Making Tissintite: Mimicking Meteorites in the Multi - Anvil

Melinda J. Rucks¹, Matthew L. Whitaker¹,², Timothy D. Glotch¹, John B. Parise¹,², Steven J. Jaret¹, Tristan Catalano¹, M. Darby Dyar³

¹Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100,
²Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794-2100,
³Mount Holyoke College, South Hadley, Massachusetts 01075.

Abstract

Tissintite is a shock-induced Ca-rich isomorph of jadeite observed in several meteorite samples, such as the martian shergottite Tissint. It has been suggested to form within a “Goldilocks Zone,” indicating a potential to provide strict constraints on peak pressure and temperature conditions experienced during impact. Here we present the first laboratory synthesis of tissintite, which was synthesized using a large volume multi-anvil apparatus at conditions ranging from 6 – 8.5 GPa and 1000 – 1350 °C. For these experiments, we utilized a novel heating protocol in which we reached impact-relevant temperatures within 1 s and in doing so approximated the temperature-time conditions in a post-shock melt. We have established that heating for impact-relevant time scales is not sufficient to completely transform crystalline labradorite to tissintite at these pressures. Our findings suggest that tissintite forms from amorphous plagioclase during decompression.

Introduction

The study of high-pressure, high-temperature phases in meteorite samples gives us insight into the impact processes that shape the evolution of planetary surfaces. High-pressure, high-temperature minerals observed within meteorites act as snap shots of the P-T conditions experienced by the rocks during the impact events that produced them (Chen et al., 1996; Ohtani
et al., 2004; Xie et al., 2006; Sharp and DeCarli, 2006; Gillet et al., 2007; Fritz et al., 2017).

However, using these phases as index minerals to determine impact conditions is dependent upon the availability of experimentally derived P-T stability field data, which do not exist for many newly discovered minerals observed in meteorites, such as tissintite.

Tissintite is reported as a non-stoichiometric clinopyroxene (CPX), (Ca,Na,□)AlSi$_2$O$_6$, with a calcium-rich plagioclase or labradorite (≈An$_{65}$) composition and a jadeite-type structure. It was first observed in the Martian shergottite, Tissint (Ma et al., 2014), and has since proven to be prevalent in shocked samples, including other shergottite meteorites (Herd et al., 2017), a eucrite meteorite (Pang, et al, 2016) and a possible terrestrial occurrence in shock-generated melts from the Manicouagan crater (Boonsue and Spray, 2017). It occurs as sub-micron sized crystalline aggregates within maskelynite grains that are entrained in or adjacent to shock-generated melts with no other co-existing crystalline phases detected by Raman Spectroscopy (Ma et al., 2015). Tissintite is proposed to contain approximately 25% vacancies at the M2 site, the highest concentration ever reported for either natural or synthetic CPX; however, a refined crystal structure confirming these structural defects has not been determined (Ma et al., 2015). Tissintite has been suggested to form within a so-called “Goldilocks Zone” where pressure, temperature, time and composition (P-T-t-X) are just right to facilitate growth of the phase, thus suggesting its great potential to provide strict constraints on the P – T path followed during an impact event (Ma et al., 2015). Previous to this study, tissintite had never before been synthesized, and little was known about the controls on its formation during an impact event.

There are several path-dependent variables that could influence the formation of tissintite during an impact event, including pressure, temperature, and time, as well as non-path-dependent variable such as composition, and crystallinity of the precursor. Some of these have been
estimated through observations of natural occurrences by Walton et al. (2014) and Ma et al. (2015). The first reported occurrence of tissintite (Ma et al., 2014) was observed within maskelynite grains of calcic-plagioclase composition while being absent in sodic-plagioclase grains. Tissintite was exclusively found in grains that abut or are entrained in >500 µm shock-generated melt veins or pockets and only within ~25 µm of the melt-grain interface. These observations indicate the following requirements for tissintite formation: (1) a calcium-rich plagioclase precursor, and (2) temperatures > 900 °C. Additionally, tissintite does not occur with any accompanying crystalline phases in any of the reported occurrences. This is significant, as it suggests these natural occurrences of tissintite may be controlled by kinetic factors rather than pressure or temperature alone as has been suggested for other phase transformations spatially associated with shock melt such as olivine to ringwoodite (Xie et al., 2006).

