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Abstract 11 
We address the problem of unpolarised light spectroscopy of geological materials. Using infrared radiation, the aim of this 12 
technique is to learn about the absorbing species, such as hydroxyl. The use of unoriented samples leads to the need to 13 
perform a rigorous statistical analysis, so that the three principal absorbances of the crystal can be retrieved. We present here 14 
such an analysis based on a derivation of the probability density function for a single random measurement. Previous methods 15 
for retrieval of the absorbances are shown to be suboptimal, producing biased results that are sometimes even unphysical (e.g. 16 
negative estimates for an inherently positive quantity). The mathematical structure of the problem is developed in order to use 17 
the maximum likelihood estimation method, and we show how to optimise for the three absorbance parameters. This leads to 18 
good parameter retrieval on both synthetic and real data sets. 19 

Introduction 20 

In the analysis of geological samples using both polarised and unpolarised infrared radiation to determine principal 21 
absorbances, there is a logical desire to implement procedures based on unpolarised light spectroscopy. In a 22 
transmission geometry, the intensity of light is measured after passage through a (possibly) birefringent crystal; 23 
when polarised light is used, the physics of the experiment is clear and allows unambiguous determination of the 24 
absorbance as the sum of the principal polarised absorbances along each of the principal axes of the absorbance 25 
indicatrix. Unfortunately, the use of unpolarised light presents a much less clear physical problem, but remains 26 
scientifically invaluable since it enables the analysis of small unoriented mineral chips that might not be otherwise 27 
measured. Regardless of the technique employed, the aim is to obtain quantitative information on absorbance, 28 
which can help constrain the presence of hydroxyl in the sample.  29 

The unpolarised implementation is simpler than the more protracted method whereby polarised light is used, 30 
but the technique has not received widespread acceptance because of arguments that it is not possible to use it to 31 
obtain quantitative determinations of absorbance in anisotropic materials (e.g. Libowitzky & Rossman (1996); Bell 32 
et al. (2003)). However, Sambridge et al. (2008) derived, from first principles, a simple relationship between 33 
transmittance and the direction, and polarisation angle of incident light. This led to a theory for unpolarised 34 
transmittance and also allowed quantification of the conditions under which approximate formulae for unpolarised 35 
absorbance can be applied, namely that the maximum linear unpolarised absorbance should not exceed 0.15. The 36 
latter does not appear to have been widely appreciated and led some to continue to claim a controversy over which 37 
theory is correct (Withers, 2013). In fact, the primary difference remains not which theory is correct but rather 38 
which quantity should be treated in analysis, namely average unpolarised absorbance (Sambridge et al., 2008; 39 
Kovács et al., 2008) or average unpolarised transmittance (Withers, 2013); fortunately we are able to neatly 40 
sidestep this issue in our presentation, as the methods that we develop will apply equally to either of the competing 41 
approaches, as do those of Sambridge et al. (2008). Instead, the focus of our paper is concerned with how to 42 
optimally treat the data that are collected in the unpolarised scenario when unoriented samples are used. This 43 
question of optimal estimation must be answered using a correct statistical analysis that has, so far, been lacking 44 
from the literature. We begin with a description of the physics and mathematics of both polarised and unpolarised 45 
spectroscopy, and then go on to develop the statistical treatment appropriate for random unoriented measurements 46 
in unpolarised light. At the heart of our development is the aim to determine the three principal absorbances of the 47 
mineral, and we show that previous heuristic procedures for determining these quantities are suboptimal. We 48 
illustrate the use of our theory with analysis of two data sets, the first synthetic (in which case the true answer is 49 
known) and the second real (measurements on olivine from the literature).  50 
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Theory 51 

Relative to the axes of the optical indicatrix, we let A
a
,A

b
 and A

c
 signify the principal absorbances of a (possibly) 52 

birefringent crystal. In an isotropic crystal or, when looking along one of the principal directions, the transmission 53 
geometry of typical experiments, the ratio of light measured (I) to that of the source (I0) is  54 

 T= 
I

I0
 (1) 55 

and the absorption A=−logT. It is well-known (Libowitzky & Rossman, 1996) that measurements of polarised light 56 
along the principal axes are sufficient to determine the absorbance through  57 

 A=Atot=A
a
+A

b
+A

c
 (2) 58 

and indeed, it is sufficient to make measurements within three mutually perpendicular unoriented sections 59 
(subscripted 1,2,3) where the maximum and minimum values Ai

max, Ai

min are observed; the absorbance is then  60 

 A= 
i=1

3
 (Ai

max+A
i

min)/2. (3) 61 

The difficulty of producing truly polarised light is one of the reasons for the interest in the experimental 62 
implementation of a protocol using unpolarised light. 63 

