1	American Mineralogist					
2	HIGHLIGHTS AND BREAKTHROUGHS					
3	A closer look at shocked meteorites: Discovery of new high-pressure minerals					
4	Chi Ma					
5						
6	Division of Geological and Planetary Sciences, California Institute of Technology,					
7 8	Pasadena, California 91125, U.S.A.					
9	E-mail: chi@gps.caltech.edu					
10						
11	"Discovery consists not in seeking new lands but in seeing with new eyes." – Marcel					
12	Proust. A rock is a book from nature. When we read it closely down to micron and nanoscales,					
13	we often discover something new and exciting. Nanomineralogy is the study of Earth and					
14	planetary materials at nanoscales, focused on characterizing nanofeatures (such as inclusions,					
15	exsolution, zonation, coatings, pores) in minerals and rocks, and revealing nanominerals and					
16	nanoparticles (Ma 2008). Nanomineralogy is a concept and also an approach, applicable to all					
17	fields of geosciences dealing with solid materials. With advanced electron-beam and					
18	synchrotron techniques, particularly using high-resolution analytical scanning electron					
19	microscopy, we are now capable to characterize geomaterials down to nanoscales easier and					
20	faster. Nanofeatures are being identified in many common minerals and rocks, providing insights					
21	into their petrogenesis and physical properties. New minerals and new materials with important					
22	geological significance are being discovered at micron to nanoscales (Ma 2015), including new					
23	high-pressure phases representing extreme conditions (e.g., Tschauner et al. 2014, Ma et al.					
24	2015, 2016).					
25	High-pressure minerals are found in shocked meteorites and terrestrial impact strucrures,					
26	formed by shock metamorphism during collisions of asteroids or asteroid impact events on					
27	planets (Earth, the Moon, and Mars) in the solar system. Most high-pressure minerals are high-					
28	pressure polymorphs of major rock-forming minerals and accessory minerals, formed via solid-					
29	state transformation. Some are crystallized from shocked-induced melts under high-pressure and					
30	high-temperature conditions.					
31						

32 Over the past six years, thirteen new high-pressure minerals have been discovered, 33 approved by the IMA-CNMNC, as listed in Table 1. Ice-VII is a high-pressure ice included in 34 diamonds from the deep mantle (Tschauner et al. 2018). Riesite (TiO₂) and maohokite 35 (MgFe₂O₄) are from the Ries and Xiuyan terrestrial impact structures, respectively (Tschauner & 36 Ma 2017a, Chen et al. 2017). The other ten are all identified in shocked meteorites (i.e., ordinary 37 chondrites, shergottites, and one eucrite), including bridgmanite (MgSiO₃-perovskite, the most 38 abundant mineral in Earth; Tschauner et al. 2014), ahrensite (Fe₂SiO₄-spinel; Ma et al. 2016), 39 tissintite ((Ca,Na,□)AlSi₂O₆-clinopyroxene; Ma et al. 2015), liebermannite (KAlSi₃O₈-40 hollandite; Ma et al. 2018), and stöfflerite (CaAl₂Si₂O₈-hollandite; Tschauner & Ma 2017b). Pang et al. (2018, this issue) report the discovery of vestaite $[(Ti^{4+}Fe^{2+})Ti^{4+}_{3}O_{9}]$ – the latest in a 41 42 shocked eucrite from asteroid Vesta. 43 Vesta – the second largest object in the asteroid belt after Ceres, is the parent body of the 44 howardite, eucrite, and diogenite (HED) meteorites (McSween et al. 2013). During a combined 45 SEM-FIB-TEM-EDS-SAED-EELS investigation, Pang et al. (2018) identified vestaite - one 46 brand-new, shock-metamorphic, high-pressure mineral in the eucrite NWA 8003, crystalized 47 from a shock melt at high pressure (≤ 10 GPa) in several melt pockets during an impact event on Vesta. HED meteorites usually show less shock features. NWA 8003 is special, containing high-48 pressure minerals in shock-induced melt veins and pockets. Vestaite is $(Ti^{4+}Fe^{2+})Ti^{4+}_{3}O_{9}$ with a 49 monoclinic C2/c schreyerite-type structure, the first new mineral revealed from HED meteorites. 50 The type vestaite has an general formula of $(Ti^{4+}, Fe^{2+}, Al)_2 Ti^{4+}_3 O_9$, with minor machiite 51 (Al₂Ti⁴⁺₃O₉) component (30 mol%), indicating a solid solution between vestaite and machiite 52 53 (Pang et al. 2018). Vestaite is a shock-metamorphic phase, whereas machiite is an ultra-54 refractory phase formed at near vacuum pressure in the solar nebula (Makide et al. 2013, Krot 55 2016). Corundum occurs in association with both the type vestaite in NWA 8003 (Pang et al. 2018) and the type machiite in the Murchison CM meteorite (Makide et al. 2013). This implies 56 that machiite with a formula of $(Al, Ti^{4+}, Fe^{2+})_2 Ti^{4+}_3 O_9$ might be present in certain melt pockets in 57 58 NWA 8003 formed under lower pressures from a similar Ti-rich melt than that for vestaite. 59 Vestaite is also a new material like machiite, never synthesized before. It could be useful to the 60 design of new functional materials. 61 Every new mineral has a voice. Each high-pressure mineral reveals distinctive forming