Although the number of studies concerning the behavior of intermediate plagioclase compositions at elevated P-T is limited, we can use studies of the endmembers albite and anorthite to make inferences on how these intermediate compositions may behave. At high pressure and temperature, albite and labradorite have been observed to form jadeite + stishovite at HP-HT with differing crystallization rates where jadeite crystallizes first and is subsequently followed by a crystalline silica phase after >100 s (Kubo et al., 2010). These observations, taken together with tissintite’s association with melt veins and pockets (Walton et al., 2014; Ma et al., 2015), suggest that the precursor needs to be at temperature for up to ~1 s or longer (Langenhorst and Poirier, 2000, Walton and Shaw, 2013; Walton et al., 2014) for the plagioclase-to-tissintite transformation to occur, but not so long as to form accompanying crystalline phases. Furthermore, it is unclear from natural samples whether the precursor is crystalline plagioclase or if it is maskelynite/amorphous plagioclase. The experiments performed here were designed to
approximate and test these conditions. Here we have determined an initial range of formation
conditions for tissintite of approximate An$_{60}$ composition, which is relevant to martian basaltic
shergottites and eclogites.

Methods

Synthesis

We performed high-pressure, high-temperature experiments coupled with in situ energy
dispersive X-ray diffraction and imaging at the Argonne National Laboratory Advanced Light
Source using the large volume multi-anvil press with a D-DIA apparatus available on the 6-BM-B
beamline. The possible effects of crystallinity of the precursor were tested by using two
different starting materials, a natural crystalline plagioclase feldspar powder of approximate
labradorite composition (An$_{59.25}$Ab$_{39.25}$Or$_{1.5}$), originating from Chihuahua, Mexico and provided
by Byrne et al., (2015), and an amorphous powder with the same composition. The amorphous
material was a fused glass synthesized using the natural labradorite powder and heated in a
Deltec Furnace to ~1500 °C in a sealed Pt capsule for 2 hours and quenched in air. The
composition used here is consistent with the average composition of natural tissintite (Ma et al.,
2015).

Each sample was loaded into a high-pressure cell assembly (Figure 1), with mullite as the
pressure medium and a graphite furnace. The pressure and temperature were monitored using a
MgO pressure calibrant and a W3%Re – W25%Re alloy thermocouple. The samples were cold
compressed at ambient temperature to peak pressure followed by heating. We utilized two
different heating protocols: (1) a stepped heating method where the temperature was increased
by 200 °C every 60 s, and (2) a spike heating method where the sample was elevated to peak
temperature within ~1 s, followed by a rapid quench after 60 s at peak temperature. The spike heating method was meant to loosely mimic the rapid temperature increase and decrease that material would experience when adjacent to melts produced during an impact event. While shock melts can reach up to 2500 °C or higher, this is not necessarily the temperature materials reach when heated through conduction when in contact with melt, thus the target peak temperature range for these experiments was 1200 – 1400 °C, which is comparable to temperatures estimated for materials in contact with shock melts (Langenhorst and Poirier, 2000; Walton et al., 2006; Shaw and Walton, 2013. Ma et al., 2016, Walton et al., 2017).

Energy dispersive X-ray diffraction patterns for the sample and the pressure calibrant were collected by solid state Ge detectors. The incident X-ray beam was collimated to 100 x 100 μm for diffraction. Though the spectra from only a single detector are shown in the later figures for simplicity, beamline 6-BM-B is equipped with a 10-element detector array with the individual elements oriented in a circular array. A series of two conical slits then fixes the 2-theta of the diffracted X-ray beam at 6.50° for all ten detector elements. The conditions at which diffraction data were collected for each sample are shown in Figures 2 - 5.

