1 REVISION 2

2	A vibrational spectroscopic study of kernite to 25 GPa: implications for the high-pressure
3	stability of borate polyhedra
4	Marcus Silva ^{1,*} , Earl F. O'Bannon III ² , and Quentin Williams ¹
5	¹ Department of Earth & Planetary Sciences, University of California Santa Cruz, CA 95064 USA
6	² Physical and Life Sciences, Physics Division, Lawrence Livermore National Laboratory,
7	Livermore, CA 94550 USA
8	*Present address: Department of Mineral Engineering, New Mexico Institute of Mining and
9	Technology, Socorro, NM 87801 USA
10 11	Abstract The Raman and infrared spectra of kernite (Na ₂ B ₄ O ₆ (OH) ₂ ·3H ₂ O) have been
12	characterized up to ~25 and 23 GPa, respectively, to explore pressure-induced changes in a
13	structurally novel mineral that contains mixed coordination borate groups (three-fold and four-
14	fold), as well as both hydroxyl groups and water molecules. BO_3 and BO_4 vibrational modes are
15	characterized in both the Raman and infrared spectra of kernite, and reassignments of some
16	modes are made based on observed pressure shifts. Under compression to 25 GPa, kernite
17	undergoes three phase transitions: one initiates near ~2.5 GPa, the second occurs at ~7.0 GPa,
18	and the third near 11.0 GPa. The first transition is characterized by a loss of both a subset of the
19	Na-associated modes and a sharp OH peak, and is fully reversible. The second transition is
20	characterized by the loss of most of the BO_3 modes and some of the BO_4 modes at ~7 GPa, and
21	further broadening of the H_2O and OH peaks. This transition is partially reversible on
22	decompression, but the Raman spectra indicate that the high-pressure structure and its
23	reversion products are likely disordered. The third transition is characterized by the loss of most

24	of the Raman and infrared modes, and is not reversible on decompression. The decompression
25	products from \sim 25 GPa have markedly different infrared and Raman spectra from the starting
26	material, and appear to involve different bonding environments of boron than are present in
27	the starting materials: thus, pressure treatment of boron-rich materials may generate novel
28	quenchable structures. Notably, the BO $_3$ groups in kernite are destabilized under compression,
29	with the BO_4 groups appearing to be more stable under compression. This shift in coordination
30	may be endemic among borate glasses and crystalline borates under compression. The
31	coordination conversion (and its products on decompression) is likely to be highly dependent
32	on the detailed topology of the starting materials. Commonalities and differences between the
33	three-fold to four-fold transitions in borate systems relative to those in carbonate systems are
34	presented. Our results, combined with prior shock data, indicate that kernite, which may be
35	representative of low-temperature borate minerals, can persist during impact events with peak
36	shock pressures less than ~33 GPa, and the primary polyborate structural units involved in early
37	ribose stabilization would thus survive most impact conditions.
38	Keywords: kernite, boron, high-pressure, vibrational spectroscopy
39	Introduction
40	Kernite (Na ₂ B ₄ O ₆ (OH) ₂ ·3H ₂ O) was discovered in the Mojave Desert, near the modern
41	town of Boron, California in 1925 and was originally named rasorite (Hurlbut et al. 1973).
42	Kernite from Boron, California is found in the lower part of an evaporite deposit as a
43	metamorphic alteration of borax (Na ₂ B ₄ O ₅ (OH) ₄ ·8H ₂ O) in clay shales (Christ and Garrels, 1959;
44	Barnard and Kistler, 1966; Smith, 1968; Hurlbut et al., 1973; Garrett, 1998). The Kramer borate
45	deposit in Boron, California is the type locality of kernite. It has only been found at a few other

localities around the world, such as the Tincalayu Mine, Argentina (Hurlbut et al. 1973), 46 Sarikaya B deposit, Turkey (García-Veigas and Helvaci 2013), and possibly in Lewis Cliff, 47 Antarctica (Fitzpatrick et al. 2013). While not particularly common on Earth, there are strong 48 indications of borate minerals within fluid-associated veining and evaporitic deposits on Mars, 49 50 and these may be of astrobiological importance (Stephenson et al. 2013; Cloutis et al. 2016). The crystal structure of kernite was first reported by Amoros (1945) using x-ray 51 diffraction techniques. Due to the many light atoms comprising kernite, it has been re-52 investigated by many workers using single-crystal x-ray diffraction to accurately determine the 53 54 H-atom positions and the coordination of the B and Na atoms (Ross and Edwards, 1959, Giese 1966, Cooper et al. 1973, Christ and Clark, 1977). Kernite crystallizes in the monoclinic P2₁/c 55 space group with four formula units in the unit cell (e.g., Cooper et al. 1973). Kernite is unusual 56 57 in its crystal chemistry since it contains both trigonal planar BO₃ and tetrahedral BO₄ groups (Figure 1). The two Na sites are 6-fold coordinated by five oxygens and one water molecule 58 (Na1) and 5-fold coordinated by two oxygens and three water molecules (Na2). The 5-fold 59 60 coordinated Na sites form dimers by the sharing of two oxygens while 6-fold coordinated Na sites are linked to them by corner-sharing of one O atom. One triangular BO_2OH group and two 61 tetrahedral BO₄ groups share corner oxygens to form six membered rings (Cooper et al. 1973). 62 BO_4 groups link together to form chains that run parallel to the *b*-axis, which are held together 63 by hydrogen bonding between the H₂O molecules and the OH groups. 64 65 The ambient pressure stability of kernite has been well studied (Schaller, 1930; Menzel

alters to tincalconite (Na₂B₄O₇·5H₂O) at ambient conditions by hydration (Pabst and Sawyer,

et al., 1935; Menzel and Schulz, 1940; Pabst and Sawyer, 1948; Sennova et al. 2005). Kernite

66

68	1948). When heated in air to above ~80 $^{\circ}$ C, it partially dehydrates to Na ₂ B ₄ O ₆ (OH) ₂ ·1.5H ₂ O, at
69	temperatures >115 $^{\circ}$ C it amorphizes, and on further heating above 525 $^{\circ}$ C, an anhydrous
70	$Na_2B_4O_7$ phase crystallizes (Sennova et al. 2005). Spectroscopic or diffraction experiments on
71	kernite under static compression do not appear to have been reported, and high-pressure
72	investigations of kernite are scarce, with the exception of the shock wave study of kernite by
73	Boslough et al. (1980) which focused on shock-induced water loss. They found that kernite did
74	not noticeably dehydrate following impacts up to ~33 GPa, but changes in the hydrogen
75	bonding environment were reported. Their infrared spectra of shocked and unshocked kernite
76	indicated that changes in the bonding environment of structural and non-structural water
77	occurred following shock, and that there was some evidence for rearrangement of the water
78	molecules (Boslough et al. 1980). However, the behavior of the borate polyanion chains was
79	not examined, as no spectra were reported outside of the hydroxyl stretching region. Hence,
80	the post-shock behavior of the BO $_3$ and BO $_4$ groups as well as the Na sites is unknown.
81	A possible role of borates in the earliest evolution of life has been extensively discussed
82	(Benner, 2004; Ricardo et al. 2004; Cossetti, et al., 2010; Grew et al. 2011; Saladino et al. 2011;
83	Scorei, 2012). It has been shown experimentally that the presence of borate minerals such as
84	colemanite (CaB ₃ O ₄ (OH) ₃ ·H ₂ O), ulexite (NaCaB ₅ O ₆ (OH) ₆ · 5H ₂ O) and kernite (Na ₂ B ₄ O ₆ (OH) ₂ ·3H ₂ O)
85	can stabilize ribose in solution against decomposition (Ricardo et al. 2004; Saladino et al. 2011),
86	and hence act as catalysts to prebiotic syntheses (Saladino et al. 2011). The presence of borates
87	would allow for the survival and accumulation of pre-biotic ribose from simple organic
88	precursors (Grew et al. 2011). Interestingly, borate minerals have been shown to have little to
89	no effect on the stability of RNA itself (Cossetti et al. 2010). However, since ribose is a

90	component of ribonucleic acid (RNA) and is chemically unstable, the stabilization of ribose
91	could have been a critical step in the evolution of nucleic acids. Which borate minerals may
92	have taken part in ribose stabilization is unclear, but colemanite, ulexite, and kernite have each
93	been proposed (Grew et al. 2011). The oldest known ulexite and colemanite deposits are $^{\sim}330$
94	Ma while the oldest kernite deposits are ~19 Ma. Microstructures and B isotopes suggest that
95	B-bearing evaporites were deposited in the Precambrian, and were subsequently replaced by
96	metamorphic borates and borosilicates (Grew et al. 2011). It has been suggested that
97	continental crust could have formed as early as 4.3 bya (Harrison, 2009; Hawkesworth et al.
98	2010). Thus, borate deposits could have precipitated from B-rich thermal waters in the deep
99	past (Grew et al. 2011). Hence, the stability of kernite under high-pressure conditions is
100	relevant for understanding the survivability of borates under high-pressures induced by
101	meteorite impacts on both Earth and Mars (e.g., during the late heavy bombardment).
102	From a materials perspective, sodium borate glasses have attracted considerable
103	interest in the materials science community due to their unusual optical and thermal properties
104	(Krogh-Moe, 1962; Jellison and Bray, 1978; Kamitsos et al. 1987; Yano et al. 2003). These
105	glasses are composed of polymerized structural units comprised of four distinct borate
106	polyhedra (boroxol, petaborate, triborate, and diborate) when the alkali content is less than 33
107	1/3 mol% (e.g., Krogh-Moe, 1965). Interestingly, borate glasses are comprised of these well-
108	defined and stable borate units as segments of their disordered framework (Krogh-Moe 1965;
109	Griscom, 1978; Button et al. 1982). Indeed, some of the polyborate groupings found in borate
110	glasses occur in related crystalline borate materials (Griscom, 1978). For example, kernite is
111	comprised of polymerized 3-membered rings of borate polyhedra, with two tetrahedral units

112	forming a ring with a 3-coordinated ring (Figure 1), and the rings being linked together in chains
113	aligned along the b-axis of this material. The pressure-induced transformations between
114	different structural species, and particularly from the triangular BO_3 group to the tetrahedral
115	BO ₄ group have been examined under compression in glasses using NMR (Edwards et al. 2014),
116	via molecular dynamic simulations (Kilymis et al. 2015), and following recovery from high-
117	pressure shock-loading conditions (Manghnani et al. 2011). Additionally, a subset of the BO_3
118	groups in the calcium borate colemanite shift coordination at pressures above 14 GPa (Lotti et
119	al. 2017). Hence, we are interested in whether comparable structural changes occur in
120	crystalline kernite under compression, or whether different compressional mechanisms are
121	accessed at higher pressure conditions by kernite. Thus, the high-pressure polymorphism of
122	kernite may provide insights into the structural behavior of amorphous and crystalline borates
123	under compression.
124	Borates such as colemanite, ulexite, and kernite have been extensively studied using
125	vibrational spectroscopy under ambient conditions (Hibben, 1939; Krishnamurti, 1955; Weir,
126	1966; Vlasova and Valyashko, 1966; Maya, 1976; Maeda et al., 1979; Jun et al., 1995; Kloprogge
127	and Frost, 1999). Early studies compared the Raman spectra of borax, kernite, and colemanite
128	and assigned B-O vibrations (Hibben, 1939; Krishnamurti, 1955). Later studies focused on the
129	more detailed assignment of trigonal and tetrahedral boron stretches and bends, as well as the
130	OH and H_2O modes by comparing the spectra of these minerals. The infrared and Raman
131	spectra of hydrated borates are complex since boron exists in both three- and four-fold
132	coordination. These two configurations of boron have different vibrational properties; Jun et al.

