1	Revision 1
2	Segerstromite, $Ca_3(As^{5+}O_4)_2[As^{3+}(OH)_3]_2$, the first mineral containing the $As^{3+}(OH)_3$
3	arsenite molecule, from the Cobriza mine in the Atacama Region, Chile.
4 5 6 7	Hexiong Yang [*] , Robert T. Downs, Robert A. Jenkins, Stanley H. Evans Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A.
8	Corresponding author: hyang@email.arizona.edu
9	
10	Abstract
11	A new mineral species, segerstromite, ideally Ca ₃ (As ⁵⁺ O ₄) ₂ [As ³⁺ (OH) ₃] ₂ , has been
12	discovered at the Cobriza mine in the Sacramento district in the Copiapó Province, Chile.
13	Crystals of segerstromite occur as tetrahedra or dodecahedra (up to $0.50 \times 0.50 \times 0.50$
14	mm), or in blocky aggregates. Associated minerals include talmessite, vladimirite, and
15	Sr-bearing hydroxylapatite. Similar to the associated minerals, segerstromite is a
16	secondary mineral. The new mineral is colorless in transmitted light, transparent with
17	white streak and vitreous luster. It is brittle and has a Mohs hardness of \sim 4.5. No
18	cleavage, parting, or twinning was observed. The measured and calculated densities are
19	3.44(3) and 3.46 g/cm ³ , respectively. Optically, segerstromite is isotropic, with $n =$
20	1.731(5). It is insoluble in water or hydrochloric acid. An electron microprobe analysis
21	yielded an empirical formula (based on 14 O apfu) Ca _{2.98} (AsO ₄) _{2.00} [As(OH) ₃] _{2.00} .
22	Segerstromite is cubic, with space group $I2_13$ and unit-cell parameters $a =$
23	10.7627(2) Å, $V = 1246.71(4)$ Å ³ , and $Z = 4$. Its crystal structure is constructed from three
24	different polyhedral units: distorted CaO ₈ cubes, rigid As ⁵⁺ O ₄ arsenate tetrahedra, and
25	neutral As ³⁺ (OH) ₃ arsenite triangular pyramids. The Ca-groups form layers of corrugated
26	crankshaft chains that lie parallel to the cubic axes. These chains are linked by the
27	isolated As ⁵⁺ O ₄ and As ³⁺ (OH) ₃ groups. Segerstromite is the first known crystalline

compound that contains the $As^{3+}(OH)_3$ arsenite molecule, pointing to a new potential approach to remove highly toxic and mobile $As^{3+}(OH)_3$ from drinking water.

30

31 *Key words*: new mineral, segerstromite, arsenate/arsenite, crystal structure, X-ray

- 32 diffraction, Raman spectrum
- 33
- 34

Introduction

A new mineral species, segerstromite, ideally $Ca_3(As^{5+}O_4)_2[As^{3+}(OH)_3]_2$, has been 35 found at the Cobriza mine in the Sacramento district in the Copiapó Province, Atacama 36 37 Region, Chile. It is named in honor of the late Kenneth Segerstrom (1909-1992), who 38 was a professional geologist and worked more than 40 years for the U.S. Geological 39 Survey in the U.S., Mexico and Chile, principally conducting field-based regional geologic studies. In particular, Ken Segerstrom worked in Chile in conjunction with the 40 41 "Instituto de Investigaciones Geologicas" (now Sernageomin), from 1957-1963, mainly 42 in the Atacama Region, where the new mineral was found. Among his numerous 43 publications, Ken Segerstrom authored 18 maps and articles on the Atacama Region, 44 including the Sacramento district and the Cobriza mine. The new mineral and its name 45 have been approved by the Commission on New Minerals, Nomenclature and 46 Classification (CNMNC) of the International Mineralogical Association (IMA 2014-47 001). Part of the cotype sample has been deposited at the University of Arizona Mineral 48 Museum (Catalogue # 19800) and the RRUFF Project (deposition # R130753). 49 Arsenic contamination can be a major ecological hazard because of its well-50 known toxicity and carcinogenicity, even at very low concentrations in drinking water 51 (10 µg/L) (Hughes 2002; Vaughan 2011). In natural water, arsenic primarily exists in inorganic forms with two predominant species: H₃As³⁺O₃ arsenite [or commonly written 52 as $As^{3+}(OH)_3$ and $H_3As^{5+}O_4$ arsenate. The toxicity of arsenic depends strongly on its 53 oxidation state, with As^{3+} 25-60 times more toxic than As^{5+} (Fazal et al. 2001). Although 54