environments. The new findings not only provide new insights into shock conditions and impact

63	processes on the surfaces of planets and asteroids, but natural high-pressure minerals also help					
64	investigations of phase transformation mechanisms and dynamics in the deep Earth. Stay tuned,					
65	more new high-pressure minerals to come.					
66						
67	REFERENCES CITED					
68	Bindi, L., Chen, M., and Xie, X. (2017) Discovery of the Fe-analogue of akimotoite in the					
69	shocked Suizhou L6 chondrite. Scientific Reports, 7, Article number 42674.					
70	Chen, M., Shu, J., Xie, X. and Tan, D. (2017) Maohokite, IMA 2017-047. CNMNC Newsletter					
71	No. 39, October 2017, page 1281; Mineralogical Magazine, 81, 1279–1286.					
72	Ma, C. (2008) Discovering new minerals in the early solar system: a nano-mineralogy					
73	investigation. Eos Trans. AGU, 89, Fall Meet. Suppl., Abstract MR12A-01.					
74	Ma, C. (2015) Nanomineralogy of meteorites by advanced electron microscopy: Discovering					
75	new minerals and new materials from the early solar system. Microscopy and Microanalysis,					
76	21 (Suppl 3), paper No. 1175, 2353–2354.					
77	Ma, C., Tschauner, O., Beckett, J.R., Liu, Y., Rossman, G.R., Zhuravlev, K., Prakapenka, V.,					
78	Dera, P., and Taylor, L.A. (2015) Tissintite, (Ca,Na,□)AlSi ₂ O ₆ , a highly-defective, shock-					
79	induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth and Planetary					
80	Science Letters, 422, 194–205.					
81	Ma, C., Tschauner, O., Becket, J.R., Liu, Y., Rossman, G.R., Sinogeikin, S.V., Smith, J.S., and					
82	Taylor, L.A. (2016) Ahrensite, γ -Fe ₂ SiO ₄ , a new shock-metamorphic mineral from the					
83	Tissint meteorite: implications for the Tissint shock event on Mars. Geochimica et					
84	Cosmochimica Acta, 184, 240–256.					
85	Ma, C. and Tschauner, O. (2017) Zagamiite, IMA 2015-022a. CNMNC Newsletter No. 36, April					
86	2017, page 409. Mineralogical Magazine, 81, 403–409.					
87	Ma, C., Tschauner, O., and Beckett, J.R. (2018a) Discovery of a new high-pressure silicate					
88	mineral, (Mg,Fe) ₃ Si ₂ O ₇ with a tetragonal spinelloid structure, in shock melt veins from the					
89	Tenham meteorite. 49th Lunar and Planetary Science Conference, Abstract #1566.					
90	Ma, C., Tschauner, O., Beckett, J.R., and Liu, Y. (2018b) Discovery of chenmingite,					
91	FeCr ₂ O ₄ with an orthorhombic CaFe2O4-type structure, a shock-induced high-pressure					
92	mineral in the Tissint martian meteorite. 49th Lunar and Planetary Science Conference,					
93	Abstract #1564.					