133 (1995) and Kloprogge and Frost (1999) have relatively comprehensive assignments of the

134 Raman and infrared spectra of kernite.

Therefore, because of its novel crystal chemistry, the importance of borates in the 135 136 evolution of life, and possible relevance to the study of borate glasses, we have measured the infrared and Raman spectra of kernite to 23-25 GPa. Our experiments are oriented towards: (1) 137 examining whether pressure induced polymorphism occurs in this phase; (2) determining if the 138 mixed coordination Na and B sites change coordination under compression; and (3) 139 characterizing the high-pressure behavior of hydrogen bonding within this phase and 140 141 comparing it to recovered material from previous shock experiments (Boslough et al. 1980). Our net goals are to determine the stability/metastability of a complex borate mineral under 142 143 high pressure and modest temperature conditions.

144 **Experimental Methods**

We used kernite from the type locality of the Kramer borate deposit, Boron, Kern 145 County, California. The sample, UCSC collection #6141, is a large block of optical quality kernite, 146 147 with dimensions of ~15 cm x 25 cm x 5 cm. Our infrared and Raman spectroscopic results are in 148 excellent agreement with previous studies (Kloprogge and Frost 1999; Jun et al. 1995). High static pressures were generated by symmetrical and Merrill-Bassett type diamond anvil cells 149 150 equipped with type Ia (Raman) and type IIa (infrared) diamonds with 500 μ m, 16-sided culets. A spring steel gasket with a 200 µm hole was used as the sample compartment. Three to five ruby 151 152 chips were loaded with each sample to measure the pressure using the standard ruby 153 fluorescence method (Mao et al., 1986). All experiments were conducted at room temperature. Due to its high solubility in polar solvents, single crystals of kernite were loaded with 154

spectroscopic-grade KBr as the pressure medium as opposed to methanol-ethanol. We did not 155 observe any interaction between kernite and the pressure medium over the pressure range of 156 these experiments. Moreover, KBr has no first-order Raman spectrum, and is transparent in the 157 158 mid-infrared, so no spectral contamination of the kernite spectrum is generated. Raman spectra were collected with a Horiba LabRAM HR Evolution Raman spectrometer 159 with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of ~25 GPa at 160 room temperature. We used an excitation wavelength of 633 nm to collect from 50-1200 cm⁻¹ 161 and an excitation wavelength of 532 nm to collect the hydroxyl stretching region from 3000-162 3700 cm⁻¹. An Olympus BXFM-ILHS microscope with a 50x long working distance objective was 163 used to focus the laser beam onto the sample. We used an 1800 lines/mm grating, with a 164 corresponding spectral resolution of $\sim 1 \text{ cm}^{-1}$. We used 633 nm excitation for the low frequency 165 166 modes to avoid the luminescence background generated by 532 nm excitation. No such background was observed in the higher frequency region of the spectrum, so 532 nm excitation 167 was used in this region due to the low intensity of the OH stretches. The Raman spectrum of 168 169 kernite is orientation-dependent, so variations in peak amplitudes are observed between some experiments. Spectra were collected from a laser spot size of ~2 µm and very close to the ruby 170 171 used to determine pressure for each step, so we do not anticipate that pressure gradients will notably adversely affect our Raman spectra. Raman spectra were fit using a combination of 172 Gaussian and Lorentzian functions with Horiba Labspec6 software. 173 174 We collected mid-infrared absorption spectra from room pressure to ~24 GPa at room 175 temperature using a Bruker Vertex 70v evacuated Fourier transform infrared spectrometer (FTIR) equipped with a globar source, KBr-beamsplitter and a liquid- N_2 cooled mercury-176

177	cadmium-telluride (MCT) detector. Infrared spectra were collected with a resolution of 4 cm ⁻¹ .
178	Kernite was ground into a powder and mixed with spectroscopic-grade KBr in a ratio of 90%
179	KBr: 10% sample by weight, with KBr serving as both an infrared window and the pressure
180	medium. Pressure gradients in our infrared experiments did not produce notable broadening of
181	our spectra relative to the ambient pressure spectrum. This is in accord with recent high-
182	pressure infrared spectra of the OH region in amphiboles that show that the full width at half
183	maximum (FWHM) of hydroxyl stretches is nearly indistinguishable between neon and KBr
184	loaded samples up to ~20 GPa (Thompson et al. 2016). Moreover, since the infrared spectra
185	were collected using an infrared beam that interacts with the entire sample compartment of
186	the DAC, we reported the average pressure determined for each pressure step using multiple
187	rubies. Under natural shock conditions, it is likely that transient differential stresses arise.
188	Hence, probing the properties of kernite with modest amounts of differential stress may have
189	relevance to structural changes induced by impact. Infrared spectra were also fit using a
190	combination of Gaussian and Lorentzian functions with Bruker OPUS software.
191	Results
192	Ambient
193	The ambient pressure Raman spectrum of kernite has over 30 resolvable peaks at room
194	pressure and temperature (Figure 2), which have been generally assigned by Kloprogge and
195	Frost (1999). Many of the lower frequency modes are related to Na-O bending and stretching

- vibrations against the borate polyhedra. The region of the spectrum from \sim 390 to 1100 cm⁻¹
- 197 corresponds to BO_3 and BO_4 bending and stretching modes. Both symmetric and antisymmetric
- 198 stretches of the BO₃ and BO₄ groups have been previously assigned. There are regions of

199	overlap between modes associated with these two boron configurations, so the detailed
200	assignments of some of the observed modes are not unique. From 3200-3500 cm ⁻¹ , we observe
201	a broad H_2O -associated hydroxyl-stretching manifold that when deconvolved contains five
202	modes, and at ~3547 cm $^{-1}$ a sharp stretch associated with the more weakly bound hydroxyl
203	units is observed. On the low frequency side of the broad H_2O modes, a shoulder is observed
204	near 3000 cm ⁻¹ , which may be an indication of strong hydrogen bonding. Two of the eight
205	crystallographically distinct hydrogens in kernite are strongly hydrogen bound, providing
206	linkages between the chains of borate rings (Cooper et al., 1973).
207	The ambient pressure mid-infrared spectrum (Figure 2) has several overlapping bands,
208	and is in good agreement with the infrared spectrum of kernite reported by Jun et al. (1995). As
209	with the higher frequency portions of the Raman spectrum, the mid-infrared spectrum is
210	composed primarily of bending and stretching modes of the BO_3 and BO_4 groups. The infrared
211	OH stretching region is similar in location and morphology to the Raman spectrum (Figure 2),
212	implying that Davydov (factor group) splitting of the O-H stretches is small at ambient pressure.
213	There is a broad H_2O -associated band that has four deconvolvable components centered near
214	3250 cm ⁻¹ , and an H-O-H bending mode is observed near 1701 cm ⁻¹ . This is substantially
215	elevated in frequency relative to that of the vibration of water in the liquid or gas phase (each
216	below 1655 cm ⁻¹ ; Falk, 1990), which is consistent with the water molecules in kernite being
217	relatively strongly hydrogen bound to one another (Cooper et al. 1973), and hence the bending
218	vibration involving deformation of strong hydrogen bonds as well. As with the Raman spectrum,
219	there is a sharp OH stretch near 3551 cm ⁻¹ , and a shoulder near 3000 cm ⁻¹ that reflects the
220	strongest hydrogen bonding environment in kernite.

221 Compression

222	Representative Raman spectra on compression are shown in Figure 3, and the Raman
223	mode shifts are shown in Figure 4. Under compression the Raman spectra of kernite changes
224	dramatically. At ~2.5 GPa, three Na-associated modes initially at 113, 123, and 128 cm $^{-1}$
225	disappear, as well as modes originating at 163, 175, 214, 246, 260, 308, and 346 ${ m cm}^{ m -1}$ all
226	disappear. Also at 2.5 GPa, the symmetric stretch BO $_4$ mode at 807 cm $^{-1}$ disappears. Thus, a
227	transition that appears to have major effects on the Na-polyhedra takes place near 2.5 GPa,
228	with some associated changes in the borate groups. Table 1 lists the observed Raman modes,
229	their assignments and pressure shifts up to the \sim 2.5 GPa transition. Interestingly, the lowest
230	frequency Na-associated mode near 83 cm ⁻¹ shifts negatively under compression. Because of its
231	low frequency, this could generate a soft mode transition. However, its rate of shift is not
232	sufficiently large/non-linear enough to be the cause of the 2.5 GPa transition (Sanjurjo et al.
233	1983; O'Bannon et al. 2016b); it also persists through the transition. The other observed Na-
234	associated modes shift positively under compression, and become more difficult to resolve as
235	pressure is increased. Between 400-550 cm ⁻¹ , there are three distinct peaks at 428, 463 (which
236	has two components that become resolved under compression), and 498 cm ⁻¹ which merge
237	under compression at ~2.5 GPa to form a broad doublet that can be deconvolved into four
238	peaks (at 436, 461, 481, and 510 cm $^{-1}$ at 2.5 GPa). As Klopproge and Frost (1999) note, these
239	modes likely correspond to BO_3 and BO_4 bending modes. The mode shifts of these peaks fall
240	into two general categories (Table 1): those between 390 and 461 cm ⁻¹ , which have shifts
241	between 1.79 and 2.58 cm ⁻¹ /GPa, and those at 466 and 498 cm ⁻¹ , which shift at faster rates of
242	7.43 and 4.92 cm ⁻¹ /GPa, respectively. Based on the differing strengths of bonding in the BO $_3$

and BO₄ tetrahedra, we assign the lower frequency bands to bending vibrations of the BO₄
tetrahedra, and the two higher lying features to bending of the BO₃-groups. The two bands at
557 and 581 cm⁻¹ each have notably lower shifts of 1.41 and 0.69 cm⁻¹/GPa: we assign these to
O-H librational modes, since such bands are known to have small pressure shifts (e.g., Scott et
al. 2007), and librational modes are expected in this region for phases such as kernite with
intermediate to strong hydrogen bonding (Lutz et al. 1998).

