1 Rivision 1

2 Stability of Al-bearing superhydrous phase B at the mantle transition zone and the

- 3 uppermost lower mantle
- 4 Sho Kakizawa^{1*}, Toru Inoue^{1,2,3}, Hideto Nakano¹, Minami Kuroda⁴, Naoya Sakamoto⁵, and
- 5 Hisayoshi Yurimoto^{4,5,6}
- ¹Geodymanics Research Center, Ehime University, Matsuyama, Ehime 790-5877, Japan
- 7 ²Department of Earth and Planetary Systems Science, Hiroshima University,
- 8 Higashi-Hiroshima, Hiroshima 739-8526, Japan
- ³Hiroshima Institute of Plate Convergence Region Research (HiPeR), Hiroshima University,
- 10 Higashi-Hiroshima, Hiroshima 739-8526, Japan
- ⁴Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido
- 12 060-0810, Japan
- ¹³ ⁵Isotope Imaging Laboratory, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- ⁶Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5120,
- 15 Japan

16 *Corresponding author

17 E-mail address: kakizawa@sci.ehime-u.ac.jp

18

19 Abstract 20 We determined the stability and chemical composition of Al-bearing superhydrous 21 phase B at 20-24 GPa and 1400-2000°C to discuss the mechanism of water transport in the 22 mantle transition zone and uppermost lower mantle at temperatures close to the mantle 23 geotherm. Superhydrous phase B contained significant amounts of Al₂O₃, from 14 to 32 24 wt%, and Al-bearing superhydrous phase B remained stable, even at 200° C and pressures 25 of approximately 20-24 GPa. Moreover, two types of superhydrous phase B with different 26 chemical compositions coexisted at 20-24 GPa and 1600°C. The Al₂O₃ and H₂O contents 27 increased, and the MgO and SiO₂ contents decreased as the pressure and temperature 28 increased up to 1600°C. Above 1600°C, the MgO and Al_2O_3 contents increased, and the SiO₂ and H₂O contents decreased as the temperature increased. We found two substitution 29 mechanisms: (i) $2Mg^{2+} + Si^{4+} \rightleftharpoons 2Al^{3+} + 2H^{+} + V_{Mg}$ (Mg site vacancy) ($2Mg^{2+} = Al^{3+} + H^{+}$ 30 $31 + V_{M_2}$: (Si⁴⁺ = A³⁺ + H^t) = 1:1, (ii) Si⁴⁺ + 16H^t \Rightarrow 4Mg²⁺ + 4A³⁺. The maximum H₂O 32 content of Al-bearing superhydrous phase B is 11.1(3) wt%, which is ~1.9 times larger than 33 that of the Mg-endmember. The crystal structures of the two coexisting superhydrous phase 34 Bs are expected to be slightly different from each other. The present results indicate 35 that Al-bearing superhydrous phase B can be stable in a subducted slab with a high Al 36 content

compared to pyrolite (e.g, chlorite) at temperatures typical of the mantle transition zone and

- 37 the lower mantle. Thus, water can be transported to the lower mantle by Al-bearing
- 38 superhydrous phase B in the subducting slab, even at the typical mantle geotherm.

Introduction

41	Water strongly affects several key properties of the deep mantle, such as melting
42	temperature, rheological properties, and electrical conductivity, etc. (e.g., Inoue, 1994,
43	Karato et al., 1986; Yoshino et al., 2006). Water is transported into the Earth's deep interior
44	by hydrous minerals in cold subducted slabs. Recently, hydrous ringwoodite containing
45	\sim 1.5 wt% water was discovered as an inclusion in an ultra-deep diamond (Pearson et al.,
46	2014). This observation implies that, at least locally, the mantle transition zone contains
47	water. The stability of hydrous phases has been studied in peridotite, basalt, and sediment
48	(e.g., Litasov and Ohtani., 2003; Schmidt and Poli, 1998; Ono, 1998). The important
49	hydrous phases in hydrous peridotite with increasing pressure include serpentine
50	$(Mg_3Si_2O_5(OH)_4)$, phase A $(Mg_7Si_2O_8(OH)_6)$, phase E $(Mg_{2.3}Si_{1.3}H_{2.4}O_6)$, superhydrous
51	phase B (Mg ₁₀ Si ₃ O ₁₄ (OH) ₄), phase D (MgSi ₂ O ₄ (OH) ₂), and phase H (MgSiO ₂ (OH) ₂).
52	These phases are called dense hydrous magnesium silicates (DHMSs).
53	Superhydrous phase B has a composition of $Mg_{10}Si_3O_{14}(OH)_4$ and contains 5.8 wt%
54	H ₂ O. The stability of superhydrous phase B was studied in the MgO-SiO ₂ -H ₂ O system
55	(Gasparik, 1993; Irifune et al., 1998; Ohtani et al., 2001, 2003, 2004; Litasov and Ohtani,
56	2003). Gasparik (1993) observed superhydrous phase B coexisting with stishovite at 16-24
57	GPa and 800-1400°C. In hydrous peridotite, superhydrous phase B is stable with phase D

