pressure medium. The standard ruby fluorescence gauge was used to

147 determine pressure (Mao et al. 1986). Neon was loaded using the gas loading apparatus at the

148 ALS. Deviatoric stress becomes detectable above ~15 GPa in Ne, but the pressure gradients

remain small (Meng et al., 1993; Klotz et al. 2009).

150 High-pressure single-crystal X-ray diffraction measurements were conducted at

151 Beamline 12.2.2 at the ALS, which was recently described by Stan et al (2018). Measurements

152 were taken at various pressures up to ~23.6 GPa at room temperature. The DAC was mounted

153 on a Huber sample stage, and shutterless single-crystal diffraction data were collected on a

154 Perkin Elmer amorphous silicon detector using synchrotron radiation monochromated by

silicon(111) to a wavelength of 0.49594 Å (25 keV). Distance and wavelength calibrations were

done using a NIST single crystal ruby diffraction standard (Wong-Ng et al. 2001). Phi scans were

- employed, from -40° to 40° and 140° to 220°, to measure across both diamonds with a 0.25°
- image width for conventional data collection, and 1° to keep the most intense reflections

159 within detector dynamic range.

160 *2.4 Data processing*

161	Image masks, to avoid integrating signal from detector regions obscured by the DAC,
162	were created using the program ECLIPSE (Parsons 2010). The data were integrated using the
163	program SAINT v8.34A. A multi-scan correction for absorption was applied using the program
164	SADABS-2014/11. Structures were solved by dual space methods (SHELXS-97/ SHELXT) and
165	refined by full-matrix least-squares on F ² (SHELXL-2014) (Sheldrick 2008) using the graphical
166	user interface ShelXle (Hübschle et al. 2011). All atoms in the room pressure structure and the
167	high-pressure structures were refined isotropically. Because of their small scattering cross-
168	sections, H atoms were not refined in the high-pressure structures. Moreover, evidence of Ne
169	diffusion into the tourmaline structure under high-pressure was not observed in our single-
170	crystal measurements: neither anomalous changes in volume nor excess electron density were
171	observed. Complete crystallographic information files (CIFs) for each structure can be found in
172	supplementary material, as well as a discussion on the selection of our unit cells.
173	Results and discussion
174	Ambient pressure luminescence spectra
175	The luminescence spectrum of dravite is characteristic of d^3 ions (e.g. Cr^{3+} , V^{2+}) in an
176	intermediate strength crystal field (Tanabe and Sugano 1954). Both sharp and broad emission
177	bands are observed at room temperature and 77 K at ambient pressures (Figure 2). Considering
178	the similar concentrations of Cr and V in our sample (e.g. Cr: 215 \pm 19 ppm, V: 336 \pm 32 ppm), it
179	is reasonable to assume that our steady state luminescence spectra contain overlapping bands

180 from the emission of both Cr and V. This is commonly observed in emerald, which is the Cr and

181	V rich variety of beryl (Ollier et al. 2015; O'Bannon and Williams 2016b). The intense and
182	relatively sharp emission bands are commonly referred to as the R-lines and are associated with
183	the spin-forbidden ² E- ⁴ A ₂ transition, with the ⁴ A ₂ state being the ground state and the ² E state
184	being split in non-cubic environments (Syassen 2008), and the broad band emission is assigned
185	to the spin-allowed ${}^{4}T_{2}$ - ${}^{4}A_{2}$ transition (Sugano and Tanabe 1958; Burns 1993; Gaft et al. 2005).
186	At 300 K, three bands can be fit under the sharp emission bands and two can be fit
187	under the broad portion of the spectrum at room temperature. At 77 K, the broad thermally
188	populated ${}^{4}T_{2}$ –associated bands are not entirely quenched, and four bands can be fit under the
189	² E sharp emission bands. A detailed deconvolution of these sharp line emission bands at both
190	room temperature and 77 K is given in the supplementary material (Figure S1). Dravite has two
191	crystallographically unique octahedral sites, Al and Mg, and emission bands from both sites
192	would likely be observed in steady state luminescence spectra. The simplest way for Cr ³⁺ and
193	V ²⁺ to substitute into dravite is through isovalent substitutions (e.g. Cr ³⁺ into Al ³⁺ site and V ²⁺
194	into Mg ²⁺). The four deconvoluted components at 77 K thus can be attributed to two sets of R-
195	lines, one set from Cr^{3+} and one from V^{2+} . The Al site in dravite is less distorted than the Mg site
196	(Hawthorne et al. 1993, and this study), which would be expected to give rise to a narrower R-
197	line splitting. Given the likely relative intensities of R_1 and R_2 and the anticipated relative
198	splittings, we propose the following assignments: the $Cr^{3+} R_1$ band is likely located at 683.7 nm,
199	with its R_2 band at 681.4 nm, and the V^{2+} R_1 band is at 686.4 nm and its associated R_2 band at
200	679.8 nm. This results in an R-line splitting of ~50 cm ⁻¹ for Cr ³⁺ and ~143 cm ⁻¹ for V ²⁺ . For
201	comparison, ruby $[Al_2O_3:Cr]$ has an Al-site that is close to an ideal octahedron with a slight
202	trigonal distortion, and has an R-line splitting of ~29 cm ⁻¹ (Syassen 2008), while zoisite

203	$[Ca_2Al_3Si_3O_{12}(OH)]$ which has a highly distorted Al-site has an R-line splitting of ~340 cm ⁻¹
204	(Koziarska et al. 1994). The distortions of the Al and Mg sites in dravite fall intermediate
205	between the distortions of the Al sites in ruby and zoisite, so these R-line splittings are
206	plausible. To confirm the assignments of these emission bands, luminescence lifetime
207	measurements or variably substituted samples would be required.
208	High-pressure luminescence spectra
209	High-pressure luminescence spectra are shown in Figure 3. Under compression the
210	intensity of the R-lines decreases: this is likely primarily associated with the transition metal
211	absorption bands migrating away from our excitation wavelength of 532 nm. Moreover, the
212	disappearance of the broad ${}^{4}T_{2}$ -associated band shows that a transition from an intermediate
213	to strong crystal field occurs in the first few GPa of compression, which is consistent with
214	previous observation in other Cr-bearing oxides (Dolan et al. 1986; de Viry et al. 1987;
215	Hommerich and Bray 1995; Grinberg and Suchocki 2007; O'Bannon and Williams 2016b). As at
216	300 K, it is difficult to fit four bands under the ² E region under compression, so we fit the
217	spectra with three bands: based on our 77 K assignments, these are associated with the R_1 and
218	R_2 peaks of Cr^{3+} and the R_1 peak of V^{2+} . Near 6.0 GPa, the primary emission feature fit by three
219	bands clearly separates into individual peaks (Figure 3).
220	Of the original three bands that were fit at ambient pressure and temperature, two
221	show negligible pressure shiftsessentially by 0 nm/GPa up to \sim 9 GPa, while the other band
222	shifts by 0.50 \pm 0.02 nm/GPa (-8.8 (\pm 0.3) cm ⁻¹ /GPa) up to the same pressure (Figure 4a). The
223	observation of effectively stationary emission bands under compression is without precedent

among Cr³⁺ emission in oxides (e.g., Dolan et al. 1986; Mao et al. 1986; de Viry et al. 1987;

225	Hommerich and Bray 1995; Grinberg and Suchocki 2007; O'Bannon and Williams 2016b). Above
226	~9.0 GPa, the initially stationary bands begin to shift positively in wavelength, towards lower
227	energies (Figure 4b). The two bands that shift by 0 nm/GPa likely are associated with one
228	octahedral site while the other band is produced by substitution in the other octahedral site.
229	This is in accord with our assignment of the former two bands to emission from Cr ³⁺
230	substituting into the Al ³⁺ site.

