1	Author fixed this file based on the PDF also attached. Insert words in blue and fix notes in
2	yellow.
3	Revision 7
4	
5	The uppermost mantle section below a remnant proto-Philippine Sea island
6	arc: Insights from the peridotite fragments from the Daito Ridge
7	Tomoaki Morishita ^{1,2,*} , Ken-Ichiro Tani ³ , Yusuke Soda ^{1,4} , Akihiro Tamura ¹ ,
8	Tomoyuki Mizukami ¹ , and Biswajit Ghosh ^{1,5}
9	
10	¹ School of Natural System, College of Science and Engineering, Kanazawa
11	University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
12	² Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964,
13	USA
14	³ National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba-shi, Ibaraki
15	305-0005, Japan
16	⁴ Department of Geosciences, Osaka City University, Osaka 558–8585, Japan
17	⁵ Department of Geology, University of Calcutta, 35 Ballygunge Circular Road,
18	Kolkata 700019, India
19	
20	* E-mail: tomo_make_a_wish@icloud.com
21	
22	
23	ABSTRACT
24	The Amami Plateau, Daito Ridge, and Oki-Daito Ridge of the northwestern

25	Philippine Sea Plate are remnants of Mesozoic island arcs. We have newly
26	recovered samples of peridotite and peridotite-derived minerals from the Daito
27	Ridge. The peridotite samples are composed of serpentinized/altered olivines,
28	orthopyroxene porphyroclasts, small clinopyroxenes and spinels, indicating a
29	harzburgitic origin. Chondrite- and primitive mantle-normalized trace element
30	patterns for clinopyroxenes are characterized by a steep positive slope from middle
31	rare earth elements to heavy rare earth elements (HREEs) plus yttrium. The light
32	rare earth elements (LREEs) and Sr and Zr contents of clinopyroxenes vary in
33	abundance, and some crystals have high LREE/HREE ratios coupled with positive
34	Sr and Zr anomalies. These petrological and geochemical characteristics are not
35	consistent with the Daito peridotites being the residue of a single partial melting
36	event including melt extraction expected for mid-ocean ridge mantle. Instead, the
37	peridotite source must have been enriched with slab-derived components, which are

38	associated with arc-related magma. Thus, it is concluded that the studied peridotite
39	fragments belong to an exhumed mantle section of a remnant proto-Philippine Sea
40	island arc.
41	Keywords: Philippine Sea Plate, Daito Ridge, remnant arc, peridotite, slab-derived
42	components, melting model
43	
44	INTRODUCTION
45	The Philippine Sea Oceanic Plate has a complex architecture comprising
46	several geotectonic domains, including three back-arc basins: the West Philippine
47	Basin, the Parece Vela Basin, and the Shikoku Basin (Lallemand 2016, Wu et al.
48	2016, and references therein). These back-arc basins, together with the
49	Izu-Bonin-Mariana (IBM) Arc system, were formed following the initiation of
50	subduction of the Pacific Plate under the Philippine Sea Plate at ~ 52 Ma (Ishizuka
51	et al. 2011). Although the IBM Arc is one of the most studied intra-oceanic arcs,

52	little is known	about the	proto-Philippine	Sea	Plate	that	existed	along	the	Pacific
53	Plate margin.									

54	Cretaceous rocks have been reported in WNW-ESE trending sub-parallel
55	ridges (the Amami Plateau, the Daito Ridge, and the Oki-Daito Ridge and Plateau;
56	herein referred to collectively as the Daito Ridges) that line up from the north to
57	south across the northwestern Philippine Sea Plate (Hickey-Vergas 2005; Ishizuka et
58	al. 2011) (Fig. 1). Geophysical data indicate a total crustal thickness of 15-25 km in
59	the Daito Ridge area (Nishizawa et al. 2014), making it an ideal location to
60	reconstruct the tectonic evolution of the proto-Philippine Sea Plate.
61	Serpentinites and their minerals, such as chromian spinel and
62	clinopyroxene, have been recovered from the Daito Ridge in the past (Site 445 in
63	Fig. 1) (Yuasa and Watanabe 1977; Tokuyama et al., 1980), but their origin has
64	remained unclear. To further explore the architecture of the proto-Philippine Sea

65	Plate, we conducted sampling and direct observations of the Daito Ridges region
66	during two expeditions operated by the Japan Agency for Marine-Earth Science and
67	Technology (JAMSTEC). The first expedition (YK10-04) of the R/V YOKOSUKA
68	used a manned-submersible (SHINKAI 6500) coupled with a deep-tow camera
69	survey, and the second expedition (KR13-15) used a remotely operated vehicle
70	(KAIKO 66 7000II). An exposed deep-crustal section of gabbroic, granitic, and
71	metamorphic rocks was discovered, along with volcanic rocks ranging from basaltic
72	to andesitic in composition. These findings are consistent with the proposed arc
73	origin of the Daito Ridge region (Tokuyama, 1995; Hickey-Vargas, 2005; Ishizuka
74	et al., 2011). Geochemical and age data for igneous and metamorphic rock samples
75	collected from the ridge will be reported in a separate communication. Samples of
76	serpentinite were recovered from the Daito Ridge (location 7K611 in Fig. 1) during
77	the KR13-15 cruise. In this paper, we focus on these newly recovered samples and

78 discuss their origin in the context of the tectonic evolution of the Philippine Sea

79 Plate.

80 GEOLOGICAL BACKGROUND AND SAMPLE DESCRIPTIONS

81	The Philippine Sea Plate has a lozenge shape, with dimensions of ~3400
82	km from north to south and ~ 2600 km from east to west. Previous studies have
83	shown that it has experienced a complex tectonic evolution (e.g., Uyeda and Ben
84	Avraham 1972; Hilde and Lee 1984; Seno and Maruyama 1984; Hickey-Vargas
85	1991; Hall et al. 1995; Okino et al. 1999; Lallemand 2016; Wu et al. 2016). To the
86	northwest, the Philippine Sea Plate is subducting below the Eurasian Plate along the
87	Ryukyu Trench, up to the Nankai Trough. To the east, the Pacific Plate is subducting
88	below the Philippine Sea Plate, resulting in the formation of the IBM Arc. In the
89	southern part of the Philippine Sea Plate, a small divergent segment, the Ayu Trough,
90	is present. In addition, the plate hosts two back arc basins: the Eastern Shikoku and

91	Parece Vela basins, which opened during the Neogene (Karig 1971; Uyeda and Ben
92	Avraham 1972). The Daito Ridges itself has been interpreted as a remnant
93	Cretaceous-age segment of an island arc (Tokuyama 1995; Hickey-Vargas 2005;
94	Ishizuka et al. 2011).
95	Shiki et al. (1977) summarized the results of early 1970s cruise
96	expeditions to the northwestern Philippine Sea, and documented arc-type igneous
97	rocks and metamorphic schists (up to epidote-amphibolite facies) in the Daito Ridge
98	region, which they attributed to pre-Cenozoic island-arc activitiy. Yuasa and
99	Watanabe (1977) reported serpentinites, hornblende schist, and tremolite schist from
100	the Daito Ridge area, with the serpentinites consisting of mesh-structure serpentine,
101	green spinel, and magnetite, with small amounts of clinopyroxene. Tokuyama et al.
102	(1980) reported detrital minerals such as chromian spinel, diopside, and enstatite at
103	DSDP Site 445 (Daito Ridge), which were likely derived from serpentinized

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030

104 peridotites.