55	some sophisticated methods have been developed to remove As ⁵⁺ from drinking water,
56	such as by ion-exchange, adsorption, or as a precipitate of AlAsO ₄ or FeAsO ₄ , there is no
57	efficient or economic approach to eliminate As ³⁺ as yet, due partly to its greater solubility
58	and mobility than As ⁵⁺ (e.g., Zhang et al. 2007; Mohan and Pittman 2007; Itakura et al.
59	2008; Kreidie et al. 2011; Roy et al. 2016; Dickson et al. 2017; Yadav et al. 2017).
60	Extensive efforts, both experimental and theoretical, have been devoted to seek ligands
61	that can form stable complexes with $As^{3+}(OH)_3$ and some successes have been achieved
62	with certain organic compounds (e.g., Porquet and Filella 2007; Kolozsi et al. 2008).
63	Nonetheless, there has been no report for the presence of the $As^{3+}(OH)_3$ group in any
64	inorganic crystalline material, synthetic or natural, until now. Therefore, segerstromite
65	represents the first inorganic compound that sequesters the As ³⁺ (OH) ₃ group in its
66 67 68	structure.
69	Sample Description and Experimental Methods
69 70	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra
69 70 71	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza
69 70 71 72	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza mine (27°49'45"S, 70°14'03"W) in the Sacramento district in the Copiapó Province,
69 70 71 72 73	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza mine (27°49'45"S, 70°14'03"W) in the Sacramento district in the Copiapó Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-As-Cu-Zn mine; the
 69 70 71 72 73 74 	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza mine (27°49'45"S, 70°14'03"W) in the Sacramento district in the Copiapó Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-As-Cu-Zn mine; the mineralization is hosted in sedimentary and volcanic rocks.
 69 70 71 72 73 74 75 	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza mine (27°49'45"S, 70°14'03"W) in the Sacramento district in the Copiapó Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-As-Cu-Zn mine; the mineralization is hosted in sedimentary and volcanic rocks. Crystals of segerstromite occur as tetrahedra, dodecahedra, granular or blocky
 69 70 71 72 73 74 75 76 	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza mine (27°49'45"S, 70°14'03"W) in the Sacramento district in the Copiapó Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-As-Cu-Zn mine; the mineralization is hosted in sedimentary and volcanic rocks. Crystals of segerstromite occur as tetrahedra, dodecahedra, granular or blocky aggregates, with single crystals up to 0.50 x 0.50 x 0.50 mm (Fig 1). Associated minerali
 69 70 71 72 73 74 75 76 77 	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza mine (27°49'45''S, 70°14'03''W) in the Sacramento district in the Copiapó Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-As-Cu-Zn mine; the mineralization is hosted in sedimentary and volcanic rocks. Crystals of segerstromite occur as tetrahedra, dodecahedra, granular or blocky aggregates, with single crystals up to 0.50 x 0.50 x 0.50 mm (Fig 1). Associated minerals include talmessite Ca ₂ Mg(AsO ₄) ₂ ·2H ₂ O, vladimirite Ca ₄ (AsO ₄) ₂ (AsO ₃ OH)·4H ₂ O, and
 69 70 71 72 73 74 75 76 77 78 	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza mine (27°49'45"S, 70°14'03"W) in the Sacramento district in the Copiapó Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-As-Cu-Zn mine; the mineralization is hosted in sedimentary and volcanic rocks. Crystals of segerstromite occur as tetrahedra, dodecahedra, granular or blocky aggregates, with single crystals up to 0.50 x 0.50 x 0.50 mm (Fig 1). Associated minerals include talmessite Ca ₂ Mg(AsO ₄) ₂ ·2H ₂ O, vladimirite Ca ₄ (AsO ₄) ₂ (AsO ₃ OH)·4H ₂ O, and Sr-bearing hydroxylapatite Ca ₅ (PO ₄) ₃ (OH). Similar to the other associated minerals
 69 70 71 72 73 74 75 76 77 78 79 	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza mine (27°49'45"S, 70°14'03"W) in the Sacramento district in the Copiapó Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-As-Cu-Zn mine; the mineralization is hosted in sedimentary and volcanic rocks. Crystals of segerstromite occur as tetrahedra, dodecahedra, granular or blocky aggregates, with single crystals up to 0.50 x 0.50 x 0.50 mm (Fig 1). Associated minerals include talmessite Ca ₂ Mg(AsO ₄) ₂ ·2H ₂ O, vladimirite Ca ₄ (AsO ₄) ₂ (AsO ₃ OH)·4H ₂ O, and Sr-bearing hydroxylapatite Ca ₅ (PO ₄) ₃ (OH). Similar to the other associated minerals (talmessite and vladimirite), segerstromite is considered to be a secondary mineral.
 69 70 71 72 73 74 75 76 77 78 79 80 	Sample Description and Experimental Methods Occurrence, physical and chemical properties, and Raman spectra Segerstromite was found on several specimens collected by RAJ from the Cobriza nine (27°49'45"S, 70°14'03"W) in the Sacramento district in the Copiapó Province, Atacama Region, Chile. The Cobriza mine is an abandoned Pb-Ag-As-Cu-Zn mine; the mineralization is hosted in sedimentary and volcanic rocks. Crystals of segerstromite occur as tetrahedra, dodecahedra, granular or blocky aggregates, with single crystals up to 0.50 x 0.50 x 0.50 mm (Fig 1). Associated minerals include talmessite Ca ₂ Mg(AsO ₄) ₂ ·2H ₂ O, vladimirite Ca ₄ (AsO ₄) ₂ (AsO ₃ OH)·4H ₂ O, and Sr-bearing hydroxylapatite Ca ₅ (PO ₄) ₃ (OH). Similar to the other associated minerals (talmessite and vladimirite), segerstromite is considered to be a secondary mineral.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6329