Recovered Sample Analysis

The samples were recovered as dense pellets ~ 2 mm in diameter and ~ 0.5 to 1 mm in thickness. A portion of each was embedded in epoxy, thinly sliced and polished to produce thick sections, ~100 – 200 μm thick. These samples were analyzed using micro-Raman spectroscopy. Raman spectra were collected using a WiTec Alpha 300R confocal imaging system equipped with a 532 nm Nd:YAG laser available in the Center for Planetary Exploration (CPeX) at Stony Brook University. All spectra were collected through a 50x (NA=0.85) objective with a working
spot size of 0.76 µm. Each spectrum is an accumulation of 60 scans with an integration time of 1 s.

Results and Discussion

The progression of the in situ diffraction patterns for 3 experimental runs denoted as L01, L02, and L03 respectively are shown in Figures 2 – 4. Each run tested 3 different sets of conditions, which, along with the experimental outcomes, are summarized in Table 1. During cold compression, no new phases were observed in both the crystalline and amorphous starting material. The apparent broadening and disappearance of diffraction peaks for the crystalline material during compression shown in Fig. 2 and Fig. 3 is consistent with partial amorphization and/or differential stress distribution (Miyahara et al., 2013). We observed the formation of tissintite only after heating in all three experiments, where the diffraction pattern is consistent with a jadeite-like structure. The formation of tissintite occurred via solid-state reaction as the temperatures tested in all three experiments are below the liquidus for labradorite and no melting was observed. In Figures 2-4, the prominent diffraction peaks associated with each phase are labeled; tissintite is denoted by the prominent double doublet features between 2 and 3 angstroms. Representative Raman spectra for each recovered sample are shown in Figure 5 along with a spectrum of natural tissintite for comparison provided by C. Ma (personal correspondence). Raman peak positions for each sample and natural tissintite are shown in Table 2.

In run L01, where the crystalline starting material was compressed to 8.5 GPa and step heated to 1400 °C, tissintite began to crystallize at ~ 1000 °C and the crystalline material was completely converted to tissintite at 1400 °C. However, in run L02 where crystalline labradorite was spike heated, we observed remaining crystalline labradorite in both the in-situ diffraction
patterns and in the Raman spectrum. Figure 5 shows a reflected light image of a labradorite grain within the recovered sample from run L02. In this sample, an apparent “rind” of tissintite that has formed along the edges of the labradorite grain can be seen. In the natural setting, tissintite can form as a rind along the edges of a maskelynite grain that are abutting or entrained in shock melt (Ma et al., 2015). While both occurrences appear similar, the textural contexts are different. Besides the remnant labradorite, no other coexisting crystalline phases were identified in either the diffraction or the spectral data.

In addition, we observed the crystallization of tissintite as a function of time during the spike heating of the amorphous material by collecting an average diffraction pattern in 15 sec intervals during the 60 second spike. Tissintite begins to nucleate within the first 15 seconds. While the major tissintite doublet peaks are not apparent in the diffraction pattern for the first 15 sec at temperature (Fig. 3), the limits of the technique make it likely that the peaks are masked by noise at the beginning of nucleation, rendering them indiscernible until after the crystals have grown above a certain size. In similar experiments reported by Kubo et al., (2010), crystallization of a jadeite-like material was observed in labradorite at 12.6 GPa and 930 °C after ~ 10 sec. While our experiments are performed at temperatures closer to a shock event, there could be a lag during spike heating from ambient to peak temperature where the center of the sample does not reach peak temperature for the first 2 – 3 seconds.