105	The samples of the present study are characterized by peridotitic clasts
106	and the peridotite-derived minerals, such as orthopyroxene, spinel, and
107	clinopyroxene, cemented in a matrix consisting predominantly of carbonate
108	minerals (Fig. 2; Supplementary Appendix Fig A1.). Although the peridotitic
109	fragments are typically highly serpentinized/altered to dark brown-colored minerals,
110	they still contain fresh crystals of orthopyroxene, clinopyroxene, and spinel (Fig. 2).
111	Tremolite is locally associated with the orthopyroxene.
112	MINERAL CHEMISTRY
113	Analytical Methods
114	Major-element compositions of minerals (Tables 1-3 and Tables S1-S3 in
115	the Supplementary material) were determined using an electron probe
116	micro-analyzer (EPMA, JEOL JXA-8800 Superprobe) at Kanazawa University,

117	Japan. The analyses were performed with an accelerating voltage of 15 kV and a
118	beam current of 20 nA, using a 3 μ m beam diameter. Natural and synthetic mineral
119	standards were used for calibration, and JEOL software using ZAF corrections was
120	employed for data reduction. In-house mineral standards (olivine, chromian spinel,
121	diopside, and K-feldspar) were measured repeatedly to monitor data quality. The
122	measured concentrations in these minerals were consistent with the averaged values
123	from long-term analyses, being within one standard deviation for every element.
124	Data precision, which was established through multiple analyses of one point in the
125	house-prepared standard minerals, was better than 5% and 10 % relative standard
126	deviation from the averaged values for elements with abundances of > 0.5 wt. %
127	and < 0.5 wt. %, respectively. Details of the EPMA analyses can be found in
128	Morishita et al. (2003).

Rare earth element (REE) and trace element (Li, Ti, Sr, Y, Zr, and Nb)

130	compositions of orthopyroxene and clinopyroxene were determined using 193 nm
131	ArF excimer laser ablation-inductively coupled plasma-mass spectrometry
132	(LA-ICP-MS) at Kanazawa University (Agilent 7500S equipped with MicroLas
133	GeoLas Q-plus; Ishida et al. 2004). Clinopyroxenes and orthopyroxenes were
134	analyzed by ablating 50-90 μm and > 90 μm spot diameters, respectively, at 8 Hz.
135	The NIST SRM 612 standard was used as the primary calibration standard and was
136	analyzed at the beginning of each batch consisting of $n \leq 8$ unknowns, with a linear
137	drift correction applied between each calibration. The element concentrations of
138	NIST SRM 612 for the calibration were selected from the preferred values of Pearce
139	et al. (1997). Data reduction was facilitated using ²⁹ Si as an internal standard, based
140	on Si contents obtained by EPMA following the protocol essentially identical to that
141	outlined by Longerich et al. (1996). NIST SRM 614 was analyzed for quality
142	control during measurement. The measured concentrations in NIST SRM 614 glass,

143	which is a synthetic silicate glass with a nominal concentration of 1 ppm for 61
144	elements including REEs, were consistent with previously reported values to within
145	10 % relative standard deviation, and the data precision was better than 10 $\%$
146	relative standard deviation for all the analyzed elements. Details of the analytical
147	method and data quality control are given by Morishita et al. (2005a, b).
148	Representative trace-element compositions of clinopyroxenes and orthopyroxenes
149	in the studied samples are listed in Table 3.
150	Results
151	The Cr# (= Cr/(Cr + Al) atomic ratio), Mg# (= Mg/(Mg + Fe ²⁺) atomic
152	ratio), and YFe^{3+} (= 100 $Fe^{3+}/(Cr + Al + Fe^{3+})$ atomic ratio) values of spinel in the
153	studied samples are 0.37-0.52, 0.56-0.68 and < 2.2 , respectively (Fig. 3). The TiO ₂
154	content of spinel is commonly below the detection limit (< 0.05 wt. %).
155	The Mg# (= Mg/(Mg + Fe ^{total}) atomic ratio), Al ₂ O ₃ , and TiO ₂ content of

156	orthopyroxene are 0.91-0.92, 2.0-2.6 wt.%, and < 0.05 wt.%, respectively.
157	Chondrite-normalized REE patterns for orthopyroxenes show an abrupt decrease
158	from heavy REEs (HREEs) to middle REEs (MREEs) (Fig. 4a). Middle and light
159	REEs (LREEs) are generally below the detection limit. Some of the clinopyroxenes
160	exhibit positive Zr and Sr anomalies (Fig. 4b).
161	The Mg# and Al_2O_3 content of clinopyroxene are 0.94-0.95 and 1.0-2.6
162	wt.%, respectively. The TiO ₂ and Na ₂ O contents of clinopyroxene are low, at < 0.05
163	and < 0.1 wt.% respectively. Chondrite-normalized REE patterns for clinopyroxenes
164	show an abrupt decrease from HREEs to MREEs, and MREEs are generally below
165	the detection limit (Fig. 4a). Clinopyroxene shows variations in LREEs, Sr and Zr
166	concentrations. Some of the clinopyroxenes exhibit high LREE/HREE ratios
167	coupled with low abundances of MREEs (lower than the detection limit), resulting
168	in roughly V-shaped REE patterns and are Zr and Sr positive anomalies (Fig. 4b).

169	The partition coefficients of HREEs and Y between clinopyroxene and
170	orthopyroxene are consistent with those in earlier studies (Table S4 in the
171	Supplementary Material) (Ozawa and Shimizu 1995; Kelemen et al. 2003; McDade
172	et al. 2003a, b), indicating chemical equilibrium with regard to these elements.
173	DISCUSSION
174	Protolith of the studied peridotite fragments
175	The protolith of the studied peridotite fragments prior to
176	serpentinization/alteration was harzburgitic, as evident from the presence of
177	coarse-grained orthopyroxene porphyroclasts with minor amounts of clinopyroxene
178	and spinel, together with the serpentinized/altered olivines, as the dominant
179	minerals. Another line of evidence supporting a pre-serpentinization harzburgite
180	lithology is the reasonably high Cr # of the spinel in each sample (Fig. 3b). Major
181	element compositions of the Daito peridotite minerals overlap with those from

182	abyssal peridotites recovered from the mid-ocean ridges and fore-arc settings (Figs.
183	3 and 5). Therefore, it is not possible to use major element compositions of minerals
184	to constrain the tectonic setting from which the studied samples originated.
185	However, the trace element compositions of clinopyroxene does yield information
186	regarding the tectonic setting and/or magmatic processes experienced by the studied
187	samples, as explained below.
188	Comparison with other peridotites
189	Figure 6 compares the trace element compositions of clinopyroxenes in
190	the studied samples with that of other spinel peridotite samples analyzed in previous
191	studies. Geochemical data from peridotites with plagioclase and/or gabbroic veins
192	in previous works are not included for further discussions because
193	plagioclase-bearing (and/or gabbroic vein-bearing) peridotites undergo significantly
194	chemical alteration when they interact with melts during the formation of

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030

195 plagioclases/gabbroic veins (e.g., Ohara, 2006).