By 3.3 GPa, two of the four remaining modes in the bending region disappear, and an 249 intense doublet with frequencies of 461 and 487 cm⁻¹ remains. This doublet is relatively 250 insensitive to compression up to ~6.5 GPa. Above ~6.5 GPa, the lower frequency peak of this 251 doublet disappears and the higher frequency peak rapidly merges with another peak that shifts 252 downward from 547 cm⁻¹ (Figure 4a). This single band, now centered near 524 cm⁻¹ at 6.5 GPa, 253 shifts positively up to ~25 GPa. There are other notable changes at 6.5 GPa: peaks originally at 254 742 and 933 cm⁻¹ shift discontinuously to 755 and 947 cm⁻¹, and by \sim 7 GPa they disappear. 255 256 These two peaks are likely associated with symmetric stretches of the BO₄ and BO₃ groups, 257 respectively, and their disappearance is probably associated with marked distortions of each group. At ~7.5 GPa, a dramatic change in the Raman spectrum occurs, and only seven well-258 resolved modes remain within the spectrum: all other bands broaden to the degree that they 259 are not readily resolved, or they disappear. Near 11 GPa, modes near 600 and 720 cm⁻¹ become 260 261 unresolvable, and only four modes can be resolved at the maximum pressure of this study. The frequencies of these modes at ~25 GPa are 169, 195, 312, and 597 cm⁻¹. The lowest two modes 262 are likely assigned to Na-associated vibrations, while the mode at 312 cm⁻¹ could be a bending 263 mode of substantially weakened borate polyhedra, and the mode at 597 cm^{-1} may be the 264

265	symmetric stretch of these polyhedra. The net bending and stretching frequencies lie
266	substantially below those of BO $_4$ tetrahedra at ambient pressures, and these thus may
267	represent the vibrations of a more highly coordinated boron species. In this respect, the
268	disappearance of all bands associated with the BO_3 groups in kernite indicates that the BO_3
269	groups have been eliminated in the high-pressure phase. The persistence of two moderate
270	frequency bands in the high-pressure Raman spectra implies that some regular borate
271	polyhedra persist, but that their bonding is substantially weakened, and their coordination may
272	be increased, relative to the low-pressure BO_4 groups. Lastly, we were unable to resolve H_2O
273	and OH modes above ~2.5 GPa in the Raman as the peaks rapidly broadened and decreased in
274	intensity. The OH peak at 3547.5 cm $^{-1}$ shifts negatively under compression at -9.20 (±1.05) cm $^{-1}$
275	/GPa, which suggests that there is a rapid increase in the strength of the hydrogen bonding of
276	the most weakly hydrogen bound hydroxyls under compression.
277	Representative infrared spectra of kernite under compression are shown in Figure 5 and
278	the infrared mode shifts are plotted in Figure 6. Table 2 lists the observed infrared modes,
279	assignments, and pressure shifts up to the ~2.5 GPa transition. All of the BO $_3$ and BO $_4$ modes
280	shift smoothly and positively under compression to the transition. At 2.5 GPa, several BO $_3$
281	antisymmetric bending modes originating at 618, 653, and 691 cm ⁻¹ become unresolvable. By
282	5.0 GPa, a symmetric BO ₄ stretch originating at 760 cm ⁻¹ becomes unresolvable, although the
283	antisymmetric BO $_4$ stretches between 960 and 1022 cm $^{-1}$ persist throughout this pressure
284	range. The BO $_3$ antisymmetric stretch that originates at 1487 cm $^{-1}$ also becomes unresolvable
285	by 5.0 GPa. This is the first onset of a progressive broadening and loss of all of the BO $_{ m 3}$
286	antisymmetric stretching vibrations by the highest pressures of our measurements. Similar to

287	the Raman results, several modes in the 500-600 cm ⁻¹ range coalesce near 7.0 GPa, leaving only
288	one substantially broadened mode in their place. The infrared features that persisted to the
289	maximum pressure of this study were all substantially broadened and difficult to resolve above
290	$^{\sim}$ 7.0 GPa, and are indicative of pervasive disordering of kernite. Near 11 GPa, the BO $_3$
291	antisymmetric stretching modes in the 1300-1500 cm ⁻¹ region merge into a single broad mode,
292	which progressively decreases in amplitude and disappears by 22 GPa. Hence, the infrared
293	spectra provide compelling evidence that the BO_3 groups are destabilized within the highest-
294	pressure phase of kernite that we observe. At 22.2 GPa, there are roughly five discrete modes
295	that are resolvable below 1650 cm ⁻¹ , with frequencies of 619, 747, 978, 1263, and 1612 cm ⁻¹ .
296	The two lower frequency modes are likely produced by antisymmetric bending vibrations of
297	borate polyhedra, and the modes at 978 and 1263 cm ⁻¹ are associated with antisymmetric
298	stretches of borate polyhedra. The band at 1612 cm ⁻¹ is assigned to the H-O-H bend. Finally, in
299	the OH stretching region, at ~2.5 GPa, the sharp, weakly hydrogen bound hydroxyl stretching
300	peak broadens and drops in intensity, in a manner that is virtually identical to the Raman results
301	(Figure 3b), and it ultimately merges into the broad H_2O hydroxyl stretching envelope. The once
302	sharp OH mode can still be deconvolved to the highest pressures of the study, and two modes
303	are fit to the broad hydroxyl stretching manifold to the maximum pressure of this study. The
304	OH-stretching peak, the broad H_2O hydroxyl stretching modes, and the H-O-H mode all shift
305	negatively under compression up to ~7.0 GPa. Above 7.0 GPa, the broad $\rm H_2O$ and broadened
306	OH mode may shift slightly positively, suggesting that H-bonding may become weaker in the
307	higher-pressure phases. The H-O-H bend shows complex behavior, shifting rapidly and
308	positively from ~7.0 GPa to ~11.0 GPa, and above ~11.0 GPa it shifts negatively up to the

309	maximum pressure of this study. Since the frequency of the H-O-H bend tends to increase with
310	decreasing H-O-H bond angle, this trend is consistent with an initial broadening of the H-O-H
311	angle up to 7 GPa, followed by an interval of rapid contraction between 7 and 11 GPa. Above 11
312	GPa, it appears to resume weakly widening in the highest pressure phase.
313	Decompression
314	Representative Raman and infrared spectra on decompression are shown in Figure 7.
315	During decompression of the Raman sample, the two peaks that persisted to 25 GPa shift
316	negatively and monotonically with decreasing pressure, with the primary peak moving back
317	down to ~450 cm ⁻¹ . Additional bands begin to appear near ~3.2 GPa. For example, a shoulder to
318	the high frequency side of the strongest peak appears near \sim 3.2 GPa on decompression and by
319	~0.2 GPa, it has split away from the primary peak and its peak location is at 590 cm ⁻¹ . Notably, a
320	number of bands (and particularly those at low frequencies) appeared only upon full
321	decompression of the sample (Figure 7a). Only two modes actually persist from ~25 GPa down
322	~10 GPa (Figure 4). Three broadened modes reappeared in the OH stretching region; however,
323	the sharp OH stretch does not reappear.

On decompression, the infrared spectra have essentially two broad bands that can be fit with five modes, which shift negatively with decreasing pressure back to room pressure (Figure 7b). The spectrum remained broad until the sample was fully decompressed to room pressure, when a sequence of sharper modes appeared. These six sharp modes in the mid-frequency region of the infrared spectrum (~500-1500 cm⁻¹) are not as sharp as the bands in the ambient starting material that appear in this region. Notably, below 5 GPa (and particularly below 3 GPa), the BO₃-antisymmetric stretching bands between 1300-1500 cm⁻¹ recover their amplitude

within the spectra: their reappearance is accompanied by shifts in amplitude in the lower
frequency region between 700 and 1200 cm⁻¹ (Figure 7b). In the OH region, the sharp OH peak
does not return on decompression, but the broad H₂O hydroxyl-stretching bands are similar to
those in the starting infrared spectrum of kernite. As with the decompressed Raman spectrum,
the decompressed infrared spectrum does not resemble the initial infrared spectrum of kernite. *Fully Decompressed Product*

The fully decompressed Raman sample has a spectrum that is unlike the ambient 337 spectrum of the starting material (See supplementary Figure S1). There are two low-intensity 338 broad peaks from 50-200 cm⁻¹ and only 6 modes from 200-600 cm⁻¹, which is dramatically 339 different from the ambient spectrum that consisted of a large number of BO₃ and BO₄ bending 340 modes in this region. The BO₄ stretching region from 700-850 cm⁻¹ is also much less complex. 341 The prominent BO₄ symmetric stretching vibration in kernite at \sim 739 cm⁻¹ has no analogue in 342 the decompressed spectrum. If tetrahedral BO₄ groups are present in the decompressed 343 material, they have a notably different local bonding environment, and may be substantially 344 distorted. The BO₃ symmetric stretches near 950 cm⁻¹ in the starting material also appear to 345 have been profoundly affected by compression, leaving them broadened, of low intensity, and 346 modestly elevated in frequency relative to the most prominent BO₃ symmetric stretch in the 347 starting material. The OH stretching region from 3200-3600 cm⁻¹ has completely changed its 348 morphology. In lieu of the distinct H₂O and OH peaks in kernite, a sequence of peaks with a 349 350 completely different intensity distribution and locations is observed, which can be fit with four peaks at ~3200, 3350, 3500, and 3650 cm⁻¹. In short, the fully decompressed spectrum is 351 fundamentally different from the initial ambient spectrum in every spectral region, but the 352

353	presence of discrete, relatively sharp (albeit broadened) peaks suggests that the decompressed
354	product may be crystalline, and may have recrystallized on decompression to ambient
355	condition. Table 3 lists the frequencies and assignments of the Raman modes observed in the
356	spectra decompressed from ~25 GPa.
357	The infrared spectrum of the decompressed material also does not resemble the initial
358	ambient infrared spectrum. It is much less complex and most of the sharp modes have
359	broadened, and coalesced into single peaks (See supplementary Figure S2). Although the
360	maximum pressure of the infrared experiment was \sim 2 GPa lower than the Raman experiment,
361	we believe that they accessed similar structural states at both high pressures and on
362	decompression. The mid-infrared region from 500-1000 cm ⁻¹ of the decompressed product is
363	made up of only four main peaks (Table 3), whereas in the ambient spectrum there were more
364	than ten distinct peaks. The broad mode from 1300-1500 cm $^{-1}$ associated with BO $_3$
365	antisymmetric stretches, has returned but sharp components in this region are not resolvable.
366	The OH stretching region of the decompressed material is, because of fringing, more difficult to
367	characterize in the infrared than in the Raman. The OH stretch near 3551 cm ⁻¹ has merged into
368	the H ₂ O stretching envelope, and a broad continuum centered near 3300 cm ⁻¹ is observed.
369	Discussion

370 *Reversibility of observed phase transitions*

Our vibrational spectroscopic results clearly indicate that kernite undergoes three phase transitions under compression: the first is near 2.5 GPa, a structurally more dramatic transition occurs near 7.0 GPa, and the spectra become notably simpler, and possibly indicate a highly disordered structure, near 11.0 GPa. Both the high-pressure Raman and infrared studies

375	suggest that the structure of kernite changes irreversibly under compression to ~25 GPa. To
376	assess the reversibility of each of these high-pressure phase transitions, additional Raman
377	experiments of pressure-quenched products were conducted (Figure 8).
378	A decompressed Raman spectrum of a sample of kernite compressed to ~3.1 GPa
379	indicates that the \sim 2.5 GPa transition is fully reversible (Figure 8). This indicates that any
380	compaction of the structural channels that run parallel to the <i>b</i> -axis in kernite across this
381	transition is reversible, and changes in Na sites and hydrogen bonding geometries are fully
382	recoverable across this transition. No changes in the coordination of the BO_3 groups occur
383	across this transition and the H-bonding environment of the OH groups and H_2O molecules is
384	not drastically changed. The BO $_4$ groups appear to be mostly unaffected by this transition.
385	Our Raman spectra suggest that the bonding environment of the Na sites changes
386	dramatically above ~7.0 GPa, based on the profound changes in the spectra of the low-
387	frequency region under compression (Figure 3). Moreover, the OH stretch broadens across this
388	transition and particularly on its low frequency side (Figure 5), suggesting that a wider and
389	stronger range of hydrogen-bonding environments is being introduced under compression.
390	Ultimately, the sign of the pressure shift of the OH stretching in the infrared experiments
391	changes from negative to positive above ~11 GPa, implying that complex hydrogen bonding
392	geometries may be present in the high-pressure phase (such as bifurcated hydrogen bonds).
393	Decompressed Raman spectra from 8.2 GPa indicate that the structural changes that occur
394	across the ~7.0 GPa transition are not fully reversible, but many of the original modes do returr
395	on decompression. These modes are broadened and shifted from their ambient frequencies,
396	suggesting that this phase transition has disordered the structure of kernite (Figure 8). And,

new bands appear in the quenched spectrum from 8.2 GPa, including the strongest feature in
the spectrum near 590 cm⁻¹. These bands are not present in the starting material, and indicate
that new structural environments are present in the material quenched from these conditions.
Here, the decrease in amplitude of the BO₄ tetrahedral stretching peaks and the generation of a
new BO₄ stretching peak near 770 cm⁻¹ are consistent with a shift in coordination of one of the
BO₃ groups to higher coordination in the phase that occurs above 7 GPa.

For comparison, for samples guenched from 12.4 GPa, no traces of the original kernite 403 peaks are observed (Figure 8), and kernite has completely and irreversibly transformed to a 404 405 high-pressure form. The overall morphology of this spectrum has some resemblance to the phase formed on compression above 7 GPa (Figure 3a), in the sense that it is dominated by a 406 single peak near \sim 570 cm⁻¹. This peak is likely associated with a bending vibration of BO₄ 407 408 polyhedra, lying at higher frequency than the corresponding bonding environment in the initial kernite. If the peaks near 750 cm⁻¹ in the material guenched from 12 GPa represent symmetric 409 stretches of BO₄ units, then the bending force constants of the BO₄ tetrahedra are substantially 410 411 elevated in the quenched material, while those of the stretching vibrations are not greatly 412 altered. This implies that the geometry of the polymerized tetrahedra in the quenched material (and possibly in the 7-11 GPa phase, as well) is such that the tetrahedral symmetric bending 413 vibration may involve a substantial stretching component of adjoining O-B bonds. 414 Finally, for the sample guenched from 25.3 GPa, the spectrum is entirely different, 415 416 implying that the structural changes that proceed above 11 GPa progressively disorder kernite. On decompression, its structure reverts to a material that is markedly different from that of the 417 starting material. Indeed, the decompressed material from the highest pressure conditions 418

419	(Figure 8) also differs markedly in its spectrum from those of the phases generated at any
420	conditions on compression (Figure 3a). The broad bands between 580-730 cm ⁻¹ may reflect a
421	combination of the BO $_4$ bending and stretching vibrations of a high density, polymerized
422	configuration. We have no simple explanation for the sharpness of the lower frequency
423	features between 200 and 500 cm ⁻¹ in this highest pressure quenched material, beyond noting
424	that this quenched phase may have more ordered domains within it (or might even be
425	crystalline) and/or the environments of the ${\sf BO}_4$ tetrahedra around the Na ions are such that
426	vibrations associated with rotations of tetrahedra/Na-site deformations occur in ordered local
427	environments.
428	Structural response of kernite to pressure
429	Initially, the structure of kernite (Figure 1) likely accommodates compression
430	dominantly by compaction of the structural channels that run parallel to the <i>b</i> -axis, as well as
431	compression of the Na-sites. At higher pressures (>2.5 GPa), changes in the BO_3 and BO_4
432	tetraborate groups likely play a major role in the compression mechanism of kernite. And, the
433	initially weakly bound H2 hydrogen that is oriented along the a-axis (Cooper et al., 1973), and
434	which likely generates the strong O-H stretching peak, becomes much more strongly hydrogen
435	bound. As pressure is increased above ~7.0 GPa, the structural channels are likely substantially
436	compacted, and the BO $_3$ groups likely change coordination to BO $_4$ groups as the structural
437	chains become more polymerized. It is also possible that bonding between the tetraborate
438	chains may occur above this pressure, which could result in a stiffer three-dimensional
439	structure. As the pressure is increased above ~11.0 GPa, cross-channel bonding may initiate
440	which could lead to disordering of the chains, and extensive disordering of the Na sites likely

441	occurs. Finally, the BO_3 groups almost entirely change coordination to BO_4 groups, and the BO_4
442	groups themselves may become more distorted. The coordination of the BO_4 groups may
443	become poorly defined at the highest pressures of these experiments; this lack of definition, as
444	manifested by the markedly enhanced breadth of the likely B-O stretching vibrations (Figure 5)
445	also coincides with a weakening of H-bonding above ~11 GPa. This weakening of O-H bonding
446	associated with water molecules at high pressures is compatible with either the onset of
447	positive, or possibly decreasing negative mode shifts of bound water at high pressures in other
448	3-fold cation bearing phases such as trona and ikaite (O'Bannon et al. 2014; Shahar et al. 2005).
449	This decrease, or decrease in the rate of increase, of hydrogen bonding with pressure may be
450	associated with the comparatively rigidly shaped water molecule not being able to topologically
451	access strong, linear hydrogen bonds within complex, geometrically shifting, compacting
452	surroundings.
453	Notably, the mid infrared spectra probe only vibrations of the BO_3 , BO_4 , H_2O and OH
454	groups. Thus, the infrared spectra provide little information on the bonding environment of the
455	Na sites under compression. Only the low-frequency Raman spectra provide primary
456	constraints on the Na bonding. Our infrared and Raman results are both consistent and
457	complementary with one another. Within the infrared spectra, the BO_3 modes and the OH
458	stretch persist to higher pressures than they do in the Raman experiments, which is a reflection
459	of the differences in sensitivity between the two techniques—for example, it is likely that the
460	infrared experiments are more sensitive to lower symmetry, distorted BO_3 groups.
461	Decompressed products

The sharp features observed in the decompressed Raman and infrared spectra suggest 462 that the decompressed products are substantially more ordered than kernite at high pressures, 463 and the quenched products may be crystalline (Figures 9 and 10). The decompressed structure 464 465 likely contains some BO₃ groups (Table 3), although the weakness of the BO₃ stretching peaks in 466 the Raman spectra indicate that these may be guite distorted. The channels that contain the H₂O molecules have likely undergone extensive rearrangement. Most of the boron in the 467 decompressed structure is probably tetrahedrally coordinated, but these tetrahedra, along with 468 the OH groups, may also be distorted. Kernite has chains of BO₄ tetrahedra and sodium sites 469 470 running parallel to the *b*-axis with trigonal BO₃ sites branching off of them (Figure 1). This creates channels in the structure that are held together by hydrogen bonding. The collapse of 471 these channels likely allows oxygen atoms from the adjacent channel to move into the 472 coordination sphere of an adjacent BO₃ group. Moreover, the transition of the BO₃ groups to 473 BO_4 groups likely substantially changes the geometry of the Na sites, which are relatively 474 distorted in the kernite starting material. Interestingly, the lowest frequency region in the 475 476 Raman spectrum of the decompressed material is notably featureless and only two very low intensity broad modes are observed near 124 and 168 cm⁻¹. We speculate that the two Na sites 477 might have converged on the same coordination (at ambient conditions the Na sites are 5- and 478 6-fold coordinated). 479

We note one novel aspect of the pressure-induced mode shifts that we observe in kernite. A general scaling of mode Gruneisen parameter with mode frequency has long been recognized in molecular crystals (e.g., Zallen 1974) and in silicates (Williams et al. 1987). The basic concept is that weaker bonds give rise to lower frequency vibrations and larger mode

484	Gruneisen parameters. Figure 9 shows such a scaling for the mode shifts of kernite: clearly,
485	above ~150 cm ⁻¹ , this general trend of decreasing mode Gruneisen parameter with increasing
486	frequency is obeyed. Below 150 cm ⁻¹ , this overarching trend is clearly violated in kernite. Our
487	simple explanation for this unexpected trend is that the structural complexity of kernite gives
488	rise to low-frequency modes that, while not all soft, are not as fully "hard" as would be
489	expected from simple systematics. The ramifications of this are that kernite has a range of low-
490	frequency vibrational motions that are oriented such that, under compression, they reflect a
491	normal coordinate along which the geometry of the kernite lattice might be susceptible to
492	irreversible deformations. And, this simple explanation implicitly involves a broad suite of
493	possible phase transitions that are not fully favored that the kernite lattice could undergo. This
494	in turn is in loose accord with our observation of extensive polymorphism on both compression
495	and decompression of the kernite lattice.
496	Implications
497	a. Why does the coordination change from BO $_3$ to BO $_4$ occur readily, while the CO $_3$ to CO $_4$
498	transition does not?
499	The energetic difference between the BO_3 and BO_4 configurations is known to be
500	relatively small within boron-bearing oxide glasses: changes in fictive temperature/cooling rate
501	or modest changes in pressure (less than 2 GPa) can modulate the relative amounts of these
502	two structural species (e.g., Gupta and Tossell, 1981; Wondraczek et al. 2007; Edwards et al.
503	2014; Smedskjaer et al. 2014). Within crystalline borates, the fixed topology of the starting

- 504 material might be expected to modulate the pressure range over which BO₃ groups are
- 505 destabilized under static pressures relative to BO₄ groups. In kernite, it appears that the BO₃

506	groups are progressively eliminated at pressures above ~7 GPa, with their last spectroscopic
507	vestige becoming unresolvable at ~22 GPa. For comparison, the calcium borate, colemanite, has
508	half of its BO_3 groups convert to four-fold coordination at 14 GPa (Lotti et al. 2017). Thus, the
509	destabilization of BO $_3$ groups appears to occur at pressures above 7 GPa in borate crystals,
510	extending to near 22 GPa. Interestingly, this pressure range is in accord with the conversion
511	interval of BO_3 to BO_4 groups in B_2O_3 glass under compression (Lee et al. 2005). This similarity in
512	pressure ranges may reflect that the polyborate units which comprise the crystals are also
513	primary components of the glasses as well, and it is the instability of the polyborate units at 300
514	K that may govern the pressure range over which interconversion takes place.
515	For comparison, compression of carbonates reveals that the CO_3 groups transform to
516	CO_4 under very high-pressure conditions(80 to 115 GPa), and often only at high temperatures
517	(Boulard et al. 2015; Merlini et al. 2017; Lobanov et al. 2017; Vennari and Williams 2018). This is
518	in contrast to what is observed in borate minerals where the BO_3 groups destabilize at relatively
519	low pressures (e.g. ~7 GPa) and transform to BO $_4$ groups at ambient temperatures (Lotti et al.
520	2017, and this study). Beyond the empirically-documented small energetic difference, why do
521	BO_3 groups convert to BO_4 groups readily while the 3-fold carbonate group only converts to
522	four-fold coordination at extreme pressures, with large kinetic hindrances? It is notable that the
523	respective B-O bond distances in BO $_4$ and BO $_3$ groups are roughly 1.46 and 1.36 Å, respectively
524	(e.g., Shannon,1976), or 7% different. Although the mechanism of the CO_3 to CO_4 transition
525	may differ markedly between different carbonates (e.g., Lobanov et al. 2017; Vennari and
526	Williams 2018), the transition between a 3- and 4-fold carbon-bearing phase at 105 GPa in the
527	CaCO ₃ system is associated with respective C-O bond distances of 1.228 and 1.315 Å (Lobanov

et al. 2017), or a change of 7% in bond distance across the coordination change. Interestingly,
the estimated C-O bond distance for CO₄ groups at ambient pressure is near 1.50 Å, and that of
CO₃ groups is ~1.28 Å (Shannon 1976), for a 17% difference in bond distance. Accordingly, it
appears that a higher compressibility of CO₄ groups (in the metastable, low-pressure regime)
relative to CO₃ groups ultimately brings the bond length difference down to 7% near 105 GPa,
thus converging on a value where the conversion between XO₃ and XO₄ groups happens in both
the boron and carbon systems.

The interconversion between 3- and 4-fold coordination near a 7% bond length 535 536 difference in these two systems can be rationalized as being associated with geometric effects that are intimately tied to Pauling's first rule (Pauling 1960). Assuming an oxygen radius that is 537 independent of coordination, and Pauling's minimum radius ratios for both triangular and 538 539 tetrahedral coordination (0.155 and 0.225, respectively), then the ratio of the bond distances in the two different coordinations at the minimum radius ratios for the two geometries is 1.06: 540 notably close to the 7% difference in bond distances when 3- to 4-fold interconversion is 541 542 empirically observed to readily occur. The net conclusion here from this analysis is that 3- to 4-543 fold conversion may occur when the radius of the cations in two different coordinations is such that they obey the 'no-rattle' rule in both coordinations. 544 This simplistic bond-length analysis does not, of course, incorporate the detailed 545

topologies of different crystalline phases, the critical role of second-neighbor interactions, nor
 the markedly different kinetic hindrances in different systems (boron shifts coordination readily
 at 300 K; carbon appears to require high temperatures to fully shift coordination). The ambient
 structure variability that is observed in borates is most similar to silicates (e.g. phylloborates,

550	inoborates, tektoborates). The energy curve of an Si_2O_7 group as a function of Si-O-Si angle is
551	relatively flat over a broad angular range from ca. 120-180° (Gibbs et al. 2001; Oganov et al.
552	2008). A survey of borate mineral structures reveals that the inter-tetrahedral angle B-O-B
553	angle shows a flexibility that may be slightly less than silicates, with values as low as 108.78 $^\circ$
554	and as high as 133.83 $^{\circ}$ (See supplementary Table S1 for the table of borates surveyed, and
555	Figure S3). This suggests that the energy curve of B_2O_7 groups as a function of B-O-B angle is
556	also relatively flat over a broad angular range, with a somewhat smaller flat range than silicates.
557	Notably, energy calculations for borate tetrahedral B-O-B angles are sparse (Takada et al. 1995).
558	This relatively broad angular range contrasts with what has been reported for the energy of
559	C_2O_7 groups as a function of C-O-C angles, which show two complementary, quite narrow
560	energetic minima (~ 5-10° wide) at 124 and 236° (Oganov et al. 2008). Hence, borate groups
561	likely behave more similarly to silicate groups under high-pressure and temperature conditions,
562	and it appears that the angular variability associated with different T-O-T linkages likely
563	decreases in the order Si-O-Si > B-O-B > C-O-C. This narrow angular variability of the C-O-C
564	linkage may prevent the structural flexibility that is observed in silicates and borates, and
565	require reconstructive transformations on conversion to tetrahedrally coordinated phases.
566	Hence, the kinetic barriers to tetrahedral carbon formation may be associated with the
567	topological constraints produced by the narrow bond angles required by the energetics of the
568	C-O-C linkage.
569	b. Stability of Borates Under Shock-Loading and on the Early Earth

570 From a broader Earth sciences perspective, while kernite is not an abundant mineral on 571 the surface of the Earth today, it belongs to a family of minerals that may have played an

572	important role in the development of life on Earth. Kernite, colemanite and ulexite are
573	comprised of several polyborate structures such as triborate $(B_3O_3(OH)_4^-$ or $B_3O_3(OH)_5^{2-})$,
574	pentaborate ($B_5O_6(OH)_4$), and tetraborate ($B_4O_5(OH)_4^{2-}$). Borate is found as both BO ₃ and BO ₄
575	groups in the crystal structures of each of these complex minerals: as such, the behavior of
576	kernite may be generally representative of the behavior of mixed coordination low-
577	temperature boron-bearing phases. Borates such as colemanite, ulexite, and kernite have been
578	reported to stabilize ribose (e.g. Grew et al. 2011; Ricardo et al. 2004; Saladino et al. 2011).
579	Colemanite, ulexite, and kernite contain relatively high, and comparable, concentrations of
580	boron: 15.8, 13.3, and 14.9 wt.%, respectively. Hence, the polyborate structures that stabilize
581	ribose are abundant in these complex borate minerals. The mechanisms through which these
582	minerals stabilize the pentose sugar (and nucleic acid precursor) ribose are complex, but it
583	involves the dissolution of these minerals into solution, and formation of pentose-polyborate
584	complexes that are stable in solution relative to the free sugars (e.g., Ricardo et al., 2004). The
585	key contribution of these minerals is that they provide a means for concentrating boron (an
586	element present at ~0.001% abundance in Earth's crust) sufficiently that borate-induced ribose
587	stabilization can occur. When these minerals dissolve, a distribution of borate species in
588	solution is established (e.g. orthoborate, triborate, pentaborate, or tetraborates). Factors such
589	as the composition of the starting material, temperature, water-rock ratio and acidity will, of
590	course, determine what species are present and their concentrations. Since kernite is used
591	extensively in industrial applications to produce other refined borates, its solution chemistry is
592	fairly well characterized under a range of conditions (e.g., Schubert 2003, and references
593	therein). Indeed, the abundance of polyborate species strongly depends on the concentration

of boron in solution (e.g., Schubert, 1983; Felmy and Weare 1986), with higher boron
concentrations favoring polyborate species. Thus, the key aspect of borate minerals is that their
presence allows abundant polyborate anions, with their influence on the stabilization of ribose
and other sugars, to be stable within fluids coexisting with these minerals. Thus, the ability of
borate minerals to persist under high-pressure conditions implies that these minerals are likely
stable under a broad range of environments (assuming that temperatures are not excessive)
such as those on the heavily-impacted early Earth.

The effect of high-pressure on the stability of borate polyanions in kernite has 601 602 implications for the survivability of complex borate minerals during meteorite impacts. Our Raman and infrared results suggest that kernite undergoes irreversible structural changes 603 under compression to ~25 GPa. The decompressed Raman and infrared spectra suggest that the 604 recovered product is ordered, and that most of the BO₃ groups have transformed to BO₄ 605 groups, and that the OH groups are disordered. The solubility of these high-pressure phases of 606 kernite (or their pressure-quenched equivalents) are not known. However, we expect that the 607 608 solubility of these pressure-quenched phases, would be enhanced relative to non-pressure 609 treated phases. Moreover, the solubility of pressure-disordered borates would likely be greater than that of crystalline kernite. Hence, this enhanced solubility of shock-disordered borates 610 could enhance the rate of ribose stabilization, and hence ribose accumulation in the early Earth. 611 Before ~4 Gyr, it is likely that no substantial region of the Earth's surface would have 612 613 survived that had been untouched by impacts (Marchi et al. 2014). If kernite, colemanite, or 614 ulexite were present as evaporites on the early Earth, they would, inevitably, have experienced high-pressure conditions from meteorite impacts. Our results suggest that most of the BO₃ 615

616	groups in kernite would transform to BO_4 groups and the Na-sites would become substantially			
617	disordered during pervasive impacts of the late heavy bombardment. Importantly, kernite			
618	would not have been completely destroyed during impact events that did not produce marked			
619	heating (which the shock measurements of Boslough et al. (1980) imply includes impact events			
620	with peak pressures less than 30 GPa). Hence, the primary polyborate structural units that are			
621	involved with ribose stabilization would survive all but the largest impact events. Therefore, we			
622	suggest that highly soluble, BO $_4$ -dominated disordered borates would, due to both their			
623	enhanced solubility and the high borate content (and thus polyborate ion concentration) of			
624	their coexisting solutions, enhance the stabilization of nucleic acid precursors like ribose, thus			
625	aiding in life's rocky start.			
625 626	aiding in life's rocky start. Acknowledgments			
625 626 627	aiding in life's rocky start. Acknowledgments We thank R.L. Frost, two anonymous reviewers and the AE (M. Mookherjee) for helpful			
625 626 627 628	aiding in life's rocky start. Acknowledgments We thank R.L. Frost, two anonymous reviewers and the AE (M. Mookherjee) for helpful comments that improved the quality of the manuscript. We also thank Dan Sampson for			
625 626 627 628 629	aiding in life's rocky start. Acknowledgments We thank R.L. Frost, two anonymous reviewers and the AE (M. Mookherjee) for helpful comments that improved the quality of the manuscript. We also thank Dan Sampson for invaluable technical assistance with the Raman and infrared spectrometers. Work partially			
625 626 627 628 629 630	aiding in life's rocky start. Acknowledgments We thank R.L. Frost, two anonymous reviewers and the AE (M. Mookherjee) for helpful comments that improved the quality of the manuscript. We also thank Dan Sampson for invaluable technical assistance with the Raman and infrared spectrometers. Work partially supported by NSF through EAR-1215745 and -1620423, and COMPRES, the Consortium for			
625 626 627 628 629 630 631	aiding in life's rocky start. Acknowledgments We thank R.L. Frost, two anonymous reviewers and the AE (M. Mookherjee) for helpful comments that improved the quality of the manuscript. We also thank Dan Sampson for invaluable technical assistance with the Raman and infrared spectrometers. Work partially supported by NSF through EAR-1215745 and -1620423, and COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 11-			
625 626 627 628 629 630 631 632	aiding in life's rocky start. Acknowledgments We thank R.L. Frost, two anonymous reviewers and the AE (M. Mookherjee) for helpful comments that improved the quality of the manuscript. We also thank Dan Sampson for invaluable technical assistance with the Raman and infrared spectrometers. Work partially supported by NSF through EAR-1215745 and -1620423, and COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 11- 57758. A portion of this work was performed under the auspices of the U.S. Department of			

634

635 **References**

647

Amoros, J.L.P. (1945) La estructura de la kernita. *Euclides, 57-58,* 599-608.

- Barnard, R.M., and Kistler, R.B. (1966) Stratigraphic and structural evolution of the Kramer
 sodium borate ore body, Boron, California. In *Second Symposium on Salt* (Vol. 1, pp.
 133-150).
- 640 Benner, S.A. (2004) Understanding nucleic acids using synthetic chemistry. *Accounts of* 641 *Chemical Research*, *37*, 784-797.
- Boslough, M.B., Weldon, R.J. and Ahrens, T.J. (1980) Impact-induced water loss from
 serpentine, nontronite, and kernite. *Proceedings of the Lunar and Planetary Science Conference, 11,* 2145-2158.
- Boulard, E., Pan, D., Galli, G., Liu, Z., and Mao, W.L. (2015) Tetrahedrally coordinated
 carbonates in Earth's lower mantle. *Nature Communications, 6*, 6311.
- 648 Button, D.P., Tandon, R., King, C., Velez, M.H., Tuller, H.L., and Uhlmann, D.R. (1982). Insights 649 into the structure of alkali borate glasses. *Journal of Non-Crystalline Solids*, *49*, 129-142.
- Christ, C.L., and Clark, J.R. (1977) A crystal-chemical classification of borate structures with
 emphasis on hydrated borates. *Physics and Chemistry of Minerals*, *2*, 59-87.
- Christ, C.L., and Garrels, R.M. (1959) Relations among sodium borate hydrates at the Kramer
 deposit, Boron, California. *American Journal of Science*, 257, 516-528.
- Cloutis, E., Berg, B., Mann, P., and Applin, D. (2016) Reflectance spectroscopy of low atomic
 weight and Na-rich minerals: Borates, hydroxides, nitrates, nitrites and peroxides.
 Icarus, 264, 20-36.
- 657 Cooper, W.F., Larsen, F.K., Coppens, P., and Giese, R.F. (1973) Electron population analysis of 658 accurate diffraction data. V. Structure and one-center charge refinement of the light-659 atom mineral kernite, $Na_2B_4O_6(OH)_2$ 3H_2O . *American Mineralogist, 58,* 21-31.
- Cossetti, C., Crestini, C., Saladino, R., and Mauro, E.D. (2010). Borate minerals and RNA stability.
 Polymers, 2, 211-228.
- Edwards, T., Endo, T., Walton, J.H., and Sen, S. (2014) Observation of the transition state for
 pressure-induced BO₃ -> BO₄ conversion in glass. *Science*, *345*, 1027-1029.
- Falk, M. (1990) Frequencies of H-O-H, H-O-D, and D-O-D fundamentals in liquid water. *Journal of Raman Spectroscopy*, *21*, 563-567.
- Felmy, A.R. and Weare, J.H. (1986) The prediction of borate mineral equilibria in natural waters:
 Application to Searles Lake, California. *Geochimica et Cosmochimica Acta, 50*, 2771 2783.

Filatov, S. K., & Bubnova, R. S. (2008) Structural mineralogy of borates as perspective materials 669 670 for technological applications. In *Minerals as Advanced Materials I* (pp. 111-115). Springer, Berlin, Heidelberg. 671 672 Fitzpatrick, J.J., Muhs, D.R., and Jull, A.J.T. (1990) Saline minerals in the Lewis Cliff ice tongue, 673 674 Buckley Island quadrangle, Antarctica. Contributions to Antarctic Research I, 57-69. García-Veigas, J., and Helvacı, C. (2013) Mineralogy and sedimentology of the Miocene 675 Göcenoluk borate deposit, Kırka district, western Anatolia, Turkey. Sedimentary 676 Geology, 290, 85-96. 677 678 Garrett, D.E. (1998) Borates: handbook of deposits, processing, properties, and use. Academic 679 Press, New York. Gibbs, G.V., Boisen, M.B., Beverly, L.L. and Ross, K.M. (2001) A computational quantum 680 chemical study of the bonded interactions in earth materials and structurally and 681 682 chemically related molecules. Reviews in Mineralogy and Geochemistry, 42, 345-381. Giese, R.F. (1966). Crystal structure of kernite, Na₂B₄O₆(OH)₂· 3H₂O. *Science*, *154*, 1453-1454. 683 684 Grew, E.S., Bada, J.L., and Hazen, R.M. (2011) Borate minerals and origin of the RNA world. Origins of Life and Evolution of Biospheres, 41(4), 307-316. 685 Grew, E. S., Dymek, R. F., Hoog, J. C. M. De, Harley, S. L., Boak, J., Hazen, R. M., & Yates, M. G. 686 687 (2015). Boron isotopes in tourmaline from the ca. 3.7-3.8 Ga Isua supracrustal belt, 688 Greenland: Sources for boron in Eoarchean continental crust and seawater, Geochimica 689 *et Cosmochimica Acta*, *163*, *156–177*. Griscom, G.L., (1978) in: Borate glases: structure, properties, applications, eds., L.D. Pye, V.D. 690 Frechette and N.K. Kreidl, Plenum, New York. 691 692 Gupta, A., & Tossell, J. A. (1981). A theoretical study of bond distances, X-ray spectra and 693 694 electron density distributions in borate polyhedra. Physics and Chemistry of Minerals, 7, 695 159-164. Harrison, T.M. (2009). The Hadean crust: evidence from> 4 Ga zircons. Annual Review of Earth 696 and Planetary Sciences, 37, 479-505. 697 Hawkesworth, C. J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., and Storey, C.D. 698 699 (2010) The generation and evolution of the continental crust. Journal of the Geological 700 Society, 167, 229-248. Hibben, J. (1939) The Raman effect and its chemical applications. With a theoretical discussion 701 702 by James H. Hibben and Edward Teller. American Chemical Society, Monograph Series, 703 No. 80. Reinhold, New York.

Hurlbut, C.S., Aristara. L.F, and Erd, R.C. (1973) Kernite from Tincalayu, Salta, Argentina. 704 705 American Mineralogist, 58, 308-313. Jellison, G.E., and Bray, P.J. (1978). A structural interpretation of ¹⁰B and ¹¹B NMR spectra in 706 sodium borate glasses. Journal of Non-Crystalline Solids, 29, 187-206. 707 708 Jun, L., Shuping, X., and Shiyang, G. (1995) FT-IR and Raman spectroscopic study of hydrated borates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51, 519-709 710 532. Kamitsos, E.I., Karakassides, M.A., and Chryssikos, G.D. (1987) Vibrational spectra of 711 magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the 712 network structure. Journal of Physical Chemistry, 91, 1073-1079. 713 Kilymis, D.A., Delaye, J.-M., and Ispas, S. (2015) Behavior of sodium borosilicate glasses under 714 compression using molecular dynamics. Journal of Chemical Physics, 143, 094503. 715 Kim, H. J., and Benner, S. A. (2010). Comment on "The silicate-mediated formose reaction: 716 717 Bottom-up synthesis of sugar silicates". Science, 329, 902-902. Kloprogge, J.T., and Frost, R.L. (1999) Raman microscopic study of some borate minerals: 718 Ulexite, kernite, and inderite. Applied spectroscopy, 53, 356-364. 719 Krogh-Moe, J. (1962) Structural interpretation of melting point depression in the sodium borate 720 721 system. Physics and Chemistry of Glasses, 3, 101-110. Krogh-Moe, J. (1965). Interpretation of infra-red spectra of boron oxide and alkali borate 722 glasses. Physics and Chemistry of Glasses, 6, 46. 723 Krishnamurti, D. (1955) Raman spectra of borax, kernite and colemanite. Proceedings of the 724 725 Indian Academy of Sciences A. 41, 7-11. 726 Lee, S.K., et al. (2005) Probing of bonding changes in B₂O₃ glasses at high pressure with inelastic 727 x-ray scattering. Nature Materials, 4, 851-854. Lobanov, S., et al. (2017) Raman spectroscopy and X-ray diffraction of sp³ CaCO₃ at lower 728 mantle pressures. Physical Review B, 96, 104101. 729 730 Lotti, P., et al. (2017) High-pressure induced phase transition of $CaB_3O_4(OH)_3$ H₂O (colemanite). 731 Journal of the American Ceramic Society, 100, 2209-2220. Lutz, H., Jung, C., Mortel, R., Jacobs, H. and Stahl, R. (1998) Hydrogen bonding in solid 732 hydroxides with strongly polarizing metal ions, β -Be(OH)₂ and ϵ -Zn(OH)₂. Spectrochimica 733 734 Acta, 54, 893-901.

735	Marchi, S., Bottke, W.F., Elkins-Tanton, L.T., Bierhaus, M., Wuennemann, K., Morbidelli, A., and
736	Kring, D.A. (2014) Widespread mixing and burial of Earth/'s Hadean crust by asteroid
737	impacts. <i>Nature, 511</i> , 578-582.
738 739	Maeda, M., Hirao, T., Kotaka, M., and Kakihana, H. (1979) Raman spectra of polyborate ions in aqueous solution. <i>Journal of Inorganic and Nuclear Chemistry</i> , 41, 1217-1220.
740	Manghnani, M.H., Hushur, A., Sekine, T., Wu, J., Stebbins, J.F. and Williams, Q. (2011) Raman,
741	Brillouin and nuclear magnetic resonance spectroscopic studies on shocked borosilicate
742	glass. <i>Journal of Applied Physics, 109,</i> 113509.
743	Mao, H.K., Xu, J.A., and Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar
744	under quasi-hydrostatic conditions. <i>Journal of Geophysical Research: Solid Earth, 91</i> ,
745	4673-4676.
746 747	Maya, L. (1976) Identification of polyborate and fluoropolyborate ions in solution by Raman spectroscopy. <i>Inorganic Chemistry</i> , 15, 2179-2184.
748	Menzel, H., Schulz, H., and Deckert, H. (1935) Bildungs-und Existenzbedingungen des Kernits
749	Na ₂ B ₄ O ₇ ·4H ₂ O. <i>Naturwissenschaften, 23,</i> 832-833.
750	Menzel, H., and Schulz, H. (1940) Zur Kenntnis der Borsäuren und borsauren Alkalisalze. X. Der
751	Kernit (Rasorit) Na ₂ B ₄ O ₇ · 4H ₂ O. <i>Zeitschrift fur Anorganische und Allgemeine Chemie,</i>
752	245, 157-220.
753	Merlini, M., Cerantola, V., Gatta, G. D., Gemmi, M., Hanfland, M., Kupenko, I., Lotti, P., Muller,
754	H., and Zhang, L. (2017). Dolomite-IV: Candidate structure for a carbonate in the Earth's
755	lower mantle. <i>American Mineralogist, 102,</i> 1763-1766.
757	O'Bannon, E., and Williams, Q. (2014) Trona at extreme conditions: A pollutant sequestering
758	material at high pressures and low temperatures. <i>American Mineralogist, 99,</i> 1973-
759	1984.
761 762 763	O'Bannon, E., & Williams, Q. (2016) Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa. <i>Physics and Chemistry of Minerals, 43</i> , 671-687.
764 765 766 767	Oganov, A.R., Ono, S., Ma, Y.M., Glass, C.W., and Garcia, A. (2008) Novel high-pressure structures of MgCO ₃ , CaCO ₃ and CO ₂ and their role in Earth's lower mantle. <i>Earth and Planetary Science Letters</i> , 273, 38–47.
768	Pabst, A., and Sawyer, D.L. (1948) Tincalconite crystals from Searles Lake, San Bernardino
769	County, California. <i>American Mineralogist, 33</i> , 472-481.
770	Pauling, L. (1960) The nature of the chemical bond and the structure of molecules and crystals:
771	An introduction to modern structural chemistry. 3 rd Edition, Cornell U. Press, Ithaca.