Four separate experiments were conducted in the \leq 10.5 GPa range to assess the 231 reproducibility of the unusual negligible pressure shift. It is completely reproducible, and no 232 233 hysteresis is observed on decompression from ~10.5 GPa. The ~0 nm/GPa pressure shift suggests one of three possibilities. First, the crystallographic site that this band is emitting from 234 may not be changing in volume under compression. Second, there may be a complex trade-off 235 236 between electron density and volumetric change within the site. Third, an admixture of electronic states, rather than a pure ${}^{2}E \rightarrow {}^{4}A_{2}$ transition, may generate the observed sharp-line 237 238 emission. As described in the single-crystal diffraction section below, there are no dramatic 239 structural "smoking guns" for this unusual pressure shift. However, there are some subtle changes in the ring distortion that may be responsible. Admixture of states (probably with the 240 ⁴T₂ state) is a possibility; however, the troubling aspect of this explanation is that a pressure-241 242 induced shift in admixture must perfectly balance with the pressure shifts of the two states to 243 produce a net zero pressure shift. Stated another way, the separation of the two states, their 244 resulting admixture, and their pressure shifts must collectively sum to zero for ~9.0 GPa of compression. This scenario is quite unlikely because of the dramatically different pressure-245 dependences of the ${}^{4}T_{2}$ and ${}^{2}E$ states (e.g., O'Bannon and Williams 2016a), but could be 246

247	testable with high-pressure lifetime measurements. A trade-off between changes in electron
248	density and volumetric compaction is possible but would require detailed insights into the
249	bonding environment/electron density within the octahedral site under compression.
250	The splitting between these two bands also does not change on compression,
251	suggesting that the site distortion is unchanged, as well. The change in slope at 9 GPa is, as
252	described below, likely not an indicator of a phase transition, but may represent a change in the
253	compression mechanism. Moreover, the other observed emission band shifts positively in
254	wavelength, consistent with the volume of this site decreasing with increasing pressure. Since
255	we cannot deconvolute the expected R_2 component of this band in this pressure range, it is
256	difficult to know from the emission spectra if this site becomes more or less distorted.
257	However, the peak width of the positively shifting band slightly narrows under compression to
258	~9.0 GPa, which is an indicator that its site becomes less distorted under compression.
259	In the pressure range above 10 GPa, peak splitting is observed near 15 GPa, with new
260	emission bands observed; at pressures above 45 GPa, non-linear pressure shifts are observed
261	(Figure 3, 4b). No hysteresis is observed in the emission on decompression from 65 GPa, and
262	the Raman spectrum of the decompressed sample is identical to the starting material. Peak
263	splitting of emission bands under compression has been shown to be an indicator of phase
264	transitions (O'Bannon and Williams 2016a,b). This is particularly anticipated when multiple
265	octahedral environments are produced by a decrease in symmetry associated with a phase
266	transition. For example, in the ring silicate beryl, the Cr ³⁺ R-lines split into two sets of R-lines
267	near 14.7 GPa (O'Bannon and Williams, 2016b) which agrees well with a theoretically predicted
268	~15 GPa soft-mode transition (Prencipe et al. 2011), as well as high-pressure single crystal

269	diffraction studies which show that the Al-site splits into two crystallographically unique sites
270	near 15 GPa (M. Merlini, personal communication). The peak splitting observed in dravite
271	tourmaline under compression provides clear evidence that one of the octahedral sites splits
272	into two unique sites (Figure 5).
273	The additional new bands at longer wavelength that appear above 10 GPa (Figures 3,
274	4b) are likely neighbor lines that are due to paired Cr-Cr emission (e.g., O'Bannon and Williams,
275	2017); vibronic lines may also lie at these wavelengths, but these typically do not dramatically
276	exceed the zero-phonon lines in amplitude. The appearance of these new bands, and the
277	progressive increase in their intensity with pressure may reflect: (1) the intensity of the broad
278	$^{4}T_{2}$ transition has decreased substantially by this pressure and alternate mechanisms for
279	emission are enhanced; (2) a change in the nearest neighbor configuration due to the splitting
280	of one of the octahedral sites into two unique sites that produces configurations that favor
281	energy transfer into and/or the magnetic interactions that generate emission from pairs;
282	and/or (3) a pressure-induced shift in absorption that results in preferential excitation of pair-
283	line emissions (e.g., O'Bannon and Williams 2017). Within the tourmaline structure, there are a
284	wide range of possible prospective pair-wise magnetic interactions that could occur between
285	substituents in the octahedral sites through an intervening anion, and it is well-known that the
286	strength of such exchanges depends strongly on both the inter-ion distance and on the angle
287	(e.g., McCarthy and Gudel 1988). Indeed, such pair-wise interactions between transition metals
288	have long been recognized to be important within the optical spectrum of tourmalines
289	(Mattson and Rossman 1987). Therefore, while the exact origin of the new bands and the shift

in intensity above 10 GPa within the emission spectra remain unclear, it is probable that they

291 can be attributed to pressure-enhanced pair-line emissions.

292 Thus, the major effects of compression on the luminescence spectrum are the change in 293 pressure shift near 9.0 GPa and the peak splitting and increased intensities of new peaks observed at ~15 GPa. The lack of hysteresis on decompression from ~65 GPa indicates that any 294 phase transition associated with these changes is second order. We do not believe that the 295 change observed at 9.0 GPa is produced by a pressure-induced structural phase transition but is 296 likely generated by either a change in compression mechanism or a progressive change in the 297 298 electron density associated with the site. The changes observed at ~15 GPa are, however, consistent with a phase transition that involves a subtle distortion of the overall structure of 299 dravite tourmaline that splits the Al-site into two unique sites. By analogy to high-pressure 300 301 phase transitions in cordierite and beryl (Prencipe et al. 2011; Miletich et al. 2014; Finkelstein et al. 2015; O'Bannon and Williams 2016b), the structural change likely involves a modest 302 distortion of the Si_6O_{18} ring away from hexagonal symmetry. Importantly, the overall topology 303 304 of the structure appears to be preserved, and a lowering of symmetry from rhombohedral is 305 unlikely. The presence of such a modest structural change implies that dravite tourmaline's metastability under room temperature compression to ~65 GPa is generated by the topology of 306 307 the structure that stabilizes the Si₆O₁₈ ring at high pressures. Moreover, a structural transition that involves a modest distortion of the Si_6O_{18} ring with no change in crystal system would be 308 309 difficult to constrain with powder diffraction techniques (e.g., Li et al. 2004; Xu et al. 2016). High-pressure single-crystal diffraction 310

To characterize the changes observed using luminescence spectroscopy, single crystal Xray diffraction measurements were done at various pressures up to ~23.6 GPa. Dravite tourmaline indexes to a rhombohedral unit cell across the pressure range of the X-ray measurements. Structures solved as rhombohedral *R*3*m* up to ~15.4 GPa, and above this pressure the space group changed to *R*3. In the following sections, we discuss the equation of state (EoS) for the low pressure phase of dravite tourmaline, and the high-pressure crystal structure of this material.

318 Dravite tourmaline EoS

Dravite tourmaline shows highly anisotropic compression (Figure 6), with the *c*-axis 319 being substantially more compressible than the a-axis, which is in good agreement with the 320 previous study of uvite tourmaline reported by Xu et al. (2016). Interestingly, Liu et al. (2004) 321 report that the *c*-axis of schorl tourmaline is less compressible than the *a*-axis, which is opposite 322 of what is observed in dravite and uvite tourmaline. But, the lattice parameters and unit cell 323 volumes reported by Liu et al. (2004) are quite scattered. For clarity, we do not include these 324 325 results in Figure 6, but they are included in supplementary Figure S2. The reason for the scatter 326 in their data, and the difference in compressibility of the a- and c-axes is not clear, but could be a result of non-hydrostatic conditions of methanol:ethanol mixtures above ~10.5 GPa. We fit 327 our pressure volume data with both 2nd and 3rd order Birch-Murnaghan equations of state 328 329 (Table 1) using the EOSFit7GUI (Gonzalez-Platas et al., 2016), and our results are shown in Table 330 2. We used a fully weighted fit, and the room pressure and temperature volume determined in our experiments is V₀. An *F*-*f* plot based on the Birch-Murnaghan EoS fit of the volume data is 331 shown in Figure S3. Our results indicate that dravite tourmaline is more compressible than uvite 332

333	tourmaline. For comparison, the uvite sample measured by Xu et al. (2016) is not an
334	endmember but has \sim 10 % Na in the X-site, and pure uvite is likely less compressible than their
335	measurements. The relatively large value for K_o reported for schorl tourmaline by Li et al.
336	(2004) does not appear compatible with our results, nor with those of Xu et al. (2016).
337	High-pressure crystal structures
338	Structures were solved at various high pressures, and results of the structure
339	refinements are shown in Table 3. The site volumes as a function of pressure show that the Na
340	site is the most compressible (Figure 7). The Si site is the least compressible, while the two
341	octahedral sites behave essentially identically to one another and are intermediate in their
342	compressibility between the Si and Na sites. Clearly, neither octahedral site volume is constant
343	under compression. So, the unusual observation of a negligible pressure shift of two of the
344	luminescence bands cannot be explained via a site volume argument alone. A more nuanced
345	explanation for the shift of the energy levels, involving a shift in covalency/electron density of
346	the site that counterbalances the volumetric compaction, appears necessary. The anisotropic
347	compression of dravite tourmaline can be straightforwardly explained by the location of the Na
348	site in the dravite structure and its large volume change under compression (Figure 7).
349	Speculatively, the large volume change in the Na site could produce a pressure-induced
350	reduction in the electron density around the Al-sites, such that their electron density remains
351	fairly constant under compression up to ~9.0 GPa.
352	We calculate the distortion parameters for the octahedral and tetrahedral sites as a
353	function of pressure (Supplementary Figure S4). Interestingly, the quadratic elongation (QE)
354	and angle variance (AV) of the Mg site both decrease under compression, indicating that this

site becomes less distorted under compression: this is in accord with our inference based on
the width of the emission peak that we have assigned to this site. The Al site distortion changes
by very little, and the Si site becomes slightly more distorted under compression. The Al-site
distortion change is negligible, which also provides confirmation for our assignment of the two
emission bands with invariant positions that show no change in their splitting up to ~9.0 GPa to
this site.

The X-site in tourmaline (the Na site in dravite) is typically considered a 9-fold 361 coordinated site. Among the bond lengths associated with this site as a function of pressure 362 363 (Figure 8), there are two unique bonds between the Na and the Si_6O_{18} ring (O5 and O4), and there is one unique bond between the Na and the Mg octahedra (O2). There is also a potential 364 10th coordinating oxygen atom (O1), and the distance to this oxygen atom is also shown in 365 366 Figure 8. The O1 atom is, however, one of the two proton sites in tourmaline, although the H1 site has a very low reported occupancy (Gatta et al. 2014). F substitution also occurs only at the 367 O1 site, and this site is influenced by cation occupancy of the X and Y sites (Henry and Dutrow 368 369 2011). Hence, O1 is not simply an oxygen site that appears to become bonded to the Na atom 370 at high-pressure: rather, it is a site that is partially occupied by O, OH, and F. Interestingly, the two unique Na-O bonds to the Si_6O_{18} ring show different behaviors. Under compression to 371 372 \sim 15.4 GPa, the Na-O4 bonds change by \sim 0.05 Å while the Na-O5 bonds change by \sim 0.25 Å. Over the same pressure range, the Na-O2 bonds change by ~0.11 Å. In this sense, the Na site appears 373 374 to undergo the bulk of its compaction through six neighbors: three bonds into the Si₆O₁₈ ring 375 and three bonds into the Mg octahedra. This pseudo-six-fold behavior, with compacting

376 connections to both the Mg polyhedra and the Si-ring, also sets up a natural way to distort the

377 Si₆O₁₈ ring away from hexagonal symmetry.

378	The B-O distances are less well-resolved and change very little under compression but
379	show a trend towards being more equidistant up to ~15.4 GPa (Supplementary Figure S5). In
380	the high-pressure phase, B is surrounded by three crystallographically unique oxygen atoms (O8
381	splits into O8a and O8b). There is no indication that the BO_3 groups deviate from a planar
382	configuration up to at least 23.6 GPa, which is expected given the space groups of the low- and
383	high-pressure phases.

384 Compression mechanism

The compression mechanism of tourmaline involves a complex interplay of bond length 385 shortening and oxygen atom displacement/rotation relative to their neighbors. Under 386 compression the Y-site (MgO₆) volume decreases through Mg-O bond shortening and the 387 distortion parameters of this site also decrease. As the volume of the Y-site decreases, the 388 Si_6O_{18} ring becomes more puckered due to the displacement of the O6 atom towards the 389 390 threefold rotation axis (Figure 9a). This increase in ring puckering has been observed in 391 tourmaline when smaller cations are substituted into the Y-site. Bosi and Lucchesi (2007) report that the configuration of the six-membered ring is strongly affected by the average <Y-O> 392 393 distance and, as <Y-O> decreases due to the substitution of smaller cations, the tetrahedra rotate around the O4-O5 edge and the O6 atom is displaced towards the threefold axis which 394 395 produces puckering of the tetrahedral ring. Thus, chemical substitution of smaller cations into 396 the Y-site and pressure appear to have the same effect on ring puckering.

397	As ring puckering increases under compression the O7 atom rotates towards the Z-site
398	(AlO ₆), which shortens the Al-O7 bond, and compresses the Z-site. This displacement of the O7
399	atom contributes to the increase in observed ring crimping under compression (Figure 9b), and
400	the increase in ring crimping changes the O7-O8 edge distance. Crimping is defined as ΔZ =
401	$[_zO5-(_zO4+_zO7)/2]$ * <i>c</i> , where z is the coordinate of the oxygen atoms and <i>c</i> is the length of the <i>c</i> -
402	axis (Gorskaya et al. 1982). From a chemical substitution perspective, it has been shown that
403	substitution into the X-site primarily affects the crimping and ditrigonality of the ring and
404	distortion of the tetrahedra, while substitution into the Y-site primarily affects ring puckering
405	(Foit, 1989). Ditrigonality increases across the pressure range of this single-crystal study (Figure
406	9c). It is defined as $\delta = (r_1 - r_s)/r_s$, where r_1 and r_s are the distances from O4 and O5,
407	respectively, to the threefold axis (Barton 1969). Interestingly, the distances from the three-fold
408	axis to O4 and O5 as a function of pressure (Supplementary Figure S6) indicate that there is a
409	change in the pressure dependence of the O4 to threefold axis distance near 9.0 GPa. This
410	change in compression mechanism may initiate the change in luminescence observed near 9.0
411	GPa (Figure 4). Under compression, the Na site moves towards the ring, which also contributes
412	to the increase in ring crimping and ditrigonality. Moreover, the overall distortion of the Z-site
413	is primarily controlled by the size of the Y-site cation (Foit 1989). Therefore, it is not surprising
414	that the distortion parameters of the Z-site show very little change under compression. Above
415	~15.4 GPa, tetrahedral rotation and ring puckering continue to increase while ring crimping
416	decreases above the transition and then remains almost constant to the highest pressure of this
417	study.

418 *High-pressure phase transition*

At pressures above 15.4 GPa, the structure of dravite tourmaline is solved as 419 420 rhombohedral R3. The only difference in symmetry associated with this transition is the loss of 421 a mirror plane in the high-pressure structure. The net result is that the Si, Al, O6, O7, and O8 422 sites all split into unique sites (Figure 10), the volume of the open space in the structure by the X-site has decreased significantly by ~15.4 GPa, and the effective coordination of Na increases 423 (Fig. 8) which suggests that the high-pressure phase is a higher entropy phase (Navrotsky, 1980). 424 Since the 3-fold rotation axis is preserved across this phase transition there is no change in the 425 Mg, Na, or B sites. Importantly, this subtle crystallographic change is completely consistent with 426 427 our luminescence observations of a second order phase transition occurring near ~15.4 GPa. Additionally, our assignment of the emission band that splits under compression to the Al site is 428 robust since this site splits into two unique sites above ~15.4 GPa. Interestingly, the slight 429 430 distortion of the Si_6O_{18} ring preserves the overall topology of the tourmaline structure, while providing a new deformation mechanism for the high-pressure phase. A plot of the Si-Si-Si 431 angles shows that this angle deviates away from 120° above ~15.4 GPa and increases with 432 433 increasing pressure up to ~23.6 GPa (Figure 11a). There is also a discontinuous shift in 434 tetrahedral rotation, as well as a change in the pressure dependence of ring puckering and crimping above ~15.4 GPa (Figures 9b, 11). The deformation mechanism of the high-pressure 435 436 phase primarily involves tetrahedral rotation and changes in the Si-Si-Si angles while ring crimping and puckering play less of a role. These subtle changes in ring distortion demonstrate 437 438 the subtlety of this phase transition, and why it would be very difficult to resolve this type of 439 phase transition with high-pressure powder diffraction techniques. Our luminescence data

show that this high-pressure phase remains metastable under room temperature compressionup to at least 65 GPa.

Speculatively, the high-pressure transition appears to be driven by steric/geometric 442 443 effects caused by the decrease in volume of the Y-site and displacement of the X-site towards the Si_6O_{18} ring. As the Y-site volume decreases, the O6 atom is displaced towards the threefold 444 axis causing ring puckering, which displaces the O7 atom towards the Z-site (Al), causing the Al-445 O7 distance to shorten which increases ring crimping. This causes a change in the tetrahedral 446 447 rotation of the SiO₄ tetrahedra, which breaks the mirror plane symmetry for O6 and O7. This 448 change in rotation induces an additional twist on the MgO₆ and AlO₆ octahedra, which in turn breaks the mirror symmetry of the O8 atom. 449 Na site coordination change? 450 451 The possible coordination change of the Na site merits discussion, as the topology of the tourmaline structure shows that the incipient Na1-O1 bond (Figure 8) provides the only 452 straightforward means to further polymerize this structure. The distance to the potential 10th 453 oxygen decreases by ~0.43 Å to 15.4 GPa, and the pressure dependence of its distance is 454 455 constant above this pressure. Multiple phenomena could be at work here in changing the behavior of the Na-O bonds above the phase transition: (1) Na1 and O1 behave like they are 456 bonded near the phase transition pressure (e.g. a coordination change of Na takes place); (2) 457 repulsion increases between the O1 and O4, and O5 atoms; (3) an increase in repulsion 458 459 between H1 and Na1 occurs near 15.4 GPa, which results in a shortening of the O1-H1 bond, and/or a change in H-bonding configuration; and/or (4) the compression mechanism of the 460

461 high-pressure phase is different than the low pressure phase.

462	Considering the mixed occupancy of the O1 site (e.g. Gatta et al., 2014; Henry and
463	Dutrow, 2011; Bosi, 2018), it is unlikely a bond is forming between Na and O1. A plot of O-O
464	distances reveals that there are no systematic trends that would suggest that the change in
465	pressure dependence of the Na-O1 distance is due to an increase in O-O repulsion
466	(supplementary Figure S7). It has been reported that an increase in size of the X-site cation
467	results in an expansion of the X-site coordination polyhedron, which impinges on the hydroxyl
468	at the O1 site, leading to a shortening of the O1-H1 bond (Berryman et al., 2016). It is possible
469	that above ~15.4 GPa, an increase in Na-H repulsion occurs that results in a shortening of the O-
470	H bond which changes the pressure dependency of the Na1-O1 distance. However, due to the
471	low reported occupancy of H1 this seems unlikely. As discussed above, ring puckering and
472	crimping also behave differently in the high-pressure phase, indicating that compression
473	mechanisms shift in the high-pressure phase. Thus, a change in compression mechanism is the
474	most plausible explanation for the change in Na1-O1 pressure dependence that is observed
475	above ~15.4 GPa.
476	Bond Valence Analysis
477	We quantitatively analyze the stability of the dravite tourmaline structure using the
478	bond valence approach (Brown, 2002). The bond valence approach has been extensively
479	deployed to examine the structural changes in tourmalines due to chemical variability at

480 ambient conditions (Fortier and Donnay, 1975; Hawthorne et al., 1993; Hawthorne, 1996;

481 Hawthorne, 2002; Bosi and Lucchesi, 2007). We first use the relative deviation of the bond

482 valence sum from the ideal value $(\Sigma(S_{ij}) - v_i)/v_i)$ for all cations and anions to quantify the steric

483 stress of the structure at ambient condition. Here, S_{ij} is the bond valence between atoms *i* and *j*,

484	and v_i is the absolute value of atom i's valence. The bond valence sums are shown in Figure 12
485	on the ordinate (i.e. the zero-pressure values). It is striking that even at ambient conditions, the
486	Mg cation is overbonded by almost 20 %. This is due to the MgO_6 octahedron sharing two edges
487	in cis-conformation with the AlO_6 octahedron. The relaxed cation-oxygen distances for Al^{3+} and
488	${ m Mg}^{2+}$ differ by about 10% (1.9 vs 2.1 Å). Thus, each MgO ₆ shares two edges with an AlO ₆
489	octahedron, whereas each AlO ₆ octahedron shares one edge with a MgO ₆ octahedra.
490	Consequently, Mg shows an almost 20% overbonding while AIO_6 is underbonded, albeit to a
491	smaller extent (~ 3%).
492	In terms of the bond valence sums as a function of pressure (Figure 12), two features

493 stand out: Na (which at ambient pressure is slightly underbonded) increases its overbonding by a remarkable 70%. Mg, which starts out at almost 20% overbonded increases to about 40% by 494 495 15 GPa, at which pressure it then levels out. Notably, Na and Mg are the two cations with the 496 weakest individual bonds. All other cations show a shallow increase in overbonding, which increase moderately to a maximum of 20% at the highest pressures. The same general increase 497 498 holds for the oxygen atoms, which are all tightly bunched together at values below 20 % (we 499 disregard O1 and O3 here because the poorly constrained hydrogen positions make their bond 500 valence sums ill defined).

501 The weakly bonded Na and Mg cations seem to be dramatically overbonded at high 502 pressures, without affecting significantly the stability of the tourmaline structure (beyond the 503 modest descent of symmetry near 15 GPa). This stability of the structure may be rooted in the 504 minor overbonding of the oxygen atoms, by no more than 20 % up to the highest pressure of 505 ~24 GPa. Consequently, we hypothesize that this high-pressure stability of the tourmaline

506	structure is closely tied to its extraordinary structural tolerance with respect to chemical
507	substitutions on the X, Y, and Z sites. The bond network of tourmaline seems to have the ability
508	to balance the modest overbonding of the oxygen atoms which hold the framework together,
509	in spite of the significant overbonding on the most weakly bonded metal ions.
510	Indeed, the subtle mirror plane breaking phase transition observed above ~15.4 GPa is
511	not reflected in the bond valence analysis. Instead, this phase transition is likely due to a
512	steric/geometric effect caused by a complex interplay of bond length shortening and oxygen
513	atom rotation/displacement which alter ring puckering, ring crimping, tetrahedral rotation, and
514	ditrigonality. As the ring distortion parameters change under compression, mirror plane
515	symmetry is broken for O6, O7, and O8. Hence, there does not appear to be an obvious
516	villain(s) that drives the transition from R3m to R3; it is perhaps best viewed as a cooperative
517	instability of the (initially) hexagonal ring configuration, via its interactions with the Y (Na)
518	cation.
519	Implications
520	Other compositions of tourmaline that are rhombohedral R3m at room temperature
521	and pressure will likely behave similarly, and undergo a similar transition, under compression.
522	The main difference is likely to be the pressure at which the R3m to R3 transition occurs.
523	Tourmaline is a complex mineral group, and the high-pressure behavior of tourmalines with
524	extensive Li, Cr, or V substitution into the Y and Z sites, Pb substitution into the X-site, or Al, Li
525	substitution into the T-sites could be quite different than that of tourmalines with
526	predominantly Al and Mg in their Y and Z sites. Nevertheless, the main chemical control over
527	the pressure at which this transition occurs is likely the identity of the cation in the X-site. Here,

528	simple systematics would indicate that a larger cation would generate this distortion at lower
529	pressure conditions. Thus, the pressures of this transition in uvite tourmaline
530	$[Ca(Mg_3)MgAl_5(Si_6O_{18})(BO_3)_3(OH)_3(OH)]$ and maruyamaite tourmaline
531	[K(MgAl ₂)(Al ₅ Mg)(BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₃ O] are expected to be higher and lower than in dravite
532	tourmaline, respectively. Moreover, our high-pressure results show that massive overbonding
533	of the X and Y sites can be accommodated by the tourmaline structure. This unexpected result
534	may explain the extraordinary structural tolerance with respect to chemical substitution on the
535	X, Y, and Z sites. Hence, any over/underbonding due to chemical substitutions is balanced by
536	the topology of the tourmaline structure, and perhaps in particular the oxygen atoms.
537	The crystallization conditions of metamorphic tourmaline are complex, but one means
538	of crystallization involves consuming B that is released during clay and mica mineral
539	dehydration reactions (Ota et al. 2007). Hence, tourmaline is likely present in subduction zones
540	where sedimentary rocks are being subducted. Petrologic studies have shown that dravite
541	tourmaline breaks down at ~7.0 GPa and ~900 °C (Werding and Schreyer 1996) and ~3-5 GPa
542	and ~1000 °C (Krosse 1995). However, tourmaline stability is highly dependent on
543	compositional variations (e.g. its Mg/[Fe+Mg] ratio, Na, Al and B contents), coexisting fluids and
544	the host rock (Henry and Dutrow, 1996; Dutrow et al., 1999; Schreyer, 2000; Ota et al. 2008).
545	The higher pressure/lower temperature stability of dravite tourmaline is not well constrained
546	(see figure 2b in Ota et al. 2007). Moreover, tourmaline has a greatly diminished stability range
547	in SiO ₂ saturated systems with common pelitic compositions, and even in relatively cold
548	subduction zones, tourmaline breaks down by ~150 km depth (Ota et al. 2008). Hence, the
549	commonly invoked "cold subduction zone" argument for conducting high-pressure room

550	temperature experiments may be invalid in the case of tourmaline. A complete understanding
551	of the host rock chemistry, redox conditions, and pressure/temperature conditions are required
552	to truly constrain the stability field of not only tourmaline supergroup minerals, but other
553	subduction zone related mineral phases. The stability fields of dravite tourmaline and other
554	varieties of tourmaline are not well constrained, and neither the onset pressure of the
555	symmetry-lowering transition in other varieties of tourmaline, nor its temperature-dependence
556	is known. Thus, it is unclear whether the high-pressure phase of dravite or other compositions
557	of tourmaline would be found at depth within subduction zones.
558	Acknowledgments
559	We thank an anonymous reviewer and the technical editor for helpful comments, and
560	O. Tschauner for the handling of our manuscript. We also thank Dr. Simon Teat (ALS) and Nico
561	Giordano (CSEC, U. Edinburgh) for assistance with data collection on Beamline 11.3.1 at the ALS
562	and helpful discussions. We also thank Dr. Rob Franks for help with LA-ICPMS measurements
563	and Dan Sampson for invaluable technical assistance with the Raman spectrometer. E.
564	O'Bannon thanks Dr. Bruce Baer for helpful discussions. A portion of this work was performed
565	under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory
566	under Contract No. DE-AC52-07NA27344. Work partially supported by NSF through EAR-
567	1620423 and COMPRES under NSF Cooperative Agreement EAR-1606856. This research used
568	resources of the Advanced Light Source, which is a DOE Office of Science User Facility under
569	contract no. DE-AC02-05CH11231.

570 References

571 Akizuri, M., Kuribayashi, T., Nagase, T., and Kitakaze, A. (2001) Triclinic liddicoatite and elbaite in growth 572 sectors of tourmaline from Madagascar. American Mineralogist, 86, 364–369. 573 Bebout, G., and Nakamura, E. (2003) Record in metamorphic tourmalines of subduction-zone 574 devolatilization and boron cycling cycling Record in metamorphic tourmalines of subduction-575 zone devolatilization and boron cycling. Geology, 31, 407–410. 576 Berryman, E. J., Wunder, B., Ertl, A., Koch-Müller, M., Rhede, D., Scheidl, K., Giester, G., & Heinrich, W. 577 (2016). Influence of the X-site composition on tourmaline's crystal structure: investigation of 578 synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman 579 spectroscopy. Physics and Chemistry of Minerals, 43, 83-102. 580 Boehler, R., and De Hantsetters, K. (2004) New anvil designs in diamond-cells. High Pressure Research, 581 24, 391–396. 582 Bosi, F., (2018) Tourmaline crystal chemistry. American Mineralogist, in press. 583 Bosi, F., & Lucchesi, S. (2007). Crystal chemical relationships in the tourmaline group: Structural 584 constraints on chemical variability. American Mineralogist, 92, 1054-1063. 585 Brown, I.D. (2002) The chemical bond in inorganic chemistry. Oxford University Press, Oxford. 586 Burns, R.G. (1993) Mineralogical applications of crystal field theory, 2nd Ed., Cambridge University press, 587 575 pp. 588 Chervin, J.C., Canny, B., and Mancinelli, M. (2001) Ruby-spheres as pressure gauge for optically 589 transparent high pressure cells. High Pressure Research, 21, 305–314. 590 de Viry, D., Denis, J.P., Tercier, N., and Blanzat, B. (1987) Effect of pressure on trivalent chromium 591 photoluminescence in fluoride garnet Na₃In₂Li₃F₁₂. Solid State Communications, 63, 1183–1188. 592 Dolan, J.F., Kappers, L.A., and Bartram, R.H. (1986) Pressure and temperature dependence of chromium photoluminescence in K_2 NaGaF₆:Cr³⁺. Physical Review B, 33, 7339–7341. 593 594 Domanik, K.J., and Holloway, J.R. (1996) The stability and composition of phengitic muscovite and 595 associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochimica 596 et Cosmochimica Acta, 60, 4133-4150. 597 Dutrow, B.L., Foster, C.T. Jr., and Henry, D.J., (1999) Tourmaline -rich psuedomorphs in sillimanite zone 598 metapelites: demarcation of an infilteration front. American Mineralogist, 84, 794-805. 599 Finkelstein, G.J., Dera, P.K., and Duffy, T.S. (2015) High-pressure phases of cordierite from single-crystal 600 X-ray diffraction to 15 GPa. American Mineralogist, 100, 1821–1833.

- Fortier, S., & Donnay, G. (1975). Schorl refinement showing composition dependence of the tourmaline
 structure. The Canadian Mineralogist, 13, 173-177.
- Frondel, C. (1948) Tourmaline pressure gauges. American Mineralogist, 33, 1–17.
- Gaft, M., Reisfeld, R., and Panczer, G. (2005) Modern Luminescence Spectroscopy of Minerals and
 Materials, 356 p. Springer-Verlag, Berlin.
- Gasharova, B., Mihailova, B., and Konstantinov, L. (1997) Raman spectra of various types of tourmaline.
 European Journal of Mineralogy, 9, 935–940.
- Gatta, G. D., Bosi, F., McIntyre, G. J., & Skogby, H. (2014). First accurate location of two proton sites in
 tourmaline: A single-crystal neutron diffraction study of oxy-dravite. Mineralogical Magazine,
 78, 681-692.
- Gonzalez-Platas, J., Alvaro, M., Nestola, F., & Angel, R. (2016). EosFit7-GUI: a new graphical user
 interface for equation of state calculations, analyses and teaching. *Journal of Applied Crystallography*, 49(4), 1377-1382.
- Grinberg, M., and Suchocki, A. (2007) Pressure-induced changes in the energetic structure of the 3d³
 ions in solid matrices. Journal of Luminescence, 125, 97–103.
- Hamburger, G.E., and Buerger, M.J. (1948) The structure of tourmaline. American Mineralogist, 33, 532–
 540.
- Hawthorne, F. C. (1996). Structural mechanisms for light-element variations in tourmaline. The Canadian
 Mineralogist, 34, 123-132.
- Hawthorne, F. C. (2002). Bond-valence constraints on the chemical composition of tourmaline. The
 Canadian Mineralogist, 40, 789-797.
- Hawthorne, F. C., & Dirlam, D. M. (2011). Tourmaline the indicator mineral: From atomic arrangement
 to Viking navigation. Elements, 7, 307-312.
- Hawthorne, F.C., and Henry, D.J. (1999) Classification of the minerals of the tourmaline group. European
 Journal of Mineralogy, 11, 201–216.
- Hawthorne, F.C., Macdonald, D.J., and Burns, P.C. (1993) Reassignment of cation site occupancies in
 tourmaline: Al-Mg disorder in the crystal structure of dravite. American Mineralogist, 78, 265–
 270.
- Henry, D. J., & Dutrow, B. L. (2011). The incorporation of fluorine in tourmaline: Internal crystallographic
 controls or external environmental influences?. The Canadian Mineralogist, 49, 41-56.
- Henry, D. J., & Dutrow, B. L. (1996). Metamorphic tourmaline and its petrologic applications. Reviews in
 Mineralogy and Geochemistry, 33, 503-557.

633	
634	Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., and Pezzotta, F. (2011)
635	Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895–913.
636 637	Hommerich, U., and Bray, K.L. (1995) High-pressure laser spectroscopy of Cr ³⁺ :Gd ₃ Sc ₂ GaO ₁₂ and Cr ³⁺ :Gd ₃ Ga ₅ O ₁₂ . Physical Review B, 51, 12133–12141.
638	Hübschle, C.B., Sheldrick, G.M., and Dittrich, B. (2011) ShelXle: A Qt graphical user interface for SHELXL.
639	Journal of Applied Crystallography, 44, 1281–1284.
640	Hughes, J.M., Ertl, A., Dyar, M.D., Grew, E.S., Shearer, C.K., Yates, M.G., and Guidotti, C. V. (2000)
641	Tetrahedrally coordinated boron in a tourmaline: Boron-rich olenite from Stoffhutte, Koralpe,
642	Austria. Canadian Mineralogist, 38, 861–868.
643	Ito, T., and Sadanaga, R. (1951) A Fourier analysis of the structure of tourmaline. Acta Crystallographica,
644	4, 385–390.
645	Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., Dubrovinskaia, N., and
646	Dubrovinsky, L. (2012) BX90: A new diamond anvil cell design for X-ray diffraction and optical
647	measurements. Review of Scientific Instruments, 83, 125102.
648 649	Klotz, S., Chervin, JC., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42, 75413.
650	Koziarska, B., Godlewski, M., Suchocki, A., Czaja, M., and Mazurak, Z. (1994) Optical properties of zoisite.
651	Physical Review B, 50, 297–300.
652	Krosse, S. (1995) Hochdrucksynthese, stabilitat und eigenschaften der borsilikate dravit und kornerupin
653	sowie darstellung und stabilitatsverhalten eines neuen Mg-Al-borates. Doctor thesis, Ruhr-
654	Universita ¨t, Bochum.
655 656	Kunz, M., & Brown, I. D. (1995). Out-of-center distortions around octahedrally coordinated d0 transition metals. Journal of Solid State Chemistry, 115, 395-406.
657 658	Lameiras, F.S., Nunes, E.M.H. & Leal, J.M. (2010) Backgrounds for the industrial use of black tourmaline based on its crystal structure characteristics. Ferroelectrics, 377, 107-119.
659	Li, H., Qin, S., Zhu, X., Liu, J., Li, X., Wu, X., and Wu, Z. (2004) In situ high-pressure X-ray diffraction of
660	natural tourmaline. Nuclear Techniques, 27, 919–922.
661	Mao, H.K., Xu, J.A., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-
662	hydrostatic conditions. Journal of Geophysical Research, 91, 4673–4676.
663	Marschall, H.R., Altherr, R., and Rüpke, L. (2007) Squeezing out the slab - modelling the release of Li, Be
664	and B during progressive high-pressure metamorphism. Chemical Geology, 239, 323–335.

665	Mattson, S.M. and Rossman, G.R. (1987) Fe ²⁺ -Fe ³⁺ interactions in tourmaline. Physics and Chemistry of
666	Minerals, 14, 163-171.
667	McCarthy, P.J. and Gudel, H.U. (1988) Optical spectroscopy of exchange-coupled transition metal
668	complexes. Coordination Chemistry Reviews, 88, 69-131.
669 670 671	Meng, Y., Weidner, D. J., & Fei, Y. (1993) Deviatoric stress in a quasi-hydrostatic diamond anvil cell: Effect on the volume-based pressure calibration. <i>Geophysical Research Letters, 20,</i> 1147-1150.
672	Miletich, R., Gatta, G.D., Willi, T., Mirwald, P.W., Lotti, P., and Merlini, M. (2014) Cordierite under
673	hydrostatic compression: Anomalous elastic behavior as a precursor for a pressure-induced
674	phase transition. American Mineralogist, 99, 479–493.
675 676 677	Nakano, T., and Nakamura, E. (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Physics of the Earth and Planetary Interiors, 127, 232–252
0//	interiols, 127, 255–252.
678 679	Navrotsky, A. (1980). Lower mantle phase transitions may generally have negative pressure- temperature slopes. <i>Geophysical Research Letters, 7</i> (9), 709-711.
680	Novák, M., Henry, D., Hawthorne, F. C., Ertl, A., Uher, P., Dutrow, B., & Pezzotta, F. (2009).
681	Nomenclature of the tourmaline-group minerals. Report of the subcommittee on tourmaline
682	nomenclature to the International Mineralogical Association's Commission on New Minerals,
683	Nomenclature and Classification, CNMMN, pp. 1-45.
684	O'Bannon, E.F. and Williams, Q. (2016a) A Cr ³⁺ luminescence study of spodumene at high pressures:
685	Effects of site geometry, a phase transition, and a level crossing, American Mineralogist, 101,
686	1406-1413.
687	O'Bannon, E.F. and Williams, Q. (2016b) Beryl-II, a high-pressure phase of beryl: Raman and
688	luminescence spectroscopy to 16.4 GPa. Physics and Chemistry of Minerals, 43, 671-687.
689	O'Bannon, E.F. and Williams, Q. (2017) Delocalization in Cr ³⁺ luminescence of clinochlore: A pressure-
690	induced transition from single-ion emission to pair emission, Journal of Physics and Chemistry of
691	Solids, 109, 89-99.
692	Ollier, N., Fuchs, Y., Cavani, O., Horn, A.H., and Rossano, S. (2015) Influence of impurities on Cr3+
693	luminescence properties in Brazilian emerald and alexandrite. European Journal of Mineralogy,
694	27, 783–792.
695	Ota, T., Kobayashi, K., Katsura, T., and Nakamura, E. (2008) Tourmaline breakdown in a pelitic system:
696	Implications for boron cycling through subduction zones. Contributions to Mineralogy and
697	Petrology, 155, 19–32.
698	Parsons, S. (2010) ECLIPSE - Program for masking high-pressure diffraction images and conversion
699	between CCD image formats.

- 700 Piermarini, G., Block, S., and Barnett, J. (1973) Hydrostatic limits in liquids and solids to 100 kbar. Journal 701 of Applied Physics, 44, 5377-5382. 702 Prencipe, M., Scanavino, I., Nestola, F., Merlini, M., Civalleri, B., Bruno, M., and Dovesi, R. (2011) High-703 pressure thermo-elastic properties of beryl ($Al_4Be_6Si_{12}O_{36}$) from ab initio calculations, and 704 observations about the source of thermal expansion. Physics and Chemistry of Minerals, 38, 705 223-239. 706 Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation : A quantitative measure of 707 distortion in coordination polyhedra. Science, 172, 567–570. 708 Rosenberg, P.E., and Foit, F.F. (1979) Synthesis and characterization of alkali-free tourmaline. American 709 Mineralogist, 64, 180–186. 710 Scheidl, K.S., Gatta, G.D., Pippinger, T., Schuster, B., Trautmann, C., and Miletich, R. (2014) Static 711 elasticity of cordierite I: Effect of heavy ion irradiation on the compressibility of hydrous 712 cordierite. Physics and Chemistry of Minerals, 41, 579–591. 713 Schreyer, W. (2000) Is the partitioning of boron between tourmaline and muscovite dependent on the 714 crystallization environment? J Czech Geol Soc 45:13-20 715 Shekhar Pandey, C., and Schreuer, J. (2012) Elastic and piezoelectric constants of tourmaline single 716 crystals at non-ambient temperatures determined by resonant ultrasound spectroscopy. Journal of Applied Physics, 111, 013516. 717 718 Sheldrick, G.M. (2008) A short history of SHELX. Acta crystallographica. Section A, Foundations of 719 crystallography, 64, 112-22. 720 Shtukenberg, A., Rozhdestvenskaya, I., Frank-Kamenetskaya, O., Bronzova, J., Euler, H., Kirfel, A., 721 Bannova, I., and Zolotarev, A. (2007) Symmetry and crystal structure of biaxial elbaite-722 liddicoatite tourmaline from the Transbaikalia region, Russia. American Mineralogist, 92, 675– 723 686. 724 Stan, V.C.; Beavers, M.C.; Kunz, M., and Tamura, N. (2018) X-ray diffraction under extreme conditions at 725 the Advanced Light Source. Quantum Beam Science, 2, 4. Sugano, S., and Tanabe, Y. (1958) Absorption spectra of Cr³⁺ in Al₂O₃ Part A. Theoretical studies of the 726 727 absorption bands and lines. Journal of the Physical Society of Japan, 13, 880-889.
- 728 Syassen, K. (2008) Ruby under pressure. High Pressure Research, 28, 75–126.
- Tanabe, Y., and Sugano, S. (1954) On the absorption spectra of complex ions. I. Journal of the Physical
 Society of Japan, 9, 753–766.
- Werding, G., and Schreyer, W. (1996) Experimental studies on borosilicates and selected borates.
 Reviews in Mineralogy and Geochemistry, 33.1, 117–163.

Wong-Ng, W., Siegrist, T., DeTitta, G. T., Finger, L. W., Evans Jr, H. T., Gabe, E. J., Anright, G.D.,
Armstrong, J.T., Levenson, M., Cook, L.P., and Hubbard, C. R. (2001). Standard reference
material (SRM 1990) for single crystal diffractometer alignment. Journal of research of the
National Institute of Standards and Technology, 106(6), 1071.
Xu, J., Kuang, Y., Zhang, B., Liu, Y., Fan, D., Li, X., & Xie, H. (2016). Thermal equation of state of natural
tourmaline at high pressure and temperature. *Physics and Chemistry of Minerals*, 43(5), 315326.

- Figure 1. Our room pressure crystal structure diagram of dravite tourmaline. (a) looking down 741
- the c-axis with oxygens removed for clarity. (b) oblique view showing the configuration of the X-742
- site within the Si₆O₁₈ ring. Modified after Hawthorne and Dirlam (2011). Diagrams were 743
- generated in CrystalMaker ® v8.7.6. 744

Figure 2. Steady state luminescence spectra of dravite tourmaline at 300 and 77 K using 532nm 745

- excitation. Note that the thermally populated ${}^{4}T_{2}$ bands are not entirely quenched at 77K. The 746 modulation in the broad band emission band at 300 K is an artifact.
- 747
- 748 Figure 3. High-pressure luminescence spectra of dravite tourmaline up to 65 GPa in a Ne
- 749 pressure medium. The transition from intermediate to strong crystal field occurs between room

750 pressure and ~6.0 GPa, as manifested by the decline in intensity of the broad-band ${}^{4}T_{2}$ emission 751 centered near 725 nm.

- Figure 4. Pressure shift of the observed luminescence bands in dravite (a) low pressure region, 752
- showing the essentially 0 nm/GPa pressure shift of two of the emission bands; and (b) up to 65 753
- GPa. The grey region indicates a possible change in compression mechanism. Closed symbols 754
- are data collected on compression, and open symbols are on decompression (for clarity, these 755
- are not included in b). Error bars are smaller than the symbols. 756
- Figure 5. Detail of dravite R-related emission band illustrating the splitting observed under 757 758 compression.
- Figure 6. Relative change of lattice parameters and unit cell volume for uvite (Xu et al. 2016), 759
- 760 and dravite (this study). The results of Li et al. (2004) are not plotted for clarity (see
- 761 Supplementary Information). Error bars for our study are smaller than the symbols.
- Figure 7. Site volumes in dravite tourmaline as a function of pressure. There is a large difference 762 763 in compressibility between the Na site and the Si, Al, and Mg sites. Note that the Na site is considered 9-fold across the pressure range of these measurements. 764
- 765 Figure 8. Na-O bond lengths of dravite tourmaline as a function of pressure. Note the different 766 behavior of the two sets of three Na-O-Si bonds, and the change in slope of the Na-O1 distance above ~15.4 GPa. 767
- Figure 9. Ring distortion parameters as a function of pressure: (a) O6-threefold axis distance as 768
- a function of pressure (e.g. ring puckering). This distance decreases as pressure increases, 769
- 770 indicating that ring puckering increases as pressure increases. (b) Ring crimping (see text for
- definition), showing the change in ring crimping in the high-pressure phase. Note, the ~7 GPa 771
- 772 data point appears to be an outlier. (c) Ditrigonality (see text). The change in puckering and
- crimping in the high-pressure phase indicate that the compression mechanism changes in the 773
- high-pressure phase. Lines are linear fits to guide the eye. 774
- Figure 10. Our 23.6 GPa R3 structure of dravite tourmaline. (a) looking down the *c*-axis with 775
- 776 oxygens removed for clarity. (b) oblique view showing the configuration of the X-site within the
- Si_6O_{18} ring. Note that Al, Si, O6, O7, and O8 all split into unique sites in the high-pressure phase. 777
- 778 Diagrams were generated in CrystalMaker [®] v8.7.6.

- Figure 11. (a) Si-Si-Si atom angles, it should be noted that the errors on bond angles are
- typically quite large; however, by \sim 23.6 GPa the deviation away from 120° is larger than the
- rors. Errors are not included on the low pressure data since the 120° angle is due to
- 782 symmetry constraints. (b) Tetrahedral rotation as a function of pressure. The discontinuous
- shift in tetrahedral rotation near 15.4 GPa shows that the phase transition occurs near this
- pressure, but the pressure dependence of rotation is only slight altered in the high-pressurephase.
- Figure 12. Bond valence calculations for different ions within the dravite tourmaline structureas a function of pressure.
- Table 1. Unit cell parameters of dravite tourmaline at various pressures. *Crystal structuressolved at these pressures
- 790
- Table 2. Pressure-volume data fit up to ~15.4 GPa using both 2nd and 3rd order Birch-Murnaghan
- requations of state. It should be noted that our refined K' is within one e.s.d. of the implied
 value of 4 of the 2nd-order Birch-Murnaghan.
- 794 Table 3. Crystal structure refinement details for dravite tourmaline at various pressures.
- 795 Complete CIFs can be found in the supplementary material.

(Y)
L	I	
(Y	
_)
(Г)
-	1	

lntensity

FIGURE 4a

FIGURE 4b

b

Dravite emission bands

ty (a.u.)

FIGURE 9a

FIGURE 9b

a

FIGURE 11a

Pressure (GPa)	<i>a</i> -axis (Å)	<i>c</i> -axis (Å)	Volume (Å ³)
*0.0001	15.9370(6)	7.1749(3)	1578.19(14)
1.4(1)	15.8820(8)	7.1258(4)	1556.60(22)
*3.6(2)	15.8180(7)	7.0534(3)	1528.38(21)
5.0(1)	15.7860(7)	7.0198(3)	1514.95(20)
*7.0(1)	15.7323(7)	6.9617(4)	1492.21(16)
7.1(1)	15.7219(8)	6.9628(4)	1491.83(22)
8.3(2)	15.7015(8)	6.9344(4)	1480.55(23)
9.4(2)	15.6711(7)	6.9066(4)	1468.91(21)
10.6(2)	15.6418(10)	6.8794(5)	1457.66(29)
*12.0(2)	15.5915(20)	6.8253(11)	1436.90(58)
13.2(3)	15.5765(14)	6.8127(7)	1431.53(40)
*15.4(4)	15.5214(21)	6.7796(11)	1414.48(58)
*19.6(4)	15.4491(13)	6.6948(6)	1383.80(33)
*23.6(5)	15.3537(15)	6.6419(6)	1355.97(37)

Sample	V ₀ (Å ³)	К ₀ (GPa)	К' ₀ (GPa)	Method	Reference
Schorl	1595.52(1.98)	183.5(4.2)	4(fixed)	Powder XRD	Li et al. (2004)
Uvite	1537.1(11)	96.6(9)	12.5(4)	Powder XRD	Xu et al. (2016)
		120(2)	4(fixed)	Powder XRD	Xu et al. (2016)
Dravite	1578.18(20)	109.6(3.2)	4.6(8)	Single-crystal	This study
		112.0(1.0)	4(fixed)	Single-crystal	This study

Pressure (GPa)	0.0001	3.6(2)	7.0(1)	12.0(2)	15.4(4)
Temperature (K)	298(2)	298(2)	298(2)	298(2)	298(2)
Crystal System,	rhombohedral	rhombohedral	rhombohedral	rhombohedral	rhombohedral
space group	R3m	R3m	R3m	R3m	R3m
R ₁ (%)	2.99	6.57	4.89	4.05	3.06
wR ₂ (%)	7.35	16.21	11.86	9.79	8.29
Goodness-of-fit	1.080	1.155	1.238	1.261	1.187
No. of reflections	2167	634	512	354	484
No. refined	17	11	A A	11	11
parameters	47	44	44	44	

19.6(4)	23.6(5)		
298(2)	298(2)		
rhombohedral	rhombohedral		
<i>R</i> 3	<i>R</i> 3		
6.95	7.35		
17.60	18.50		
1.050	1.051		
874	844		
69	69		