196	The Daito clinopyroxenes are characterized by higher LREE/HREE ratios
197	and Sr contents than those of back-arc peridotites from the Philippine Sea Plate
198	(Ohara et al., 2002, 2003). The Zr and Sr are enriched relative to elements with
199	similar compatibility in some Daito clinopyroxenes (Fig. 4b). Figure 7 compares the
200	primitive-mantle-normalized Sr/Yb and Zr/Yb ratios in the Daito clinopyroxenes
201	with those of peridotite samples analyzed in other studies. The Yb content of
202	clinopyroxene in residual peridotites is a good indicator of the degree of partial
203	melting (e.g., Hellebrand et al., 2001). The Sr/Yb and Zr/Yb ratios decrease as the
204	degree of simple partial melting (e.g., fractional melting) increases. Clinopyroxenes
205	from the Izu-Bonin-Mariana fore-arc peridotites (Parkinson and Pearce 1998) and
206	the Hess Deep (Dick and Natland 1996) do not exhibit Zr enrichment, with the
207	exception of one sample from the Hess Deep that has geochemical characteristics

208	similar to	those	of the	Daito	clinopyroxenes	(Figs.	6 and 7).	. Elevated	Sr and Zr
						(

209 concentrations are also observed in some Josephine Ophiolite peridotite samples,

210 which are thought to represent residual mantle after flux melting in a subduction

211 zone (e.g., Le Roux et al., 2014; Figs. 6 and 7).

212 Magmatic processes deduced from geochemical modeling

Here we discuss the magmatic processes that the samples are inferred to

214 have undergone, based on geochemical modeling using the trace element

215 compositions of clinopyroxenes. The trace element compositions of clinopyroxenes,

- 216 in terms of LREE/HREE ratios and Sr content, are distinct from the residue after a
- single episode of fractional melting and melt extraction (Figs. 7 and 8), when
- 218 compared with typical residual peridotites that formed by decompression melting
- 219 (e.g., at a mid-ocean ridge). In addition, the positive Zr spike in clinopyroxene is a
- 220 unique characteristic of the studied samples (Figs. 5b and 7).

221	We modeled the clinopyroxene trace element patterns using 1) an
222	open-system melting model, in which the input and output of fluids/melts are
223	associated with partial melting and melt extraction of the peridotite itself (Ozawa
224	and Shimizu, 1995; Ozawa, 2001); and 2) a simplified plate model, in which porous
225	fluid/melt flow through mantle rocks is simulated by fluid/melt transfer from one
226	cell to another (e.g., Akizawa et al. (2016) after Varnières et al. (1997)). The melting
227	conditions and parameters used in the models are summarized in Table 4.
228	First, we estimated the flux composition using the open-system melting
229	model formulated by Ozawa (2001). As shown below, several parameters in the
230	melting model were adjusted to obtain the best possible results. To meet the
231	requirement of a steep gradient in REE distribution from MREEs to HREEs plus Y
232	(compare Fig. 8a and 8b), we assumed that the starting composition was a residue
233	following 5 % fractional melting of a depleted MORB mantle (DMM) (Workman

234	and Hart 2005) under pressure-temperature conditions of the garnet peridotite
235	stability field (first-stage melting). Melting proportions for the garnet peridotite are
236	as follows: 0.045 olivine + 0.965 clinopyroxene + 0.14 garnet = 0.14 orthopyroxene
237	+ 1 melt (simplified after Walter, 1998). Then, the mineral mode for the garnet
238	stability conditions was converted to spinel peridotite based on the following
239	reaction: 3 orthopyroxene + 1 clinopyroxene + 1 spinel = 4 garnet + 1 olivine
240	(Takazawa et al. 1996). A total of 13 % melting was used for the second-stage
241	melting (flux-induced open system melting). Melting proportions for the
242	second-stage open system melting are as follows: 1 melt = 0.05 spinel + 0.45
243	orthopyroxene + 0.75 clinopyroxene - 0.25 olivine (simplified after Kinzler and
244	Grove, 1992). Influx composition with regard to La, Ce, Sr and Zr concentrations
245	was manipulated to match the analytically obtained values, assuming open-system
246	melting under the following conditions: 1) the presence of a critical melt fraction in

247	the system, at which the system becomes open to melt separation at a constant rate
248	of α =0.05; and 2) a dimensionless influx rate (influxed mass fraction of the initial
249	solid, divided by the degree of melting) of $\beta = 1$. The effect of trapped melt
250	crystallization was not considered. In contrast, influx compositions for HREEs plus
251	Y and Ti were assumed to be 0.002 times (except for $Sm = 0.005$ times) the
252	primitive mantle values. The calculated influx composition is characterized by high
253	LREE/HREE ratios, with positive Sr and Zr spikes (Fig. 8c). Of note, positive Zr
254	spikes are associated with boninites (Cameron et al. 1983; Bloomer et al. 1987;
255	Taylor et al. 1994; Li et al. 2013). Li et al. (2013) inferred a slab origin (via flux
256	melting) for boninites exhibiting a positive Zr spike from the Izu-Bonin-Mariana
257	Arc.
258	We have also estimated the composition of clinopyroxene composition by

259 modeling the second-stage open-system melting of the residual peridotites

260	following first-stage melting under the conditions stated above. We used the flux
261	composition of Li et al. (2013), which was estimated for slab-derived melts. The
262	conditions used for influx melting were as follows: degree of partial melting = 13% ,
263	$\alpha = 0.02$ and $\beta = 0.02$. Our calculation suggests that the observed positive Zr spike
264	in clinopyroxenes could be qualitatively reproduced by interaction with a
265	Zr-enriched slab-derived influx component under reasonable melting parameters.
266	However, the steep MREE-HREE gradient could not be accurately reproduced (Fig.
267	8d).
268	The clinopyroxenes (and orthopyroxenes) observed in thin sections show
269	a wide range of trace element compositions. Clinopyroxenes in a single thin section
270	might be derived from several peridotite samples because the studied samples are
271	aggregates of small peridotite fragments (Fig. 2). Although the special distribution
272	of the samples is not clear, this small-scale variation could be explained by the