82 Segerstromite is colorless in transmitted light, transparent with white streak and 83 vitreous luster. It is brittle and has a Mohs hardness of ~4.5; no cleavage, parting, or 84 twinning was observed. The measured (by flotation) and calculated densities are 3.44(3)and 3.46 g/cm³, respectively. Optically, segerstromite is isotropic, with n = 1.731(5), 85 86 measured in white light. It is insoluble in water or hydrochloric acid. 87 The chemical composition of segerstromite was determined using a CAMECA 88 SX-100 electron microprobe (WDS mode, 10 kV, 6 nA, and 10 µm beam diameter). The 89 standards included As_2O_3 for As, and wollastonite (CaSiO₃) for Ca, yielding an average 90 composition (wt.%) (16 points) of As_2O_3 60.75(16) [converted to As_2O_3 30.38 + As_2O_5 35.20 with $As^{3+}/As^{5+} = 1$ according to the X-ray structure determination, see below], CaO 91 92 25.57(12), H_2O 8.29 (added according to the structure determination), and total = 93 99.53(26). The resultant chemical formula, calculated on the basis of 14 O apfu (from the 94 structure determination), is Ca_{2.98}(AsO₄)_{2.00}[As(OH)₃]_{2.00}, which can be simplified to $Ca_3(As^{5+}O_4)_2[As^{3+}(OH)_3]_2$. 95 96 The Raman spectrum of segerstromite was collected on a randomly oriented 97 crystal on a Thermo Almega microRaman system, using a solid-state laser with a 98 frequency of 532 nm and a thermoelectric cooled CCD detector. The laser is partially polarized with 4 cm⁻¹ resolution and a spot size of 1 μ m. 99 100 101 X-ray crystallography 102 Both the powder and single-crystal X-ray diffraction data for segerstromite were 103 collected on a Bruker X8 APEX2 CCD X-ray diffractometer equipped with graphite-104 monochromatized Mo K_{α} radiation. Listed in Table 1 are the measured powder X-ray 105 diffraction data, along with those calculated from the determined structure using the 106 program XPOW (Downs et al. 1993).

107Single-crystal X-ray diffraction data of segerstromite were collected from a nearly108equidimensional crystal (0.05 x 0.04 x 0.04 mm) with frame widths of 0.5° in ω and 30 s

109	counting time per frame. All reflections were indexed on the basis of a cubic unit-cell
110	(Table 2*) (deposited). The intensity data were corrected for X-ray absorption using the
111	Bruker program SADABS. The systematic absences of reflections suggest possible space
112	group I23, I213, or Im3. The crystal structure was solved and refined using SHELX2014
113	(Sheldrick 2015a, 2015b) based on space group $I2_13$, because it produced the better
114	refinement statistics in terms of bond lengths and angles, atomic displacement
115	parameters, and R factors. The H atom was located from the difference Fourier maps. The
116	ideal chemistry was assumed during the refinements. The positions of all atoms were
117	refined with anisotropic displacement parameters, except those for the H atom, which
118	was refined with an isotropic parameter. Final coordinates and displacement parameters
119	of atoms in segerstromite are listed in Table 3, and selected bond-distances in Table 4*
120	(deposited). Calculated bond-valence sums using the parameters from Brese and
121	O'Keeffe (1991) are given in Table 5.
122	
123	Discussion
124	Crystal structure
125	The crystal structure of segerstromite is unique. It is constructed from three
126	different polyhedral units: distorted CaO8 cubes with six short and two long Ca-O bonds,
127	rigid As ⁵⁺ O ₄ arsenate tetrahedra, and neutral As ³⁺ (OH) ₃ arsenite triangular pyramids
128	(Table 3 and Fig. 2). The $As^{5+}O_4$ and $As^{3+}(OH)_3$ groups are isolated from each other,
129	while the Ca-groups form corrugated crankshaft chains that layer perpendicular to the
130	cubic axes (Fig. 3). The corrugations are stabilized by the $As^{3+}(OH)_3$ arsenite groups. The
131	layers are stacked with a shift of half a unit cell, so that the chains lie above and below
132	the gaps between the chains (Fig. 4). The corrugated layers are held together by chains of
133	CaO_8 groups linked by the isolated AsO ₄ arsenate groups (Fig. 5).
134	There are a number of minerals that contain both As ⁵⁺ and As ³⁺ (Table 6), but
125	a a constraint is the first linear equate line compared that contains the neutral $A a^{3+}(OU)$