We work in standard spherical polar coordinates where φ is the angle between the radial and the z axis, and ψ is 64 
the angle between the x-axis and the projection of r on the x-y plane. When unpolarised light is used, the 65 
absorbance measured for an incidence angle (ψ,φ) is either  66 

 Aunpol= 
1
2 { }A

a
(cos2φcos2ψ+sin2ψ)+A

b
(cos2φsin2ψ+cos2ψ)+A

c
sin2φ  (4) 67 

or  68 

 Tunpol= 
1
2 { }T

a
(cos2φcos2ψ+sin2ψ)+T

b
(cos2φsin2ψ+cos2ψ)+T

c
sin2φ  (5) 69 

depending whether one adopts the practice of using absorbance (Sambridge et al., 2008) or using transmission 70 
(Libowitzky & Rossman, 1996; Withers, 2013). We avoid entering that particular debate by noting that the theory 71 
that we shall develop applies equally well to either type of observation, but for concreteness we simply use the “A” 72 
notation. Should the reader wish to adopt the transmission-based “T” theory, this can be done with a trivial 73 
interchange of variable names. 74 

Sambridge et al. (2008) noted that (4) could be written as  75 

 Aunpol= 
1
2(A

b
+A

c
)sin2φcos2ψ+ 

1
2(A

a
+A

c
)sin2φsin2ψ+ 

1
2(A

a
+A

b
)cos2φ (6) 76 

or, in Cartesian coordinates (x1,x2,x3), as a quadratic form Q that is central to our paper,  77 

 Q(x1,x2,x3)= 
i=1

3
 a

i
x

2
i  (7) 78 

where the point (x1,x2,x3) lies on the unit sphere (|x|=1) and the semi-axes of the quadratic form are  79 

 a1 = 
1
2(A

b
+A

c
) (8) 80 

 a2 = 
1
2(A

a
+A

c
) (9) 81 
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 a3 = 
1
2(A

a
+A

b
) (10) 82 

which comprise the vector we will call a, derived from the triplet A=(A
a
,A

b
,A

c
). At the heart of our paper is a 83 

methodology for the determination of (a1,a2,a3) from experimental data. Having found these parameters, we can 84 
clearly then determine  85 

 A
a
 = a2+a3−a1 (11) 86 

 A
b
 = a1+a3−a2 (12) 87 

 A
c
 = a1+a2−a3. (13) 88 

We begin with a few remarks on the nature of the quadratic form (7). Assuming, without loss of generality, that 89 
a3≤a2≤a1 (implying A

c
≥A

b
≥A

a
), we note that the maximum and minimum values that are measured at any angle 90 

can be at most (least) a1 (a3), so the maximum and minimum of the data set Aobs
max and Aobs

min are estimators for these 91 
values. We should be aware, however, that these estimates are biased toward less extreme values as a result of 92 
incomplete sampling. A typical dataset is shown in Figure (1), where this is apparent. To find the third unknown, 93 
Sambridge et al. (2008) made the observation that, in the case of perfect data measured uniformly over the surface 94 
of the sphere, one would find  95 

 E{Q}=A
obs
avg= 

1
3(a1+a2+a3)= 

1
3(A

a
+A

b
+A

c
) (14) 96 

where E{} signifies expectation. There is a nagging doubt as to whether this intuitively appealing estimator is 97 
likely to be an efficient one in the case of small datasets, as it is unlikely that one would achieve uniform coverage 98 
of all solid angles, but it does at least serve to close the problem. One can deduce from integrations that the 99 
variance σ2 of this estimate is  100 

 σ2=E{Q2}−E{Q}2= 
2

45 { }(a1−a2)2+(a2−a3)2+(a1−a3)2  (15) 101 

so that, provided the principal absorbances are not drastically different, when the data set is large, the mean is a 102 
rather precise quantity. 103 

We now have three estimates from which to try to derive the principal absorbances: straightforward algebra 104 
shows that (Sambridge et al., 2008)  105 

 A
a
 = 3A

obs
avg−2A

obs
max (16) 106 

 A
b
 = 2(Aobs

min+A
obs
max)−3A

obs
avg (17) 107 

 A
c
 = 3A

obs
avg−2A

obs
min. (18) 108 

Although these estimators may work reasonably well in some cases, their success is highly dataset-dependent, 109 
and may even produce unphysical results if either Aobs

max>3/2A
obs
avg or Aobs

avg>2/3(Aobs
min+A

obs
max), which yield meaningless 110 

negative estimates of A
a
 or A

b
, respectively. This can occur if the anisotropy is relatively strong. 111 

As a motivating example, we analyse a synthetic dataset of representative size for typical laboratory analysis: 112 
for random points on the sphere, we synthesize N=23 values of Q; see Table 1. For the synthesis we use the 113 
principal values (A

a
,A

b
,A

c
)=(1.89,45.6,80.94)  which dictates that 114 

(a1,a2,a3)=(23.745,41.415,63.27) . From the dataset we see that min(Q)=25.063 and 115 

max(Q)=62.4398, giving estimators â3 and â1. The mean of the data is 40.676 and therefore we deduce the 116 
following estimates for the principal absorbances:  117 
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 A
a
 = −2.85 (19) 118 