273	percolation of fluids/melts through the peridotites. We tested this theory by applying
274	the plate model (Akizawa et al. 2016, simplified from Varnières et al. 1997:) to
275	simulate the chemical characteristics of the Daito clinopyroxenes. The chemical
276	compositions of percolating melt changes with increasing cell numbers, j , of the
277	percolation column, according to the following equation: $C_{\text{melt }j} = (C_{\text{melt }(j-1)} + \alpha_j C_{\text{cpx}})$
278	$_{0})/(1 + D\alpha_{j})$. The initial trace element composition of the percolating melt (C _{melt 0})
279	and initial clinopyroxene $(C_{cpx\ 0})$ are the same as those used in the open-system
280	melting model (taken from Li et al., 2013). The residue after 13 % fractional
281	melting under conditions of the stability of spinel peridotite is assumed to be formed
282	from a residual following 5 % fractional melting under the stability conditions of
283	garnet peridotite (Fig. 8b). We assume that the percolating melt/fluid mass ratio
284	decreases gradually away from the location where the melt-rock reaction was
285	initiated. The clinopyroxene/melt mass ratio (αj) is assumed to change from $\alpha_I = 1$

286	to $\alpha_j = 2 \times (j - 1) (j > 1)$. Positive Sr and Zr anomalies in clinopyroxenes are
287	observed in reacted columns that are located far from the first percolating column
288	(Figs. 8e and f).
289	In conclusion, both open-system melting and plate models with Sr- and
290	Zr-enriched fluids/melts, which considered representative of slab-derived melts, can
291	qualitatively reproduce the chemical characteristics of the Daito clinopyroxenes,
292	implying that the Daito peridotites were formed in an island arc environment. These
293	results support the theory that the Daito Ridge region represents a section of the
294	uppermost mantle to the lower crust from a remnant arc of the proto-Philippine Sea
295	Plate.
296	IMPLICATIONS
297	Newly recovered peridotite samples from the Daito Ridge are of subarc
298	origin. Our results, coupled with acquisition of granitic samples from the Daito

299	Ridges, suggest that the Daito Ridge represents an exposed mantle section of the
300	proto-Philippine Sea Plate. This raises the question of how the uppermost mantle
301	section of island arc was brought to the ocean floor without having been thrust there
302	during plate convergence, as occurs during ophiolite obduction. Further detailed
303	investigation of the studied samples, plus similar samples from ophiolites, is needed
304	to enhance our understanding of such mantle section and their exhumation.
305	
306	ACKNOWLEDGEMENTS
306 307	ACKNOWLEDGEMENTS We are grateful to Captains Ukekura and Nakamura, the crews of the <i>Yokosuka</i> and
306 307 308	ACKNOWLEDGEMENTS We are grateful to Captains Ukekura and Nakamura, the crews of the <i>Yokosuka</i> and <i>Kairei</i> , and the <i>SHINKAI</i> and <i>KAIKO</i> teams who contributed to the success of the
306 307 308 309	ACKNOWLEDGEMENTS We are grateful to Captains Ukekura and Nakamura, the crews of the <i>Yokosuka</i> and <i>Kairei</i> , and the <i>SHINKAI</i> and <i>KAIKO</i> teams who contributed to the success of the cruises. Sumiaki Machi and Makoto Miura supported sample preparation and
306 307 308 309 310	ACKNOWLEDGEMENTS We are grateful to Captains Ukekura and Nakamura, the crews of the <i>Yokosuka</i> and <i>Kairei</i> , and the <i>SHINKAI</i> and <i>KAIKO</i> teams who contributed to the success of the cruises. Sumiaki Machi and Makoto Miura supported sample preparation and analyses. Valuable comments from Alessio Sanfilippo, anonymous reviewers and

- 312 Grants-in-Aid for Scientific Research from the Ministry of Education Culture,
- 313 Sports, Science and Technology of Japan, awarded to TM (Nos. 26287134 and
- 314 16H05741), and KT (No. 24684037).

- 317 **REFERENCES CITED**
- Akizawa, N., Ozawa, K., Tamura, A., Michibayashi, K., and Arai, S. (2016)
 Three-dimensional evolution of melting, heat and melt transfer in ascending
 Mantle beneath a aast-spreading ridge segment constrained by trace elements in
 clinopyroxene from concordant dunites and host harzburgites of the Oman
 ophiolite. Journal of Petrology, 57, 777-814.
- Bloomer, S.H., and Hawkins, J.W. (1987) Petrology and geochemistry of boninite
 series volcanic rocks from the Mariana trench. Contributions to Mineralogy and
 Petrology, 97, 361-377.
- Cameron, W.E., McCulloch, M.T., and Walker, D.A. (1983) Boninite petrogenesis:
 chemical and Nd-Sr isotopic constraints. Earth and Planetary Science Letters,
 65, 75-89.
- Dick, H.J.B., and Natland, J.H. (1996) Late-stage melt evolution and transport in the
 shallow mantle beneath the East Pacific Rise. Proceedings of the Ocean
 Drilling Program, 147 Scientific Results, 103-134.
- Gaetani, G.A., and Grove, T.L. (1998) The influence of water on melting of mantle
 peridotite. Contributions to Mineralogy and Petrology, 131, 323-346.
- Hall, R., Ali, J.R., Anderson, C.D., and Baker, S.J. (1995) Origin and motion history
 of the Philippine Sea Plate. Tectonophysics, 251, 229-250.
- Hellebrand, E., Snow, J.E., Dick, H.J.B and Hofmann, A.W. (2001) Coupled major
 and trace elements as indicators of the extent of melting in mid-ocean-ridge
 peridotites. Nature, 410, 677-681.
- 339 Hickey-Vargas, R. (1991) Isotope characteristics of submarine lavas from the
- 340 Philippine Sea: implications for the origin of arc and basin magmas of the
- 341 Philippine tectonic plate. Earth and Planetary Science Letters, 107, 290–304.

- Hickey-Vargas, R. (2005) Basalt and tonalite from the Amami Plateau, northern
 West Philippine Basin: new early Cretaceous ages and geochemical results, and
 their petrologic and tectonic implications. The Island Arc, 14, 653-665.
- Hilde, T.W.C., and Lee, C.-S. (1984) Origin and evolution of the west Philippine
 basin: a new interpretation. Tectonophysics, 102, 85-104.
- Ishizuka, O., Taylor, R.N., Yuasa, M., and Ohara, Y. (2011) Making and breaking an
 island arc: a new perspective from the Oligocene Kyushu-Palau arc, Philippine
 Sea. Geochemistry Geophysics Geosystems,
 Q05005,doi:10.1029/2010GC003440.
- Karig D.E. (1971) Origin and development of marginal basins in the western Pacific.
 Journal of Geophysical Research, 76, 2542–2561.
- Kelemen, P.B., Yogodzinski, G.M. and Scholl, D.W. (2003) Along-strike variation in
 the Aleutian Island Arc: Genesis of high Mg# andesite and implications for
 continental curst. Geophysical Monograph 138, 223-276.
- Kinzler, R.J., and Grove, T.L. (1992) Primary magmas of mid-ocean ridge basalts 1.
 Experiments and Methods. Journal of Geophysical Research, 97, 6885-6906.
- Klein, G.dV., and Kobayashi, K. (1980) Geological summary of the north Philippine
 Sea, based on Deep Sea Drilling Project Leg 58 results. Initial Reports of the
 Deep Sea Drilling Project, 58, 951-961.
- Lallemand, S. (2016) Philippine Sea Plate inception, evolution, and consumption
 with special emphasis on the early stages of Izu-Bonin-Mariana subduction.
 Progress in Earth and Planetary Science, 3, doi:10.1186/s40645-016-0085-6.
- Le Roux, V., Dick, H.J.B., and Shimizu, N. (2014) Tracking flux melting and melt
 percolation in supra-subduction peridotites (Josephine ophiolite, USA).
 Contributions to Mineralogy and Petrology, 168, 1064, doi:
 10.1007/s00410-014-1064-9.