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6710

Ma, C., Tschauner, O., Beckett, J.R., Rossman, G.R., Prescher, C., Prakapenke, V.B., Bechtel,

94

95	H.A., and McDowell, A. (2018c) Liebermannite, KAlSi ₃ O ₈ , a new shock-metamorphic,					
96	high-pressure mineral from the Zagami Martian meteorite. Meteoritics & Planetary Science,					
97	53, 50–61.					
98	Makide, K., Nagashima, K., Krot, A.N., Huss, G.R., Hutcheon, I.D., Hellebrand, E., and Petaev,					
99	M. I. (2013) Heterogeneous Distribution of ²⁶ Al at the Birth of the Solar System: Evidence					
100	from Corundum-bearing Refractory Inclusions in Carbonaceous Chondrites, Geochimica et					
101	Cosmochimica Acta, 110, 190–215.					
102	McSween, H.Y., Binzel, R.P., de Sanctis, M.C., Ammannito, E., Prettyman, T.H., Beck, A.W.,					
103	Reddy, V., Corre, L., Gaffey, M.J., McCord, T.B., Raymond, C.A., Russell, C.T., and the					
104	Dawn Science Team (2013) Dawn; the Vesta-HED connection; and the geologic context for					
105	eucrite, diogenites, and howardites. Meteoritics & Planetary Science. 48, 2090-2104.					
106	Pang, RL. Harries, D., Pollok, K., Zhang, AC., and Langenhorst, F. (2018) Vestaite,					
107	$(Ti^{4+}Fe^{2+})Ti^{4+}{}_{3}O_{9}$, a new mineral in the shocked eucrite Northwest Africa 8003. American					
108	Mineralogist, 103, this issue.					
109	Tschauner, O. and Ma, C. (2017a) Riesite, IMA 2015-110a. CNMNC Newsletter No. 35,					
110	February 2017, page 213; Mineralogical Magazine, 81, 209–213.					
111	Tschauner, O. and Ma, C. (2017b) Stöfflerite, IMA 2017-062. CNMNC Newsletter No. 39,					
112	October 2017, page 1285; Mineralogical Magazine, 81, 1279–1286.					
113	Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B., and Rossman, G.R. (2014)					
114	Discovery of bridgmannite, the most abundant mineral in Earth, in a shocked meteorite.					
115	Science, 346, 1100–1102.					
116	Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V.B., Ma, C., Rossman, G.R., Shen, A.H.,					
117	Zhang, D., Newville, M., Lanzirotti, A., and Tait, K. (2018) Ice-VII inclusions in diamonds:					
118	Evidence for aqueous fluid in Earth's deep mantle. Science, 359, 1136-1139.					
119	Xie, X., Gu, X., Yang, H., Chen, M., and Li, K. (2016) Wangdaodeite, IMA 2016-007. CNMNC					
120	Newsletter No. 31, June 2016, page 695; Mineralogical Magazine, 80, 691-697.					
121						

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6710

122 Table 1. New high-pressure minerals approved by the IMA-CNMNC since 2013.

123

CNMNC No.	Mineral name	Formula	Space group, structure type	Reference
IMA 2013-027	tissintite	(Ca,Na,□)AlSi ₂ O ₆	C2/c, diopside-type	Ma et al. 2015
IMA 2013-028	ahrensite	Fe ₂ SiO ₄	Fd-3m, spinel-type	Ma et al. 2016
IMA 2013-128	liebermannite	KAlSi ₃ O ₈	I4/m, hollandite-type	Ma et al. 2018c
IMA 2014-017	bridgmanite	MgSiO ₃	Pnma, perovskite-type	Tschauner et al. 2014
IMA 2015-022a	zagamiite	$CaAl_2Si_{3.5}O_{11}$	P6 ₃ /mmc, BaTi ₂ Fe ₄ O ₁₁ -type	Ma & Tschauner 2017
IMA 2015-110a	riesite	TiO ₂	P2/c, close to scrutinyite-type	Tschauner & Ma 2017a
IMA 2016-007	wangdaodeite	FeTiO ₃	R3c	Xie et al. 2016
IMA 2016-085	hemleyite	FeSiO ₃	<i>R</i> -3, ilmenite-type	Bindi et al. 2017
IMA 2017-029	ice-VII	H ₂ O-VII	Pn-3m, ice(VII)-type	Tschauner et al. 2018
IMA 2017-036	chenmingite	FeCr ₂ O ₄	Pnma, CaFe ₂ O ₄ -type	Ma et al. 2018b
IMA 2017-047	maohokite	MgFe ₂ O ₄	Pnma	Chen et al. 2017
IMA 2017-062	stöfflerite	$CaAl_2Si_2O_8$	I4/m, hollandite-type	Tschauner & Ma 2017b
IMA 2017-068	vestaite	(Ti ⁴⁺ Fe ²⁺)Ti ⁴⁺ ₃ O ₉	C2/c, schreyerite-type	Pang et al. 2018

124 125