 A
b
 = 52.98 (20) 119 

 A
c
 = 71.90. (21) 120 

The latter two estimators are good to about 10% but, unfortunately, for this small dataset, positivity of A
a
 is not 121 

respected, and there is no obvious fix for the estimators. In the case that N→∞ none of these shortcomings exist. 122 
A resolution to these possible issues of bias and disrespect of positivity is to properly derive the probability 123 

density function (pdf), or equivalently the cumulative density function (cdf), for the value of an unpolarised 124 
observation taken at a random orientation. We do this in very general fashion in the next section. In the final 125 
section we apply the theory to both synthetic and real datasets, and illustrate its efficacy. 126 

The distributions of Q 127 

Here we derive closed-form expressions for the probability distribution function and cumulative distribution 128 
function of Q in (7) that are needed for our estimation procedures. Imagine contouring Q on the unit sphere. Now 129 
we ask what is the probability that a random value, say Q, is less than Q0? Since the directional distribution is 130 
uniform, that must be the fraction of the area covered by the set of points on the sphere where Q  ≤ Q0; that is  131 

 F(Q0)=P(Q≤Q0)= 
1

4π 

Q(r) ≤ Q0

  d2r . (22) 132 

The boundary of region of integration in equation (22) is the contour line C(Q0) and the integral covers values 133 
below the contour level. The function F in (22) is by definition the cumulative distribution function (cdf), the 134 
indefinite integral of the pdf. Figure (2) shows the level lines of Q on the sphere. 135 

We begin by obtaining an equation for the contour lines of constant Q. We will adopt spherical polar 136 
coordinates with colatitude Θ and longitude φ and Θ=0 is the point of minimum Q, so that a3 is the smallest 137 
coefficient: recall that for definiteness we take: a3≤a2≤a1 throughout. Close to this point, contours tend to be circles 138 
centered on the north pole, see Figure (2). We will initially assume that Q0 is close enough to a3 that the line C(Q0) 139 
is a smooth ring around the pole. We write (7) in polar coordinates  140 

 Q=a1cos2φsin2Θ + a2sin2φsin2Θ + a3cos2Θ . (23) 141 

Then on the contour line Q=Q0≥a3 a little algebra shows  142 

 cos Θ=c(φ)=  
a1cos2φ + a2sin2φ − Q0

a1cos2φ + a2sin2φ − a3
 . (24) 143 

There are two separate regions where Q≤Q0, one in the northern hemisphere, the other symmetrically in the south. 144 
We will treat the northern region, and double its area. That area is given by  145 

 2πF(Q0) = 

0

2π
  dφ  

0

cos−1c(φ)
  sin Θ dΘ= 

0

2π
  [1 − c(φ)] dφ 146 

  = 

0

2π
  [1 −   

a1cos2φ + a2sin2φ − Q0

a1cos2φ + a2sin2φ − a3
] dφ (25) 147 

and thus  148 
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 F(Q0)=1 −  
2
π 

0

 
π
2
    

a1+a2−2Q0 + (a1−a2) cos2φ
a1+a2−2a3 + (a1−a2) cos2φ dφ . (26) 149 

The numerator under the square root is nonnegative on the interval (0,2π) provided that Q0≤a2, but not 150 
otherwise. When Q0>a2 the level line C(Q0) forms two closed loops around the maximum principal axis, not the 151 
north pole, and then the integral in (25) must be performed by breaking the domain into subintervals. A much 152 
simpler solution is to choose a new coordinate system, with the maximum value at the north pole, resulting in a 153 
similar calculation to before. We can summarize the results: the cdf is 154 

 F(Q0)= 







 

1− 
2
π 

0

 
π
2
    

a1+a2−2Q0 + (a1−a2) cos2φ
a1+a2−2a3 + (a1−a2) cos2φ dφ;      Q0≤a2

 
2
π 

0

 
π
2
    

2Q0−a2−a3 + (a2−a3) cos2φ
2a1−a2−a3 + (a2−a3) cos2φ dφ;      Q0>a2 .

