Stability of Al-bearing superhydrous phase B at the mantle transition zone and the uppermost lower mantle

Sho Kakizawa¹*, Toru Inoue¹,²,³, Hideto Nakano¹, Minami Kuroda⁴, Naoya Sakamoto⁵, and Hisayoshi Yurimoto⁴,⁵,⁶

¹Geodymanics Research Center, Ehime University, Matsuyama, Ehime 790-5877, Japan
²Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
³Hiroshima Institute of Plate Convergence Region Research (HiPeR), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
⁴Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
⁵Isotope Imaging Laboratory, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
⁶Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5120, Japan

*Corresponding author
E-mail address: kakizawa@sci.ehime-u.ac.jp
Abstract

We determined the stability and chemical composition of Al-bearing superhydrous phase B at 20-24 GPa and 1400-2000°C to discuss the mechanism of water transport in the mantle transition zone and uppermost lower mantle at temperatures close to the mantle geotherm. Superhydrous phase B contained significant amounts of Al$_2$O$_3$, from 14 to 32 wt%, and Al-bearing superhydrous phase B remained stable, even at 200°C and pressures of approximately 20-24 GPa. Moreover, two types of superhydrous phase B with different chemical compositions coexisted at 20-24 GPa and 1600°C. The Al$_2$O$_3$ and H$_2$O contents increased, and the MgO and SiO$_2$ contents decreased as the pressure and temperature increased up to 1600°C. Above 1600°C, the MgO and Al$_2$O$_3$ contents increased, and the SiO$_2$ and H$_2$O contents decreased as the temperature increased. We found two substitution mechanisms: (i) $2\text{Mg}^{2+} + \text{Si}^{4+} \rightleftharpoons 2\text{Al}^{3+} + 2\text{H}^{+} + \text{V}_\text{Mg}$ (Mg site vacancy) ($2\text{Mg}^{2+} = \text{Al}^{3+} + \text{H}^{+} + \text{V}_\text{Mg}$), (ii) $\text{Si}^{4+} + 16\text{H}^{+} \rightleftharpoons 4\text{Mg}^{2+} + 4\text{Al}^{3+}$. The maximum H$_2$O content of Al-bearing superhydrous phase B is 11.1(3) wt%, which is ~1.9 times larger than that of the Mg-endmember. The crystal structures of the two coexisting superhydrous phase Bs are expected to be slightly different from each other. The present results indicate that Al-bearing superhydrous phase B can be stable in a subducted slab with a high Al content compared to pyrolite (e.g., chlorite) at temperatures typical of the mantle transition zone and
the lower mantle. Thus, water can be transported to the lower mantle by Al-bearing superhydrous phase B in the subducting slab, even at the typical mantle geotherm.
Introduction

Water strongly affects several key properties of the deep mantle, such as melting temperature, rheological properties, and electrical conductivity, etc. (e.g., Inoue, 1994, Karato et al., 1986; Yoshino et al., 2006). Water is transported into the Earth’s deep interior by hydrous minerals in cold subducted slabs. Recently, hydrous ringwoodite containing ~1.5 wt% water was discovered as an inclusion in an ultra-deep diamond (Pearson et al., 2014). This observation implies that, at least locally, the mantle transition zone contains water. The stability of hydrous phases has been studied in peridotite, basalt, and sediment (e.g., Litasov and Ohtani., 2003; Schmidt and Poli, 1998; Ono, 1998). The important hydrous phases in hydrous peridotite with increasing pressure include serpentine (Mg$_3$Si$_2$O$_5$(OH)$_4$), phase A (Mg$_7$Si$_2$O$_8$(OH)$_6$), phase E (Mg$_{2.3}$Si$_{1.3}$H$_{2.4}$O$_6$), superhydrous phase B (Mg$_{10}$Si$_3$O$_{14}$(OH)$_4$), phase D (MgSi$_2$O$_4$(OH)$_2$), and phase H (MgSiO$_2$(OH)$_2$). These phases are called dense hydrous magnesium silicates (DHMSs).