- 368 Li, Y.-B., Kimura, J.-I., Machida, S., Ishii, T., Ishiwatari, A., Maruyama, S., Qiu,
- 369 H.-N., Ishikawa, T., Kato, Y., Haraguchi, S., Takahashi, N., Hirahara, Y., and
- 370 Miyazaki, T. (2013) High-Mg Adakite and Low-Ca Boninite from a Bonin
- Fore-arc Seamount: Implications for the Reaction between Slab Melts andDepleted Mantle. Journal of Petrology, 54, 1149-1175.
- Longerich, H.P., Jackson, S.E., and Günther, D. (1996) Laser ablation inductively
 coupled plasma mass spectrometric transient signal data acquisition and analyte
 concentration calculation. Journal of Analytical Atomic Spectrometry, 11,
 899-904.
- Loocke, M., Snow, J.E., and Ohara, Y. (2013) Melt stagnation in peridotites from
 the Godzilla Megamullion Oceanic Core Complex, Parece Vela Basin,
 Philippine Sea. Lithos, 182-183.
- McDade, P., Blundy, J.D., and Wood, B.J. (2003a) Trace element partitioning on the
 Tinaquillo Lherzoltie solidus at 1.5 GPa. Physics of the Earth and Planetary
 Interiors, 139, 129-147.
- McDade, P., Blundy, J.D., and Wood, B.J. (2003b) Trace element partitioning
 between mantle wedge peridotite and hydrous MgO-rich melt. American
 Mineralogist, 88, 1825-1831.
- McDonough, W.F., and Sun, S.-s. (1995) The composition of the Earth. Chemical
 Geology, 120, 223-253.
- Morishita, T., Arai, S., and Tamura, A. (2003) Petrology of an apatite-rich layer in
 the Finero phlogopite-peridotite, Italian Western Alps; implications for
 evolution of a metasomatising agent. Lithos, 69, 37-49.
- 391 Morishita, T., Ishida, Y., and Arai, S. (2005a) Simultaneous determination of
- 392 multiple trace element compositions in thin (< 30 μ m) layers of BCR-2G by
- 393 193 nm ArF excimer laser ablation-ICP-MS: implications for matrix effect and

element fractionation on quantitative analysis. Geochemical Journal, 39,395 327-40.

- Morishita, T., Ishida, Y., Arai, S., and Shirasaka, M. (2005b) Determination of
 multiple trace element compositions in thin (< 30 μm) layers of NIST SRM 614
 and 616 using laser ablation ICP-MS. Geostandard and Geoanalytical Research,
 29, 107-122.
- Morishita, T., Dilek, Y., Shallo, M., Tamura, A., and Arai, S. (2011) Insight into the
 uppermost mantle section of a maturing arc: the Eastern Mirdita ophiolite
 Albania. Lithos, 124, 215-226.
- Morishita, T., Nakamura, K., Shibuya, T., Kumagai, H., Sato, T., Okino, K., Sato, H.,
 Nauchi, R., Hara, K., and Takamaru, R. (2015) Petrology of peridotites and
 related gabbroic rocks around the Kairei hydrothermal field in the Central
 Indian Ridge, in Subseafloor Biosphere Linked to Hydrothermal Systems:
 TAIGA Concept edited by Ishibashi, J., Okino, K. and Sunamura, M., Springer,
 doi: 10.1007/978-4-431-54865-2 14.
- Nishizawa, A., Kaneda, K., Katagiri, Y., and Oikawa, M. (2014) Wide-angle
 refraction experiments in the Daito Ridges region at the northwestern end of the
 Philippine Sea plate. Earth and Planetary Science, 66,
 http://www.earth-planets-space.com/content/66/1/25.
- Ohara, Y., Stern, R. J., Ishii, T., Yurimoto, H., and Yamazaki, T. (2002) Peridotites
 from the Mariana Trough: First look at the mantle beneath an active backarc
 basin. Contributions to Mineralogy and Petrology, 143, 1–18.
- Ohara, Y., Fujioka, K., Ishii, T., and Yurimoto, H. (2003) Peridotites and gabbros
 from the Parece Vela backarc basin: Unique tectonic window in an extinct
 backarc spreading ridge. Geochemistry Geophysics Geosystems 4,
 doi:10.1029/2002GC000469.

- 420 Okino, K., Ohara, Y., Kasuga, S., and Kato, Y. (1999) The Philippine Sea: A new
 421 survey results reveal the structure and history of the marginal basins.
 422 Geophysical Research Letter, 26, 2287–2290.
- 423 Ozawa, K. (2001) Mass balance equations for open magmatic systems: trace
 424 element behavior and its application to open system melting in the upper mantle.
 425 Journal of Geophysical Research, 106, 13407-13434.
- 426 Ozawa, K., and Shimizu, N. (1995) Open-system melting in the upper mantle:
 427 constraints from the Hayachine-Miyamori ophiolite, northeastern Japan.
 428 Journal of Geophysical Research, 100, 22315-22335.
- Parkinson, I.J., and Pearce, J.A. (1998) Peridotites from the Izu-Bonin-Mariana
 Forearc (ODP Leg125): Evidence for mantle melting and melt-mantle
 interaction in a supra-subduction zone setting. Journal of Petrology, 39,
 1577-1618.
- Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R.,
 Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and
 Zemsky, R. (2009) Global multi-resolution topography synthesis. Geochemistry
 Geophysics Geosystems. 10, Q03014.
 http://dx.doi.org/10.1029/02008GC002332.
- 438 Seno, T., and Maruyama, S. (1984) Paleogeographic reconstruction and origin of the
 439 Philippine Sea. Tectonophysics, 102, 53-84.
- Shiki, T., Misawa, Y., Konda, I., and Nishimura, A. (1977) Geology and geohistory
 of the Northwestern Philippine Sea, with special reference to the results of the
 recent Japanese research cruises. Memoirs of the Faculty of Science, Kyoto
 University, Series of geology and mineralogy, 44, 67-78.
- Takazawa, E., Frey, F., Shimizu, N. and Obata, M. (1996) Evolution of the Horoman
 Peridotite (Hokkaido, Japan): Implications from pyroxene compositions.

