Equations of state and phase boundary for stishovite and CaCl$_2$-type SiO$_2$

Rebecca A. Fischer$^{1,2,3,4,*}$, Andrew J. Campbell$^1$, Bethany A. Chidester$^{1,5}$, Daniel M. Reaman$^1$
Elizabeth C. Thompson$^1$, Jeffrey S. Pigott$^{6,7}$, Vitali B. Prakapenka$^8$, and Jesse S. Smith$^9$

$^1$University of Chicago, Department of the Geophysical Sciences, 5734 S Ellis Ave, Chicago, IL 60637, USA
$^2$Smithsonian Institution, National Museum of Natural History, Department of Mineral Sciences, PO Box 37012, MRC 119, Washington, DC 20013-7012, USA
$^3$University of California Santa Cruz, Department of Earth and Planetary Sciences, 1156 High St, Santa Cruz, CA 95064, USA
$^4$Harvard University, Department of Earth and Planetary Sciences, 20 Oxford St, Cambridge, MA 02138, USA
$^5$Now at: University of California Davis, Department of Earth and Planetary Sciences, 1 Shields Ave, Davis, CA 95616, USA
$^6$Ohio State University, School of Earth Sciences, 125 S Oval Mall, Columbus, OH 43210, USA
$^7$Now at: Case Western Reserve University, Department of Earth, Environmental, and Planetary Sciences, 10900 Euclid Ave, Cleveland, OH 44106
$^8$University of Chicago, Center for Advanced Radiation Sources, 5640 S Ellis Ave, Chicago, IL 60637, USA
$^9$High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, 9700 S Cass Ave, Argonne, IL 60439, USA
Abstract

Silica is thought to be present in the Earth’s lower mantle in subducting plates, in addition to being a prototypical solid whose physical properties are of broad interest. It is known to undergo a phase transition from stishovite to the CaCl$_2$-type structure at ~50–80 GPa, but the exact location and slope of the phase boundary in pressure-temperature space is unresolved. There have been many previous studies on the equation of state of stishovite, but they span a limited range of pressures and temperatures, and there has been no thermal equation of state of CaCl$_2$-type SiO$_2$ measured under static conditions. We have investigated the phase diagram and equations of state of silica at 21–89 GPa and up to ~3300 K using synchrotron X-ray diffraction in a laser-heated diamond anvil cell. The phase boundary between stishovite and CaCl$_2$-type SiO$_2$ can be approximately described as $T = 64.6(49)P - 2830(350)$, with temperature $T$ in Kelvin and pressure $P$ in GPa. The stishovite data imply $K'_0 = 5.24(9)$ and a quasi-anharmonic $T^2$ dependence of $-6.0(4) \times 10^{-6}$ GPa*cm$^3$/mol/K$^2$ for a fixed $q = 1$, $\gamma_0 = 1.71$, and $K_0 = 302$ GPa, while for the CaCl$_2$-type phase $K_0 = 341(4)$ GPa, $K'_0 = 3.20(16)$, and $\gamma_0 = 2.14(4)$ with other parameters equal to their values for stishovite. The behaviors of the $a$ and $c$ axes of stishovite with pressure and temperature were also fit, indicating a much more compressible $c$ axis with a lower thermal expansion as compared to the $a$ axis. The phase transition between stishovite and
CaCl$_2$-type silica should occur at pressures of 68–78 GPa in the Earth, depending on the
temperature in subducting slabs. Silica is denser than surrounding mantle material up to
pressures of 58–68 GPa, with uncertainty due to temperature effects; at higher pressures than
this, SiO$_2$ becomes gravitationally buoyant in the lower mantle.

**Keywords:** silica, SiO$_2$, stishovite, phase diagram, equation of state, phase transition, X-ray
diffraction

1. Introduction

Silica (SiO$_2$) is expected to be present in subducted mid-ocean ridge basalt in the Earth’s
lower mantle (e.g., Hirose et al. 2005). It may also occur in the D’’ layer as a result of Si and O
becoming less soluble in liquid iron as the core cools (Hirose et al. 2017), since the metal–
silicate partitioning of O and especially Si are strongly temperature dependent (e.g., Fischer et al.
2015; Tsuno et al. 2013). Despite its importance in geophysics, as well as physics and materials
science, there remains disagreement surrounding the phase diagram of silica at high pressures ($P$
and temperatures ($T$). Additionally, only limited research has been done on the thermal equation
of state for the CaCl$_2$-type phase of silica, stable under lower mantle conditions. In this study, we
focus on elucidating the location and slope of the stishovite/CaCl$_2$-type phase boundary, as well
as providing better constraints on the thermal equations of state of these important phases.