136	arsenite group. The average As^{3+} -O bond length for the As^{3+} (OH) ₃ group is 1.776 Å, in
137	excellent agreement with the experimental value of 1.77-1.78 Å reported for the
138	As ³⁺ (OH) ₃ molecule in aqueous solutions (Arai et al. 2001; Pokrovski et al. 2002;
139	Ramirez-Solis et al. 2004; Testamale et al. 2004). It also falls in the range between 1.77
140	and 1.82 Å calculated by various theoretical methods (see Porquet and Filella 2007;
141	Tossell and Zimmermann, 2008; Hernández-Cobos et al. 2010). The O-As ³⁺ -O angle is
142	95.29°, with a trigonal pyramidal lone-pair-As ³⁺ -O angle of 121.43°.
143	The $As^{5+}O_4$ tetrahedron is slightly distorted, with the As1-O1 bond length (1.698)
144	Å) longer than the three As1-O2 distances (1.679 Å) (Table 3). The average As^{5+} -O bond
145	length is 1.684 Å, in accord with the values found in many other arsenate minerals
146	(Hawthorne et al. 2012; Kampf et al. 2015; Đorđević et al. 2016 and references therein),
147	as well as the average value of 1.685 Å derived by Majzlan et al. (2014) through an
148	examination of numerous arsenate minerals.
149	The hydrogen bonding scheme in segerstromite is presented in Table 3. The O3—
150	HO2 distance is 2.664(2) Å, indicating a considerably strong hydrogen bond.
151	
152	Raman spectrum
153	Numerous Raman spectroscopic studies have been conducted on various arsenite
154	and/or arsenate minerals and compounds (e.g., Frost et al. 2011; Kharbish 2012; Liu et al.
155	2014; Đorđević 2015; Đorđević et al. 2016, and references therein), as well as on the
156	As(OH) ₃ molecule in organic materials and solutions (e.g., Loehr and Plane 1968;
157	Pokrovski et al. 1999; Goldberg and Johnston 2001; Wood et al. 2002; Müller et al.
158	2010). The Raman spectrum of segerstromite is displayed in Figure 6 and the tentative
159	assignments of major Raman bands based on the previous studies are given in Table 7. In
160	particular, the bands at 699 and 680 cm ⁻¹ are ascribed to the symmetric and asymmetric
161	stretching vibrations of As-OH within the As ³⁺ (OH) ₃ group, respectively, which should

162 be compared with 701-710 and 655-669 cm⁻¹ observed for the As(OH)₃ group in aqueous

solutions (Loehr and Plane 1968; Pokrovski et al. 1999; Goldberg and Johnston 2001;

164 Müller et al. 2010).

165	In Figure 6, the O-H stretching vibration is marked by a rather broad band at 2906
166	cm ⁻¹ . According to Libowitzky (1999), an O-HO distance of 2.66 Å would
167	correspond to an O—H stretching frequency of $\sim 2900 \text{ cm}^{-1}$, consistent with our
168	measured value. Similar results were also reported for diaspore, which has an O-HO
169	distance of 2.65 Å with the O—HO angle of 160.8° (Hill 1979) and a Raman band at
170	2918 cm ⁻¹ that is attributable to the O-H stretching vibration (Ruan et al. 2001).
171	
172	Implications
173	In comparison to As^{5+} , besides its greater toxicity, $As^{3+}(OH)_3$ is also more mobile
174	and soluble in the environment because of its neutral character in a wide pH range (<9.2
175	at 25 °C with As = 0.1 mol/L) (Müller et al. 2010), resulting in its rather weaker
176	adsorption on soil constituents, such as iron and aluminum oxy-hydroxides (Ladeira and
177	Ciminelli 2004; Yokoyama et al. 2012). All previous investigations have appeared to
178	focus chiefly on the understanding of how As ³⁺ (OH) ₃ can be immobilized with the
179	formation of complexes with Fe ³⁺ and Al ³⁺ . In particular, the possibility of co-
180	precipitation of As ³⁺ and Fe ³⁺ has been explored extensively, because such a phenomenon
181	has been observed to take place in natural environments, as well as under laboratory
182	conditions (e.g., Ciardelli et al., 2008; Sasaki et al., 2009; Muller et al. 2010). Recently,
183	Itakura et al. (2007, 2008) proposed the removal of arsenic from water containing both
184	arsenite and arsenate ions through hydrothermal formation of the mineral johnbaumite,
185	Ca ₅ (As ⁵⁺ O ₄) ₃ (OH) (arsenate analogue of apatite). The discovery of segerstromite,
186	however, points to a new potential approach to remove or reduce As ³⁺ (OH) ₃ in water,
187	providing sufficient availability of Ca ²⁺ . Because calcite, CaCO ₃ , is the most stable
188	polymorph of calcium carbonates under the ambient conditions and ubiquitously found in
189	various surface environments, a potential chemical reaction for such a process would be:

190	$3CaCO_3 (calcite) + 2H_3As^{5+}O_4 (l) + 2H_3As^{3+}O_3 (l) <==>$
191	$Ca_{3}(As^{5+}O_{4})_{2}[As^{3+}(OH)_{3}]_{2} (segerstromite) \downarrow + 3H_{2}O + CO_{2}\uparrow$
192	Hence, further investigations on the formation conditions of segerstromite, such as pH,
193	Eh, and temperature, will undoubtedly generate information on how to remove
194	$As^{3+}(OH)_3$ in water more efficiently and economically.
195	
196	Acknowledgements
197	This study was funded by the Science Foundation Arizona. The constructive
198	comments by Anthony R. Kampf and an anonymous reviewer are greatly appreciated.
199	
200	References Cited
201	Arai, Y., Elzinga, E.J., and Sparks, D. (2001) X-ray absorption spectroscopic
202	investigation of arsenite and arsenate adsorption at the aluminum oxide-water
203	interface. Journal of Colloid and Interfacial Science, 235, 80-88.
204	Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
205	Crystallographica, B47, 192–197.
206	Ciardelli, M.C., Xu, H., and Sahai, N. (2008) Role of Fe(II), phosphate, silicate, sulfate,
207	and carbonate in arsenic uptake by coprecipitation in synthetic and natural
208	groundwater. Water Research, 42, 615-624.
209	Dickson, D., Liu, G, Cai, Y. (2017) Adsorption kinetics and isotherms of arsenite and
210	arsenate on hematite nanoparticles and aggregates. Journal of Environmental
211	Management, 186, 261-267.
212	Đorđević, T. (2015) Crystal Chemistry of the $M1^{1+,2+}-M2^{2+,3+}$ –H-arsenites: the first
213	cadmium(II) arsenite, Na ₄ Cd ₇ (AsO ₃) ₆ . Zeitschrift fur Anorganische und
214	Allgemeine Chemie, 641, 1863-1868.
215	Đorđević, T., Kolitsch, U., and Nasadala, L. (2016) A single-crystal X-ray and Raman
216	spectroscopic study of hydrothermally synthesized arsenates and vanadates with

217	the descloizite and adelite structure types. American Mineralogist, 101, 1135-
218	1149.
219	Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B., Jr. (1993) Interactive
220	software for calculating and displaying X-ray or neutron powder diffractometer
221	patterns of crystalline materials. American Mineralogist, 78, 1104-1107.
222	Fazal, M.A., Kawachi, T., amd Ichion, E. (2001) Extent and Severity of Groundwater
223	Arsenic Contamination in Bangladesh. Water International, 26, 370-379.
224	Frost, R.L., Čejka, J., Sejkora, J., Plášil, J., Bahfenne, S., and Keeffe, E.C. (2011): Raman
225	spectroscopy of hydrogen arsenate group (AsO ₃ OH) ₂ in solid-state compounds:
226	cobalt-containing zinc arsenate mineral, koritnigite (Zn,Co)(AsO ₃ OH)•H ₂ O.
227	Journal of Raman Spectroscopy, 42, 534-539.
228	Goldberg, S. and Johnston, C.T. (2001) Mechanisms of arsenic adsorption on amorphous
229	oxides evaluated using macroscopic measurements, vibrational spectroscopy, and
230	surface complexation modeling. Journal of Colloid and Interfacial Science, 234,
231	204–216.
232	Hawthorne, F.C., Cooper, M.A., Abdu, Y.A., Ball, N.A., Back, M.E., and Tait, K.T.
233	(2012) Davidlloydite, ideally Zn ₃ (AsO ₄) ₂ (H ₂ O) ₄ , a new arsenate
234	mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description
235	and crystal structure. Mineralogical Magazine, 76, 45-57.
236	Hernández-Cobos, J., Cristina Vargas, M., Ramírez-Solís, A. and Ortega-Blake, I. (2010)
237	Aqueous solvation of As(OH) ₃ : A Monte Carlo study with flexible polarizable
238	classical interaction potentials. The Journal of Chemical Physics, 133, 114501(1-
239	9).
240	Hill, R.J. (1979) Crystal structure refinement and electron density distribution in
241	diaspore, Physics and Chemistry of Minerals, 5, 179-200.
242	Hughes, M. F. (2002) Arsenic toxicity and potential mechanisms of action. Toxicology
243	Letter, 133, 1-16.

244	Itakura, T., Sasai, R., and Itoh, H. (2007) Arsenic recovery from water containing
245	arsenite and arsenate ions by hydrothermal mineralization. Journal of Hazardous
246 247	Materials, 328–333. Itakura, T., Sasai, R., and Itoh, H. (2008) A precipitation method for arsenite ion in
248	aqueous solution as natural mineral by hydrothermal mineralization. Journal of
249	the Ceramic Society of Japan, 116, 234-238.
250	Kampf, A.R., Mills, S.J., Nash, B.P., Dini, M., and Donoso, A.A.M. (2015) Tapiaite,
251	$Ca_5Al_2(AsO_4)_4(OH)_4$ ·12H ₂ O, a new mineral from the Jote mine, Tierra Amarilla,
252	Chile. Mineralogical Magazine, 79, 345-354.
253	Kharbish, S. (2012) Raman spectra of minerals containing interconnected As(Sb)O ₃
254	pyramids: trippkeite and schafarzikite. Journal of Geosciences, 57, 53-62.
255	Kolozsi, A., Lakatos, A., Galbács, G., Madsen, A. Ø., Larsen, E., and Gyurcsik, B.
256	(2008) A pH-Metric, UV, NMR, and X-ray Crystallographic Study on Arsenous
257	Acid Reacting with Dithioerythritol. Inorganic Chemistry, 47, 3832-3840.
258	Kreidie, N., Armiento, G., Cibin, G., Cinque, G., Crovato, C., Nardi, E., Pacifico, R.,
259	Cremisini, C., and Mottana, A. (2011) An integrated geochemical and
260	mineralogical approach for the evaluation of arsenic mobility in mining soils.
261	Journal of Soils and Sediments, 11, 37–52.
262	Ladeira, A.C.Q., Ciminelli, V.S.T. (2004) Adsorption and desorption of arsenic on an
263	oxisol and its constituents. Water Research, 38, 2087-2094.
264	Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen
265	bond lengths in minerals. Monatshefte für Chemie, 130, 1047-1059.
266	Liu, J., Jia, R., Liu, J. (2014) The vibration characterization of synthetic crystalline lead
267	hydrogen arsenite chloride precipitates Pb ₂ (HAsO ₃)Cl ₂ -implications of
268	solidification of As (III) and Pb (II). Spectrochimica Acta Part A: Molecular and
269	Biomolecular Spectroscopy, 117, 658–661.
270	Loehr, T.M. and Plane, R.A. (1968) Raman spectra and structures of arsenious acid and