 (27) 155 

In our calculations we shall make great use of this cdf and therefore we give the analytic forms for the integrals. 156 
We begin by defining the auxiliary function G where  157 

 G(c,b,p)=2(c−b)  
1

(p+1)(b+c)Π 






 

2b

b+c
, 

2(b+cp)
(b+c)(p+1)  (28) 158 

where  159 

 Π (n,k)= 
0

π/2
  

dΘ
(1−nsin2Θ) 1−ksin2Θ

 (29) 160 

is a complete elliptic function of the third kind. Then the cdf F is given by  161 

 F(Q)= 









 

0 Q≤a3
1 Q≥a1

 
2
πtan−1 











  
a2−a3
a1−a2

Q=a2

 
1

π 2a1−a2−a3
G 








−a2−a3+2Q;a3−a2; 
a2−a3

2a1−a2−a3
Q>a2

1− 
1

π a1+a2−2a3
G 








a1+a2−2Q;a2−a1; 
a1−a2

a1+a2−2a3
Q<a2 .

 (30) 162 

We also need to evaluate the pdf Φ in terms of known special functions. To find the pdf we differentiate:  163 

 Φ= 
dF

dQ
. (31) 164 

After laborious manipulations we arrive at the definitive expressions for the pdf of Q0 165 
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 Φ(Q0)= 





 

 
1

π (a2−a3)(a1−Q0) K ( 
(a1−a2)(Q0−a3)
(a2−a3)(a1−Q0)) ;      Q0≤a2

 
1

π (a1−a2)(Q0−a3) K ( 
(a2−a3)(a1−Q0)
(a1−a2)(Q0−a3)) ;      a2<Q0

 (32) 166 

where K(m) is the complete elliptic integral of the first kind defined by  167 

 K(m)= 
0

 
π
2
  

dx

 1−m sin2x
 . (33) 168 

See, for example, Chapter 17 of Abramowitz & Stegun (1970). A typical curve is plotted in Figure (3), showing the 169 
presence of an integrable logarithmic singularity at Q0=a2. 170 

Estimation 171 

Exact data 172 

The work horse of estimation is the maximum likelihood estimator (see, for example, Rice (2007)). If we assume 173 
the observations to be statistically independent then we get a likelihood function by multiplying together all the 174 
individual pdfs evaluated at the data values:  175 

 L(a1,a2,a3)= 
j

  Φ(Q
j
) . (34) 176 

Recalling that a is the vector with unknowns (a1,a2,a3), the maximum likelihood method requires that one view 177 
the likelihood as a function of a given the data, the converse to Figure (3) that plots the probability of Q0 given 178 
values of a. Each of the contributing Φ(Q

j
) is regular for all a1 and a3 but there is a singularity in each at a2=Q

j
. 179 

Unfortunately the presence of the logarithmic singularity at Q=a2 means that for a data set consisting of N values, 180 
the likelihood possesses N singularities at which the likelihood is infinite; thus maximising the likelihood is 181 
fruitless since there is no single unique maximum. Figure (4) plots the likelihood for the test dataset given in 182 
Table 1; we assume that the values a1 and a3 are known and plot (34) as a function of a2. 183 

We reach the surprising conclusion that, in the case of precise data, the estimation problem cannot be solved by 184 
the method of maximum likelihood! The loss of the maximum likelihood method is a severe blow in this case, and 185 
we have consequently sought recourse to other methods based on properties of the cdf, that we do not report. The 186 
more important case of inaccurate data is instead analysed, in which it transpires that the presence of errors in the 187 
data do allow the maximum likelihood method to be implemented. 188 

Inexact data 189 

Given an exact value Q0 and a measured value Q=Q0+e, let p(e) be the pdf of the errors. The laws of probability 190 
give that  191 

 p(Q|Q0,a)=p(e)*p(Q0|a) (35) 192 

where * indicates convolution. In order to derive a concrete form for the pdf in this case, we assume that the errors 193 
on the data are uniformly distributed between ±Δ (a so-called top-hat function), so that  194 

 pu(e|Δ)= 




 (2Δ)−1|e|≤Δ
0 |e|>Δ . (36) 195 

This choice of error distribution (which is a matter of mathematical convenience) now allows us to discover a pdf 196 
of the observations that is free of logarithmic singularities:  197 
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 p(Q|a,Δ)=(2Δ)−1 [ ]F(Q+Δ)−F(Q−Δ)  (37) 198 

where we recall that F is the cdf of Q. We may now plot the pdf of Q for a given choice of Δ; Figure (5) gives 199 
several examples. Note that there is now finite probability of an observation having a value in the range a3−Δ or in 200 
a1+Δ as a result of the incorporation of the error model (recall in everything we do we have a1>a2≥a3). 201 

Equation (37) now forms the basis for creating the likelihood L for inexact data that will be used for all the 202 
subsequent calculations we present:  203 

 L(a1,a2,a3)= 
j

  p(Q
j
|a,Δ).  (38) 204 

Depending on the values of the data, the number of data N and particularly Δ, the pdf may have multiple local 205 
maxima and it is theoretically possible for two local maxima to have the same value. Such a circumstance is highly 206 
unlikely as N≫1, but one could imagine a scenario with e.g. four data in which two maxima with the same 207 
likelihood exist. The beauty of the maximum likelihood method is that it exposes such unlikely situations without 208 
the need for any special treatment. 209 

We should remark that (37) allows other assumed pdfs for the observational noise, p(e), to be treated very 210 
accurately, should the user so wish. Any symmetric distribution (e.g. a Gaussian) can be approximated by a 211 
superposition of top-hat functions:  212 

 p(e)= 
i

 c
i
 pu(e|Δ

i
) (39) 213 

for some coefficients c
i
, and the linearity of the convolution operation means that the effect on the exact pdf can be 214 

determined by a superposition of results of the form (37). We do not pursue this avenue, and doubt whether there 215 
will be situations in which the user will have full information on the appropriate error model. 216 

Positivity 217 

We note from (11)–(13) that positivity of the principal absorbances generates constraints on the allowed values of 218 
a. Noting, as we have throughout, that a1≥a2≥a3, we have the following inequalities:  219 

 a1−a2≤a3≤a2 (40) 220 

and  221 

 a2≤a1≤a2+a3. (41) 222 

The allowed region of parameter space for given a2 is shown in Figure (6). We use this in the following way: we 223 

scan over all a2 using 0.9min(Qobs) and 1.1max(Qobs) as boundaries; then for a given a2 we scan over a1 and a3 224 
whilst respecting the inequalities (40) and (41). 225 

Convergence using a synthetic dataset 226 

We test the theory using a synthetic data set that we constructed in the following way: data were synthesised from 227 
the model A=(1.89,45.6,80.94) by evaluating equation (7) for randomly generated x:|x|=1. To these data we added 228 
noise synthesised from random samples from a uniform distribution with Δ=1. We then analysed the data in two 229 
ways, firstly using the algorithm of Sambridge et al. (2008) that applies to exact data as N→∞, and secondly using 230 
the probabilistic approach described herein. The results are shown in Figure (7) when the search is performed with 231 
a resolution of 0.04 in all three directions. We see that the maximum likelihood estimate converges to the known 232 
value, with superior performance when the dataset is in the range 10−100 samples. We find that one can generally 233 
determine the total absorbance to better than 2% accuracy with 20 samples at this Δ=1 error level, which is not the 234 
case for the estimator 3A

obs
avg (equation (14)). Determination of the intermediate principal absorbance, which is 235 

generally the most difficult, can be achieved at the 5% level with a few tens of samples. The final maximum 236 
likelihood values from this N=1000 dataset are A=(1.86,46.3,80.4) compared to the known input (1.89,45.6,80.9). 237 
The total absorbances are 128.6 (estimated) versus 128.4 (truth). 238 
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Chips from a natural sample 239 

Here we analyse data from natural “Pakistani” olivine samples (exact provenance unknown) reported in Kovács 240 
et al. (2008). Forty one samples were analysed with unpolarised light and the absorbances in the 3500-3630 cm−1 241 
waveband normalised to 1cm thickness. As in any inverse problem, we need to assign a value for the accuracy of 242 
the measurements, and in our particular problem this plays an important role, as it modulates the pdf of the 243 
observations. It is not straightforward to assign the errors. On the one hand it can be argued that the accuracy of the 244 
theory that we use to analyse our data is good to better than 10%, and this could be the limiting factor in analysing 245 
the data (Sambridge et al., 2008). Conversely, a careful analysis of the quadrature errors that contaminate the data 246 
(sample thickness, background spectrum subtraction, radiation perfection) suggest an uncertainty of 5% (Kovács 247 
et al., 2008) or 10% (Hao et al., 2016). Our theory is appropriate for a uniform error distribution with limits ±Δ. 248 

Such a distribution has a conventional second moment (or variance) of 
1
3Δ2, or standard deviation Δ/ 3. We have 249 

assigned an error of Δ=4.3, which corresponds to a maximum error of 10% of the mean signal recorded from the 250 
olivine chips, and to a standard deviation of 6% of this mean. Unlike in our synthetic experiment where we had full 251 
knowledge of the errors, difficulties in the real experimental procedure mean it is challenging to be completely sure 252 
of the correct error attribution. 253 