Ricardo, A., Carrigan, M.A., Olcott, A.N., and Benner, S.A. (2004) Borate minerals stabilize 772 ribose. Science, 303, 196-196. 773 774 Ross, V., and Edwards, J.D. (1959) On the crystal structure of kernite, Na₂B₄O₇⁻ 4H₂O. Acta 775 Crystallographica 12, 258-258. Saladino, R., Barontini, M., Cossetti, C., Di Mauro, E., and Crestini, C. (2011) The effects of 776 borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic 777 778 carboxylic acids from formamide. Origins of Life and Evolution of Biospheres, 41, 317-779 330. Sanjurjo, J. A., Lopez-Cruz, E., & Burns, G. (1983) High-pressure Raman study of zone-center 780 phonons in PbTiO₃. *Physical Review B*, 28, 7260. 781 782 783 Schaller, W.T. (1930) Borate minerals from the Kramer district, Mohave desert, California. U.S. Geologic Survey Professional Paper 158-I, 135-173. 784 785 Schubert, D.M. (2003) Borates in industrial use. In Group 13 Chemistry III (pp. 1-40). Springer 786 Berlin Heidelberg. Scorei, R. (2012) Is boron a prebiotic element? A mini-review of the essentiality of boron for the 787 788 appearance of life on Earth. Origins of Life and Evolution of Biospheres, 42, 3-17. 789 Scott, H.P., Liu, Z., Hemley, R.J. and Williams, Q. (2007) High-pressure infrared spectra of talc and lawsonite. American Mineralogist, 92, 1814-1820. 790 Sennova, N.A., et al. (2005) Room, low, and high temperature dehydration and phase transition 791 of kernite in vacuum and in air. Crystal Research and Technology, 40, 563-572. 792 Shahar, A., Bassett, W.A., Mao, H.-K., Chou, I-M., and Mao, W. (2005) The stability and Raman 793 spectra of ikaite, CaCO₃ 6H₂O, at high pressure and temperature, American Mineralogist, 794 *90,* 1835-1839. 795 796 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751-767. 797 798 Smedskjaer, M.M., et al. (2014) Irreversibility of pressure induced boron speciation change in 799 glass. Scientific Reports, 4, 3770. 800 Smith, W.C. (1968) Borax solution at Kramer, California. *Economic Geology*, 63, 877-883. Stephenson, J.D., Hallis, L.J., Nagashima, K., and Freeland, S.J. (2013) Boron enrichment in 801 Martian clay. PLOS One, 8, e64624. 802 803 Takada, A., Catlow, C.R.A., and Price, G.D. (1995) Computer modeling of B₂O₃: Part I. New interatomic potentials, crystalline phases and predicted polymorphs, Journal of Physics 804 Condensed Matter, 7, 8659-8692. 805

 Vennari, C.E., and Williams, Q. (2018) A novel carbon bonding environment in deep mantle high-pressure dolomite. <i>American Mineralogist, 103,</i> 171-174. Vlasova, E.V., and Valyashko, M.G. (1966) Infrared absorption spectra of hydrated borates. <i>Russian Journal of Inorganic Chemistry, 11,</i> 822-828. Weir, C.E. (1966). Infrared spectra of the hydrated borates. <i>Journal of Research of the Nationa</i> <i>Bureau of Standards. A, 70,</i> 153-164. Williams, Q., Jeanloz, R. and McMillan, P. (1987) Vibrational spectra of MgSiO₃-perovskite: Ze pressure Raman and mid-infrared spectra to 27 GPa. <i>Journal of Geophysical Research,</i> <i>92,</i> 8116-8128. Wondraczek, L., Sen, S., Behrens, H. and Youngman, R.E. (2007) Structure-energy map of alka borosilicate glasses: Effects of pressure and temperature. <i>Physical Review B, 76,</i> 01420 Yano, T., Kunimine, N., Shibata, S., and Yamane, M. (2003) Structural investigation of sodium borate glasses and melts by Raman spectroscopy: I. Quantitative evaluation of structure units. <i>Journal of Non-Crystalline Solids, 321,</i> 137-146. Zallen, R. (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals: S₈ and As₂S₃. <i>Physical Review B, 9,</i> 4485-4496. 	806 807	Thompson, E.C., Campbell, A. J., and Liu, Z. (2016) In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high pressure. <i>American Mineralogist, 101</i> , 706-712.
 Vlasova, E.V., and Valyashko, M.G. (1966) Infrared absorption spectra of hydrated borates. <i>Russian Journal of Inorganic Chemistry</i>, <i>11</i>, 822-828. Weir, C.E. (1966). Infrared spectra of the hydrated borates. <i>Journal of Research of the Nationa</i> <i>Bureau of Standards</i>. <i>A</i>, <i>70</i>, 153-164. Williams, Q., Jeanloz, R. and McMillan, P. (1987) Vibrational spectra of MgSiO₃-perovskite: Ze pressure Raman and mid-infrared spectra to 27 GPa. <i>Journal of Geophysical Research</i>, <i>92</i>, 8116-8128. Wondraczek, L., Sen, S., Behrens, H. and Youngman, R.E. (2007) Structure-energy map of alka borosilicate glasses: Effects of pressure and temperature. <i>Physical Review B</i>, <i>76</i>, 01420 Yano, T., Kunimine, N., Shibata, S., and Yamane, M. (2003) Structural investigation of sodium borate glasses and melts by Raman spectroscopy: I. Quantitative evaluation of structur units. <i>Journal of Non-Crystalline Solids</i>, <i>321</i>, 137-146. Zallen, R. (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals: S₈ and As₂S₃. <i>Physical Review B</i>, <i>9</i>, 4485-4496. 	808 809 810	Vennari, C.E., and Williams, Q. (2018) A novel carbon bonding environment in deep mantle high-pressure dolomite. <i>American Mineralogist, 103,</i> 171-174.
 Weir, C.E. (1966). Infrared spectra of the hydrated borates. <i>Journal of Research of the Nationa</i> <i>Bureau of Standards. A, 70,</i> 153-164. Williams, Q., Jeanloz, R. and McMillan, P. (1987) Vibrational spectra of MgSiO₃-perovskite: Zet pressure Raman and mid-infrared spectra to 27 GPa. <i>Journal of Geophysical Research,</i> <i>92,</i> 8116-8128. Wondraczek, L., Sen, S., Behrens, H. and Youngman, R.E. (2007) Structure-energy map of alka borosilicate glasses: Effects of pressure and temperature. <i>Physical Review B, 76,</i> 01420 Yano, T., Kunimine, N., Shibata, S., and Yamane, M. (2003) Structural investigation of sodium borate glasses and melts by Raman spectroscopy: I. Quantitative evaluation of structur units. <i>Journal of Non-Crystalline Solids, 321,</i> 137-146. Zallen, R. (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals: S₈ and As₂S₃. <i>Physical Review B, 9,</i> 4485-4496. 	811 812	Vlasova, E.V., and Valyashko, M.G. (1966) Infrared absorption spectra of hydrated borates. Russian Journal of Inorganic Chemistry, 11, 822-828.
 Williams, Q., Jeanloz, R. and McMillan, P. (1987) Vibrational spectra of MgSiO₃-perovskite: Zee pressure Raman and mid-infrared spectra to 27 GPa. <i>Journal of Geophysical Research</i>, <i>92</i>, 8116-8128. Wondraczek, L., Sen, S., Behrens, H. and Youngman, R.E. (2007) Structure-energy map of alka borosilicate glasses: Effects of pressure and temperature. <i>Physical Review B</i>, <i>76</i>, 01420 Yano, T., Kunimine, N., Shibata, S., and Yamane, M. (2003) Structural investigation of sodium borate glasses and melts by Raman spectroscopy: I. Quantitative evaluation of structural units. <i>Journal of Non-Crystalline Solids</i>, <i>321</i>, 137-146. Zallen, R. (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals: S₈ and As₂S₃. <i>Physical Review B</i>, <i>9</i>, 4485-4496. 	813 814	Weir, C.E. (1966). Infrared spectra of the hydrated borates. <i>Journal of Research of the National Bureau of Standards. A, 70,</i> 153-164.
 Wondraczek, L., Sen, S., Behrens, H. and Youngman, R.E. (2007) Structure-energy map of alka borosilicate glasses: Effects of pressure and temperature. <i>Physical Review B, 76,</i> 01420 Yano, T., Kunimine, N., Shibata, S., and Yamane, M. (2003) Structural investigation of sodium borate glasses and melts by Raman spectroscopy: I. Quantitative evaluation of structu units. <i>Journal of Non-Crystalline Solids, 321,</i> 137-146. Zallen, R. (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals: S₈ and As₂S₃. <i>Physical Review B, 9,</i> 4485-4496. 	815 816 817	Williams, Q., Jeanloz, R. and McMillan, P. (1987) Vibrational spectra of MgSiO ₃ -perovskite: Zero pressure Raman and mid-infrared spectra to 27 GPa. <i>Journal of Geophysical Research</i> , 92, 8116-8128.
 Yano, T., Kunimine, N., Shibata, S., and Yamane, M. (2003) Structural investigation of sodium borate glasses and melts by Raman spectroscopy: I. Quantitative evaluation of structu units. <i>Journal of Non-Crystalline Solids</i>, <i>321</i>, 137-146. Zallen, R. (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals: S₈ and As₂S₃. <i>Physical Review B</i>, <i>9</i>, 4485-4496. 	818 819	Wondraczek, L., Sen, S., Behrens, H. and Youngman, R.E. (2007) Structure-energy map of alkali borosilicate glasses: Effects of pressure and temperature. <i>Physical Review B, 76,</i> 014202.
 Zallen, R. (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals: S₈ and As₂S₃. <i>Physical Review B, 9,</i> 4485-4496. 	820 821 822	Yano, T., Kunimine, N., Shibata, S., and Yamane, M. (2003) Structural investigation of sodium borate glasses and melts by Raman spectroscopy: I. Quantitative evaluation of structural units. <i>Journal of Non-Crystalline Solids</i> , <i>321</i> , 137-146.
	823 824	Zallen, R. (1974) Pressure-Raman effects and vibrational scaling laws in molecular crystals: S ₈ and As ₂ S ₃ . <i>Physical Review B, 9,</i> 4485-4496.