Superhydrous phase B has a composition of Mg$_{10}$Si$_3$O$_{14}$(OH)$_4$ and contains 5.8 wt% H$_2$O. The stability of superhydrous phase B was studied in the MgO-SiO$_2$-H$_2$O system (Gasparik, 1993; Irifune et al., 1998; Ohtani et al., 2001, 2003, 2004; Litasov and Ohtani, 2003). Gasparik (1993) observed superhydrous phase B coexisting with stishovite at 16-24 GPa and 800-1400°C. In hydrous peridotite, superhydrous phase B is stable with phase D.
above 20 GPa and up to 1100°C (Kawamoto, 2004; Litasov et al., 2008). Ohtani et al. (2003) determined the decomposition boundary of superhydrous phase B and located it at approximately 28 GPa and 1200°C. The stability field of superhydrous phase B suggests that it is an important phase in the mantle transition zone and the uppermost lower mantle at the same temperature as a subducted slab. All Mg-Si endmembers of DHMSs, including superhydrous phase B, breakdown at temperatures below the typical mantle geotherm.

Recent studies suggest that incorporation of Al increases the high-temperature stability of these hydrous minerals. Al-bearing phase D breaks down at ~1600°C and 24 GPa, which is approximately 200°C higher than that of Mg-endmember phase D (Ghosh and Schmidt, 2014). Moreover, Al-endmember phase D (Al-phase D, Al$_2$SiO$_4$(OH)$_2$) is stable at a temperature of over 2000°C and pressure of 26 GPa (Pamato et al., 2015). In the case of phase H, it can form a solid solution with δ-AlOOH (Nishi et al., 2014) and this solid solution is stable even along a typical mantle geotherm (Ohira et al., 2014). On the other hand, phase A cannot contain Al. Instead, Al is included in 23 Å phase (Mg$_{11}$Al$_2$Si$_4$O$_{16}$(OH)$_{12}$), which has stability region similar to phase A (Cai et al., 2015).

However, the effect of Al on the stability of superhydrous phase B is not known.

To clarify the stability of Al-bearing superhydrous phase B in the mantle transition zone and the uppermost lower mantle under a typical mantle geotherm, we conducted
high-pressure and high-temperature experiments using a multi-anvil apparatus. Recovered samples were analyzed with a scanning electron microscope with energy-dispersive X-ray spectrometer (SEM-EDS) and a secondary ion mass spectrometer (SIMS). Here, we report the stability and chemical composition of Al-bearing superhydrous phase B, and we will also discuss a mechanism of water transport to the lower mantle.

Experimental and analytical methods

The starting materials for these experiments were powdered mixtures of MgO, Al₂O₃, SiO₂, Mg(OH)₂, and Al(OH)₃ with 6 different compositions (Table 1). The starting compositions were selected to synthesize various kinds of Al-bearing superhydrous phase B, based on our preliminary experiments from which the expected substitution trend of Al-bearing superhydrous phase B was estimated. High-pressure and high-temperature experiments were conducted using a Kawai-type multi-anvil apparatus (ORANGE-2000) at the Geodynamics Research Center, Ehime University, Japan. We used tungsten carbide anvils with a 3-mm truncation. The cell assembly used in this study is shown in Fig. 1. The starting materials were loaded into two gold-palladium double capsules. The experiments were performed at 20 and 24 GPa at 1400 to 2000°C. Heating duration of each run was 1 h. Temperature was measured using a WRe3%-WRe25% thermocouple, in which the hot 6
junction was positioned between the capsules. Temperature gradient across the sample should be ~50°C/mm in these experiments (Inoue, 1994).

The major chemical composition and phases of the recovered samples were determined by SEM-EDS and a micro-focus X-ray diffraction (micro-XRD). The SEM-EDS was operated at 15 kV and 1 nA. Micro-XRD patterns were obtained using CuKα1 radiation (wavelength of 1.5405 Å). The incident X-ray was collimated to 100 μm in diameter.