When we analyse subsets of the full 41 sample dataset, gradually increasing the sample size in number, we find 254 
convergence to the results shown as red squares in Figure (8). On the plot we show in solid lines the values 255 
suggested for the principal absorbances determined by independent polarised light analyses (Kovács et al., 2008). 256 
We see that the smallest principal absorbance is estimated to be zero, very much in line with its tiny polarised value 257 
of 1.9 (Figure (8b)). The largest principal absorbance A

c
 (Figure (8d) differs by about 20% from the polarised value 258 

of 80.9, which itself has a likely imprecision of about 7% based on the recorded maximum of 75.3 in a 259 
perpendicular section (Kovács et al., 2008). The intermediate axis, which is the more difficult to estimate, is 260 
determined from the 41 measurements to be very close to the unpolarised value of (Kovács et al., 2008) 261 
(Figure (8c). The total absorbance is determined to better than 10%, although it must be remarked that the “exact” 262 
theory of Sambridge et al. (2008) gives an estimate more in accord with the polarised value of 128 (Figure (8a). 263 
This is somewhat surprising as one can see that the exact theory estimates a strongly negative (and physically 264 
unrealisable) value for A

a
 (Figure (8b). 265 

The maximum likelihood model is found for a=(69.50,48.60,20.90) which corresponds to A=(0,41.8,97.2). One 266 
can note that a1<maxQ=72.7, the difference being 3.2, slightly less than our assigned Δ. One now sees that with 267 

the error model in place, maxQ is now not necessarily a downward biased estimate (as in the case of assumed exact 268 
data) but is probably upward biased, because the error model can incorporate data with a value up to a1+Δ; the 269 
treatment of noisy data has significantly modified the problem. The lowered value of a1 of the maximum likelihood 270 
model is largely due to the presence of the very small principal absorbance A

c
, estimated to be zero in the model. In 271 

this instance the problem really reduces to the estimation of two parameters A
b
 and A

c
, and as we vary the error 272 

model we observe trade-offs between their estimated values. This would not necessarily occur for other datasets in 273 
which the principal absorbances do not have such disparate values. 274 

With the full pdf to hand we may visualise parameters of interest. In Figure (9) we show cuts through the full 275 
pdf when two of the parameters are assigned to their maximum likelihood value. The pdfs for a2 and a3 are simple 276 
curves from which an error on the estimate can be derived. Of particular interest, however, is the pdf for a1, which 277 
shows the effect of the positivity constraint (41). The maximum likelihood model occurs on the upper boundary of 278 
the allowed region in Figure (6); on this boundary A

a
=0. The effect of this is to strongly truncate the pdf for a1, an 279 

effect that would not arise if one of the absorbances were not so small. 280 

Discussion 281 

Our results set the determination of principal absorbances from unpolarised light on a new theoretically secure 282 
footing. We have derived the exact pdf of data randomly drawn from the quadratic form (7). The cdf of the data is 283 
everywhere regular and can be used in estimation procedures that can treat exact data; such procedures cannot 284 
include the maximum likelihood method, which requires the pdf for exact data, a function that contains N 285 
singularities (where N is the number of data). When the model is extended to incorporate errors in the data, the 286 
maximum likelihood model becomes both tenable and the method of choice. We have implemented this method for 287 
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a specific error model and find good performance on a synthetic dataset. Recovery of the total absorbance is 288 
particularly good and surpasses the performance of the only previously-known algorithm based on a simple average 289 
of the data. We analyse an actual laboratory data set that is typical in its size, consisting of 41 chips of olivine with 290 
thicknesses of 210±15μm. We find that we are able to estimate the principal absorbances robustly, finding answers 291 
that are stable when the number of analysed samples N>15. We are able to compare the estimates to other values 292 
for the principal absorbances, themselves experimentally determined. The agreement between the two datasets is at 293 
approximately the 10% level. We feel that this helps to open up new possibilities for unpolarised analysis of 294 
difficult mineral samples. 295 

We close by mentioning allied work by Hillier (2001), who has obtained, by a tour-de-force, the pdf of a 296 
quadratic form Q in arbitrary dimensions. In D dimensions the quadratic form contains D−2 singularities, and the 297 
pdf must be characterised individually in the region between each of these singularities. The application is, 298 
amongst others, to the Durbin-Watson statistic commonly used in econometrics. It is therefore possible that there 299 
are other areas of application of the methods that we have developed for the present geological context. 300 

A computer code that implements these ideas and enables a user to analyse his or her data will be available for 301 
download at http://www.iearth.edu.au/codes/, or from the authors.  302 