58	above 20 GPa and up to 1100°C (Kawamoto, 2004; Litasov et al., 2008). Ohtani et al.
59	(2003) determined the decomposition boundary of superhydrous phase B and located it at
60	approximately 28 GPa and 1200°C. The stability field of superhydrous phase B suggests
61	that it is an important phase in the mantle transition zone and the uppermost lower mantle at
62	the same temperature as a subducted slab. All Mg-Si endmembers of DHMSs, including
63	superhydrous phase B, breakdown at temperatures below the typical mantle geotherm.
64	Recent studies suggest that incorporation of Al increases the high-temperature stability
65	of these hydrous minerals. Al-bearing phase D breaks down at ~1600°C and 24 GPa, which
66	is approximately 200°C higher than that of Mg-endmember phase D (Ghosh and Schmidt,
67	2014). Moreover, Al-endmember phase D (Al-phase D, Al ₂ SiO ₄ (OH) ₂) is stable at a
68	temperature of over 2000°C and pressure of 26 GPa (Pamato et al., 2015). In the case of
69	phase H, it can form a solid solution with δ -AlOOH (Nishi et al., 2014) and this solid
70	solution is stable even along a typical mantle geotherm (Ohira et al., 2014). On the other
71	hand, phase A cannot contain Al. Instead, Al is included in 23 Å phase
72	$(Mg_{11}Al_2Si_4O_{16}(OH)_{12})$, which has stability region similar to phase A (Cai et al., 2015).
73	However, the effect of Al on the stability of superhydrous phase B is not known.
74	To clarify the stability of Al-bearing superhydrous phase B in the mantle transition
75	zone and the uppermost lower mantle under a typical mantle geotherm, we conducted

76	high-pressure and high-temperature experiments using a multi-anvil apparatus. Recovered
77	samples were analyzed with a scanning electron microscope with energy-dispersive X-ray
78	spectrometer (SEM-EDS) and a secondary ion mass spectrometer (SIMS). Here, we report
79	the stability and chemical composition of Al-bearing superhydrous phase B, and we will
80	also discuss a mechanism of water transport to the lower mantle.

- 81
- 82

Experimental and analytical methods

83 The starting materials for these experiments were powdered mixtures of MgO, Al₂O₃, 84 SiO₂, Mg(OH)₂, and Al(OH)₃ with 6 different compositions (Table 1). The starting 85 compositions were selected to synthesize various kinds of Al-bearing superhydrous phase B, 86 based on our preliminary experiments from which the expected substitution trend of 87 Al-bearing superhydrous phase B was estimated. High-pressure and high-temperature 88 experiments were conducted using a Kawai-type multi-anvil apparatus (ORANGE-2000) at 89 the Geodynamics Research Center, Ehime University, Japan. We used tungsten carbide 90 anvils with a 3-mm truncation. The cell assembly used in this study is shown in Fig. 1. The 91 starting materials were loaded into two gold-palladium double capsules. The experiments 92 were performed at 20 and 24 GPa at 1400 to 2000°C. Heating duration of each run was 1 h. 93 Temperature was measured using a WRe3%-WRe25% thermocouple, in which the

94	junction was positioned between the capsules. Temperature gradient across the sample
95	should be ~50°C/mm in these experiments (Inoue, 1994).
96	The major chemical composition and phases of the recovered samples were
97	determined by SEM-EDS and a micro-focus X-ray diffraction (micro-XRD). The
98	SEM-EDS was operated at 15 kV and 1 nA. Micro-XRD patterns were obtained using
99	CuKa1 radiation (wavelength of 1.5405 Å). The incident X-ray was collimated to 100 μm
100	in diameter.
101	Water content of the selected samples was quantified using SIMS (SIM-6f, CAMECA)
102	installed at Hokkaido University, Japan. The primary $^{16}\mathrm{O}$ beam operated at 10 kV and 10 nA
103	was focused to a 20- μ m diameter location. Secondary ¹ H and ³⁰ Si ions were collected
104	from the central region (10 μ m in diameter) of the spattered area. The collected area of the
105	secondary ions was smaller than the typical grain size. The samples for the SIMS were
106	coated with gold to avoid electrostatic charging. Other analytical and instrumental
107	conditions were similar to those used in Yurimoto et al. (1989). Standard materials for
108	quantitative analysis were San Carlos olivine, Mg-endmember superhydrous phase B
109	$(Mg_{10}Si_3H_4O_{18})$ and phase A $(Mg_7Si_2H_6O_{14})$; the H ₂ O contents of these standard materials
110	were 6-50 ppm, 5.82 wt%, and 11.84 wt%, respectively. Relationship between the H_2O
111	concentration and ${}^{1}\text{H}/{}^{30}\text{Si}$ intensity ratio is shown in Fig. 2.

113	Results and discussion
114	Experimental conditions and results are summarized in Table 2. Observed phases
115	include superhydrous phase B, phase B, phase D, δ -AlOOH, periclase, corundum, garnet,
116	and hydrous silicate melt. The hydrous silicate melts existed in all run products (Fig. 3).
117	Two types of superhydrous phase B coexisted in the run products with composition A
118	at 20 GPa and 1600°C (Fig. 3a) and with composition F at 24 GPa and 1600 °C. Based on
119	X-ray diffraction patterns, we identified superhydrous phase B and corundum at the
120	high-temperature part, whereas superhydrous phase B, periclase, and corundum were
121	identified at the low-temperature part at 20 GPa and 1600°C (Fig. 4). Although both were
122	superhydrous phase B, they were clearly distinguishable in the backscattered electron
123	image (Fig. 3), and their chemical compositions were very different (Fig. 5 and Table 3).
124	For example, chemical compositions of superhydrous phase B coexisting in high and low
125	temperature regions were $Mg_{8.1}Al_{1.9}Si_{2.0}H_{5.9}O_{18}$ and $Mg_{6.7}Al_{3.1}Si_{1.6}H_{7.2}O_{18}$, respectively, in
126	the run products recovered from 20 GPa and 1600°C with composition A. Moreover, the
127	coexistence of superhydrous phase B with different compositions is expected to have
128	slightly different crystal structures. In this study, we call Mg-rich superhydrous phase B
129	existing in high temperature region "Mg-superhydrous phase B", and Al-rich superhydrous

phase B existing in low temperature region "Al-superhydrous phase B", based on theircompositions.

132	At 24 GPa and 2000°C with composition A, superhydrous phase B, δ -AlOOH,
133	hydrous silicate melt, and unreacted material was observed (Fig 3b). The chemical
134	composition of superhydrous phase B was Mg _{7.9} Al _{3.9} Si _{1.3} H _{3.3} O ₁₈ . The Al content of
135	superhydrous phase B synthesized at 24 GPa and 2000°C was higher than that of
136	superhydrous phase B synthesized at 20 GPa and 1600°C. Therefore, this superhydrous
137	phase B is expected to be Al-superhydrous phase B.
138	We succeeded in synthesizing Al-bearing superhydrous phase B with 12 compositions
139	(Fig. 5 and Table 3). The maximum Al_2O_3 content is $31.9(6)$ wt% with a
140	$Mg_{7.8}Al_{3.9}Si_{1.3}H_{3.4}O_{18}$ chemical formula in the sample synthesized at 24 GPa and $OO^{\circ}C$
141	with composition B. The Al ₂ O ₃ content is substantially higher than those of previous
142	studies (0.2-4.7 wt%; Litasov and Ohtani, 2003; Ghosh and Schmidt, 2014). Figs. 5a-b
143	show the compositional relationships of Al versus Mg and Si, respectively, in superhydrous
144	phase B when the O number is 16 (ignoring H), which is based on this study and previous
145	studies (Litasov and Ohtani, 2003; Ghosh and Schmidt, 2014). The two substitutions were
146	observed in this study. In the case of substitution $\textcircled{1}$ inFig 5, Mg and Si contents of
147	superhydrous phase B gradually decrease with increasing Al content up to $Al = -4$ pfu.

148	addition, there was a tendency for the chemical compositions to be similar between our
149	result and previous studies. In the case of substitution (2), the Mg content increased and the
150	Si content decreased with increasing Al content between $Al = 3.5$ and 4.0 pfu.
151	Figs. 5d-f show the compositional relationships of Al versus Mg, Si, and H,
152	respectively, in superhydrous phase B when the O number is 18 (including H). Water
153	content of the closed symbols was measured by SIMS. On the other hand, water content of
154	the open symbols was estimated from relationship between Al and H of Al-bearing
155	superhydrous phase B whose water content can be measured by SIMS in this study (Figs.
156	5c-f), because it was difficult to obtain the SIMS measurement for these samples due to
157	small grain sizes and inclusions in the crystals. We believe that this estimation is valid
158	because when the Mg and Si contents gradually decrease with increasing Al content (Fig.
159	5a and b), which indicates that the substitution mechanism in superhydrous phase B does
160	not change up to at least $Al = 3$ pfu. In Figs 5d-f, which include H ₂ O content, the two
161	substitutions were clearly observed. In the case of substitution (1) , the Mg and the Si
162	contents decreased, and the H content increased with increasing Al content. On the other
163	hand, in the case of substitution 2, the Si and the H contents decreased, and the Mg
164	content increased with Al content. In addition, our result show that the maximum $\mathrm{H_2O}$
165	content is $11.1(3)$ wt% in Al-bearing superhydrous phase B when Al = 3 pfu (O = 18),

166 which is ~ 1.9 times higher than that of its Mg-endmember.

167	These facts suggest that an $Al^{3+}-H^+$ coupled substitution occurs in Al-bearing
168	superhydrous phase B in the substitution $\textcircled{1}$ region. Based on the chemical composition, we
169	propose the following substitution for substitution (1): $2Mg^{2+} + Si^{4+} \rightleftharpoons 2Al^{3+} + 2H^+ + V_{Mg}$
170	(Mg site vacancy). This substitution can be divided into two substitutions: $2Mg^{2+} \rightleftharpoons$
171	$Al^{3+} + H^{+} + V_{Mg}$ and $Si^{4+} \rightleftharpoons Al^{3+} + H^{+}$. When these substitutions occur on al:1 basis, we can
172	explain the change in chemical composition shown in Figs. 5d-f. The $Al^{3+}-H^+$ coupled 173
	substitution of Si (Si ⁴⁺ \leftrightarrows Al ³⁺ +H ⁺) was observed in Al-bearing hydrous stishovite (e.g.,
174	Smyth et al., 1995; Bromiley et al., 2006). However, in higher Al content of Al-bearing
175	hydrous stishovite, the relationship between Al and H indicated that the water content is
176	much smaller than that expected by $Al^{3+}-H^+$ coupled substitution (Al:H = 2.5-7:1) (Litasov
177	et al., 2007). Bromiley et al. (2006) proposed that Al^{3+} substitution for octahedral Si^{4+} can
178	be charge-balanced by coupled substitution of Al ³⁺ onto the large, distorted octahedral,
179	interstitial sites in the stishovite structure $(3Si^{4+} \leftrightarrows 3Al^{3+}(\text{octahedral site}) + Al^{3+}(\text{interstitial}))$
180	site)). In the case of superhydrous phase B, the relationship between Al and H is 1:1.
181	Therefore, only $Si^{4+} \leftrightarrows Al^{3+} + H^+$ substitution occurred in Si site.
182	In the case of substitution (2), we propose the following substitution: $S_1^{+} + 16H^{+} \cong$

183 $4Mg^{2+} + 4Al^{3+}$. This substitution could be divided into three substitutions: $Mg^{2+} + Si^{4+} \Rightarrow$

184	$2Al^{3+}$: $Al^{3+} + H^+ \simeq 2Mg^{2+}$: $4H^+ \simeq Si^{4+} = 4$: 4:3. However, there are some choice to
185	satisfy the substitution (2) (e.g., $\text{Si}^{4+} \rightleftharpoons 4\text{H}^+$, $\text{Mg}^{2+} + \text{Si}^{4+} \rightleftharpoons 2\text{Al}^{2+}$, $3\text{Mg}^{2+} \rightleftharpoons 2\text{Al}^{3+}$). The
186	crystal structure analysis is necessary to clarify the substitution mechanism clearly. In this
187	study, we call substitution $\textcircled{1}$ "hydration substitution", and substitution $\textcircled{2}$ "dehydration
188	substitution", respectively.
189	Fig. 5c shows the relationship between water content and synthesis temperature.
190	Water content increased with increasing synthesis temperature up to 1600°C. On the other
191	hand, water content decreased with increasing synthesis temperature above 1600°C.
192	Therefore, hydration and dehydration substitution occur up to and above 1600°C,
193	respectively.
194	We can predict the compositional boundary between Mg- and Al-superhydrous phase
195	B from a crystallographic standpoint. Al favors the Si octahedral site because of similarities
196	in size. Superhydrous phase B contains Si in both octahedral and tetrahedral sites. 1/3 and
197	2/3 of Si is in octahedral and tetrahedral sites, respectively (Pacalo and Parise, 1992). In
198	addition, $Mg^{2+} = Al^{3+} + H^+ + V_{Mg}$ and $Si^{4+} = Al^{3+} + H^+$ substitution occurred and always
199	keep 1:1 at least up to $Al = 4$ pfu in the condition below 1600°C. Therefore, we imagine the
200	boundary between the Mg- and Al-superhydrous phase B is $Al = 2$ pfu. This consideration
201	is consistent with our results. The coexisting superhydrous phase Bs are clearly bounded by 12

202	the boundary of $Al = 2$ (Figs. 5d-f). Above $Al = 2$ pfu, crystal structure may slightly change
203	because the Si octahedral site is fully occupied by Al. Thus, a single crystal structure
204	refinement is needed.
205	Fig. 6 shows the Al ₂ O ₃ content in superhydrous phase B as a function of pressure and
206	temperature. Al ₂ O ₃ content increased with increasing temperature up°Co 2000
207	Furthermore, we observed the pressure dependence of the Al_2O_3 contents of Mg- and
208	Al-superhydrous phase B. The Al ₂ O ₃ contents of Mg- and Al-superhydrous phase B
209	increased with decreasing pressure. Fig. 6 shows that the synthesis temperature boundary of
210	Mg-SuB and Al-SuB exist at 1600°C.
211	The stability field of superhydrous phase B(Fig. 7) is expanded from ~1300-1400°C
212	(Ohtani et al., 2003) to at least 2000°C at 20-24 GPa because of Al incorporation. The
213	perfect dehydration or the decomposition of our Al-bearing superhydrous phase B was not
214	observed in our experimental conditions (up to 2000°C at 20-24 GPa). This effect of Al is
215	similar to the case of phase D (Ghosh and Schmidt, 2014; Pamato et al., 2015). In the case
216	of Al-endmember phase D, the Al-Si disorder contributes to the configurational entropy and
217	stabilizes phase D (Pamato et al. 2015). Al is expected to substitute for Si at the octahedral
218	site in superhydrous phase B. Therefore, the Al-Si disorder is expected to occur in
219	Al-bearing superhydrous phase B and to stabilize this phase. In addition, Al-superhydrous 13

220 phase B started to dehydrate to stabilize at high temperature above 1600°C. 221 The effect of other elements (e.g., Fe, Ca, and Na) on the stability of superhydrous 222 phase B is also important. However, Ca and Na elements should not be contained in 223 superhydrous phase B because the ion radii are much larger than those of Mg and Si. 224 Therefore, we discuss about the effect of Fe on the stability of superhydrous phase B. 225 The effect of Fe on a high temperature stability of phase D was reported by Ghosh 226 and Schmidt (2014) and Pamato et al. (2015). They reported that the destabilizing effect of 227 FeO counteracts the stabilizing effect of Al₂O₃ on phase D. Therefore, Al/Fe ratio is a key 228 factor for the stability of phase D. In the case of superhydrous phase B, the stabilizing 229 effect of Fe₂O₃ was reported by Ganskow and Langenhorst (2014). Therefore, $(Al^{3+}+Fe^{3+})/Fe^{2+}$ ratio is a key factor for the stability of superhydrous phase B. Though the 230 target of this study was to clarify the effect of Al in Mg-endmember superhydrous phase B. 231 232 further study of the effect of Fe on the stability of superhydrous phase B is necessary to be 233 resolved in near future. 234 Al-bearing phase B was also observed at 24 GPa and 1400°C with composition C. 235 The chemical composition of Al-bearing phase B was MgO 41.4 wt%, Al₂O₃ 23.3 wt%, 236 SiO₂ 19.3 wt%, and total 84.0 wt%. The chemical formula can be described as 237 Mg_{8 7}Al_{3 9}Si_{2 7}O₂₀ when ignoring H₂O (cf. Mg-endmember phaseB: Mg₁₂Si₄H₂O₂₁). Mg and

238	Si contents of this phase decreased with increasing Al content, which is the same as
239	superhydrous phase B. Phase B also contains Si in both octahedral and tetrahedral sites
240	(Finger et al., 1989). The same or similar substitution mechanism is expected to occur. Thus,
241	we expect that the stability field of phase B also expands to a higher temperature and the
242	H ₂ O contents increase by Al substitution, as well as superhydrous phase B. Further study is
243	anticipated for Al-bearing phase B.
244	
245	Implications
245 246	Implications In the MgO-SiO ₂ -H ₂ O system, water can be transported to the lower mantle by
245 246 247	Implications In the MgO-SiO ₂ -H ₂ O system, water can be transported to the lower mantle by superhydrous phase B and phase D in the cold slab (Fig. 7). On the other hand, Mg-end
245 246 247 248	Implications In the MgO-SiO ₂ -H ₂ O system, water can be transported to the lower mantle by superhydrous phase B and phase D in the cold slab (Fig. 7). On the other hand, Mg-end members of these hydrous phases dehydrate to form bridgmanite + periclase/stishovite +
245 246 247 248 249	Implications In the MgO-SiO ₂ -H ₂ O system, water can be transported to the lower mantle by superhydrous phase B and phase D in the cold slab (Fig. 7). On the other hand, Mg-end members of these hydrous phases dehydrate to form bridgmanite + periclase/stishovite + fluid in the stagnant slab, in which the temperatures are lower than that of the normal
245 246 247 248 249 250	Implications In the MgO-SiO ₂ -H ₂ O system, water can be transported to the lower mantle by superhydrous phase B and phase D in the cold slab (Fig. 7). On the other hand, Mg-end members of these hydrous phases dehydrate to form bridgmanite + periclase/stishovite + fluid in the stagnant slab, in which the temperatures are lower than that of the normal mantle geotherm. In this case, there are no host hydrous phases of water in the lower mantle

- 252 Al₂O₃, thus the Al incorporation in hydrous phases enhance the temperature stability as
- shown in this study and previous studies (Ghosh and Schmidt, 2014; Pamato et al., 2015).
- 254 We estimated the amount of Al_2O_3 content in the condition that superhydrous

255 phase B can stably exist at temperatures in the normal mantle geotherm. Fig. 6 shows that

256	Al-bearing superhydrous phase B, which is synthesized at 1600 °C, has ~15-33 wt% Al ₂ O ₃ .
257	Thus, at least 15 wt% of Al ₂ O ₃ is required for superhydrous phase B to stably exist at
258	temperatures of the normal mantle geotherm.
259	We also calculated the Al partition coefficient between superhydrous phase B and
260	other phases including garnet and bridgmanite (Fig. 8; Litasov and Ohtani, 2003). The
261	element partitioning data of Al between superhydrous phase B and garnet or bridgmanite
262	was determined using $K_D = (X_{Mg}^{Gt \text{ or }Brg} \cdot X_{Al}^{SuB}) / (X_{Al}^{Gt \text{ or }Brg} \cdot X_{Mg}^{SuB})$ modified from Frost (2003),
263	here with $X_{Mg \text{ or } Al}^{mineral}$ is the molar ratio of mineral of interest. This figure shows that Al
264	becomes easy to distribute to superhydrous phase B with increasing pressure and
265	temperature. Therefore, Al-bearing superhydrous phase B could be stable in subducted slab
266	rocks, which have a high Al ₂ O ₃ content compared to pyrolite (e.g., chlorite) at temperatures
267	of the typical lower-mantle. Thus, water can be transported to the lower mantle even at
268	temperature of the normal mantle geotherm. On the other hand, superhydrous phase B
269	dehydrates in the hydrous pyrolite composition, which is poor in Al ₂ O ₃ (Litasov and Ohtani,
270	2003).

271

272

Acknowledgments

The authors would like to thank T. Shinmei for technical help for the high-pressure 273

- 274 experiments, and T. Kawazoe for advice for manuscript writing. S.K. was supported by
- 275 Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young
- 276 Scientists (DC1). This work was supported by JSPS KAKENHI Grant Numbers 16J0269
- for S.K. and 26247073, 15H05828 for T.I.. In addition, this work was supported by the
- 278 Joint Usage/Research Program (2017B24) of PRIUS, Ehime University.

280	References
281	Bromiley, G.D., Bromiley, F.A., and Bromiley D.W. (2006) On the mechanism for H and
282	AL incorporation in stishovite. Physics and Chemistry of Minerals, 33, 613-621.
283	Brown, J. M., and Shankland, T.J. (1981) Thermodynamic parameters in the Earth as
284	determined from seismic profiles. Geophysical Journal International, 66, 579-596.
285	Cai, N., Inoue, T., Fujino, K., Ofuji, H., and Yurimoto, H. A possible new Al-bearing
286	hydrous Mg-silicate (23 Å phase) in the deep upper mantle. American Mineralogist,
287	100, 2330-2335.
288	Frost D.J. (2003) The structure and sharpness of (Mg,Fe) ₂ SiO ₄ phase transformations in the
289	transition zone. Earth and Planetary Science Letter, 216, 313-328.
290	Finger, L.W., Ko, J., Hazen, R.M., Gasparik, T, Hemlry, R.J., Prewitt, C.T., and Weidner,
291	D.J. Crsytal chemistry of phase B and an anhydrous analogue: implications for
292	water storage in the upper mantle. Nature, 341, 140-142.
293	Ganskow, G., and Langenhorst, F. (2014) Stability and crystal chemistry of iron-bearing
294	dense hydrous magnesium silicates. Chemie der Erde, 74, 489-496.
295	Gasparik, T. (1993) The role of volatiles in the transition zone. Journal of Geophysical
296	Research, 98, 4287-4300.
297	Ghosh, S., Schmidt, M.W. (2014) Melting of phase D in the lower mantle and implications 18

- for recycling and storage of H₂O in the deep mantle. Geochimica et Cosmochimica
 Acta, 145, 72-88.
- 300 Helffrich, G., and Brodholt, J. (1991) Relationship of deep seismicity to the thermal
- 301 structure of subducted lithosphere. Nature, 353, 252-255.
- 302 Inoue, T. (1994) Effect of water on melting phase relations and melt composition in the
- 303 system $Mg_2SiO_4-MgSiO_3-H_2O$ up to 15 GPa. Physics of the Earth Planetary
- 304 Interiors, 85, 237-263.
- 305 Irifune, T., Kubo, N., Isshiki, M., and Yamasaki, Y. (1998) Phase transformation in
- 306 serpentine and transportation of water into the lower mantle. Geophysical Research
 307 Letter, 25, 203-206.
- 308 Katato, S., Paterson, M.S., and FitzGerald, J.D. (1986) Rheology of synthetic olivine
- aggregates: Influence of grain size and water. Journal of Geophysical Research, 91,
 8151-8176.
- 311 Kawamoto, T. (2004) Hydrous phase stability and partial melt chemistry in H₂O-saturated
- 312 KLB-1 peridotite up to the uppermost lower mantle conditions. Physics of the Earth
- 313 Planetary Interiors, 143-144, 387-395.
- 314 Litasov, K., and Ohtani, E. (2003) Stability of various hydrous phases in CMAS-H₂O
- 315 system up to 25 GPa. Physics and Chemistry of Minerals, 30, 147-156.

JIU LIASUV, K.D., Kagi, II., Shaiskiy, A., Ohiani, E., Lakshanov, D.L., and Dass, J.D., and	316	Litasov, K.D.	, Kagi, H.,	Shatskiy, A	., Ohtani,	E., Lakshtanov	, D.L.	, and Bass.	J.B.,	and
---	-----	---------------	-------------	-------------	------------	----------------	--------	-------------	-------	-----

- E. (2007) High hydrogen solubility in Al -rich stishovite and water transport in the
- 318 lower mantle. Earth and Planetary Science Letters, 262, 620-634.
- 319 Litasov, K.D., Ohtani, E., Nishihara, Y., Suzuki, A., and Funakoshi, K. (2008) Thermal
- equation of state of Al- and Fe-bearing phase D. Journal of Geophysical Research,
 113, B08205.
- 322 Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., and Higo, Y. (2014)
- 323 Stability of hydrous slicate at high pressures and water transport to the deep lower 324 mantle. Nature Geoscience, 7, 224-227.
- 325 Ohira, I., Ohtani, E., Sakai, T., Miyahara, M., Hirao, N., Ohishi, Y., and Nishijima, M.
- 326 (2014) Stability of a hydrous δ-phase, AlOOH-MgSiO₂(OH)₂, and a mechanism for
 327 water transport into the base of lower mantle. Earth and Planetary Science Letter,
- **328 401**, 12-17.
- 329 Ohtani, E., Touma, M., Litasov, K.D., Kubo, T., and Suzuki, A. (2001) Stability of hydrous
- phases and water storage capacity in the transitional zone and lower mantle. Physicsof the Earth Planetary Interiors, 124, 105-117.
- 332 Ohtani, E., Toma, M., Kubo, T., Kondo, T., Kikegawa, T. (2003) In situ X-ray observation
- 333 of decomposition of superhydrous phase B at high pressure and temperature. 20

- Geophysical Research Letter, 30(2), 1029.
- 335 Ohtani, E., Litasov, K.D., Hosoya, T., Kubo, T., and Kondo, T. (2004) Water transport into
- the deep mantle and formation of a hydrous transition zone. Physics of the Earth
- 337 Planetary Interiors, 143-144, 255-269.
- 338 Ono, S. (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt
- 339 composition: Implications for water transport in subduction zones. Journal of
- 340 Geophysical Research, 103, 18253-18257.
- 341 Pacalo, R.E.G., and Parise, J.B. (1992) Crystal structure of superhydrous phase B, a
- 342 hydrous magnesium silicate synthesized at 1400 °C and 20 GPa. American
- 343 Mineralogist, 77, 681-684.
- Pamato, M.G., Myhill, R., Boffa Ballaran, T., Frost, D.J., Heidelbach, F., and Miyajima, N.
- 345 (2015) Lower-mantle water reservoir implied by the extreme stability of a hydrous
 346 aluminosilicate. Nature Geoscience, 8, 75-79.
- 347 Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T.,
- 348 Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., Vincze, L.
- 349 (2014) Hydrous mantle transition zone indicated by ringwoodite included within
- 350 diamond. Science, 507, 221-224.
- 351 Schmidt, M.W., Poli, S. (1998) Experimentally based water budgets for dehydrating slabs