Water content of the selected samples was quantified using SIMS (SIM-6f, Cameca) installed at Hokkaido University, Japan. The primary 16O beam operated at 10 kV and 10 nA was focused to a 20-μm diameter location. Secondary 1H and 30Si ions were collected from the central region (10 μm in diameter) of the spattered area. The collected area of the secondary ions was smaller than the typical grain size. The samples for the SIMS were coated with gold to avoid electrostatic charging. Other analytical and instrumental conditions were similar to those used in Yurimoto et al. (1989). Standard materials for quantitative analysis were San Carlos olivine, Mg-endmember superhydrorous phase B (Mg10Si3H4O18) and phase A (Mg7Si2H6O14); the H2O contents of these standard materials were 6-50 ppm, 5.82 wt%, and 11.84 wt%, respectively. Relationship between the H2O concentration and 1H/30Si intensity ratio is shown in Fig. 2.
Results and discussion

Experimental conditions and results are summarized in Table 2. Observed phases include superhydrous phase B, phase B, phase D, δ-AlOOH, periclase, corundum, garnet, and hydrous silicate melt. The hydrous silicate melts existed in all run products (Fig. 3).

Two types of superhydrous phase B coexisted in the run products with composition A at 20 GPa and 1600℃ (Fig. 3a) and with composition F at 24 GPa and 1600 ℃. Based on X-ray diffraction patterns, we identified superhydrous phase B and corundum at the high-temperature part, whereas superhydrous phase B, periclase, and corundum were identified at the low-temperature part at 20 GPa and 1600℃ (Fig. 4). Although both were superhydrous phase B, they were clearly distinguishable in the backscattered electron image (Fig. 3), and their chemical compositions were very different (Fig. 5 and Table 3).

For example, chemical compositions of superhydrous phase B coexisting in high and low temperature regions were Mg$_{8.1}$Al$_{1.9}$Si$_{2.0}$H$_{5.5}$O$_{18}$ and Mg$_{6.7}$Al$_{3.1}$Si$_{1.6}$H$_{7.2}$O$_{18}$, respectively, in the run products recovered from 20 GPa and 1600℃ with composition A. Moreover, the coexistence of superhydrous phase B with different compositions is expected to have slightly different crystal structures. In this study, we call Mg-rich superhydrous phase B existing in high temperature region “Mg-superhydrous phase B”, and Al-rich superhydrous...
phase B existing in low temperature region “Al-superhydrous phase B”, based on their compositions.

At 24 GPa and 2000℃ with composition A, superhydrous phase B, δ-AlOOH, hydrous silicate melt, and unreacted material was observed (Fig 3b). The chemical composition of superhydrous phase B was \(\text{Mg}_{7.9}\text{Al}_{3.9}\text{Si}_{1.3}\text{H}_{3.3}\text{O}_{18} \). The Al content of superhydrous phase B synthesized at 24 GPa and 2000℃ was higher than that of superhydrous phase B synthesized at 20 GPa and 1600℃. Therefore, this superhydrous phase B is expected to be Al-superhydrous phase B.

We succeeded in synthesizing Al-bearing superhydrous phase B with 12 compositions (Fig. 5 and Table 3). The maximum \(\text{Al}_2\text{O}_3 \) content is 31.9(6) wt% with a \(\text{Mg}_{7.8}\text{Al}_{3.9}\text{Si}_{1.3}\text{H}_{3.4}\text{O}_{18} \) chemical formula in the sample synthesized at 24 GPa and 2000℃ with composition B. The \(\text{Al}_2\text{O}_3 \) content is substantially higher than those of previous studies (0.2-4.7 wt%; Litasov and Ohtani, 2003; Ghosh and Schmidt, 2014). Figs. 5a-b show the compositional relationships of Al versus Mg and Si, respectively, in superhydrous phase B when the O number is 16 (ignoring H), which is based on this study and previous studies (Litasov and Ohtani, 2003; Ghosh and Schmidt, 2014). The two substitutions were observed in this study. In the case of substitution in Fig 5, Mg and Si contents of superhydrous phase B gradually decrease with increasing Al content up to Al = ~4 pfu.

In 9
addition, there was a tendency for the chemical compositions to be similar between our result and previous studies. In the case of substitution ②, the Mg content increased and the Si content decreased with increasing Al content between Al = 3.5 and 4.0 pfu.