Implications 303 

A mathematically rigorous estimation framework is now in place that can be used for the analysis of typical 304 
laboratory data sets (several tens of samples) consisting of unoriented unpolarised absorbance measurements from 305 
small chips. We consider it an advance in the determination of the total polarised absorbance and principal 306 
polarised absorbances from a given set of unpolarized mesurements, using as few as 15 grains even from strongly 307 
anisotropic minerals such as olivine. It can retrieve three principal absorbances in anisotropic materials and is 308 
guaranteed to always respect positivity of these quantities. This will aid the accurate determination of species such 309 
as hydroxyl in geological materials. 310 
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Table and Figure captions 336 

 337 

 338 
44.15967 49.92802 43.72898 34.96102 37.11223 48.20369 44.02242 32.64254 
39.17191 39.30958 41.48838 60.79360 27.77383 62.43976 42.75821 30.67905 
61.95585 25.06300 33.80495 42.13757 36.95285 29.79391 26.66335  

 339 

Table 1: The 23 synthesized Q values for the model with 



(Aa,Ab,Ac)  (1.89,45.6,80.94). 340 

 341 

Figure 1: (a) Histogram showing the frequency distribution of 600 binned synthetic data for a problem 342 
where the principal absorbances are A

a
=1.89,A

b
=45.6  and A

c
=80.94, giving theoretical values 343 

a1=23.75,a2=41.42  and a3=63.27. There is a peak in the distribution around the middle value of 344 

a2=41.42. The maximum and minimum values observed (indicated on each plot as “max” and “min” 345 

respectively) will generally never agree with these true values for a finite dataset; here the observed 346 
values are only slightly biased from the true extrema (downwards by .09 for the maximum and upwards 347 
by .06 for the minimum). (b) Histogram showing the frequency distribution of 600 binned synthetic data 348 
for a problem where the principal absorbances are A

a
=2,A

b
=2  and A

c
=80.94, giving 349 

a1=41.47,a2=41.47  and a3=2. Note that in this case of having two principal absorbances equal, the 350 

maximum of the frequency distribution is systematically skewed towards one extremum. 351 

  352 

Figure 2: Plotted on the sphere are the level lines of Q for the case a=(3,2,1). The z-axis (vertical) is 353 
surrounded by almost circular contours. In this right-handed coordinate system, the value Q=2 occurs 354 
along the y-axis (the negative y-axis is facing the reader) and defines two separate contours encircling the 355 
sphere, while the x-axis on the right is surrounded by highly elliptical contours. 356 

  357 

Figure 3: The pdf Φ(Q0) for a=(3,2.5,1). Note there exists a logarithmic singularity on this plot at Q=a2 358 

(plotted values are truncated for visual clarity). Despite the singularity introducing a narrow infinite spike 359 
in the pdf, the integral remains finite yielding a sensible probability distribution. 360 

  361 

Figure 4: Likelihood p(a2|Q,a1,a3)  for the test dataset with N=23 points, showing the presence of N 362 

logarithmic singularities at a2=Q
i
. The amplitudes of singularities are truncated for visual clarity. 363 

  364 
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Figure 5: Probability p(Q|a) for a=(3,2.5,1) and a) Δ=0.01 b) Δ=0.05 and c) Δ=1. The pdf is now entirely 365 
regular. 366 

  367 

Figure 6: For a given value of a2, the figure shows the allowed region (shaded) of (a1,a3) space that 368 

satisfies the inequalities required to guarantee positivity of the principal absorbances. The upper diagonal 369 
boundary corresponds to A

a
=0 and two other coefficients non-zero; the lower boundary corresponds to 370 

two coefficients being equal, A
a
=A

b
=a3, the minimum value, and the right-hand vertical boundary 371 

corresponds to two coefficients A
b
=A

c
=a1, the maximum value. The right-hand lower corner represents an 372 

isotropic crystal. 373 

  374 

Figure 7: Convergence of the results for a) Atot, b) A
a
, c) A

b
 and d) A

c
, as a function of the sample size in 375 

a synthetic experiment. Data were synthesized from the model A=(1.89,45.6,80.94) and random noise 376 
from a uniform distribution with Δ=1 was added. Red squares show the maximum likelihood estimates 377 
described in this paper, whereas blue circles show the results from the method of Sambridge et al. (2008), 378 
which assumes exact data. The horizontal lines are the known correct values. 379 

  380 

Figure 8: Convergence of the results for a) Atot, b) A
a
, c) A

b
 and d) A

c
, as a function of the sample size. 381 

Red squares show the maximum likelihood estimates described in this paper, whereas blue circles show 382 
the results from the method of Sambridge et al. (2008), which assumes exact data. The horizontal lines 383 
are the values estimated by polarised analysis and are themselves subject to errors that were not 384 
determined. 385 