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6329

271	arsenites in aqueous solution. Inorganic Chemistry, 7, 1708-1714.
272	Majzlan, J., Drahota, P., Filippi, M. (2014) Parageneses and crystal chemistry of arsenic
273	minerals. Reviews in Mineralogy and Geochemistry, 79, 17-184.
274	Mohan, D. and Pittman, C.U. Jr. (2007) Arsenic removal from water/wastewater using
275	adsorbents—A critical review. Journal of Hazardous Materials, 142, 1-53.
276	Müller, K., Ciminelli, V.S.T., Dantas, M.S.S., and Willscher, S. (2010) A comparative
277	study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-
278	hydroxides by Raman spectroscopy. Water Research, 44, 5660-5672.
279	Porquet, A. and Filella, M. (2007) Structural Evidence of the Similarity of Sb(OH) ₃ and
280	As(OH) ₃ with Glycerol: Implications for Their Uptake. Chemical Research of
281	Toxicology, 20, 1269–1276.
282	Pokrovski, G.D., Bény, J-M., and Zotov, A. (1999) Solubility and Raman spectroscopic
283	study of As(III) speciation in organic compound-water solutions. A hydration
284	approach for aqueous arsenic in complex solutions. Journal of Solution Chemistry,
285	28, 1307-1327.
286	Pokrovski, G.S., Zakirov, I., Roux, J., Testemale, D., Hazemann, JL., Bychkov, A. Yu.,
287	and Golikova, G.V. (2002) Experimental study of arsenic speciation in vapor
288	phase to 500 °C: implications for As transport and fractionation in low-density
289	crustal fluids and volcanic gases. Geochimica et Cosmochimica Acta, 66, 3453-
290	3480.
291	Ramirez-Solis, A., Mukopadhyay, R., Rosen, B.P., and Stemmler, T.L. (2004)
292	Experimental and theoretical characterization of arsenite in water: insights into
293	the coordination environment of As-O. Inorganic Chemistry, 43, 2954–2959.
294	Roy, E., Patra, S., Rashmi Madhuri, R., Sharma, P.K. (2016) A single solution for
295	arsenite and arsenate removal from drinking water using cysteine@ZnS:TiO ₂
296	nanoparticle modified molecularly imprinted biofouling-resistant filtration
297	membrane. Chemical Engineering Journal, 304, 259–270.

298	Ruan, H.D., Frost, R.L., Kloprogge, J.T. (2001) Comparison of Raman spectra in
299	characterizing gibbsite, bayerite, diaspore and boehmite, Journal of Raman
300	Spectroscopy, 32, 745-750.
301	Sasaki, K., Nakano, H., Wilopo, W., Miura, Y., Hirajima, T. (2009) Sorption and
302	speciation of arsenic by zero-valent iron. Colloids and Surfaces A:
303	Physicochemical Engineering Aspects, 347, 8-17.
304 305	Sheldrick, G. M. (2015a) SHELXT – Integrated space-group and crystal structure
306	determination. Acta Crystallographica, A71, 3-8.
307	Sheldrick, G. M. (2015b) Crystal structure refinement with SHELX. Acta
308	Crystallographica, C71, 3-8.
309	Testamale, D., Hazemann, JL., Pokrovski, G.S., Joly, Y., Roux, J., Argoud, R., and
310	Geaymond, O. (2004) Structural and electronic evolution of the As(OH) ₃
311	molecule in high temperature aqueous solutions: an X-ray absorption
312	investigation. Journal of Chemical Physics, 121, 8973-8982.
313	Tossell , J.A. and Zimmermann, M.D. (2008) Calculation of the structures, stabilities, and
314	vibrational spectra of arsenites, thioarsenites and thioarsenates in aqueous solution
315	Geochimica et Cosmochimica Acta, 72, 5232–5242.
316	Vaughan, D.J. (2011) Arsenic. Elements, 2, 71-75.
317	Wood, S.A., Tait, C.D., and Janecky, D.R. (2002) A Raman spectroscopic study of
318	arsenite and thioarsenite species in aqueous solution at 25 °C. Geochemical
319	Transactions, 3, 31–39.
320	Yadav, M.K., Gupta, A.K., Ghosal, P.S., Mukherjee, A. (2017) pH mediated facile
321	preparation of hydrotalcite based adsorbent for enhanced arsenite and arsenate
322	removal: Insights on physicochemical properties and adsorption mechanism.
323	Journal of Molecular Liquids, 240, 240–252
324	Yang, H., Evans, S.H., Downs, R.T., Jenkins, R.A. (2011) The crystal structure of
325	vladimirite, with a revised chemical formula, Ca ₄ (AsO ₄) ₂ (AsO ₃ OH)·4H ₂ O. The
326	Canadian Mineralogist, 49, 1055-1064.
327	Yokoyama, Y., Kazuya Tanaka, K., Takahashi, Y. (2012) Differences in the

328	immobilization of arsenite and arsenate by calcite. Geochimica et Cosmochimica
329	Acta, 91, 202–219.
330	Zhang, G., Qu, J., Liu, H., Liu, R., and Li, G. (2007) Removal Mechanism of As(III) by a
331	Novel Fe-Mn Binary Oxide Adsorbent: Oxidation and Sorption. Environmental
332	Science & Technology, 41, 4613-4619.
333	

334 List of Tables

335	
336	Table 1. Powder X-ray diffraction data for segerstromite
337	
338	Table 2 (deposit). Summary of crystallographic data and refinement results for
339	segerstromite.
340	
341	Table 3. Coordinates and displacement parameters of atoms in segerstromite.
342	
343	Table 4 (deposit). Selected bond distances (Å) in segerstromite.
344	
345	Table 5. Bond-valence sums for segerstromite.
346	
347	Table 6. Minerals containing both As ⁵ and As ⁵ .
348	Table 7. Tantation and af Daman hands for an anti-
250	Table 7. Tentative assignment of Raman bands for segerstromite.
350	
357	
353	List of Figure Cantions
354	List of Tigure Cuptions
355	Figure 1 (a) Rock samples on which segerstromite crystals are found (b) A microscopic
356	view of segerstromite, showing the tetrahedral morphology.
357	
358	Figure 2. Crystal structure of segerstromite. The green and purple polyhedra represent
359	CaO_8 and $As^{5+}O_4$ groups, respectively. The large yellow and small blue spheres
360	represent As^{3+} (As2) and H atoms, respectively.
361	
362	Figure 3. A slice of the segerstromite structure, showing corrugated crankshaft chains
363	formed by the corner-shared, distorted CaO_8 cubes. The corrugations are
364	stabilized by the $As^{3+}(OH)_3$ arsenite groups. The green polyhedra represent the
365	distorted CaO_8 cubes. The large yellow, medium red, and small blue spheres
366	represent As ³⁺ , O, and H atoms, respectively.
367	
368	Figure 4. The segerstromite structure showing the layers formed by the corrugated chains
309 270	of the corner-shared CaO_8 cubes.
3/U 271	Figure 5. The segerstromite structure showing chains of CoO, groups linked by the
272	isolated AsO, arganate groups
372	isolated AsO4 alsoliate groups.
374	Figure 6 Raman spectra of segerstromite
375	- Bare of Raman speeda of segersuonnee.
376	

Figure 1b

Figure 2

Figure 5

Figure 6

Experimental		Theore				
NTENSITY D-SPACING		INTENSITY D-SPACING			ĸ	L
34	4.351	8.52	4.3939	-==== 2	1	1
25	3.775	28.74	3.8052	2	2	0
82	3.389	77.54	3.4035	3	0	1
		22.46	3.4035	3	1	0
33	3.104	39.94	3.1069	2	2	2
100	2.875	16.47	2.8765	3	2	1
		77.46	2.8765	3	1	2
7	2.691	27.58	2.6907	4	0	0
14	2.536	13.93	2.5368	4	1	1
		7.08	2.2946	3	3	2
		27.77	2.1969	4	2	2
		5.24	2.1107	4	3	1
45	2.111	32.87	2.1107	5	1	0
7	1.965	8.86	1.9650	5	2	1
27	1.905	44.44	1.9026	4	4	0
34	1.748	8.16	1.7459	5	3	2
		17.10	1.7459	6	1	1
		4.84	1.7459	5	2	3
11	1.703	10.50	1.7017	6	2	0
		14.73	1.7017	6	0	2
16	1.663	8.67	1.6607	5	4	1
7	1.624	5.00	1.6225	6	2	2
13	1.588	3.39	1.5869	6	3	1
		12.25	1.5869	6	1	3
12	1.524	4.84	1.5221	5	3	4
19	1.465	8.63	1.4646	7	1	2
		9.08	1.4646	7	2	1
		3.05	1.4646	6	3	3

Table 1. Powder diffraction data for segerstromite

Ideal chemical formula	Ca ₃ (As ⁵⁺ O ₄) ₂ [As ³⁺ (OH) ₃] ₂
Crystal symmetry	Cubic
Space group	<i>I</i> 2 ₁ 3
a(Å)	10.7627(2)
$V(Å^3)$	1246.71(4)
Z	4
$\rho_{cal}(g/cm^3)$	3.44(3)
λ (Å, MoK α)	0.71073
μ (mm ⁻¹)	11.938
2θ range for data collection	≤65.18
No. of reflections collected	5985
No. of independent reflections	768
No. of reflections with $I > 2\sigma(I)$	747
No. of parameters refined	38
R(int)	0.028
Final R_1 , wR_2 factors $[I > 2\sigma(I)]$	0.010, 0.020
Final R_1 , wR_2 factors (all data)	0.011, 0.020
Goodness-of-fit	0.921

Table 2. Crystal data and refinement results for segerstromite.

Table 4. Coordinates and displacement parameters of atoms in segerstromite

Atom	<i>x</i>	У	<i>Z</i>	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ca As1 As2 O1 O2 O3 H	0.22040(3) 0.45009(1) 0.15093(1) 0.3590(1) 0.4150(1) 0.1480(1) 0.127(2)	0.5 0.54991(1) 0.15093(1) 0.6410(1) 0.5862(1) 0.3155(1) 0.339(2)	0.25 0.04991(1) 0.15093(1) 0.1410(1) 0.9023(1) 0.1384(1) 0.073(2)	0.01067(8) 0.00677(6) 0.00954(6) 0.0126(3) 0.0141(2) 0.0147(2) 0.036(6)	0.01174(18) 0.00677(6) 0.00954(6) 0.0126(3) 0.0167(5) 0.0208(5)	0.01055(17) 0.00677(6) 0.00954(6) 0.0126(3) 0.0173(5) 0.0096(5)	0.00971(17) 0.00677(6) 0.00954(6) 0.0126(3) 0.0082(4) 0.0137(5)	0.00269(13) 0.00067(5) -0.00049(5) -0.0026(4) 0.0045(4) 0.0018(4)	0 -0.00067(5) -0.00049(5) 0.0026(4) -0.0048(4) -0.0027(5)	0 -0.00067(5) -0.00049(5) 0.0026(4) -0.0050(4) 0.0013(4)

Table 3.	Selected	bond	distances	and	angles	in	segerstron	nite
					<u> </u>		0	

As1—O1 (Å)	1.698(2)
—O2	1.679(1) ×3
Ave.	1.684
As2—O3 (Å)	1.776(1) ×3
Ca —O1 (Å)	2.430(1) ×2
—O2	2.381(1) ×2
—O2	2.932(1) ×2
—O3	2.448(1) ×2
Ave.	2.548
O3—HO2 (Å)	2.664(2)
O3—H (Å)	0.78(2)
∠O3—HO2 (°)	177(2)

=

 Table 5. Calculated bond-valence sums for segerstromite.

	O1	02	03	Sum
Ca	0.286 x 2	0.327 x 2 0.074 x 2	0.272 x 2→	1.918
As1	1.279	1.345 x 3–	~	5.161
As2			1.035 x 3→	3.104
Sum	1.851	2.146	1.307	

Table 6. Minerals containing both As^{5+} and As^{3+} as essential components.

Mineral name	Chemical formula
Segerstromite	Ca ₃ (AsO ₄) ₂ [As(OH) ₃] ₂
Arakiite	$Zn^{2+}Mn^{2+}{}_{12}Fe^{3+}{}_{2}(As^{3+}O_{3})(As^{5+}O_{4})_{2}(OH)_{23}$
Carlfrancisite	$Mn^{2+}{}_{3}(Mn^{2+},Mg,Fe^{3+},Al)_{42}[As^{3+}O_{3}]_{2}(As^{5+}O_{4})_{4}[(Si,As^{5+})O_{4}]_{6}[(As^{5+},Si)O_{4}]_{2}(OH)_{42}(OH)$
Dixenite	$Cu^{1+}Mn^{2+}{}_{14}Fe^{3+}(As^{3+}O_3)_5(SiO_4)_2(As^{5+}O_4)(OH)_6$
Hematolite	$(Mn^{2+},Mg,Al)_{15}(As^{3+}O_3)(As^{5+}O_4)_2(OH)_{23}$
Mcgovernite	$Mn^{2+}{}_{19}Zn^{2+}{}_{3}(As^{3+}O_3)(As^{5+}O_4)_3(SiO_4)_3(OH)_{21}$
Radovanite	$Cu^{2+}{}_{2}Fe^{3+}(As^{3+}O_{2}OH)_{2}(As^{5+}O_{4})\cdot H_{2}O$
Synadelphite	$Mn^{2+}{}_{9}(As^{3+}O_{3})(As^{5+}O_{4})_{2}(OH)_{9} \cdot 2H_{2}O$
Vicanite-(Ce)	$(Ca, Ce, La, Th)_{15}As^{5+}(As^{3+}, Na)_{0.5}Fe^{3+}_{0.7}Si_{6}B_{4}(O, F)_{47}$

Bands (cm ⁻¹)	Assignment
2906	O-H stretching vibration
2449	Stretching vibration of the strongly hydrogen-bonded OH in the As(OH) ₃ unit (Frost et al. 2011)
790-910	As^{5+} -O stretching vibrations within the AsO ₄ group
610-750	As^{3+} -O stretching vibrations within the $As(OH)_3$ groups
300-500	O-As ⁵⁺ -O and O-As ³⁺ -O bending vibrations within AsO ₄ and As(OH) ₃ groups
<300	Lattice and Ca-O vibrational modes

Table 7. Tentative assignments of major Raman bands for segerstromite