Figs. 5d-f show the compositional relationships of Al versus Mg, Si, and H, respectively, in superhydrous phase B when the O number is 18 (including H). Water content of the closed symbols was measured by SIMS. On the other hand, water content of the open symbols was estimated from relationship between Al and H of Al-bearing superhydrous phase B whose water content can be measured by SIMS in this study (Figs. 5c-f), because it was difficult to obtain the SIMS measurement for these samples due to small grain sizes and inclusions in the crystals. We believe that this estimation is valid because when the Mg and Si contents gradually decrease with increasing Al content (Fig. 5a and b), which indicates that the substitution mechanism in superhydrous phase B does not change up to at least Al = 3 pfu. In Figs 5d-f, which include H2O content, the two substitutions were clearly observed. In the case of substitution ①, the Mg and the Si contents decreased, and the H content increased with increasing Al content. On the other hand, in the case of substitution ②, the Si and the H contents decreased, and the Mg content increased with Al content. In addition, our result show that the maximum H2O content is 11.1(3) wt% in Al-bearing superhydrous phase B when Al = 3 pfu (O = 18).
which is ~1.9 times higher than that of its Mg-endmember.

These facts suggest that an Al\(^{3+}\)-H\(^+\) coupled substitution occurs in Al-bearing superhydrous phase B in the substitution ① region. Based on the chemical composition, we propose the following substitution for substitution ①: 2Mg\(^{2+}\) + Si\(^{4+}\) ⇌ 2Al\(^{3+}\) + 2H\(^+\) + V\(_{\text{Mg}}\)

(Mg site vacancy). This substitution can be divided into two substitutions: 2Mg\(^{2+}\) ⇌ Al\(^{3+}\) + H\(^+\) + V\(_{\text{Mg}}\) and Si\(^{4+}\) ⇌ Al\(^{3+}\) + H\(^+\). When these substitutions occur on a 1:1 basis, we can explain the change in chemical composition shown in Figs. 5d-f. The Al\(^{3+}\)-H\(^+\) coupled substitution of Si (Si\(^{4+}\)⇌Al\(^{3+}\)+H\(^+\)) was observed in Al-bearing hydrous stishovite (e.g., Smyth et al., 1995; Bromiley et al., 2006). However, in higher Al content of Al-bearing hydrous stishovite, the relationship between Al and H indicated that the water content is much smaller than that expected by Al\(^{3+}\)-H\(^+\) coupled substitution (Al:H = 2.5-7:1) (Litasov et al., 2007). Bromiley et al. (2006) proposed that Al\(^{3+}\) substitution for octahedral Si\(^{4+}\) can be charge-balanced by coupled substitution of Al\(^{3+}\) onto the large, distorted octahedral, interstitial sites in the stishovite structure (3Si\(^{4+}\)⇌3 Al\(^{3+}\) (octahedral site) + Al\(^{3+}\) (interstitial site)). In the case of superhydrous phase B, the relationship between Al and H is 1:1. Therefore, only Si\(^{4+}\)⇌Al\(^{3+}\)+H\(^+\) substitution occurred in Si site.

In the case of substitution ②, we propose the following substitution: Si\(^{4+}\) + 16H\(^-\) ⇌ 4Mg\(^{2+}\) + 4Al\(^{3+}\). This substitution could be divided into three substitutions: Mg\(^{2+}\) + Si\(^{4+}\)⇌
2Al$^{3+}$: Al$^{3+}$ + H$^+$ \rightleftharpoons 2Mg$^{2+}$: 4H$^+$ \rightleftharpoons Si$^{4+}$ = 4 : 4 :3. However, there are some choice to satisfy the substitution ② (e.g., Si$^{4+}$ \rightleftharpoons 4H$^+$, Mg$^{2+}$ + Si$^{4+}$ \rightleftharpoons 2Al$^{2+}$, 3Mg$^{2+}$ \rightleftharpoons 2Al$^{3+}$). The crystal structure analysis is necessary to clarify the substitution mechanism clearly. In this study, we call substitution ① “hydration substitution”, and substitution ② “dehydration substitution”, respectively.

Fig. 5c shows the relationship between water content and synthesis temperature. Water content increased with increasing synthesis temperature up to 1600℃. On the other hand, water content decreased with increasing synthesis temperature above 1600℃. Therefore, hydration and dehydration substitution occur up to and above 1600℃, respectively.