  386 

Figure 9: Conditional probability of one variable when the other two parameters are set to their maximum 387 
likelihood values. Thus p(a1|Q,â2,â3)  is a slice through the joint pdf at fixed (â2,â3). a) p(a1|Q,â2,â3) . 388 

b) p(a2|Q,â1,â3) . c) p(a3|Q,â1,â2) . In the case of a1 we see the effect of the positivity constraints: the 389 

maximum likelihood is achieved on the line a1=a2+a3 (upper boundary of Figure (6)), so that A
a
 is 390 

estimated to be zero. 391 
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(a) (b)

Figure 1: (a) Histogram showing the frequency distribution of 600 binned synthetic data for a problem where the principal absorbances are

Aa = 1.89, Ab = 45.6 and Ac = 80.94, giving theoretical values a1 = 23.75, a2 = 41.42 and a3 = 63.27. There is a peak in the

distribution around the middle value of a2 = 41.42. The maximum and minimum values observed (indicated on each plot as “max” and “min”

respectively) will generally never agree with these true values for a finite dataset; here the observed values are only slightly biased from the true

extrema (downwards by .09 for the maximum and upwards by .06 for the minimum). (b) Histogram showing the frequency distribution of 600

binned synthetic data for a problem where the principal absorbances are Aa = 2, Ab = 2 and Ac = 80.94, giving a1 = 41.47, a2 = 41.47

and a3 = 2. Note that in this case of having two principal absorbances equal, the maximum of the frequency distribution is systematically

skewed towards one extremum.

44.15967 49.92802 43.72898 34.96102 37.11223 48.20369 44.02242 32.64254

39.17191 39.30958 41.48838 60.79360 27.77383 62.43976 42.75821 30.67905

61.95585 25.06300 33.80495 42.13757 36.95285 29.79391 26.66335

Table 1: The 23 synthesized Q values for the model with (Aa, Ab, Ac) = (1.89, 45.6, 80.94).
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Figure 2: Plotted on the sphere are the level lines of Q for the case a = (3, 2, 1). The z-axis (vertical) is surrounded by almost circular

contours. In this right-handed coordinate system, the value Q = 2 occurs along the y-axis (the negative y-axis is facing the reader) and defines

two separate contours encircling the sphere, while the x-axis on the right is surrounded by highly elliptical contours.

Figure 3: The pdf Φ(Q0) for a = (3, 2.5, 1). Note there exists a logarithmic singularity on this plot at Q = a2 (plotted values are truncated for

visual clarity). Despite the singularity introducing a narrow infinite spike in the pdf, the integral remains finite yielding a sensible probability

distribution.
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Figure 4: Likelihood p(a2|Q, a1, a3) for the test dataset with N = 23 points, showing the presence of N logarithmic singularities at a2 = Qi.

The amplitudes of singularities are truncated for visual clarity.

a) b) c)

Figure 5: Probability p(Q|a) for a = (3, 2.5, 1) and a) Δ = 0.01 b) Δ = 0.05 and c) Δ = 1. The pdf is now entirely regular.

Figure 6: For a given value of a2, the figure shows the allowed region (shaded) of (a1, a3) space that satisfies the inequalities required to

guarantee positivity of the principal absorbances. The upper diagonal boundary corresponds to Aa = 0 and two other coefficients non-zero;

the lower boundary corresponds to two coefficients being equal, Aa = Ab = a3, the minimum value, and the right-hand vertical boundary

corresponds to two coefficients Ab = Ac = a1, the maximum value. The right-hand lower corner represents an isotropic crystal.
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Figure 7: Convergence of the results for a) Atot, b) Aa, c) Ab and d) Ac, as a function of the sample size in a synthetic experiment. Data were

synthesized from the model A = (1.89, 45.6, 80.94) and random noise from a uniform distribution with Δ = 1 was added. Red squares show

the maximum likelihood estimates described in this paper, whereas blue circles show the results from the method of Sambridge et al. [2008],

which assumes exact data. The horizontal lines are the known correct values.
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Figure 8: Convergence of the results for a) Atot, b) Aa, c) Ab and d) Ac, as a function of the sample size. Red squares show the maximum

likelihood estimates described in this paper, whereas blue circles show the results from the method of Sambridge et al. [2008], which assumes

exact data. The horizontal lines are the values estimated by polarised analysis and are themselves subject to errors that were not determined.

a) b) c)

Figure 9: Conditional probability of one variable when the other two parameters are set to their maximum likelihood values. Thus

p(a1|Q, â2, â3) is a slice through the joint pdf at fixed (â2, â3). a) p(a1|Q, â2, â3). b) p(a2|Q, â1, â3). c) p(a3|Q, â1, â2). In the case

of a1 we see the effect of the positivity constraints: the maximum likelihood is achieved on the line a1 = a2 + a3 (upper boundary of

Figure (6)), so that Aa is estimated to be zero.