Coesite (monoclinic SiO$_2$ with space group $C2/c$) transforms to stishovite (rutile-type
SiO$_2$ with space group $P4_2/mnm$) at ~7–13 GPa and high temperatures (e.g., Zhang et al. 1996),
marking a transition in Si coordination from tetrahedral to octahedral. At lower mantle pressures,
stishovite undergoes a second order, reversible phase transition to the CaCl$_2$-type structure
(space group \textit{Pnnm}) of SiO$_2$, in which the tetragonal unit cell of stishovite distorts into an orthorhombic unit cell (Tsuchida and Yagi 1989). Reports of the location and slope of this phase boundary vary, with room temperature measurements under quasi-hydrostatic conditions on pure silica typically reporting a transition pressure of 45–55 GPa (Andrault et al. 1998; Hemley et al. 2000; Kingma et al. 1995; Nomura et al. 2010; Ono et al. 2002), in agreement with some theoretical calculations (Karki et al. 1997; Togo et al. 2008; Tsuchiya et al. 2004); the location of the phase boundary is affected by impurities such as Al and H (e.g., Lakshtanov et al. 2007). High temperature measurements indicate a positive Clapeyron slope (Akins and Ahrens 2002; Nomura et al. 2010; Ono et al. 2002) (Figure 1). The CaCl$_2$-type structure converts to seifertite (\(\alpha\)-PbO$_2$-type silica) at pressures of \(\sim\)120–140 GPa (Dubrovinsky et al. 1997; Grocholski et al. 2013), though there remains ambiguity over the precise location and slope of this phase boundary as well (Murakami et al. 2003; Shieh et al. 2005). The phase diagram of silica is known to be subject to kinetic barriers, especially at room temperature, with observations of a large number of metastable and/or amorphous phases. These kinetic inhibitions are dependent on the degree of hydrostaticity and the nature of the starting materials as well as temperature-pressure pathways (e.g., Asahara et al. 2013; Dubrovinsky et al. 2003; Haines et al. 2001; Hazen et al. 1989; Hemley 1987; Kingma et al. 1993; Prakapenka et al. 2004; Tsuchida and Yagi 1990).

The equation of state of stishovite has been measured numerous times since its discovery by Chao et al. (1962) (Supplemental Table S1 and references therein): at high pressures using diamond anvil cell (e.g., Andrault et al. 2003; Jiang et al. 2009; Panero et al. 2003; Pigott et al. 2015; Ross et al. 1990; Yamanaka et al. 2002), shock wave (e.g., Luo et al. 2002a; Lyzenga et al. 1983), large volume press (e.g., Liu et al. 1999; Nishihara et al. 2005; Wang et al. 2012), piston cylinder apparatus (e.g., Li et al. 1996), and computational (e.g., Cohen 1991; Driver et al. 2010;
Karki et al. 1997a; Luo et al. 2002b; Tsuchiya et al. 2004) methods, as well as on synthetic samples at ambient pressure (e.g., Brazhkin et al. 2005; Weidner et al. 1982; Yoneda et al. 2012). Despite the number of prior studies on the stishovite equation of state, it has previously only been measured to 54 GPa and 1700 K (Wang et al. 2012) or 50 GPa and 2400 K (Pigott et al. 2015), requiring extrapolation to apply these equations of state over the conditions of stishovite stability in the Earth.

The isothermal equation of state of CaCl$_2$-type SiO$_2$ has been previously studied in a diamond anvil cell (Andrault et al. 1998, 2003; Grocholski et al. 2013) and using computational methods (Karki et al. 1997b; Oganov et al. 2005; Yang and Wu 2014). However, the only published thermal equation of state of CaCl$_2$-type SiO$_2$ is based on a meta-analysis of shock wave literature data (Akins and Ahrens 2002). Some previous studies have instead fit a single equation of state to data on both the stishovite and CaCl$_2$-type structures (e.g., Yamazaki et al. 2014), assuming that the two phases have the same compressibility and thermal properties.

In this study, we use synchrotron X-ray diffraction in a laser-heated diamond anvil cell to determine the crystal structure and density of SiO$_2$ as a function of pressure and temperature at lower mantle conditions. This information is used to map the phase boundary between stishovite and CaCl$_2$-type SiO$_2$. By combining these data with previous results at room temperature, we construct thermal equations of state for both stishovite and CaCl$_2$-type SiO$_2$ to higher pressures (~89 GPa) and temperatures (~3300 K) than in previous work and with broader $P$-$T$ coverage.