We can predict the compositional boundary between Mg- and Al-superhydrous phase B from a crystallographic standpoint. Al favors the Si octahedral site because of similarities in size. Superhydrous phase B contains Si in both octahedral and tetrahedral sites. 1/3 and 2/3 of Si is in octahedral and tetrahedral sites, respectively (Pacalo and Parise, 1992). In addition, Mg$^{2+}$ = Al$^{3+}$ + H$^+$ + V$_{Mg}$ and Si$^{4+}$ = Al$^{3+}$ + H$^+$ substitution occurred and always keep 1:1 at least up to Al = 4 pfu in the condition below 1600℃. Therefore, we imagine the boundary between the Mg- and Al-superhydrous phase B is Al = 2 pfu. This consideration is consistent with our results. The coexisting superhydrous phase Bs are clearly bounded by
the boundary of $Al = 2$ (Figs. 5d-f). Above $Al = 2$ pfu, crystal structure may slightly change because the Si octahedral site is fully occupied by Al. Thus, a single crystal structure refinement is needed.

Fig. 6 shows the Al_2O_3 content in superhydrous phase B as a function of pressure and temperature. Al_2O_3 content increased with increasing temperature up to $2000^\circ C$. Furthermore, we observed the pressure dependence of the Al_2O_3 contents of Mg- and Al-superhydrous phase B. The Al_2O_3 contents of Mg- and Al-superhydrous phase B increased with decreasing pressure. Fig. 6 shows that the synthesis temperature boundary of Mg-SuB and Al-SuB exist at $1600^\circ C$.

The stability field of superhydrous phase B (Fig. 7) is expanded from $\sim 1300-1400^\circ C$ (Ohtani et al., 2003) to at least $2000^\circ C$ at 20-24 GPa because of Al incorporation. The perfect dehydration or the decomposition of our Al-bearing superhydrous phase B was not observed in our experimental conditions (up to $2000^\circ C$ at 20-24 GPa). This effect of Al is similar to the case of phase D (Ghosh and Schmidt, 2014; Pamato et al., 2015). In the case of Al-endmember phase D, the Al-Si disorder contributes to the configurational entropy and stabilizes phase D (Pamato et al. 2015). Al is expected to substitute for Si at the octahedral site in superhydrous phase B. Therefore, the Al-Si disorder is expected to occur in Al-bearing superhydrous phase B and to stabilize this phase. In addition, Al-superhydrous
phase B started to dehydrate to stabilize at high temperature above 1600°C.

The effect of other elements (e.g., Fe, Ca, and Na) on the stability of superhydrous phase B is also important. However, Ca and Na elements should not be contained in superhydrous phase B because the ion radii are much larger than those of Mg and Si. Therefore, we discuss about the effect of Fe on the stability of superhydrous phase B.

The effect of Fe on a high temperature stability of phase D was reported by Ghosh and Schmidt (2014) and Pamato et al. (2015). They reported that the destabilizing effect of FeO counteracts the stabilizing effect of Al₂O₃ on phase D. Therefore, Al/Fe ratio is a key factor for the stability of phase D. In the case of superhydrous phase B, the stabilizing effect of Fe₂O₃ was reported by Ganskow and Langenhorst (2014). Therefore, \((\text{Al}^{3+} + \text{Fe}^{3+})/\text{Fe}^{2+}\) ratio is a key factor for the stability of superhydrous phase B. Though the target of this study was to clarify the effect of Al in Mg-endmember superhydrous phase B, further study of the effect of Fe on the stability of superhydrous phase B is necessary to be resolved in near future.

Al-bearing phase B was also observed at 24 GPa and 1400°C with composition C. The chemical composition of Al-bearing phase B was MgO 41.4 wt%, Al₂O₃ 23.3 wt%, SiO₂ 19.3 wt%, and total 84.0 wt%. The chemical formula can be described as \(\text{Mg}_{8.7}\text{Al}_{3.9}\text{Si}_{2.7}\text{O}_{20}\) when ignoring H₂O (cf. Mg-endmember phase B: \(\text{Mg}_{12}\text{Si}_4\text{H}_2\text{O}_{21}\)). Mg and
Si contents of this phase decreased with increasing Al content, which is the same as superhydrous phase B. Phase B also contains Si in both octahedral and tetrahedral sites (Finger et al., 1989). The same or similar substitution mechanism is expected to occur. Thus, we expect that the stability field of phase B also expands to a higher temperature and the H$_2$O contents increase by Al substitution, as well as superhydrous phase B. Further study is anticipated for Al-bearing phase B.