446 Chemical Geology, 134, 3-26.

- Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B., and Croudace, I.W.
 (1994) Mineralogy, chemistry, and genesis of the Boninite series volcanics,
 Chichijima, Bonin Islands, Japan. Journal of Petrology, 35, 577-617,
 doi:10.1093/petrology/35.3.577.
- Tokuyama, H. (1995) Origin and development of Philippine Sea. in Geology and
 Geophysics of the Philippine Sea Japan-Russia-China Monograph, edited by
 Tokuyama, H. et al., Terra Scientific Publishing Company, 155-163.
- Tokuyama, H., Yusa, M., and Mizuno, A. (1980) Conglomerate and sandstone
 petrography, Deep Sea Drilling Project Site 445, Philippine Sea. Initial Reports
 of the Deep Sea Drilling Project, 58, 629-641.
- 457 Uyeda, S., and Ben Avraham, Z. (1972) Origin and development of the Philippine
 458 Sea, Nature, 40, 176–178.
- Vernières, J., Godard, M., and Bodinier, J.-L. (1997) A plate model for the
 simulation of trace element fractionation during partial melting and magma
 transport in the Earth's upper mantle. Journal of Geophysical Research, 102,
 24771–24784.
- Walter, M.J. (1998) Melting of garnet peridotite and the origin of komatiite anddepleted lithosphere. Journal of Petrology, 39, 29-60.
- Warren, J.M. (2016) Global variations in abyssal peridotite compositions. Lithos,
 248-251, 193-219.
- Workman, R.K., and Hart, S.R. (2005) Major and trace element compositions of the
 depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231,
 53-72.
- Wu, J., Suppe, J., Lu, R., and Kanda, R. (2016) Philippine Sea and East Asian plate
 tectonics since 52Ma constrained by new subducted slab⁵_{sep}reconstruction

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030

472 methods. Journal of Geophysical Research, 121, 4670–4741.

Yuasa, M., and Watanabe, T. (1977) Pre-Cenozoic metamorphic rocks from the
Daito ridge in the Northern Philippine Sea. The Journal of the Japanese
Association of Mineralogists, Petrologists and Economic Geologists, 72,
241-251.

477

FIGURE 1. (a) Bathymetric map of the Daito Ridge, prepared using GeoMapApp
(Ryan et al. 2009). (b) Enlargement of the area outlined in (a), showing the
sampling location (7K#611) of this study. The location of Site 445 of DSDP Leg 58
is also shown (Klein and Kobayashi 1980). Ayu T. = Ayu Trough, C.B.F. rift =
Central Basin Fault rift, L.O. FZ = Luzon-Okinawa Fracture Zone, Nankai T. =
Nankai Trough.

486

FIGURE 2. Typical examples of serpentinized clasts (brown-colored areas in the image) plus peridotite-derived minerals, hosted in a carbonate matrix (transparent areas). (a) Thin section of sample R08-1. (b) Photomicrograph (plane-polarized light) of a lithic clast within sample R08-1, containing spinel, orhotpyroxene, and clinopyroxene. (c) Same as in (b), but in cross-polarized light.

492

FIGURE 3. Relationship between the Mg# and Cr# of spinel. (a) Comparison with the Philippine Sea back-arc peridotites. Data are from Loocke et al. (2013) and the Dunite-type (D-type) peridotites of Ohara et al. (2003). (b) Comparison with typical mid-ocean ridge and fore-arc peridotites. The compositional ranges for mid-ocean ridge peridotites and fore-arc peridotites are compiled by Morishita et al. (2011), and those for mid-ocean ridge lherzolites and harzburgites are from Warren (2016).

499

5004. FIGURE (a) Chondrite-normalized REE patterns and (b) 501primitive-mantle-normalized trace element patterns of the Daito clinopyroxenes and 502orthopyroxenes. Chondrite and primitive mantle values are from McDonough and 503Sun (1995). The typical detection limit of elemental analyses is also shown for 50 504 μ m (+) and 90 μ m (X) diameter laser beams.

506 FIGURE 5. Relationship between the Al_2O_3 content (wt.%) in the cores of 507 orthopyroxene porphyroclasts and the Cr# in coexisting spinel. The compositional 508 ranges for mid-ocean ridge and fore-arc peridotites are from Morishita et al. (2015). 509

510FIGURE 6. Comparisons between primitive-mantle-normalized trace element 511patterns for clinopyroxenes in the studied samples (gray) and those from previous 512studies (black). The primitive-mantle values are from McDonough and Sun (1995). 513(a) Comparison with Philippine Sea back-arc peridotites, which have been modified 514to a lesser extent by melt impregnation. Data are from Ohara et al. (2002), and the 515fertile peridotites (F-type) studied by Ohara et al. (2003). (b) Comparison with 516 Izu-Bonin-Mariana fore-arc peridotites. Data are from Parkinson and Pearce (1998). 517(c) Comparison with the mantle section of the Josephine Ophiolite, Oregon, USA. 518Data are from Le Roux et al. (2014). The stippled lines represent samples that show 519anomalous trends. (d) Comparison with peridotite samples from the Hess Deep of 520 the East Pacific Rise. One sample, depicted by the dotted line, displays a similar 521trend to the Daito Ridge peridotites. Data are from Dick and Natland (1996).

522

523 FIGURE 7. Correlations between primitive-mantle-normalized Sr/Yb and Zr/Yb 524 ratios in clinopyroxenes from the Daito Ridge (this study), Izu-Bonin-Mariana 525 (IBM) fore-arc peridotites (Parkinson and Pearce, 1998), the Josephine Ophiolite 526 (Le Roux et al., 2014), and the Hess Deep (Dick and Natland, 1996). The primitive 527 mantle values are from McDonough and Sun (1995). The fractional melting trend is 528 also shown.

529

530 FIGURE 8. Observed and modeled primitive-mantle-normalized trace element

531patterns for clinopyroxene (cpx). Details of how the data were obtained are outlined 532 in the text. (a) Modeled clinopyroxene trace element compositions after fractional 533 melting under conditions of the spinel (spl) peridotite stability field. (b) Modeled 534clinopyroxene trace element compositions after fractional melting under conditions 535 of the spinel (spl) peridotite stability field, following previous fractional melting 536 under conditions of the garnet (grt) peridotite stability field. The patterns shown are for residue after 5 %, 10 %, and 15 %, and 5%, 10% and 13 % fractional melting 537 538 from depleted MORB mantle (DMM) of Workman and Hart (2005). (c) Modeled 539 influx and clinopyroxene compositions after open-system melting. (d) Modeled 540clinopyroxene compositions after influx melting under conditions of the spinel 541peridotite stability field. The influx composition, taken from Li et al. (2013), is 542estimated from slab-derived boninite melts from the Izu-Bonin-Mariana fore-arc. (e 543 and f) Modeled clinopyroxene compositions after simplified plate model. The initial trace element compositions that we used for the percolating melt and initial 544 545clinopyroxene are the same as those used in the open-system melting model (d). The percolating melt mass ratio, (αi) , decreases gradually from $\alpha_l = 1$ to $\alpha_i = 2 \times (i - 1)$ (i 546 547> 1) away from the location where the melt-rock reaction was initiated. The patterns shown are for compositions after $\alpha 1 - \alpha 7$ plate models. 548

549

550 Table 1. Averaged spinel compositions

551

552 SD = 1 sigma standard deviation, Mg# = Mg/(Mg + Fe²⁺), Cr# = Cr/(Cr + Al), 553 YFe³⁺ = Fe³⁺/(Cr + Al + Fe³⁺). Fe₂O₃ and FeO were calculated based on 554 stoichiometry.