2. Experimental methods

Symmetric-type diamond anvil cells were used to generate high pressures, with either 300 µm culet anvils or beveled anvils with 150 µm flats. Starting materials were powdered...
natural quartz and amorphous Pt (Alfa Aesar, 99.9%) in a ratio of ~2:1 by volume in two of our samples, while the third sample contained powdered natural quartz and spherical Pt (Alfa Aesar, 99.95%) in a ratio of ~3:1 by volume. Platinum was used to absorb the heating laser during the experiment; it was chosen because it is a strong laser absorber, is inert, and has a well-characterized equation of state (e.g., Dorogokupets and Oganov 2007). The quartz was measured with a scanning electron microscope and determined to contain no detectable Al. Samples composed of silica glass instead of natural quartz (but otherwise identical) did not sufficiently crystallize at high temperatures during the experiment. In each case, starting materials were mechanically ball-milled to grind and mix the powders. The powder mixture was then pressed into a flake ~5 µm thick and loaded into a rhenium gasket (preindented to 27–33 GPa) between two layers of KBr, each ~10–15 µm thick, which served as the pressure medium and thermal insulator. KBr was used due to its extremely efficient thermal insulating properties, hydrostaticity at high temperatures, strong X-ray fluorescence that allows for precise alignment of the X-ray and laser optics on the sample, and well-characterized equation of state while used as a thermal insulator (Fischer et al. 2012). Prior to loading, the KBr was oven dried and stored in a desiccator. The entire sample assembly was oven dried at 80–85 ºC for 30–60 minutes after loading but before closing the cell to remove any residual moisture.

Angle-dispersive synchrotron X-ray diffraction (XRD) was performed during laser heating experiments at the Advanced Photon Source, Argonne National Laboratory. Experiments were performed at Sector 13-ID-D, GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS) (Shen et al. 2005; Prakapenka et al. 2008), and Sector 16-ID-B, High Pressure Collaborative Access Team (HPCAT) (Meng et al. 2015). At GSECARS, the X-ray beam was ~3 µm × 4 µm with a wavelength of 0.3344 Å, and the sample-to-detector distance was
calibrated with 1 bar diffraction of LaB$_6$. At HPCAT, the X-ray beam was $\sim$5 µm $\times$ 7 µm with a wavelength of 0.4066 Å, and the sample-to-detector distance was calibrated with 1 bar diffraction of CeO$_2$. X-ray exposure times were 5–30 seconds.

Double-sided laser heating was performed with 1064 nm fiber lasers, focused onto each side of the sample. Before each experiment, the X-ray beam was coaligned with the temperature measurement system and heating lasers using X-ray induced fluorescence of the KBr pressure medium in the sample (after heating, it was confirmed that this alignment had been maintained). At each pressure, the temperature was slowly stepped up by increasing the laser power until a target temperature was reached, then the laser power was gradually decreased to zero, with diffraction patterns collected on heating and cooling. The sample was held fixed during heating. At each spot, a localized region of the sample was heated, and the conversion from silica (which had become amorphous upon compression) to stishovite was rapid (less than one minute). The temperature was stable during our X-ray data collection due to the subsolidus conditions. Power to the two lasers was adjusted independently to minimize axial temperature gradients. At HPCAT, the lasers had Gaussian intensity profiles and produced spots with diameters of $\sim$40 µm (FWHM) on the samples, and at GSECARS, the lasers had “flat-top” intensity profiles created with Pi-shapers and diameters of $\sim$25 µm on the samples. The laser-heated spots were much larger than the X-ray beam to minimize the effects of radial temperature gradients, and temperatures were measured from an area on the sample a few µm across, comparable to the size of the X-ray beam.

Temperatures were determined by spectroradiometry using the graybody approximation. The reported sample temperatures are an average of upstream and downstream temperature measurements, corrected downward by 3% to account for a small axial gradient through the
sample (Campbell et al. 2007, 2009). Reported temperature uncertainties include an analytical uncertainty of 100 K (e.g., Shen et al. 2001), the difference between the upstream and downstream temperatures, and uncertainty from the thickness correction (Campbell et al. 2007, 2009). At each beamtime, temperature measurements in the diamond anvil cell were benchmarked by first analyzing a sample of iron at high pressures (Fischer et al. 2011, 2012, 2014) to verify the location of the hcp–fcc transition (Komabayashi and Fei 2010). In each case the temperature of the transition was confirmed within uncertainty, ensuring compatibility between measurements made at different beamlines.