Implications

In the MgO-SiO$_2$-H$_2$O system, water can be transported to the lower mantle by superhydrous phase B and phase D in the cold slab (Fig. 7). On the other hand, Mg-end members of these hydrous phases dehydrate to form bridgmanite + periclase/stishovite + fluid in the stagnant slab, in which the temperatures are lower than that of the normal mantle geotherm. In this case, there are no host hydrous phases of water in the lower mantle along the normal mantle geotherm. However, mantle materials contain some amount of Al$_2$O$_3$, thus the Al incorporation in hydrous phases enhance the temperature stability as shown in this study and previous studies (Ghosh and Schmidt, 2014; Pamato et al., 2015).

We estimated the amount of Al$_2$O$_3$ content in the condition that superhydrous phase B can stably exist at temperatures in the normal mantle geotherm. Fig. 6 shows that
Al-bearing superhydrous phase B, which is synthesized at 1600 °C, has ~15-33 wt% Al₂O₃. Thus, at least 15 wt% of Al₂O₃ is required for superhydrous phase B to stably exist at temperatures of the normal mantle geotherm.

We also calculated the Al partition coefficient between superhydrous phase B and other phases including garnet and bridgmanite (Fig. 8; Litasov and Ohtani, 2003). The element partitioning data of Al between superhydrous phase B and garnet or bridgmanite was determined using $K_D = \frac{X_{Mg}^{Gt or Brg} \cdot X_{Al}^{SuB}}{X_{Al}^{Gt or Brg} \cdot X_{Mg}^{SuB}}$ modified from Frost (2003), here with $X_{Mg or Al}^{mineral}$ is the molar ratio of mineral of interest. This figure shows that Al becomes easy to distribute to superhydrous phase B with increasing pressure and temperature. Therefore, Al-bearing superhydrous phase B could be stable in subducted slab rocks, which have a high Al₂O₃ content compared to pyrolite (e.g., chlorite) at temperatures of the typical lower-mantle. Thus, water can be transported to the lower mantle even at temperature of the normal mantle geotherm. On the other hand, superhydrous phase B dehydrates in the hydrous pyrolite composition, which is poor in Al₂O₃ (Litasov and Ohtani, 2003).

Acknowledgments

The authors would like to thank T. Shinmei for technical help for the high-pressure...
experiments, and T. Kawazoe for advice for manuscript writing. S.K. was supported by Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists (DC1). This work was supported by JSPS KAKENHI Grant Numbers 16J0269 for S.K. and 26247073, 15H05828 for T.I.. In addition, this work was supported by the Joint Usage/Research Program (2017B24) of PRIUS, Ehime University.
References

Inoue, T. (1994) Effect of water on melting phase relations and melt composition in the system Mg$_2$SiO$_4$-MgSiO$_3$-H$_2$O up to 15 GPa. Physics of the Earth Planetary Interiors, 85, 237-263.

Geophysical Research Letter, 30(2), 1029.

Figure caption

Figure 1. Cell assembly for the high-pressure and temperature experiment.

Figure 2. The calibration line used for the present SIMS measurements of H_2O concentration. Calibration standard materials are San Carlos olivine (SCO), Mg-endmember superhydrous phase B (SuB), and Mg-endmember phase A, which contain 5-50 ppm, 5.82 wt%, and 11.84 wt% H_2O, respectively.

Figure 3. Back scattered electron image of recovered sample from (a) 20 GPa and 1600°C with composition A and (b) 24 GPa and 2000°C with composition A. Circles indicate the positions of X-ray diffraction patterns (Fig. 4). There were two types of superhydrous phase B in the capsule. Al-SuB: Al-superhydrous phase B (Al-rich compared to Mg-SuB), Mg-SuB: Mg-superhydrous phase B (Al-poor compared to Al-SuB), Pc: periclase, Cor: corundum, Liquid: hydrous silicate melt, δ: δ-AlOOH.