555

556 Table 2. Representative orthopyroxene compositions

557	
558	Anal# = analytical point number, $Mg\# = Mg/(Mg + Fe^{total})$ atomic ratio, $Cr\# =$
559	Cr/(Cr + Al) atomic ratio
560	
561	Table 3. Representative clinopyroxene compositions
562	
563	Anal# = analytical point number, $Mg\# = Mg/(Mg + Fe^{total})$ atomic ratio, $Cr\# =$
564	Cr/(Cr + Al) atomic ratio, LA dia = Laser diameter, < = lower than detection limit,
565	n.a. = not analyzed
566	

567 Table 4. Melting conditions and parameters used for geochemical models

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030

568

Table 1. Averaged spinel compositions

Sample	R01		R02		R03		R08-1	
wt%	spinel	SD (n = 7)	spinel	SD (n = 3)	spinel	SD (n = 6)	spinel	SD (n = 11)
TiO ₂	< 0.05		< 0.05		< 0.05		< 0.05	0.01
AI_2O_3	33.73	2.7	30.32	2	32.14	1.4	29.96	1.7
Cr_2O_3	35.29	2.7	38.84	3.1	36.39	1.7	39.32	1.9
$Fe_2O_3^*$	2.19	0.3	1.14	1.7	1.71	0.8	0.78	0.3
FeO	13.78	0.6	15.68	0.5	16.36	0.3	16.27	0.7
MnO	0.21	0.03	0.23	0.04	0.24	0.05	0.27	0.04
MgO	15.53	0.3	13.81	0.6	13.61	0.4	13.35	0.5
CaO	< 0.03		< 0.03		< 0.03		< 0.03	
NiO	0.11	0.02	0.11	0.04	0.1	0.03	0.08	0.03
Total	100.8		100.1		100.6		100	
Mg#	0.668	0.01	0.611	0.02	0.597	0.01	0.594	0.02
Cr#	0.413	0.04	0.462	0.04	0.432	0.02	0.468	0.03
YFe ³⁺	0.024	0.003	0.013	0.02	0.019	0.009	0.009	0.003

SD = 1 sigma standard deviation

Fe₂O₃ and FeO were calculated based on stoichiometry

Mg#=Mg/(Mg+Fe²⁺); Cr#=Cr/(Cr+AI); YFe³⁺=Fe³⁺/(Cr+AI+Fe³⁺)

569

Table 2. Representative orthopyroxene compositions

Sample #	R01	R01	R02	R03	R03	R03	R08-1	R08-1
Anal #	1-67	1-68	2-135	2-101	3-102	3-125	1-44	1-10
SiO ₂	57.27	57.27	57.02	57.24	56.81	56.24	57.41	56.28
TiO ₂	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
AI_2O_3	2.46	2.43	2.51	2.17	2.40	2.55	2.21	2.34
Cr_2O_3	0.68	0.64	0.75	0.46	0.61	0.74	0.65	0.70
FeO	5.51	5.28	5.62	5.45	5.45	5.46	5.44	5.18
MnO	0.14	0.18	0.08	0.14	0.13	0.13	0.16	0.14
MgO	34.47	34.10	34.38	34.42	34.19	33.36	34.18	33.25
CaO	0.75	0.84	0.54	0.45	0.52	1.40	0.80	2.36

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2018-6030

Na ₂ O	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
K ₂ O	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
NiO	< 0.05	0.08	< 0.05	0.11	0.06	0.11	0.08	0.09	
total	101.3	100.8	100.9	100.4	100.2	100.0	100.9	100.4	
Mg#	0.918	0.920	0.916	0.918	0.918	0.916	0.918	0.920	
Cr#	0.155	0.149	0.166	0.125	0.145	0.163	0.165	0.168	
LA#	#201	#203	#101			#Y111	#112	#111	
ppm									
Ti	70.1	31.9	47.2	n.a.	n.a.	62.0	51.0	52.7	
Sr	0.005	0.039	0.149	n.a.	n.a.	0.478	0.311	0.004	
Y	0.115	0.09	0.092	n.a.	n.a.	0.124	0.089	0.082	
Zr	0.034	0.079	0.062	n.a.	n.a.	0.526	0.271	0.031	
Nb	0.040	0.041	0.040	n.a.	n.a.	0.073	0.027	0.029	
Dy	0.01	0.005	0.005	n.a.	n.a.	0.009	0.006	0.004	
Ho	0.003	0.003	0.002	n.a.	n.a.	0.006	0.003	0.003	
Er	0.024	0.019	0.017	n.a.	n.a.	0.016	0.017	0.016	
Tm	0.007	0.005	0.005	n.a.	n.a.	0.005	0.004	0.004	
Yb	0.066	0.05	0.055	n.a.	n.a.	0.058	0.050	0.048	
Lu	0.017	0.009	0.014	n.a.	n.a.	0.009	0.010	0.011	

Anal # = analytical point number, Mg# = Mg/(Mg+Fe) atomic ratio, Cr# = Cr/(Cr + AL) atomic ratio, n.a. = not analyzed

570 571

Table 3. Representative clinopyroxene compositions

Sample #	R01	R02	R02	R03	R03	R03	R08	R08	R08								
Anal #	2-69	1-75	2-76	2-78	1-79	2-81	1-86	2-91	1-95	4-137	3-142	2-99	2-105	1-115	1-23	1-25	1-51
wt %																	
SiO ₂	53.10	53.91	53.39	53.95	53.84	53.37	54.05	53.40	53.48	53.86	53.97	54.06	53.61	53.90	54.33	53.45	53.28
TiO ₂	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Al ₂ O ₃	2.69	1.70	2.89	1.62	2.77	2.10	1.70	2.50	2.55	2.10	2.21	2.33	2.12	2.21	2.06	1.98	2.24
Cr_2O_3	0.96	0.70	1.04	0.38	0.96	0.56	0.62	0.78	0.93	0.62	0.74	0.83	0.88	0.73	0.85	0.69	0.89
FeO	1.85	1.82	2.24	1.86	2.21	1.93	1.86	2.10	1.71	2.00	1.89	1.67	1.68	2.02	1.56	1.65	1.85
MnO	0.08	< 0.05	0.10	0.06	0.08	0.13	0.08	0.08	0.07	0.12	0.06	0.08	0.05	0.05	0.05	0.08	0.06