352	and consequences for arc magma generation. Earth and Planetary Science Letter,
353	163, 361-379.
354	Smyth, J.R., Swope, R.J, and Pawley, A.J. (1995) H in rutile-type compounds: II. Crystal
355	chemistry of Al substitution in H-bearing stishovite. American Mineralogist, 80,
356	454-456.
357	Tsuchiya, T. (2003) First-principles prediction of the P-V-T equation of state of gold and
358	the 660-km discontinuity in Earth's mantle. Earth and Planetary Science Letter, 108,
359	2462.
360	Yoshino, T., Matsuzaki, T., Yamashita, S., Katsura, T. (2006) Hydrous olivine unable to
361	account for conductivity anomaly at the top of the asthenosphere. Nature, 443,
362	973-976.
363	Yurimoto, H., Kurosawa, M., Sueno, S. (1989) Hydrogen analysis in quartz crystals and
364	quartz glasses by secondary ion mass spectrometry. Geochimica et Cosmochimica
365	Acta, 53, 751-755.
366	

367	Figure caption
368	Figure 1. Cell assembly for the high-pressure and temperature experiment.
369	
370	Figure 2. The calibration line used for the present SIMS measurements of H_2O
371	concentration. Calibration standard materials are San Carlos olivine (SCO),
372	Mg-endmember superhydrous phase B (SuB), and Mg -endmember phase A, which contain
373	6-50 ppm, 5.82 wt%, and 11.84 wt% H_2O , respectively.
374	
375	Figure 3. Back scattered electron image of recovered sample from (a)20 GPa and 1600°C
376	with composition A and(b) 24 GPa and 2000°C with composition A. Circles indicate the
377	positions of X-ray diffraction patterns (Fig. 4). There were two types of superhydrous phase
378	B in the capsule. Al-SuB: Al-superhydrous phase B (Al-rich compared to Mg-SuB),
379	Mg-SuB: Mg-superhydrous phaseB (Al-poor compared to Al-SuB), Pc: periclase, Cor:
380	corundum, Liquid: hydrous silicate melt, δ: δ-AlOOH.
381	
382	Figure 4. X-ray diffraction patterns of recovered sample from 20 GPa and 1600°C with
383	composition A. The diffraction patterns show both hydrous phases can be indexed as
384	superhydrous phase B, and their crystal structures are similar but slightly different. The

diffraction of gold can be seen because of gold coating for the SIMS measurements. SuB
and *: superhydrous phase B, Pc: periclase, Cor: corundum, Au: gold, AuPd:
gold-palladium.

388

389 Figure 5. Al dependence of chemical composition of superhydrous phase B. (a) Mg and (b) 390 Si pfu (per formula unit) when the O = 16 (i.e. H₂O content is ignored.). (c) synthesis 391 temperature dependence of H content. (d) Mg, (e) Si and (f) H when the O = 18. Green 392 circles, red squares, and blue diamonds show Mg, Si, and H, respectively. Green, red, and blue broken lines indicate the Mg, Si, and H tendencies of $2Mg^{2+} + Si^{4+} \rightleftharpoons 2Al^{3+} + 2H^{+} +$ 393 V_{Mg} substitution, respectively. Green, red, and blue dotted lines indicate the Mg, Si, and H 394 tendencies of $Si^{4+} + 16H \rightleftharpoons 4Al^{3+} + 4H$ substitution Open symbols indicate that water 395 396 content of these samples was estimated from the tendency of H in our result (e). Black 397 crosses show composition of Mg-end member superhydrous phase B. Pairs of asterisks and 398 stars represent coexisting Mg- and Al-superhydrous phase Bs. Black dotted lines show 399 boundary between Mg- and Al-superhydrous phase B.

400

401 Figure 6. Temperature-pressure dependence of Al₂O₃ content in superhydrous phase B.
402 Blue and red symbols show data at 20-22 and 24-25 GPa, respectively. Error bars are

smaller than the symbol sizes. Black dotted line shows boundary between Mg- andAl-superhydrous phase Bs.

405

406	Figure 7. Stability of hydrous phases in the MgO-Al ₂ O ₃ -SiO ₂ -H ₂ O system at the bottom of
407	the transition zone and the uppermost lower mantle. Red diamonds show the conditions
408	where Al-bearing superhydrous phase B is stable (this study). Black solid line indicates
409	stability field of superhydrous phase B in the MgO-SiO ₂ -H ₂ O system. Blue and orange
410	solid lines show the decomposition boundary of phase D in the MgO-Al ₂ O ₃ -SiO ₂ -H ₂ O with
411	1 wt% Al ₂ O ₃ content and the Al ₂ O ₃ -SiO ₂ -H ₂ O system, respectively (Ghosh and Schmidt,
412	2013; Pamato et al., 2015). Dotted line is post-spinel transformation boundary (Tsuchiya,
413	2003). Geotherms of the normal mantle (Brown and Shankland, 1981) and cold slab
414	(Helffrich and Brodholt, 1991) are schematically shown in this figure. The temperature path
415	of the stagnant slab is schematically given in this figure. Al-bearing superhydrous phase B
416	can be stable in a subducted slab with high Al content at temperatures of the typical lower
417	mantle. Brg: bridgmanite, Pc: periclase, Rw: ringwoodite, hRw: hydrous ringwoodite, St:
418	stishovite, B: phase B, SuB; superhydrous phase B, D: phase D, Al-D: Al-end member
419	phase D, L: liquid.

- 421 Figure 8. Partition coefficient of Al between (a) superhydrous phase B and garnet, (b)
- 422 superhydrous phase B and bridgmanite. Original data comes from Litasov and Ohtani
- 423 (2003). The bulk composition describes as below: $45.15 \text{ wt}\% \text{ SiO}_2$, $5.20 \text{ wt}\% \text{ Al}_2\text{O}_3$, 43.46
- 424 wt% MgO, 4.19 wt% CaO and 2.00 wt % H₂O. Error bars are smaller than the symbol sizes.
- 425 SuB: superhydrous phase B, Gt: garnet, Brg: bridgmanite.

P		~			, et j	
(wt%)	А	В	С	D	Е	F
MgO	50.1	44.5	57.9	53.1	58.9	65.0
Al_2O_3	25.8	23.2	8.1	16.8	14.7	6.9
SiO ₂	13.6	14.2	24.0	19.8	16.0	17.7
H_2O	10.4	18.1	10.1	8.0	10.4	10.4
total	100	100	100	100	100	100

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2018-6499

Table 1 Compositions of starting materials used in the study

Run No.	Pressure (GPa)	Temperature (°C)	Starting materials	Phase
OS2933	20	1600	А	Al-SuB, Mg-SuB, Cor, Pc, melt
			В	Al-SuB, δ, melt
OS2824	24	1600	А	Al-SuB, δ, melt, (Pc, Cor, Gt)
OS2804	24	1800	А	Al-SuB, δ, melt, (Pc, Cor, Gt)
			В	Al-SuB, δ, melt
OS2827	24	2000	А	Al-SuB, δ, melt, (Pc, Cor, Gt)
			В	Al-SuB, δ, melt, (Pc, Gt)
OS2941	24	1400	С	Mg-SuB, B, Pc, melt
			D	Mg-SuB, D, Pc, melt
OS2886	24	1600	Е	Pc, Gt, melt
			F	Al-SuB, Mg-SuB, δ, Pc, Cor, melt

Table 2. Experimental conditions and results

Note: (a) The inside of parenthesis is unreacted materials on low temperature side. (b) Abbreviations are as follows: Al-SuB: Al-superhydrous phase B, Mg-SuB: Mg-superhydrous phase B, δ: δ-AlOOH, B: phase B, D: phase D, Pc: periclase, Cor: corundum, Gt: garnet, melt: hydrous silicate melt.

Starting material				Α				В		С	D	I	F
Sample	Mg-end SuB	Mg-SuB	Al-SuB	Al-SuB	Al-SuB	Al-SuB	Al-SuB	Al-SuB	Al-SuB	Mg-SuB	Mg-SuB	Mg-SuB	Al-SuB
Pressure (GPa)	-	20	20	24	24	24	20	24	24	24	24	24	24
emperature (°C)	-	1600	1600	1600	1800	2000	1600	1800	2000	1400	1400	1600	1600
MgO	65.1	54.6(16)	46.0(12)	48.6(5)	50.1(6)	51.0(6)	43.6(7)	49.8(8)	50.6(12)	60.3(9)	57.5(6)	56.4(10)	50.8(16)
Al_2O_3	0	16.2(6)	26.6(2)	27.9(8)	30.2(10)	31.9(8)	29.3(9)	31.7(2)	31.9(6)	7.1(3)	10.8(2)	14.0(7)	22.9(8)
SiO ₂	29.1	20.3(6)	16.3(2)	15.3(2)	13.5(1)	12.4(1)	16.1(2)	12.5(3)	12.7(5)	26.0(2)	24.0(3)	21.2(3)	17.5(6)
H ₂ O	5.82	8.9*	11.1(3)	8.2(5)	6.2(4)	4.7(3)	11.0(3)	6.0(4)	4.9(3)	6.6(2)	7.7*	8.4*	8.8(3)
total (wt%)	100	100	100	100	100	100	100	100	100	100	100	100	100
Mg	10	8.13	6.66	7.25	7.65	7.91	6.31	7.63	7.83	9.16	8.65	8.44	7.54
AI	0	1.91	3.05	3.29	3.64	3.91	3.35	3.83	3.9	0.85	1.28	1.66	2.69
Si	3	2.02	1.58	1.53	1.38	1.29	1.56	1.28	1.32	2.65	2.42	2.12	1.75
Н	4	5.92	7.20	5.50	4.24	3.28	7.08	4.11	3.36	4.51	5.17	5.86	5.86
cation sum	17	17.98	18.49	17.57	16.92	16.39	18.30	16.86	16.41	17.17	17.52	18.08	17.84
0	18	18	18	18	18	18	18	18	18	18	18	18	18

Table 3. Chemical composition of superhydrous phase B

431 Figure 2

435 Figure 4

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6499