Implications

We have found that tissintite readily forms under the following range of conditions; 6 – 8 GPa, and 1000 – 1350 °C. While the temperatures are similar to those estimated for materials in contact with shock generated melts in basaltic materials (Langenhorst and Poirier, 2000; Shaw and Walton, 2013), the pressures are low relative to maskelynite formation pressures of ~29 GPa.
Further, through our novel spike heating protocol we observed that heating at shock-like time scales is not sufficient to convert crystalline labradorite to tissintite. This observation is significant as it clearly indicates that in the natural case, where tissintite is only seen in conjunction with maskelynite (amorphous plagioclase), the crystalline plagioclase had to become amorphous before contact with shock melt to produce tissintite with no coexisting crystalline plagioclase or other phases. This not only gives us an idea of when during the impact event tissintite began to form, but also when maskelynite forms as well. Thus, tissintite likely forms during decompression from an amorphous plagioclase precursor that became amorphous during compression in the same event or became amorphous during a previous impact event.

Acknowledgments

The authors would like to acknowledge the constructive reviews of Dr. Chi Ma, Dr. John Spray, Dr. Oliver Tschauner, and Dr. Erin Walton, which helped to improve the manuscript. The authors would like to thank Donald Lindsley (SBU) and Hanna Nekvasil (SBU) for help with synthesis of starting materials. Portions of this research were supported by the NASA Earth and Space Science Fellowship program and the RIS4E node of NASA’s Solar System Exploration Research Virtual Institute. Use of the Advanced Photon Source, Argonne National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the 6-BM-B beamline was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under NSF Cooperative Agreement EAR 16-06856 and by the Mineral Physics Institute, Stony Brook University. MPI Publication 509.
References:

Table 1. Experimental runs and outcomes.

Table 2. Raman shift peak positions for synthetic tissintite (this study) and natural tissintite (Ma et al., 2015).

Figure 1. Cross-section view of the standard cell assembly used in these experiments.

Figure 2. Formation of tissintite (Ts) from crystalline labradorite (Lb) at 7.5 GPa and >1000°C using stepped heating. The prominent peaks of each phase are labeled.

Figure 3. Formation of tissintite (Ts) from crystalline labradorite (Lb) at 8.5 GPa and 1320°C using spike heating. The prominent peaks of each phase are labeled.

Figure 4. Formation of tissintite (Ts) from amorphous labradorite at 6 GPa and 1200 °C using spike heating. The prominent peaks of each phase are labeled.

Figure 5. Representative spectra for each run compared to data for natural tissintite (Ma et al., 2015). The three major peaks for tissintite are 377, 693, and 1003 cm$^{-1}$. Synthetic tissintite from this study shows remarkable agreement with natural tissintite, confirming its synthesis.

Figure 6. In this reflected light image a light halo of tissintite is evident around a large plagioclase grain within L02. This texture is reminiscent of that observed in natural tissintite samples.
<table>
<thead>
<tr>
<th>Run No.</th>
<th>Starting Material</th>
<th>Peak Pressure (GPa)</th>
<th>Peak Temperature (°C)</th>
<th>Heating Method</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>Crystalline</td>
<td>8.2</td>
<td>1400</td>
<td>Step</td>
<td>tissintite</td>
</tr>
<tr>
<td>L02</td>
<td>Crystalline</td>
<td>8.5</td>
<td>1320</td>
<td>Spike</td>
<td>tissintite + labradorite</td>
</tr>
<tr>
<td>L03</td>
<td>Amorphous</td>
<td>6</td>
<td>1200</td>
<td>Spike</td>
<td>tissintite</td>
</tr>
<tr>
<td>L01</td>
<td>L02</td>
<td>L03</td>
<td>Natural tissintite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>200</td>
<td>203</td>
<td>203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>377</td>
<td>378</td>
<td>377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>432</td>
<td>437</td>
<td>433</td>
<td>417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>485*</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>512*</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>-</td>
<td>517</td>
<td>518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>573</td>
<td>-</td>
<td>574</td>
<td>573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>698</td>
<td>696</td>
<td>696</td>
<td>693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>993</td>
<td>987</td>
<td>990</td>
<td>1003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Labradorite Peaks