Figure 4. X-ray diffraction patterns of recovered sample from 20 GPa and 1600°C with composition A. The diffraction patterns show both hydrous phases can be indexed as superhydrous phase B, and their crystal structures are similar but slightly different. The

Figure 5. Al dependence of chemical composition of superhydrous phase B. (a) Mg and (b) Si pfu (per formula unit) when the O = 16 (i.e. H₂O content is ignored). (c) synthesis temperature dependence of H content. (d) Mg, (e) Si and (f) H when the O = 18. Green circles, red squares, and blue diamonds show Mg, Si, and H, respectively. Green, red, and blue broken lines indicate the Mg, Si, and H tendencies of \(2\text{Mg}^{2+} + \text{Si}^{4+} \rightleftharpoons 2\text{Al}^{3+} + 2\text{H}^{+} + V_{\text{Mg}}\) substitution, respectively. Green, red, and blue dotted lines indicate the Mg, Si, and H tendencies of \(\text{Si}^{4+} + 16\text{H}^{+} \rightleftharpoons 4\text{Al}^{3+} + 4\text{H}^{+}\) substitution. Open symbols indicate that water content of these samples was estimated from the tendency of H in our result (e). Black crosses show composition of Mg-end member superhydrous phase B. Pairs of asterisks and stars represent coexisting Mg- and Al-superhydrous phase Bs. Black dotted lines show boundary between Mg- and Al-superhydrous phase B.

Figure 6. Temperature-pressure dependence of Al₂O₃ content in superhydrous phase B. Blue and red symbols show data at 20-22 and 24-25 GPa, respectively. Error bars are
smaller than the symbol sizes. Black dotted line shows boundary between Mg- and Al-superhydrous phase Bs.

Figure 7. Stability of hydrous phases in the MgO-Al₂O₃-SiO₂-H₂O system at the bottom of the transition zone and the uppermost lower mantle. Red diamonds show the conditions where Al-bearing superhydrous phase B is stable (this study). Black solid line indicates stability field of superhydrous phase B in the MgO-SiO₂-H₂O system. Blue and orange solid lines show the decomposition boundary of phase D in the MgO-Al₂O₃-SiO₂-H₂O with 1 wt% Al₂O₃ content and the Al₂O₃-SiO₂-H₂O system, respectively (Ghosh and Schmidt, 2013; Pamato et al., 2015). Dotted line is post-spinel transformation boundary (Tsuchiya, 2003). Geotherms of the normal mantle (Brown and Shankland, 1981) and cold slab (Helffrich and Brodholt, 1991) are schematically shown in this figure. The temperature path of the stagnant slab is schematically given in this figure. Al-bearing superhydrous phase B can be stable in a subducted slab with high Al content at temperatures of the typical lower mantle. Brg: bridgmanite, Pc: periclase, Rw: ringwoodite, hRw: hydrous ringwoodite, St: stishovite, B: phase B, SuB: superhydrous phase B, D: phase D, Al-D: Al-end member phase D, L: liquid.
Figure 8. Partition coefficient of Al between (a) superhydrous phase B and garnet, (b) superhydrous phase B and bridgmanite. Original data comes from Litasov and Ohtani (2003). The bulk composition describes as below: 45.15 wt% SiO$_2$, 5.20 wt% Al$_2$O$_3$, 43.46 wt% MgO, 4.19 wt% CaO and 2.00 wt % H$_2$O. Error bars are smaller than the symbol sizes.

Sub: superhydrous phase B, Gt: garnet, Brg: bridgmanite.
Table 1 Compositions of starting materials used in the study

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>50.1</td>
<td>44.5</td>
<td>57.9</td>
<td>53.1</td>
<td>58.9</td>
<td>65.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>25.8</td>
<td>23.2</td>
<td>8.1</td>
<td>16.8</td>
<td>14.7</td>
<td>6.9</td>
</tr>
<tr>
<td>SiO₂</td>
<td>13.6</td>
<td>14.2</td>
<td>24.0</td>
<td>19.8</td>
<td>16.0</td>
<td>17.7</td>
</tr>
<tr>
<td>H₂O</td>
<td>10.4</td>
<td>18.1</td>
<td>10.1</td>
<td>8.0</td>
<td>10.4</td>
<td>10.4</td>
</tr>
<tr>
<td>total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 2. Experimental conditions and results

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
<th>Starting materials</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS2933</td>
<td>20</td>
<td>1600</td>
<td>A</td>
<td>Al-SuB, Mg-SuB, Cor, Pc, melt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>Al-SuB, δ, melt</td>
</tr>
<tr>
<td>OS2824</td>
<td>24</td>
<td>1600</td>
<td>A</td>
<td>Al-SuB, δ, melt, (Pc, Cor, Gt)</td>
</tr>
<tr>
<td>OS2804</td>
<td>24</td>
<td>1800</td>
<td>A</td>
<td>Al-SuB, δ, melt, (Pc, Cor, Gt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>Al-SuB, δ, melt</td>
</tr>
<tr>
<td>OS2827</td>
<td>24</td>
<td>2000</td>
<td>A</td>
<td>Al-SuB, δ, melt, (Pc, Cor, Gt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>Al-SuB, δ, melt, (Pc, Gt)</td>
</tr>
<tr>
<td>OS2941</td>
<td>24</td>
<td>1400</td>
<td>C</td>
<td>Mg-SuB, B, Pc, melt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>Mg-SuB, D, Pc, melt</td>
</tr>
<tr>
<td>OS2886</td>
<td>24</td>
<td>1600</td>
<td>E</td>
<td>Pc, Gt, melt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>Al-SuB, Mg-SuB, δ, Pc, Cor, melt</td>
</tr>
</tbody>
</table>

Note: (a) The inside of parenthesis is unreacted materials on low temperature side. (b) Abbreviations are as follows: Al-SuB: Al-superhydrous phase B, Mg-SuB: Mg-superhydrous phase B, δ: δ-AlOOH, B: phase B, D: phase D, Pc: periclase, Cor: corundum, Gt: garnet, melt: hydrous silicate melt.
Table 3. Chemical composition of superhydrous phase B

<table>
<thead>
<tr>
<th>Starting material</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Mg-end SuB</td>
<td>Mg-SuB</td>
<td>Al-SuB</td>
<td>Al-SuB</td>
<td>Al-SuB</td>
</tr>
<tr>
<td>Pressure (GPa)</td>
<td>-</td>
<td>20</td>
<td>20</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Temperature (℃)</td>
<td>-</td>
<td>1600</td>
<td>1600</td>
<td>1600</td>
<td>1800</td>
</tr>
<tr>
<td>MgO</td>
<td>65.1</td>
<td>54.6(16)</td>
<td>46.0(12)</td>
<td>48.6(5)</td>
<td>50.1(6)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0</td>
<td>16.2(6)</td>
<td>26.6(2)</td>
<td>27.9(8)</td>
<td>30.2(10)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>29.1</td>
<td>20.3(6)</td>
<td>16.3(2)</td>
<td>15.3(2)</td>
<td>13.5(1)</td>
</tr>
<tr>
<td>H₂O</td>
<td>5.82</td>
<td>8.9*</td>
<td>11.1(3)</td>
<td>8.2(5)</td>
<td>6.2(4)</td>
</tr>
<tr>
<td>total (wt%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Mg</td>
<td>10</td>
<td>8.13</td>
<td>6.66</td>
<td>7.25</td>
<td>7.65</td>
</tr>
<tr>
<td>Al</td>
<td>0</td>
<td>1.91</td>
<td>3.05</td>
<td>3.29</td>
<td>3.64</td>
</tr>
<tr>
<td>Si</td>
<td>3</td>
<td>2.02</td>
<td>1.58</td>
<td>1.53</td>
<td>1.38</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>5.92</td>
<td>7.20</td>
<td>5.50</td>
<td>4.24</td>
</tr>
<tr>
<td>cation sum</td>
<td>17</td>
<td>17.98</td>
<td>18.49</td>
<td>17.57</td>
<td>16.92</td>
</tr>
<tr>
<td>O</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: (a) Total weight was normalized to 100 wt%. (b) *H₂O content was estimated from the tendency of H in our result.
Figure 1
Figure 2
Figure 3
Figure 5
Figure 6

This figure illustrates the relationship between temperature (°C) and the weight percent (wt%) of Al₂O₃, normalized. The data points represent different pressure ranges: 20-22 GPa and 24-25 GPa. The graph includes data from various sources, indicated by different symbols: this study, Litasov and Ohtani (2003), and Ghosh and Schmidt (2014).
Figure 7
Figure 8