						This is	a preprint, the Cite as	final version is s Authors (Year) DOI: https://d	ubject to chang Title. American oi.org/10.2138/a	e, of the Americ Mineralogist, ir am-2018-6030	can Mineralogisi n press.	t (MSA)					
MgO	17.18	17.35	17.87	17.86	18.01	17.81	18.18	17.43	17.15	17.56	17.48	17.32	17.38	17.50	17.26	17.46	17.47
CaO	23.73	24.31	22.75	23.57	22.36	23.57	21.89	23.51	24.35	23.75	23.89	24.42	24.42	23.75	24.33	24.01	23.46
Na ₂ O	0.08	0.08	0.07	0.06	0.08	0.07	0.18	0.06	0.06	0.04	0.07	0.04	0.05	0.04	0.11	0.10	0.09
K ₂ O	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
NiO	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	0.05	0.05	< 0.05	0.05	0.05	0.06	< 0.05	0.05	< 0.05
total	99.7	100.0	100.4	99.4	100.3	99.6	98.6	99.9	100.4	100.1	100.3	100.8	100.3	100.3	100.6	99.5	99.4
Mg#	0.943	0.944	0.934	0.945	0.936	0.943	0.946	0.937	0.947	0.940	0.943	0.949	0.949	0.939	0.952	0.950	0.944
Cr#	0.193	0.215	0.195	0.135	0.189	0.152	0.198	0.174	0.197	0.166	0.183	0.193	0.218	0.181	0.216	0.189	0.210
ppm																	
LA dia (µm)	50	60	90	50	90	60	90	50	50			50	50	50	60	50	60
ppm																	
Li	5.2	6.9	7.5	5.6	5.4	5.7	6.7	6.0	4.0	n.a.	n.a.	2.8	2.4	3.1	4.2	5.3	5.7
Sc	45	54	52	51	51	53	56	54	57	n.a.	n.a.	60	61	50	50	55	48
Ti	58	66	61	130	82	78	79	68	103	n.a.	n.a.	57	64	47	121	139	90
V	139	143	150	155	153	133	126	148	166	n.a.	n.a.	164	176	159	178	173	165
Cr	6697	7277	7827	5902	7200	4737	6118	6661	8079	n.a.	n.a.	5354	6605	5330	6568	7229	7037
Со	22	19	23	25	23	21	17	23	20	n.a.	n.a.	18	18	22	20	19	20
Ni	396	337	389	368	393	349	353	399	356	n.a.	n.a.	332	324	384	347	358	370
Sr	0.21	0.55	1.40	0.17	0.10	0.33	0.70	0.20	0.76	n.a.	n.a.	0.10	0.02	0.37	0.13	0.31	0.24
Y	0.64	0.69	0.71	0.86	0.88	0.83	0.84	0.71	1.14	n.a.	n.a.	0.58	0.69	0.54	0.60	0.73	0.55
Zr	0.32	0.87	1.46	0.14	0.11	0.49	1.10	0.80	1.55	n.a.	n.a.	0.17	0.09	1.13	0.10	0.79	0.33
Nb	0.041	0.039	0.053	0.036	0.047	0.035	0.044	0.043	0.048	n.a.	n.a.	0.035	0.048	0.038	0.042	0.043	0.034
Ва	0.047	0.106	0.382	<	<	0.092	0.300	<	0.276	n.a.	n.a.	<	<	0.220	<	0.064	0.079
La	0.006	0.009	0.027	<	0.003	0.006	0.010	<	0.014	n.a.	n.a.	<	<	0.020	<	0.006	0.005
Се	0.016	<	0.026	0.008	0.010	0.007	0.011	0.012	0.017	n.a.	n.a.	<	<	<	<	<	<
Pr	<	<	0.005	<	<	0.001	0.002	<	<	n.a.	n.a.	<	<	<	<	<	<
Nd	<	<	0.019	<	<	<	0.009	<	<	n.a.	n.a.	<	<	<	<	<	<
Sm	<	<	<	<	<	<	<	<	<	n.a.	n.a.	<	<	<	<	<	<
Eu	<	<	0.003	<	<	<	<	<	<	n.a.	n.a.	<	<	<	<	<	<
Gd	<	<	<	<	<	<	<	<	<	n.a.	n.a.	<	<	<	<	<	<
Tb	<	<	0.004	<	0.004	0.003	0.004	<	0.004	n.a.	n.a.	<	<	<	<	<	<
Dy	0.051	0.064	0.067	0.074	0.072	0.065	0.069	0.059	0.102	n.a.	n.a.	0.047	0.039	0.060	0.052	0.055	0.044
Но	0.024	0.026	0.022	0.034	0.033	0.029	0.030	0.023	0.036	n.a.	n.a.	0.017	0.025	0.020	0.021	0.023	0.023

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030																
Er	0.11	0.14	0.12	0.13	0.15	0.15	0.14	0.13	0.20	n.a.	n.a.	0.10	0.14	0.10	0.12	0.12	0.09
Tm	0.019	0.026	0.021	0.032	0.030	0.030	0.027	0.026	0.039	n.a.	n.a.	0.023	0.031	0.022	0.022	0.018	0.019
Yb	0.21	0.21	0.20	0.22	0.26	0.25	0.25	0.23	0.37	n.a.	n.a.	0.20	0.24	0.18	0.20	0.20	0.17
Lu	0.031	0.036	0.036	0.039	0.047	0.039	0.041	0.037	0.062	n.a.	n.a.	0.036	0.042	0.031	0.029	0.035	0.031

Anal # = analytical point number, Mg# = Mg/(Mg+Fetotal) atomic ratio, Cr# = Cr/(Cr + AL) atomic ratio, LA dia = Laser diameter, < = lower than detection limit, n.a. = not analyzed

572

573

Table 4. Melting conditions and parameters used for geochemical models

	Open system melting			Mine	eral/melt partition	n coefficients
Starting compositions (1st stage melting)	5 % fractional melting from a D	MM at garnet peridotite condition (see Fig. 8a)		Dol/lq	Dsp/lq	Dopx/lq
			La	0.000007	0.0008	0.0025
Influx melting (2nd stage melting)			Ce	0.00001	0.0008	0.005
degree of melting	13 % from residue after	1st melting at spinel peridotite condition	Sr	0.00019	0.0008	0.007
	Estimation of influx melting	Using influx composiitons of Li et al. (2013)	Nd	0.00007	0.0008	0.01
Result	Figure 8c	Figure 8d	Zr	0.007	0.07	0.07
critical melt fraction: α	0.05	Sm	0.0007	0.0008	0.02	
dimensionless influx rate: β	1	0.02	Eu	0.00095	0.0008	0.03
Others	The effect of trapped m	nelt crystallization was not considered.	Ti	0.015	0.15	0.15
			Dy	0.004	0.0015	0.05
	Simplified plate model		Y	0.0065	0.00225	0.06
Starging compositions (see Fig. 8b)	5 % fractional melting at garnet peridotite	e then 13 % fractional melting at spinel peridotite	Er	0.009	0.003	0.07
percolating melt/fluid ratio	Gradual decreasi	ing awasy from the starting point	Yb	0.009	0.0045	0.08
	clinopyroxene/melt mass rat	tio is changed from α 1 =1, then α j= 2 (j-1)				
Result	F	igures 8e and 8f				

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030

FIGURE 1. Morishita et al.

FIGURE 2. Morishita et al.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030

FIGURE 4. Morishita et al.

FIGURE 5. Morishita et al.

Figure 7. Morishita et al.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6030

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld