A new style of rare metal granite with Nb-rich mica: the Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China

ZEYING ZHU¹,², RUCHENG WANG¹*, CHRISTIAN MARIGNAC²,³, MICHEL CUNEY², JULIEN MERCADIER², XUDONG CHE¹, AND MARC-YVES LESPINASSE²

¹State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Xianlin University Town, Nanjing 210023, China
²Université de Lorraine, CNRS, CREGU GeoRessources, Boulevard des Aiguillettes B.P. 70239, F-54506 Vandoeuvre-lès-Nancy, France
³Ecole Nationale Supérieure des Mines de Nancy, Parc de Saurupt, F-54042 Nancy, France

* Corresponding author: Ru-Cheng Wang

Address: State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Xianlin University Town, Nanjing 210023, China
E-mail: rcwang@nju.edu.cn
ABSTRACT

In rare-metal granites, niobium and tantalum are generally hosted by Nb–Ta oxides. However, in SE China, the Nb-specialized Huangshan granites are a unique occurrence in which Nb is essentially hosted by Li–Fe micas. The Huangshan granites are part of the Early Cretaceous (Late Yanshanian) Lingshan granite complex and belong to the A-type granite series, with two facies differing by their mica compositions: medium-grained “protolithionite” granite and medium-grained lithian (lithium-rich) annite granite. The granites are characterized by elevated whole rock Nb contents (average 144 ppm in “protolithionite” granite and 158 ppm in annite granite), quite low Ta contents (average 9 ppm and 4 ppm, respectively), leading to very high Nb/Ta ratios (average 15.3 and 31.2). Niobium is mainly hosted in the micas, with an average Nb content of 1,347 ppm in the lithian annite, and 884 ppm in the “protolithionite”, which is the highest ever reported in granitic mica. With an estimated endowment of ~80 kt Nb, the Huangshan granites represent a new style of potential Nb resource. Contrasting with the great rarity of columbite, there is abundant Hf-rich zircon, Y-rich fluorite and Th-rich fluocerite included in the Huangshan micas. Such accessory minerals being typical of alkaline rhyolitic magmas and niobium enrichment in the Huangshan granites results from A-type melt. The extreme Nb enrichment in the micas results from the highly compatible behavior of Nb in this melt, combined with the high magma temperature (estimated at 790–800°C) and possibly enhanced magma oxidation.

Keywords: Nb-rich mica; Huangshan granite; rare metal; south China
INTRODUCTION

Nb is regarded as a “strategic resource” or a “critical material” by the European Commission (2014) and the U.S. Department of Energy (2011). About 90% of Nb mine production is from pyrochlore and the rest from other oxide minerals such as columbite group minerals (Table 1; Linnen et al. 2014). Consequently, most research and exploration programs have been focused on Nb–Ta oxides (paragenesis, compositional variations, behavior at the magmatic–hydrothermal transition; e.g., Černý and Ercit 1985; Linnen and Keppler 1997; Novák and Černý 1998; Marignac et al. 2001; Linnen and Cuney 2005; Kontak 2006; Van Lichtervelde et al. 2007; Rao et al. 2009; Zhu et al. 2015).

Micas are one of the key rock-forming minerals in several rock types and are currently used for tracking the magmatic and magmatic–hydrothermal evolution of rare-metal granites (RMG) and pegmatites (e.g., Yashan or Yichun granite, China, Li et al. 2015; Tanco pegmatite, Canada, Van Lichtervelde et al. 2008; Cinovec granite, Czech Republic, Johan et al. 2012; Brazil Lake pegmatite, Nova Scotia, Kontak et al. 2006; Karibib pegmatite, Namibia, Roda et al. 2007; Keketuohai region, China, Zhu et al. 2006; Cap de Creus pegmatite field, Spain, Alfonso et al. 2003; Gatuba area pegmatites, Rwanda, Hulsbosch et al. 2014). In addition, mica was proposed to be the major player in fractionation of Nb and Ta within the crust and in magmatic enrichment of Ta (Stepanov and Hermann 2013; Stepanov et al. 2014). However, only a few studies have addressed the trace element concentrations in micas (e.g., Van Lichtervelde et al. 2008; Li et al.
2015; Legros et al. 2016, 2018) and until now they have not been considered as a potential source for economic Nb or Ta.

Southeast China is well endowed with RMGs of different ages and types, and the Yashan (Yichun) and Songshugang RMGs have been particularly well studied (e.g., Yin et al. 1995; Belkasmi et al. 2000; Huang et al. 2002; Zhu et al. 2015). The Huangshan granite/aplite/pegmatite suite (southeast Jiangxi Province, southern China) in the Lingshan plutonic complex displays high Nb and low Ta contents, with some of the highest Nb/Ta ratios reported for RMGs worldwide (Xiang et al. 2017). The granites from this suite contain surprisingly very few Nb–Ta oxides, also in strong contrast to general Nb–Ta-rich RMGs worldwide, and the Nb is almost exclusively concentrated in the micas. Thus the present study aims at providing the first description of the Huangshan RMG, to characterize their Nb-rich and Ta-poor micas and to address the formation conditions of such exceptional mica.

GEOLOGICAL SETTING

Regional setting

The South China Block comprises the Yangtze Block to the northwest and the Cathaysia Block to the southeast (Fig. 1a), which were amalgamated between ca. 1.0 and 0.8 Ga (Tonian) along the 1,500 km NE-trending Jiangnan (or Sibao) orogen (Li et al. 2002, 2009; Mao et al. 2013). With a surface area of 169,700 km² comprised of granites and silicic volcanic rocks, the South China Block represents one of the largest granitic
provinces in the world. Nearly 65% of these granites were emplaced during the early
(peak at 160–150 Ma; Jurassic) and the late (ca. 145–65 Ma; Cretaceous) Yanshanian
events (Sun 2006; Fig. 1a). The early Yanshanian event has the characteristics of a Silicic
Large Igneous Province (SLIP; Xiao et al. 2007; Bryan and Ferrari 2013), and the
Yanshanian granites are host rocks for much of the tungsten mined worldwide (Sun et al.
2012).

Tin, tungsten and other rare metals (Nb, Ta, Be and Li) are concentrated in two
major belts: the Nanling Range (including three E-W granite belts over a strike length of
more than 1,300 km) and the NNE-trending Qin-Hang Belt, along the margin of the
former Jiangnan belt (Fig. 1a). The Qin-Hang Belt hosts numerous Cu–Zn–W–Sn–Nb–Ta
deposits and contains one of the largest U deposits in China (Mao et al. 2007). The
Huangshan complex is located in the northeast of the Qin-Hang Belt, northeastern Jiangxi
Province and was emplaced at ca. 130 Ma during the Early Cretaceous (Late Yanshanian)

Lingshan complex, host to the Huangshan suite

The Lingshan batholith (~200 km²) mainly consists of a coarse-grained porphyritic
amphibole–biotite granite enriched in microgranular mafic enclaves, rimmed by a coarse-
grained biotite granite and intruded by a granite porphyry in the north (Fig. 1b; Zhang
and Tian 2005). These intrusions are highly potassic calc-alkaline granites (Xiang et al.
2017). The Huangshan granite suite was emplaced at the boundary between the biotite
granite and surrounding hornfels (Cambrian schists). A series of sill-like fine-grained
granites along the same boundary are related to the Huangshan suite (Fig. 1b). A concealed Nb–Ta-rich peraluminous RMG (Songshugang granite) occurs ~3 km west of the Lingshan batholith (Zhu et al. 2015). Reported as the largest Ta reservoir in China (4.2 kt Ta₂O₅), Songshugang suite was emplaced at 124–131 Ma determined by whole-rock K–Ar dating (Zhou et al. 2006), contemporary with the Huangshan suite (ca. 133 Ma; Che et al. 2015) and Lingshan suite (ca. 132 Ma; Xiang et al. 2017). The main body topaz albite granite in Songshugang suite is featured by typical “snow-ball” texture and evident two-stage texture in columbite group minerals and zircons (Zhu et al. 2015). Recent work reveals that beneath Songshugang granite, medium-grained granite similar to Huangshan suite appears. Though the relationship between Huangshan and Songshugang suite is still in dispute, both two suites are generally regarded as part of Lingshan granite pluton (Xiang et al. 2017).

SAMPLING AND ANALYTICAL METHODS

Six samples of medium-grained lithian annite granites (abbreviated as MA granites) were collected from a 50-m-deep drill hole at the top of the Huangshan granite (Fig. 2a) and four samples of medium-grained “protolithionite” granites (abbreviated as MP granite) were collected in a quarry at the bottom of the granite body. Modal compositions were estimated in thin sections using a Keyence VHX-1000 digital optical microscope equipped with image-recognition software. Samples were separated and crushed into 200 μm powders for bulk-rock geochemical analysis. Each sample was at least 15 cm wide and 20 cm long. Major and trace elements were analyzed at the Service d’Analyse des
Roches et des Minéraux (SARM), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Nancy, France. When measuring major element compositions (excluding F and FeIII), the whole-rock powder was mixed with LiBO\textsubscript{2}, and determined by inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo Fischer ICap 6500). Whole-rock powder was dissolved in acid before obtaining the trace elements including rare earth elements (REE) by inductively coupled plasma mass spectrometry (ICP-MS, Thermo Elemental X7). Fluorine (fusion with Na\textsubscript{2}CO\textsubscript{3}) and FeIII were determined by potentiometry. Detailed analytical procedures are described in Carignan et al. (2001). The concentrations of all elements (including trace elements) have standard deviations (2\(\delta\)) of less than 10%.

Quantitative analysis of major element concentrations in micas was first conducted with a JEOL 8100 equipped with four wavelength-dispersive spectrometers (WDS) at the State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, China. The majority of data present in this study were obtained by using a CAMECA SX100 equipped with five WDS spectrometers at GeoRessources Laboratory (Nancy, France). An accelerating voltage of 15 kV and a probe current of 12 nA were used except for Nb (accelerating voltage of 25 kV, probe current of 150 nA). The peak and background counting times were 10 and 5 s, respectively, except for Nb (120 and 60 s), with a beam diameter of 1 \(\mu\)m. The average detection limit for Nb was 90 ppm. TAP (F, Na, Mg, Al, Si, Rb), LPET (K, Cl, Nb), LIF (Mn, Fe), and PET (Cs) crystals were used. Natural and synthetic oxides and silicate standards were used: topaz (F K\(\alpha\)), albite (Na, Si K\(\alpha\)), olivine (Mg K\(\alpha\)), Al\textsubscript{2}O\textsubscript{3} (Al K\(\alpha\)), orthoclase (K K\(\alpha\)), vanadinite (Cl K\(\alpha\)), MnTiO\textsubscript{3} (Mn, Ti K\(\alpha\)), Fe\textsubscript{2}O\textsubscript{3} (Fe K\(\alpha\)), RbTiPO\textsubscript{5}
(Rb Lα), Cs-pollucite (Cs Lα) and LiNbO3 (Nb Lα). Semi-quantitative X-ray element maps were generated using the electron microprobe under the same operating conditions. Complementary quantitative analysis of zoned micas and other minerals such as zircon, fluorite and REE-F minerals was undertaken in the same laboratory on a JEOL J7600F scanning electron microscope (SEM) equipped with an EDS spectrometer, using the same standards. For accessory minerals, the standards were: monazite (La, Ce, Nd), REEF₃ (Gd, Tb, Dy, Ho, Er, Tm, Yb), wollastonite (Ca), ZrSiO₄ (Zr, Hf), ThO₂ (Th), UO₂ (U), LiTaO₃ (Ta) and CaWO₄ (W).

Trace element (Li, Mg, Sc, Ti, Mn, Cs, Rb, Sr, Nb, Ta, W, Sn, Ba, Zr and Hf) concentrations were analyzed by laser inductively coupled mass spectrometry (LA-ICP-MS) for twenty grains of micas from four thin sections (84 spots in total) using aluminium content as an internal standard. A first set of measurements was obtained at the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, using an ArF excimer laser ablation system (Geolas CQ) coupled to an Agilent 7500a ICP-MS. The analytical instrument, procedures and detailed operating conditions have been described by Xie et al. (2008). A complementary data set was obtained at the GeoRessources Laboratory in Nancy, using an ArF GeoLas excimer laser ablation system (193 nm, Microlas, Göttingen, Germany, Günther et al. 1997), coupled to an Agilent 7500c ICP-MS. Most spots were located at the same sites of previous EPMA analyses for optimal internal standardization. Analytical conditions were as follows: a fluence of 7 J/cm², at a repetition rate of 5 Hz, ablation duration of 40 s, and laser spot sizes of 44, 60, and 90 μm depending on the size of the analyzed mica crystals. To minimize aerosol deposition around the ablation pit, helium (0.5 L/min) was used as a carrier gas to flush
the sample cell during ablation, with argon added prior to injection in the plasma of the mass spectrometer. SRM NIST 610 was used as an external standard and SRM NIST 612 was used to test the analytical reproducibility and accuracy (Jochum et al. 2011). Detection limits for the trace elements were calculated using the Iolite software (Paton et al. 2011).

RESULTS

Geology of the Huangshan suite

The Huangshan granite has not been studied comprehensively since its discovery in 1958 (Liu et al. 2011), and we present observations largely acquired during detailed fieldwork for the present study. The Huangshan suite (Fig. 2a) consists of a granite body (~0.7 km2) intruded by a series of sill-like pegmatites, fine-grained granites and aplite, which may also extend outside into the hornfels (Fig. 2b). The granite body comprises two homogeneous medium-grained granite sub-units, differing by the composition of micas: lithian annite granite (abbreviated as MA granite) and main “protolithionite” Li-Fe mica (abbreviated as MP granite). A ~100 m-thick layer of MA granite at the top has flat-lying contacts with both the Lingshan biotite granite, and the main MP granite, below the MA granite (Fig. 2b). Owing to the lack of good continuous outcrop, the boundary between the two sub-units was interpolated. The contact could only be observed in a drill hole and appears as transitional over a few centimeters.

The pegmatites consist of quartz and perthitic K-feldspar, with subordinate albite and
rare mica (zinnwaldite), without clear internal zoning. The fine-grained leucogranites are of two types, fine-grained microcline-rich granite and fine-grained albitic granite, only the former being genetically related to the Huangshan granite. Albitic aplite is consistently associated with either the fine-grained albitic granites or the pegmatites, forming banded aplo-pegmatite bodies. Columbite is present in the fine-grained granites and aplite, although it is virtually absent in the pegmatite component. It is on the whole Nb-rich and Mn-poor, whereas Ta-enriched columbite with Ta# \([\text{Ta}/(\text{Ta} + \text{Nb})]\) up to 0.5 is present in the fine-grained albitic granite and aplite.

Petrography

The medium-grained “protolithionite” (MP) granite comprises 35–40 vol% K-feldspar, 35 vol% quartz, 15 vol% albite, 8–10 vol% “protolithionite” (Fig. 3a–b). Idiomorphic to hypidiomorphic textures are common and the K-feldspar is highly perthitic. The albite lamellae are systematically reorganized into aggregates and bulge into the micas at their boundaries with the K-feldspars, leading to a stellate or cuspate shape of mica (Fig. 3a). In the perthite, the potassic component is almost pure orthoclase and the albite component is also close to the pure end-member (An ≤ 0.06). These features indicate a strong subsolidus reorganization of the granitic texture (Bhattacharyya and Sengupta 2014). The MP granite contains a large amount of accessory minerals including zircon, LREE minerals (e.g., parisite, bastnäsite and fluocerite), Y-fluorite and rare columbite (only one crystal observed in all the MP samples). Iron oxides and ilmenite are absent. Except for the widespread argillization of orthoclase in the perthitic
K-feldspar (Fig. 3b), hydrothermal alteration is limited to local chlorite or muscovite development mostly along the rims of “protolithionite”. Chloritization and muscovitization are significant only in one sample (15HS02).

The medium-grained lithian annite (MA) granite is quite similar to the MP, the main differences being the composition and texture of the micas. The MA granite contains ~40–45 vol% K-feldspar, 35 vol% quartz, 10 vol% albite and 10 vol% annite, all minerals being subhedral to euhedral. K-feldspar is perthitic and displays similar features as in the MP granite with, however, a less degree of recrystallization. Lithian annite occurs mainly as crystal clusters and display less pronounced cuspate features than in the MP granite (Fig. 3c–d). Argillization of the orthoclase component in perthitic K-feldspar is pervasive (Fig. 3d), whereas chloritization of mica occurs only in one sample (ZK03). Abundant accessory minerals (zircon, Y-fluorite, REE-minerals) and a single columbite grain were observed as inclusions in the mica. Rutile is present in the altered sample (ZK03) associated with chloritization.

Whole-rock geochemistry

The MP granite is characterized by high SiO$_2$ (75.84–76.25 wt%) and alkali (Na$_2$O + K$_2$O = 8.46–8.7 wt%) contents. Calcium (CaO ≤ 0.47 wt%), ferromagnesian (FeOt + MnO + MgO = 2.34–2.64 wt%), and titanium (TiO$_2$ ≤ 0.07 wt%) concentrations are low. The Fe# [FeOt/(FeOt + MgO)] is close to 1. With ACNK ratios between 0.98 and 1.02 and ANK ratios between 1.04 and 1.06, the MP granite samples lie at the metaluminous–peraluminous boundary, close to the peralkaline field (excluding the altered 15HS02.
sample; Fig. 4a; Supplemental Table 1). The MP granites contain significant F (0.32–0.55 wt%) but phosphorus is lower than detection limit. They are enriched in Zr (246–255 ppm) and Hf (12.2–12.7 ppm) with a Zr/Hf ratio of ~20, and high ΣREE (310–424 ppm) and Y (117–142 ppm) concentrations. The bulk-rock Nb content is high (133 to 156 ppm, 144 ppm average) with Ta up to 9.8 ppm. The Nb/Ta ratio ranges from 13.0 to 17.8, with the lower value in the altered 15HS02 sample. Lithium ranges from 346 to 393 ppm, while other rare metals are not significantly concentrated (2.7–3.5 ppm W; 4–4.7 ppm Sn). Finally, the MP granite is Th-rich (72.6–101 ppm) with elevated Th/U ratios, from 2.5 to 16.5 (8.1 in average).

Compared to the MP granite, the MA granite is poorer in calcium (CaO ≤ 0.37 wt%) but enriched in alkalis (Na$_2$O+K$_2$O = 8.58–10.39 wt%), reflecting a slightly higher modal proportion of alkali feldspar. Ferromagnesian concentrations are higher (FeO t + MnO + MgO = 2.4–3.59 wt%), while titanium and phosphorus contents are very low, mostly below detection limit. As in the MP granite, the Fe# is close to 1. The MA granite is poorer in F (0.2–0.43 wt%). ACNK–ANK ratios are close to 1, also at the metaluminous/peraluminous boundary and close to the peralkaline field (ACNK = 0.97–1.03; ANK = 1.02–1.06; Fig. 4a). Compared with the MP granite, the MA granite displays more variable Zr contents (68–428 ppm), poorer in Hf (2.8–14.2 ppm) with higher Zr/Hf ratios (20–30). The ΣREE (278–472 ppm) and Y (78.7–137 ppm) contents are high and comparable to those of the MP granite. The MA granite is equally rich in Nb (112–199 ppm, 158 ppm in average) but poorer in Ta (3.5–6 ppm), yielding high Nb/Ta ratios (22.3–44.9). Lithium is significantly lower than the MP granite (38–177 ppm). Other rare metals are close to Clarke values (W: 2.2–3.5 ppm; Sn: 2.1–4.1 ppm).
Compared to the MP granite, Th content is lower (39.3–71.9 ppm) while U content is higher (16.8–24.4 ppm), yielding lower Th/U ratios (2.8–3.1).

The Huangshan granites share the characteristics of the evolved “A-type” granites (King et al. 1997), namely: metaluminous to weakly peraluminous, highly silicic ($\text{SiO}_2 > \sim 72 \text{ wt\%}$), high $\text{K}_2\text{O} + \text{Na}_2\text{O}$ and K/Na, high Fe# reflected by the occurrence of Fe-rich mafic minerals (here lithian annite and “protolithionite”), high F ($\geq 0.05 \text{ wt\%}$) and Cl, high HFSE concentrations (Zr, Hf, REEs and Nb).

Accessory mineral inclusion assemblages

The numerous accessory minerals are almost included in the micas and rarely occur as interstitial crystals in the groundmass. They were systematically analyzed and imaged by electron microscopy. Representative analyses are present in Supplemental Table 2–3. Inclusions are large (100–200 μm) and unevenly distributed in the micas, from isolated crystals to clusters (up to 10 grains).

In the MP granite, the observed assemblages consist of zircon and a complex association of fluorite and REE-minerals in roughly equal proportions (Fig. 5a–b). Zircon is euhedral to subhedral, up to 50 μm wide and 100 μm long. Zircon crystals generally exhibit a patchy zoning with two generations, Zrn-I being overprinted by Zrn-II. Zrn-I is richer in Hf (2.69–6.07 wt% HfO_2) than Zrn-II (2.44 wt% HfO_2), but poorer in U (0.28–0.53 wt% UO_2 in Zrn-I vs. < 1.36 wt% in Zrn-II). In a unique occurrence, small thorite crystals are included in Zrn-I. Fluorite forms round grain, 30 to 80 μm long and 20 to 40 μm wide (Fig. 5a–b). Two generations of Y-bearing fluorite are identified: Fl-I is
enriched in Y (5.4–6.30 wt%) and is either rimmed or replaced (patchy zoning) by Y-less Fl-II (Y = 2.59–4.19 wt%). Fluorite-I is typically associated with a fluocerite, enriched in La (11.55–18.4 wt%) and Th (9.31–10 wt%). Fluocerite and Fl-I are intimately associated with exsolution-like textures (Fig. 5c), suggesting that they are coeval (either true exsolution or symplectic association). Fluocerite is commonly observed to be replaced by acicular bastnäsite crystals, related to the recrystallization of Fl-I by Fl-II (Fig. 5c). Two intergrown bastnäsite types are commonly observed, one being Th-rich (Fig. 5c), and thorite crystals may be associated with the bastnäsite. A unique occurrence of a columbite inclusion (100 µm) was found in only one of four representative samples. With a very low Ta# ratio (0.01) and a low Mn# ratio (0.10), it is close to the columbite-(Fe) end-member (Nb/Ta = 76.8). Associated with the alteration of Li–Fe mica to muscovite, small crystals of Nb-rich rutile (Nb_2O_5 up to 9.3 wt%) are observed in a few places (Fig. 5d).

In the MA granite, the primary inclusion assemblages are more variable, including zircon, Y-fluorite + bastnäsite, fluocerite, Y-fluorite + U-pyrochlore and a unique Y-fluorite + columbite-(Fe) + bastnäsite association. As in the MP granite, zircon crystals exhibit a patchy zoning with two generations, displaying the same chemical trends, with higher Hf and less uranium in Zrn-I than in Zrn-II (3.01 wt% HfO_2 in Zrn-I vs. 0.85 wt% in Zrn-II, no U in Zrn-I vs. 0.28 wt% U in Zrn-II), the contents being, however, on the whole lower in the MA granite. As in the MP granite, fluorite is Y-rich and two generations were identified, with Fl-I richer in Y (4.81–6.11 wt%) than Fl-II (1.71–4.48 wt% of Y) and the latter replacing the former. Unlike the MP granite, fluocerite is found as isolated crystals, whereas bastnäsite is commonly associated with the first generation of fluorite or replaces early fluocerite (Fig. 5e). Fluocerite, which is La-rich and Th-
bearing (La = 23.3 wt%; Th = 2.7 wt%) is partially replaced by a La-rich bastnäsite with 2.13 wt% Th, associated with a nearly pure Th-bearing fluocerite rimming the early fluocerite (Fig. 5e). The bastnäsite associated with Fl-I is enriched in Nd relative to La. A rarer assemblage consists of Fl-I hosting small euhedral crystals of a U-rich pyrochlore (Fig. 5f). A unique columbite occurrence was found in one of three representative MA samples (as an aggregate of small prismatic crystals associated with Fl-I + bastnäsite; Fig. 5f). This unzone columbite has a very low Ta# (0.02) and Mn# (0.10) ratio, being a ferrocolumbite (Nb/Ta = 43.3). Aggregates of small rutile crystals are observed in tight association with chlorite along the cleavages of altered lithian annite (Fig. 5h). These rutile grains are Nb-rich, with distinct zoning of Nb₂O₅ from 1.83 to 2.53 wt%. In a unique occurrence, a set of bastnäsite blades (with the same composition as the fluorite-included bastnäsite), associated with thorite crystals, is included in a chlorite matrix (Fig. 5g). This association is suggestive of the pseudomorphing of an earlier mineral. We suggest that this peculiar texture is the result from the dissolution of a fluorite host, replaced by chlorite during mica alteration.

Nb-rich micas

X-ray images and chemical compositions of micas are presented in Supplemental Figure 1 and Table 4–5.

Major element composition and zoning. The mica of the MP granite is homogeneous in BSE, except for some patchy brighter areas up to ~100 µm diameter, appearing in X-ray images which are enriched in Fe. The micas are tri-octahedral, with
far more FeO (23.37–26.76 wt%) than MgO (0–0.29 wt%) and MnO (0.29–0.5 wt%).

The average TiO$_2$ concentration is 1.50 wt%. The micas are F-rich (4.29–5.65 wt%) and contain a minor but significant Cl component (~0.17 wt%). In the Al–R$_{2+}$–Si diagram proposed by Monier and Robert (1986), the MP micas plot on the annite–zinnwaldite–trilithionite tie-line (Fig. 6a), indicating that they are Li-micas. Li$_2$O was therefore estimated using SiO$_2$ as a proxy, using the empirical correlations proposed by Tischendorff et al. (1997), yielding Li$_2$O* between 1.26 and 1.81 wt%. When plotted in the Li–Al–R$_{2+}$ diagram of Foster (1960) (Fig. 6b), the micas are also actually located on the annite–zinnwaldite–trilithionite tie-line, indicating that the lithium was correctly estimated. Thus, the MP mica is classified as a “protolithionite” (Fe–Li mica with an intermediate chemical composition between siderophyllite and zinnwaldite defined by Weiss et al. 1993; Fig. 6c). The structural formula based on the average composition is

$$(K_{0.98}Rb_{0.03}Na_{0.03})_{1.04}(Fe_{1.71}Mn_{0.03}Mg_{0.02}Li_{0.48}Al_{0.51}Ti_{0.09}Cl_{0.16})(Si_{3.05}Al_{0.95}O_{10})(F_{1.32}OH_{0.66}Cl_{0.02})_2.$$

The micas of the MA granite are nearly homogeneous with the exception of sparse variously F- and Fe-rich bands, revealed by BSE and X-ray imagery, possibly representing growth zoning. Compared to the MP “protolithionite”, the MA mica is significantly enriched in Fe (FeO = 32.04–34.43 wt%) and Ti (TiO$_2$ = 1.0–3.2 wt%), while MgO (0.14–0.85 wt%) and MnO (0.21–0.68 wt%) concentrations are low. The F content is lower but still significant (1.92–4.91 wt%) and there is a minor Cl component, slightly higher than MP mica (0.17–0.32 wt%). Following the same procedure as for the MP mica, the MA mica is classified as lithian annite, with an average estimated Li$_2$O* of 0.56 wt% (Fig. 6a–c). The average structural formula is
Rare metals and other trace elements. Micas from the Huangshan MA and MP granites are very rich in Nb (Fig. 7), but low in Ta (19 and 35 ppm in average, respectively), Sn (15 and 31 ppm), and W (1 and 5 ppm; Fig. 8). Niobium contents in micas measured by EPMA and SEM-EDS are consistent with results obtained by LA-ICP-MS (Fig. 7b, d). Most REEs are at concentrations below detection limits in all micas.

Lithian annite from the MA granite is the richest in Nb, with concentrations varying from 947 to 1,864 ppm and an average value of 1,348 ppm (LA-ICP-MS), exceptional values up to ~2,900 ppm Nb (EPMA). The brightest BSE domains in the MA mica are slightly depleted in Nb (1,380 ppm) compared to the other domains (1,564–1,864 ppm).

“Protolithionite” from the MP granite contains less Nb with less variability: 556 to 1,203 ppm, average 884 ppm Nb (LA-ICP-MS); ≤ 1,950 ppm, average 1,170 ppm Nb (SEM-EDS); 970 to 2,900 ppm, average 1,260 ppm Nb (EPMA; Fig. 7a–b). Compared to the MA lithian annite, the MP “protolithionite” is enriched in Ta with a lower Nb/Ta ratio (average 25.5), correlated with a minor increase in Sn (average 31 ppm) and W (average 5 ppm; Fig. 8).

DISCUSSION

The Huangshan medium-grained granites as a potential Nb resource

Huangshan granites contain an average whole-rock Nb content of ~150 ppm,
comparable with some RMGs worldwide, such as Yichun, China (90 ppm; Huang et al. 2002), Orlovka granite, Transbaikalia (145 ppm in the zinnwaldite granite and 255 ppm in the lepidolite granite; Syritso et al. 2001), Kymi stock, Finland (71-229 ppm Nb in the porphyritic granite; Haapala and Lukkari 2005), Beauvoir, France (~150 ppm in the B1 facies; Cuney et al. 1992), and other topaz rhyolites (such as Hideaway park topaz rhyolite, with up to 200 ppm Nb in melt-inclusion of quartz, Mercer et al. 2015; up to 125 ppm Nb in the topaz rhyolites from the Western US, Christiansen et al. 1986).

Assuming that the volume of the Huangshan granite body is ≥ ~ 0.2 km3 (surface ~ 0.7 km2, ≥ 300 m thick), the contained Nb amounts is at least ~80 kt (2.65*0.2*109*150*10$^{-6}$, assuming a density of 2.65 g/cm3 for the granite). This resource is comparable to some well-known and major niobium deposits (e.g., Kanyika, Australia, 121 kt Nb; US Geological Survey, 2011).

The peculiarity of the Huangshan granites is that Nb is almost stored by the Fe–Li micas. Considering for example the ZK5 sample (MA granite), the FeO content of the whole-rock is 3.40 wt%, iron being only contained in the micas. Hence the mica amount may be estimated to ~ 10.2% based on the Fe concentrations in lithian annite (33.22 wt% of FeO). Consequently, with an average Nb content of ~ 1,350 ppm (LA-ICP-MS) in lithian annite, this mica contributes in total ~ 138 ppm to the Nb budget of the granite, a value comparable with the 133 ppm Nb measured in the whole-rock. Thus the contribution of other Nb-bearing phases may be considered negligible (including the Nb-rich rutile associate with hydrothermal alteration).

Although the granite body could be easily excavated by open pit mining, and the mica could be separated by flotation, yielding in addition access to the REE-rich
minerals, extraction of Nb from the mica is not economically feasible at present, thus the Huangshan granite body is proposed as a potential niobium resource.

Place of the Huangshan granite among the RMGs

Following Černý and Ercit (2005) and Linnen and Cuney (2005), three main groups of RMGs are recognized: (i) peralkaline rare metal granites and pegmatites (PLK-RMG), including NYF-type [Nb–Y–F], (ii) metaluminous to peraluminous, low-P rare metal granites and pegmatites (PLP-RMG), and (iii) peraluminous intermediate and high-P rare metal granites and pegmatites (IHP- and PHP-RMG), including LCT-type [Li–Cs–Ta]. The Huangshan granites, with their elevated contents in Nb (up to 200 ppm), Zr (up to 300 ppm), ΣREE (up to 500 ppm) and Th (up to 100 ppm), together with rather low Li contents (≤ 370 ppm) and very low Ta/Nb ratios (≤ 0.07), are more akin to the peralkaline RMGs than to the metaluminous to peraluminous, low-P and peraluminous high-P RMGs. However, they are distinctly less enriched in Nb, Zr and REE than the typical peralkaline RMG (up to thousands ppm Nb, up to several weight percent of Zr, and up to 7000 ppm ΣREE; Linnen and Cuney 2005). Such geochemical features are also similar to the other typical A-type RMG-like granites from Arabian Shield (Moghazi et al. 2015) and Erzgebirge, Central Europe (Breiter, 2012).

Importantly, unlike many RMGs worldwide, mica is the primary host for Nb in the Huangshan granitic suite, as demonstrated by the similarity between Ta/Nb ratios in the micas (0.04 for MP and 0.01 for MA granite) and their host rocks (0.07 for MP and 0.04 for MA granites), and by the rarity of other Nb-bearing minerals. Whereas in all other
RMGs Nb is hosted in specific Nb-bearing oxides (mainly pyrochlore in peralkaline RMGs, columbo–tantalite ± microlite in metaluminous to peraluminous, low-P RMGs and peraluminous high-P RMGs). It is therefore worth comparing the Nb concentrations in the Huangshan micas with published contents in micas from rare metal pegmatites (mainly Li-muscovite) and granites (lithian annite to lepidolite) worldwide (Fig. 9; Supplemental Table 6).

The highest Nb content in Li-muscovite (mean = 358 ppm) is reported from the LCT pegmatites in the Cap de Creus area, Spain (Alfonso et al. 2003). Li-muscovite in a pegmatite from the Eastern Brazilian Pegmatite Province has similar Nb contents (204–490 ppm; Viana et al. 2007). Li-muscovite and lepidolite are observed in the Tanco pegmatite (LCT type), with lepidolite containing up to 430 ppm Ta and low Nb (mean = 89 ppm), in accordance with the high Ta/Nb of the rock (Van Lichtervelde et al. 2008). Published muscovite data from other rare metal pegmatite occurrences have lower Nb concentrations, to as low as 21 ppm.

The Fe–Li micas from peralkaline RMGs and metaluminous to peraluminous, low-P RMGs are generally richer in Nb than Li-muscovite when both micas are present in the same complex (Zhu et al. 2006). In the Yashan (Yichun) peraluminous intermediate-P RMG suite, the Nb content is low in all micas, lacking correlation with the degree of fractionation (Li et al. 2015). At Cínovec (Zinnwald), lithian annite from the less fractionated metaluminous to peraluminous, low-P granite contains up to 697 ppm Nb and 269 ppm Ta (Johan et al. 2012). However, in the most fractionated granite, zinnwaldite contains only 124 ppm Nb and 55 ppm Ta. Breiter et al. (2017) also referred medians of 400–800 ppm Nb in annites from Zinnwald and the Nb-content in mica
decreases during fractionation. Li-annite from the Nejdek pluton (peraluminous intermediate-P RMG) in western Bohemia displays higher Nb (320 ppm) and Ta (102 ppm) contents than micas in other granites (peraluminous high-P or metaluminous to peraluminous, low-P RMGs) from the same province (Fig. 9; Breiter et al. 2017). In the Nechalacho layered peralkaline RMG suite, Canada, Nb concentrations range up to 452 ppm in annite (Möller and Williams-Jones 2016).

In addition, the Ta/Nb ratios in micas from most RMGs worldwide are higher than the upper continental crust value (Fig. 9), whereas they are lower in the micas from the Huangshan MA and MP granites, emphasizing the exceptional Nb contents in the micas from Huangshan suites.

Nb enrichment on the liquid line of descent

Unlike columbite, tantalite or other Fe–Ti-rich minerals, few partition coefficients have been determined for Nb in micas within granitic magmas (Linnen and Keppler 1997; Horng and Hess 2000; Linnen and Cuney 2005). Experimentally determined Nb partition coefficients between biotite and melt (rhyodacite–rhyolite) at 2.5 to 0.6 GPa and 750 to 800°C are between 0.5 and 9.2 (Nash and Crecraft 1985; Acosta-Vigil et al. 2010; Stepanov and Hermann 2013). These values compare with the empirical ratios of 2.7–5.8 obtained by Kovalenko et al. (1977) for the partitioning of Nb between lepidolite and ongonite melt, or the ratio of 3.5 derived by Raimbault and Burnol (1998) for the Nb partition coefficient between Li-muscovite and a Li–F–P-rich rhyolite melt.

Stepanov and Hermann (2013) demonstrated the increase of temperature or decrease
of pressure would help increase the Nb partition coefficient between biotite and melt. For
the Huangshan granites, we find melt temperatures have been constrained 790–800°C
using the Zr thermometer of Watson and Harrison (1983). Owing to crystal chemistry
constraints, the mica–melt Nb partition coefficient also depends on the composition of
the mica itself. Johan et al (2012) has proposed three substitution mechanisms in micas:

\[
\begin{align*}
(1) & \quad 3\text{Ti}^{4+} \rightarrow \text{Fe}^{2+} + 2(\text{Nb, Ta})^{5+} \\
(2) & \quad 2\text{Ti}^{4+} \rightarrow (\text{Fe, Al})^{3+} + (\text{Nb, Ta})^{5+} \\
(3) & \quad 2\text{Al}^{3+} \rightarrow \text{Li}^+ + (\text{Nb, Ta})^{5+}
\end{align*}
\]

In Huangshan micas, substitution (3) is unlikely, given the negative Li–Nb
correlation in Fig. 8e, whereas the positive correlation between Fe and Nb (Fig. 8g) is
suggestive of the involvement of either (1) or (2) or both. A positive correlation between
Ti and Nb is also evident (Fig. 8h). This apparent contradiction may be explained by the
observation that Ti in mica is positively correlated with temperature, especially in Fe-rich
micas (Robert 1976; Auzanneau et al. 2010): the higher the melt temperature, the higher
the Ti content in mica. Therefore, the Nb–Ti correlation is a result of both Nb and Ti
being positively correlated with temperature. In view of the Fe$^{3+}$/Fe$^{2+}$ ratio higher than 1
in the Huangshan MA and MP granites, involvement of substitution (2) is possible and
would imply enhanced oxygen fugacity in the Huangshan melt. Yet, a weathering effect
could have promoted this high Fe$^{3+}$/Fe$^{2+}$ ratio, and indeed a strong lateritic event occurred
in the Quaternary at the regional scale (Bao and Zhao 2008).

We conclude that the high melt temperatures (~800°C) and possibly the oxidation
state of the melt enhanced Nb enrichment in the Huangshan MA and MP granite micas.
However, similar conditions are inferred for many other A-type granites where
exceptional Nb enrichment of micas is not observed. Thus, Nb enrichment of the
Huangshan micas must also be related to the enrichment of Nb content in the primary
Huangshan magmas.

Exceptional Nb enrichment in Huangshan melts

How are Nb-rich melts produced? In peraluminous melts (including the aluminous
A-type), Nb–(Ta) oxide saturation is easily reached, and subsequent fractionation
generally results in increasing Ta contents (Černý et al. 1986; Xiong et al. 2002; Linnen
et al. 2014). It is only in peralkaline silicic melts that enhancement of columbite solubility
may allow Nb enrichment through fractionation (Linnen and Cuney 2005). As discussed
above, Huangshan granites are more close to the peralkaline field (Fig. 4a).

A key characteristic of both MA and MP granites is the variety and abundance of
primary accessory minerals within Nb-rich micas. These early crystallized assemblages
are dominated by Hf-bearing zircon, Y-fluorite and REE-fluorides. Hf-bearing zircons
and the occurrence of fluorite in place of F-rich topaz are the typical features of
peralkaline suites (Wang et al. 2000; Scaillet and Macdonald 2004; Salvi and William-
Jones 2005). In the same way, peralkaline silicic melts are enriched in thorium (Linnen
and Cuney 2005; Dostal et al. 2014), and Th is abundant in the primary REE-fluorides.
As Nb is also typically enriched in peralkaline melts (Salvi and William-Jones 2005), it is
therefore most likely that the exceptional Nb content of the Huangshan granites results
from this Zr–Y–REE-rich peralkaline melt. In addition, high content of fluorine in the
maggmatic micas (Fig. 8f) suggest enrichment of fluorine in the original melt, which is
also one of the typical features in alkaline magmas. The fluorine in the melt promotes HFSE dissolution through fluoride complexation with Al, thereby making non-bridging oxygen (NBO) available for complexation with the Nb–Ta, or by direct F complexation (Keppler, 1993). In summary, such a melt would have enhanced the solubility of columbite, allowing the incorporation of Nb into the mica and simultaneously explaining the rarity of columbite in the granites.

Origin of the difference between MP and MA granites. From lithian annite in MA granites to “protolithionite” in MP granites, Ta content increases from 18.7 to 35.7 ppm, correlated with a decrease in both Nb concentration (1,348–884 ppm) and Nb/Ta ratio (72.1–25.5; Fig. 8). These variations are consistent with fractional crystallization, with the MP granite representing the more evolved member of the suite. Micas from early less fractionated facies of Huangshan MA are Li-poorer, but more Nb-enriched than micas from the late, more fractionated facies (MP). The possible interpretation is that Li-annite is an early mineral in less fractionated RMG sequestering a big portion of available Nb into its lattice. In Li and F-rich late facies, the crystallization of Nb-rich mica contributes to consuming Nb in the melt, resulting in the later crystallization of Nb-poor mica. The increase in fluorine contents may contribute to the extreme fractionation, leading to an increase of Ta in the residual melt and crystallization of the relatively Ta-rich "protolithionite".

Post-magmatic events and their effects on Nb concentrations

Magmatic textures in the Huangshan granites were reworked, resulting in
recrystallization of perthitic K-feldspar, patchy zoning in zircon, the Fl-I to Fl-II transition, and the transformation of fluocerite into bastnäsite, all occurring without perceptible alteration of the hosting mica. These processes are therefore inferred to have occurred at high temperature, either at the end of magma crystallization or just below the solidus, meaning that they are most likely the product of interaction with magmatic fluids (i.e., fluids released from the residual melt at the magmatic–hydrothermal transition). In the MP granite, “protolithionite” contains Fe-rich patchy areas, which likely result from high temperature fluid–rock interaction, also possible at the magmatic–hydrothermal transition. Whatever the timing, the Fe-rich areas are weakly Nb-depleted (766 ppm) indicating a small amount of Nb could have been lost during this interaction.

The common replacement of fluocerite by bastnäsite crystals, spatially related to the replacement of Fl-I by Fl-II with loss of Y, is consistent with the data on mineral-fluid equilibria at 300°C and 400°C for the stability of bastnäsite-(Ce)-, parisite-(Ce)- and fluocerite-(Ce)-bearing mineral assemblages as a function of dissolved ion activities (aF^{-} and aCO_{3}^{2-}; Gysi and Williams-Jones 2015), and could therefore be also a subsolidus process.

When the Fe–Li micas were altered to chlorite or muscovite, we infer that the released niobium was partitioned into rutile (Fig. 5d, h), leading to the formation of Nb-rich rim. However, it is in the most altered sample (15HS02) that the Nb/Ta ratio is the lowest (Fig. 4b); therefore suggesting that a limited amount of Nb was lost during the hydrothermal alteration.

IMPLICATIONS
With an average content of ~150 ppm Nb (158 ppm in the lithian annite granite, 144 ppm in the “protolithionite” granite), the Huangshan granite suite is Nb-mica-specialized. The Huangshan granites are characterized by the highest Nb contents measured to date in micas from granites, with an average 1,347 ppm in the lithian annite and 884 ppm in the “protolithionite”. These Nb-rich micas are the main contributors to the Nb budget in the hosting granites, with very rare primary columbite or Nb-rutile associated with hydrothermal alteration contributing negligible amounts. In this respect, the Huangshan granites are at present unique among the rare metal granites worldwide. With an estimated ~80 kt of contained Nb, the Huangshan complex represents a new class of Nb resource, the development of which awaits advancement of a feasible economic extraction process to separate Nb from the micas.

The Huangshan granites are of the A-type granites. The abundant primary mineral inclusions in the micas (Hf-rich zircon, Y-rich fluorite, and Th-rich fluocerite), point to a peralkaline affinity. The extreme Nb enrichment in Huangshan micas is also due to the strong solubility of columbite in the magma, allowing high Nb mica–melt partition coefficients, enhanced by high temperature and possibly high oxidation state in the magma.

ACKNOWLEDGMENTS

We thank Andrei Lecomte, Sandrine Mathieu, Chantal Peiffert and Olivier Rouer for their help during data acquisition at the GeoRessources Laboratory Nancy, France; Wen-
Lan Zhang and Juan Li for their assistance at the State Key Laboratory for Mineral Deposits, Nanjing University; and Yue-Heng Yang for his help at the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. Karel Breiter, Aleksandr Stepanov, and Associate Editor Celeste Mercer are sincerely thanked for their detailed and helpful review to improve the manuscript. Roger Skirrow (Geoscience Australia) and an anonymous English native speaker are warmly thanked for improving the language.

This study was supported by the National Key R&D Project of China (2016YFC0600203), the Natural Science Foundation of China (Grant 41230315 and 41672065). This study forms part of Ze-Ying Zhu’s doctoral thesis at the Nanjing University (China) and at the Université de Lorraine (France), supported by the Caiyuanpei program from China Scholarship Council (CSC).

REFERENCES

Bryan, S.E., and Ferrair, L. (2013) Large igneous provinces and silicic large igneous provinces; progress in our understanding over the last 25 years. Geological Society of

China. The Canadian Mineralogist, 40, 1047–1068.

experimental constraints on Ta–Nb–W–Sn–Zr–Hf mineralization. In R.L. Linnen and
I.M. Samson Eds., Rare-Element Geochemistry and Mineral Deposits GAC Short

Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. In H. Heinrich
and T. Karl, Eds., Reference Module in Earth Systems and Environmental Sciences

Liu, Y.H., Li, K.Y., and Tu, J.F. (2011) Geological characteristics and genesis of
Huangshan niobium (tantalum) deposit in Geyuan, Jiangxi Province. Resources

mineralization in the Nanling region, South China: Metallogenic ages and
 corresponding geodynamic processes. Acta Petrologica Sinica, 23, 2329–2338 (in
Chinese with English abstract).

distribution of Mesozoic ore deposits in South China and their geodynamic settings.

markers of the magmatic to hydrothermal transition condition in rare–metal granites.
441–444. Biennial SGA Meeting, Krakow, Poland, Balkema, Rotterdam.

Mercer, C.N., Hofstra, A.H., Tordorov, T.I., Roberge, J., Burgisser, A., Adams, D.T., and
Cosca, M. (2015) Pre-eruptive conditions of the Hideaway Park topaz rhyolite:

element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155, 791–806.

Figure captions
Figure 1. (a) The granite province of SE China, with location of the Nanling Range and Qin-Hang belt and the main rare-metal (Nb–Ta–W–Sn) deposits (modified after Sun 2006 and Li et al. 2015). (b) The Lingshan granite complex (modified after Zhang and Tian, 2005).

Figure 2. (a) Geological map of the Huangshan granite suite (modified after Liu et al. 2011); (b) Schematic cross-section (general location in Fig.2a).

Figure 3. The two Huangshan granite facies: (a-b) medium-grained “protolithionite” granite (MP granite); note the cuspatate mica shape in relation with the reorganization of the perthite lamellae. (c-d) medium-grained annite granite (MA granite). Qz = quartz; Kfs = K-feldspar; Ab = albite; Ann = annite; Ptl = protolithionite

Figure 4. Huangshan granites geochemistry: a. ACNK vs ANK diagram; the most aluminous 15HS02 (MP granite) and ZK03 (MA granite) samples are also the most altered (see text). b. Upper crust normalized spidergram for both the MP and MA granites, which appear to be indistinguishable in this diagram. Average spidergrams for RMG types are given for comparison (from Linnen and Cuney 2005). Upper crust values from Rudnick and Gao (2003), save for Li (Teng et al. 2004). PLK-RMG: peralkaline rare metal granites and pegmatites; PLP-RMG: metaluminous to peraluminous, low-P rare metal granites and pegmatites; IHP- and PHP-RMG: peraluminous intermediate and high-P rare metal granites and pegmatites, including LCT-type [Li–Cs–Ta].
Figure 5. BSE images of accessory minerals in the micas from MP granite (a-d) and MA granite (e-h). (a, b) Assemblage of zircon and a complex association of fluorite with Th-rich bastnäsite, showing the transformation of primary Y-rich Fl-I + REE-fluoride into REE-fluorocarbonate and Fl-II. (c) Symplectic association of Fluorite-I with fluocerite. (d) Alteration of the Li-Fe mica into muscovite and Nb-rutile. (e) Partial replacement of fluocerite by a La-rich bastnäsite; (f) A unique occurrence of Fl-I hosting small crystals of U-pyrochlore) and columbite-(Fe). (g) Bastnäsite blades and thorite crystals included in a chlorite matrix. (h) Nb-rutile and chlorite along the cleavages of altered annite. Fl = fluorite; Th-rich Bast-(Ce) = Th-rich Bastnäsite-(Ce); Zrn = Zircon; Chl = Chlorite; Rt = Rutile; Clb = Columbite-(Fe); U-Pcl = Uranian pyrochlore; Ms = Muscovite; Ptl = Protolithionite; Ann = Annite

Figure 6. The Huangshan granite micas in (a) the Al (iv+vi)–R\(^{2+}\)–Si diagram of Monier and Robert (1986), (b) the Li–R\(^{2+}\)–Al diagram of Foster (1960) and (c) the Fe + Mn + Ti–Al\(^{VI}\) vs Mg–Li diagram of Tischendorff et al. (1997)

Figure 7. Nb content in the micas from Huangshan granites: (a), (c) MP and MA granites histograms obtained by LA-ICP-MS, (b), (d) Nb averages and standard deviations from SEM-EDS, EPMA and LA-ICP-MS data.

Figure 8. LA-ICP-MS data for the mica from the Huangshan MA and MP granites. (a) Nb vs Nb/Ta, (b) Nb vs Ta, (c) Nb vs W, (d) Nb vs Sn, (e) Nb vs Li\(_2\)O, (f) Nb vs F, (g) Nb
Figure 9. Comparison in a Ta–Nb diagram of the Huangshan micas (this work) with micas from rare-metal pegmatites and granites worldwide (Linnen and Cuney 2005 and references therein). Values for the upper continental crust, lower continental crust, N-MORB, and C-1 Chondrite are also shown. The detailed definition of PHP-, IHP-, PLP-, PLK-RMG, see the text.
Figure 1
Figure 2
Figure 3

(a) MP granite
(b) MP granite
(c) MA granite
(d) MA granite
Figure 4

(a)

(b)
Figure 5
Figure 6
Figure 7
Figure 8
Table 1 Major Nb-Ta-bearing minerals

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrochlore</td>
<td>(Na,Ca)₂Nb₂O₆(OH,F)</td>
</tr>
<tr>
<td>Columbite</td>
<td>(Fe,Mn)(Nb,Ta)₂O₆</td>
</tr>
<tr>
<td>Wodginite</td>
<td>(Mn,Fe) (Sn,Ti)(Ta,Nb)₂O₈</td>
</tr>
<tr>
<td>Ixiolite</td>
<td>(Ta,Nb,Mn,Fe,Sn,Ti)₄O₈</td>
</tr>
<tr>
<td>Microlite</td>
<td>(Na,Ca)₂Ta₂O₆(O,OH,F)</td>
</tr>
<tr>
<td>Nb-rich rutile</td>
<td>(Ti,Nb,Ta,Fe,Sn)O₂</td>
</tr>
<tr>
<td>Loparite</td>
<td>(Na,REE,Ca,Sr,Th)(Ti,Nb,Ta)O₃</td>
</tr>
<tr>
<td>Fergusonite</td>
<td>REENbO₄</td>
</tr>
</tbody>
</table>