830

- 831 Figure 1. Crystal structure of kernite at room pressure and temperature. Crystal structure after
- 832 Cooper et al. (1973). Image generated in CrystalMaker [®] software v.8.7.6.

Figure 2

Figure 2. Ambient infrared and Raman spectrum of kernite.

836

834

838

839 Figure 3. Representative Raman spectrum of kernite on compression (a) low frequency region

(b) OH stretching region. Note the dramatic change in the Raman spectrum under compression.

Modulation in the OH stretching region is an artifact. Modes are labeled below the 0.4 GPa
spectrum, * BO₄ modes, + BO₃ modes, and - OH Libration.

843

844

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6253

846

847

Figure 4. Raman mode shifts of kernite up to \sim 25 GPa (a) 50 - 625 cm⁻¹ and (b) 650 - 3700 cm⁻¹.

849 Closed circles are compression and open circles are decompression and error bars are smaller

850 than the symbols. Vertical dashed lines indicate phase transition pressures. Note that very few

- 851 modes return on decompression, and that most return only after the sample is fully
- decompressed to room pressure.

854

Figure 5. Representative high-pressure infrared spectra of kernite up to ~22.2 GPa. Fringing in
the OH region of several infrared spectra is an artifact. Modes are labeled below the 0.4 GPa
spectrum, * BO₄ modes, + BO₃ modes, and - OH Libration. ^ are due to hydrocarbon
contamination.

859

861

862

863 Figure 6. Infrared mode shifts of kernite up to ~23 GPa. Closed circles are compression and

open circles are decompression and error bars are smaller than the symbols. Vertical dashedlines indicate phase transition pressures.

868

869

870 Figure 7 Decompression spectra of kernite (a) Raman and (b) infrared. Fringing in the OH region in the room pressure infrared spectrum is an artifact. 871

872

873

875 876

877 Figure 8. Decompressed Raman spectra of kernite compressed to pressures just above each

proposed phase transition. Note the ~2.5 GPa transition is fully reversible, and that the ~7.0
GPa transition is partially reversible. Above 12.4 GPa the decompressed spectra are not like the
starting spectrum.

881

887

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2018-6253

v_{0i}	Assignment	(dv_{0i}/dP) to 2.5GPa
(cm ⁻¹)	U	(cm ⁻¹ /GPa)
83*	Na-O	-1.91 (±0.27)
107	Na-O	0.94 (±0.47)
113	Na-O	1.42 (±0.14)
123	Na-O	0.20 (±0.39)
128	Na-O	3.13 (±1.26)
163		8.78 (±0.88)
175		9.46 (±0.31)
214		7.02 (±1.38)
230		5.76 (±0.75)
246		13.28 (±1.28)
260		12.90 (±1.04)
308		5.98 (±1.80)
321		6.63 (±0.20)
346		3.05 (±0.12)
390	δ ΒΟ ₄	1.79 (±0.18)
428	BO ₄	2.23 (±0.43)
461	BO ₄	2.58 (±0.11)
466	δ BO ₃	7.43 (±1.24)
498	δBO_3	4.92 (±0.54)
557	O-H Libration	1.41 (±0.31)
581	O-H Libration	0.69 (±0.43)
733	v _s BO ₄	3.82 (±0.49)
739	v _s BO ₄	4.16 (±0.37)
807	v _s BO ₄	3.73 (±0.72)
850	v _s BO ₄	2.42 (±0.39)
932	v _s BO ₃	3.73 (±0.64)
979		3.80 (±0.73)
1008		4.23 (±0.54)
1031	v _{as} BO ₄	4.69 (±0.71)
1088		7.41 (±0.81)
3004	H ₂ O	-
3255	H ₂ O	-
3301	H ₂ O	-
3351	H ₂ O	-
3425	H ₂ O	-
3548	OH stretch	-9.20 (±1.05)

889

890 Table 1. Observed room pressure and temperature Raman modes of kernite. Assignments after

891 Klopproge and Frost (1999).

- 892 *Modes extrapolated to room pressure
- 893 v_s symmetric stretch, v_{as} antisymmetric stretch, δ bend

894

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2018-6253

V _{0i}	Assignment	(dv _{0i} /dP) to 2.5
(cm ⁻¹)		GPa
		(cm⁻¹/GPa)
552.3	BO ₄	2.07 (±0.17)
568.4	BO ₄	0.60 (±0.38)
618.0	δBO_3	2.77 (±0.76)
626.3*		1.58 (±0.17)
652.7	δBO_3	3.09 (±0.19)
659.7*		4.50 (±0.95)
691.2	δBO_3	4.04 (±0.11)
724.5		4.14 (±0.38)
740.8		2.70 (±0.37)
760.1	v _s BO ₄	5.94 (±2.05)
826.7	v _s BO ₄	5.56 (±0.26)
874.1	v _s BO ₃	5.42 (±0.59)
963.6	$v_{as} BO_4$	8.51 (±0.47)
1022.1	v _{as} BO ₄	-1.02 (±2.90)
1038.2*		3.38 (±0.75)
1132.7		4.28 (±0.62)
1260.5*		1.33 (±0.88)
1284.4		4.25 (±0.81)
1341.6	v _{as} BO ₃	5.15 (±0.44)
1387.8		-2.24 (±0.50)
1434.0		1.05 (±1.86)
1486.9		1.80 (±0.33)
1701.9	δ Η-Ο-Η	-17.58 (±0.67)
3323.2	H ₂ O	-7.78 (±5.67)
3551.4	OH	-13.63 (±2.20)

896

897 Table 2. Observed room pressure and temperature infrared modes of kernite. Assignments

898 after Jun et al. (1995).

899 v_s symmetric stretch, v_{as} antisymmetric stretch, δ bend

900 *Modes extrapolated to room pressure

901

<u>.</u>		
v _{0i} (cm⁻¹)	Assignment	Raman (R)
		Infrared (IR)
124.0	Na-O	R
168.2	Na-O	R
217.3		R
226.1 sh		R
279.3		R
290.8 sh		R
395.3		R
410.3 sh		R
462.5	δ BO ₃ & BO ₄	R
598.3	δ BO ₃ & BO ₄	R
667.1		R
672.0		IR
735.5	v _s BO ₄	R
833.5	v _s BO ₄	IR
971.0	v _{as} BO ₄	IR
1073.9	v _{as} BO ₄ ?	IR
1127.8 sh	v _{as} BO ₄	IR
1198.9		IR
1272.4		IR
1368.0	$v_{as}BO_3$	IR
1477.6		IR

903

Table 3. Observed Raman and infrared frequencies of decompressed product from 25.3 GPa.

905 sh shoulder, v_s symmetric stretch, v_{as} antisymmetric stretch, δ bend

Figure 1

Figure 2

Figure 3a

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 3b

Figure 4a

0 5 10 15 20 25 Pressure (GPa)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6253

Figure 5

Figure 6

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 7

Figure 8

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 9

Figure 10

Figure 12

0 200 400 600 800 1000 1200

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

V _{0i}	Assignment	(dv_{0i}/dP) to 2.5GPa
(cm^{-1})		(cm ⁻¹ /GPa)
83*	Na-O	-1.91 (±0.27)
107	Na-O	0.94 (±0.47)
113	Na-O	1.42 (±0.14)
123	Na-O	0.20 (±0.39)
128	Na-O	3.13 (±1.26)
163		8.78 (±0.88)
175		9.46 (±0.31)
214		7.02 (±1.38)
230		5.76 (±0.75)
246		13.28 (±1.28)
260		12.90 (±1.04)
308		5.98 (±1.80)
321		6.63 (±0.20)
346		3.05 (±0.12)
390	δBO_4	1.79 (±0.18)
428	BO ₄	2.23 (±0.43)
461	BO ₄	2.58 (±0.11)
466	δBO_3	7.43 (±1.24)
498	δBO_3	4.92 (±0.54)
557	O-H Libration	1.41 (±0.31)
581	O-H Libration	0.69 (±0.43)
733	v _s BO ₄	3.82 (±0.49)
739	v _s BO ₄	4.16 (±0.37)
807	v _s BO ₄	3.73 (±0.72)
850	v _s BO ₄	2.42 (±0.39)
932	v _s BO ₃	3.73 (±0.64)
979		3.80 (±0.73)
1008		4.23 (±0.54)
1031	$v_{as} BO_4$	4.69 (±0.71)
1088		7.41 (±0.81)
3004	H ₂ O	-
3255	H ₂ O	-
3301	H ₂ O	-
3351	H ₂ O	-
3425	H ₂ O	-
3548	OH stretch	-9.20 (±1.05)

V _{0i}	Assignment	(dv _{0i} /dP) to 2.5
(cm ⁻¹)		GPa
		(cm⁻¹/GPa)
552.3	BO ₄	2.07 (±0.17)
568.4	BO ₄	0.60 (±0.38)
618.0	δ BO ₃	2.77 (±0.76)
626.3*		1.58 (±0.17)
652.7	δ BO ₃	3.09 (±0.19)
659.7*		4.50 (±0.95)
691.2	δ BO ₃	4.04 (±0.11)
724.5		4.14 (±0.38)
740.8		2.70 (±0.37)
760.1	v _s BO ₄	5.94 (±2.05)
826.7	v _s BO ₄	5.56 (±0.26)
874.1	v _s BO ₃	5.42 (±0.59)
963.6	$v_{as} BO_4$	8.51 (±0.47)
1022.1	$v_{as} BO_4$	-1.02 (±2.90)
1038.2*		3.38 (±0.75)
1132.7		4.28 (±0.62)
1260.5*		1.33 (±0.88)
1284.4		4.25 (±0.81)
1341.6	$v_{as} BO_3$	5.15 (±0.44)
1387.8		-2.24 (±0.50)
1434.0		1.05 (±1.86)
1486.9		1.80 (±0.33)
1701.9	δ Η-Ο-Η	-17.58 (±0.67)
3323.2	H ₂ O	-7.78 (±5.67)
3551.4	ОН	-13.63 (±2.20)

v _{0i} (cm⁻¹)	Assignment	Raman (R)
		Infrared (IR)
124.0	Na-O	R
168.2	Na-O	R
217.3		R
226.1 sh		R
279.3		R
290.8 sh		R
395.3		R
410.3 sh		R
462.5	$\delta BO_3 \& BO_4$	R
598.3	δ BO ₃ & BO ₄	R
667.1		R
672.0		IR
735.5	v _s BO ₄	R
833.5	v _s BO ₄	IR
971.0	$v_{as}BO_4$	IR
1073.9	v _{as} BO ₄ ?	IR
1127.8 sh	$v_{as}BO_4$	IR
1198.9		IR
1272.4		IR
1368.0	$v_{as}BO_3$	IR
1477.6		IR