X-ray diffraction patterns were integrated to produce 2θ plots using Fit2D (Hammersley et al. 1996) or Dioptas (Prescher and Prakapenka 2015), and peak-fitting was performed using PeakFit (Systat Software). Lattice parameters of each phase were calculated from the measured d-spacings. Pressures were primarily determined from the volume of B2-KBr using its thermal equation of state, which was calibrated at room temperature and while used as a pressure medium during laser heating experiments against the equations of state of numerous materials to pressures of >100 GPa (Fischer et al. 2012); at high temperatures, KBr was mainly calibrated against the Pt equation of state of Dorogokupets and Oganov (2007). The platinum absorber also served as a secondary pressure standard in these experiments using the equation of state of Dorogokupets and Oganov (2007), but in some cases was not usable. To measure the pressure, lattice parameters and their uncertainties were determined as the average and standard deviation of 8 to 13 d-spacings for KBr or 2 to 6 d-spacings for Pt. The temperature of the KBr insulator/calibrant was corrected downward from the measured temperature to account for axial thermal gradients through the insulating layer (Campbell et al. 2009), while the temperature of the Pt was assumed to equal the sample temperature. Lattice parameters of the sample were
determined from 5 to 17 \(d\)-spacings for stishovite or 7 to 20 \(d\)-spacings for the \(\text{CaCl}_2\)-type
structure.

3. Results

The silica samples became amorphous (Hemley et al. 1988) or highly disordered
(Prakapenka et al. 2004) upon compression, and then crystallized in the stishovite or \(\text{CaCl}_2\)-type
structure upon laser-heating. \(\text{SiO}_2\) phase identification was primarily based on the splitting of the
stishovite 210, 211, and 301 peaks upon transformation to the \(\text{CaCl}_2\)-type structure. An X-ray
diffraction pattern collected at 74(2) GPa and 2160(120) K is shown in Figure 2a, exhibiting the
stishovite structure. All of the peaks can be indexed as B2-KBr, stishovite-SiO\(_2\), fcc-Pt, or hcp-
Re (from the gasket). Figure 2b shows the evolution of the stishovite 301 peak during cooling at
\~74 GPa. At higher temperatures, a single peak is seen; between 2160(120) K and 1870(110) K,
the peak splits into the \(\text{CaCl}_2\)-type 301 and 031 peaks, and at lower temperatures a doublet is
seen. In the 2D diffraction images, \(\text{SiO}_2\) peaks often appear as spots (Figure 2b) due to Ostwald
ripening of the sample at high temperatures. These spots (including the \(\text{CaCl}_2\)-type 301 and 031
peaks) typically appear at random azimuthal angles; alternatively, in some instances, a single
stishovite 301 reflection is observed to split across the phase boundary at a fixed azimuthal angle
(Figure 2b insets).

X-ray diffraction data were collected from 21–89 GPa and up to \~3300 K (Figure 3).
Pressures determined from the KBr insulator and Pt absorber agree within mutual 2\(\sigma\)
uncertainties in every instance, with no systematic offset between them (Supplemental Table S2).
The phase transition from stishovite to the \(\text{CaCl}_2\)-type structure was observed at pressures of
\~60–80 GPa and high temperatures with a positive Clapeyron slope (Figure 3). The transition
between these phases was rapid and easily reversible. The pressures, temperatures, phase identification, and lattice parameters of all phases in this work are listed in Supplemental Table S2. While the phase transition could be observed on both heating and cooling, data collected on cooling were favored for use in equation of state fitting (Section 4.2–4.3) due to their lower deviatoric stresses. The stress state in the experiments was quasi-hydrostatic due to the high temperatures at which the data were collected. This can be seen, for example, by comparing the Pt peak widths in these experiments to those measured at room temperature in He or Ne (e.g., Dorfman et al. 2012), with the latter being much broader.

4. Discussion

4.1. Phase transition in silica

The location and slope of the phase boundary between stishovite and CaCl$_2$-type SiO$_2$ has been constrained (Figure 3); it can be approximately described as $T = 64.6(49)P - 2830(350)$, with temperature in Kelvin and pressure in GPa. The covariance between the two fitted parameters is $-1690$. The covariance between two parameters $a$ and $b$ can be translated into a correlation coefficient, defined as $r = \text{covariance}(a,b) / (\sigma_a * \sigma_b)$. The correlation coefficient varies between $-1$ (perfect negative correlation) and $+1$ (perfect positive correlation), with a value of zero indicating no correlation. The correlation coefficient between the slope and intercept of our phase boundary is $r = -0.99$, indicating a near-perfect anticorrelation between them. Figure 1 compares the phase boundary from this work to those reported in the literature. It lies in the same region of $P$-$T$ space as those of previous studies, agreeing best with the boundary of Ono et al. (2002) at pressures of ~65–85 GPa and with the boundaries of Nomura et al. (2010) and Yamazaki et al. (2014) at pressures below ~60 GPa. These data are consistent with
observations of the CaCl$_2$-type phase from Shieh et al. (2005) at 73–75 GPa, and with most of
the observations of the stishovite phase from Wang et al. (2012).

The boundary presented here has a slightly shallower slope than those of previous
studies, with reported values of approximately 83 K/GPa (Ono et al. 2002), 89 K/GPa (Nomura
et al. 2010), 129 K/GPa (Yamazaki et al. 2014), and 180 K/GPa (Akins and Ahrens 2002). An
extrapolation of this phase boundary to 300 K yields a predicted transition pressure of 49 GPa.
This value agrees with some reported transition pressures at 300 K within uncertainty
(Grocholski et al. 2013; Hemley et al. 2000; Kingma et al. 1995; Nomura et al. 2010; Yamazaki
et al. 2014) (Figure 1), while other experimental studies report higher transition pressures
(Andrault et al. 1998; Ono et al. 2002; Wang et al. 2012), which could be due to slow kinetics at
room temperature, since kinetics are known to play a role in the SiO$_2$ phase diagram (e.g.,
Prakapenka et al. 2004). Some previous high temperature studies anchored their phase boundary
to a measured transition pressure at 300 K (e.g., Akins and Ahrens 2002; Ono et al. 2002). These
kinetic inhibitions may result in an overestimate of the transition pressure at 300 K, which may
explain the slightly shallower slope reported here. The difference in slope may also be related to
the very strong anticorrelation between the slope and intercept of the phase boundary; a higher
transition pressure at 300 K would produce a steeper slope. The data in this study cross the
stishovite–CaCl$_2$-type SiO$_2$ phase boundary at three different pressures, more high temperature
crossings than in previous studies (e.g., Akins and Ahrens 2002; Nomura et al. 2010; Ono et al.
2002; Yamazaki et al. 2014). They also span a much wider range of pressures and temperatures,
to better constrain this phase boundary while maintaining broad consistency with previous
measurements.
The slope of our observed phase boundary is also significantly less steep than that
calculated by Yang and Wu (2014), who reported a slope of 200(52) K/GPa (from Gibbs free
energies) or 185(48) K/GPa (from shear instability), and that calculated by Tsuchiya et al.
(2004), who found a slope of 167 K/GPa. Extrapolating this phase boundary to 0 K gives a
transition pressure of 44 GPa, lower than that of most theoretical studies of SiO$_2$, which yield
transition pressures of, for example, 46 GPa (Yang and Wu 2014), 47 GPa (Karki et al. 1997a),
53 GPa (Togo et al. 2008), 56 GPa (Tsuchiya et al. 2004), and 64 GPa (Lee and Gonze 1995).
This may be due in part to possible curvature of the phase boundary at lower temperatures than
those investigated here (Tsuchiya et al. 2004; Yang and Wu 2014).

4.2. Thermal equation of state of stishovite

These data were used to construct an equation of state for stishovite, relating its pressure,
molar volume, and temperature. To ensure that the fitted equation of state would be compatible
with the observed behavior of stishovite at ambient temperature, these data were first combined
with those from several previous studies obtained at 300 K (Andrault et al. 2003; Grocholski et
al. 2013; Hemley et al. 2000; Ross et al. 1990; Yamanaka et al. 2002) (Figure 4a). The primary
criteria for choosing these studies from the many that exist in the literature is that they were all
performed in a quasi-hydrostatic pressure medium: an alcohol mixture (Andrault et al. 2003;
Ross et al. 1990; Yamanaka et al. 2002), neon (Grocholski et al. 2013), hydrogen (Hemley et al.
2000), or argon (Yamanaka et al. 2002), without any laser-annealing.

When combining datasets, it is important to give careful consideration to compatibility of
the pressure standards. Hemley et al. (2000), Ross et al. (1990), and Yamanaka et al. (2000) all
used ruby fluorescence to monitor the pressure in their experiments (Mao et al. 1986). Here their
pressures have been converted to the ruby scale of Dorogokupets and Oganov (2007), since the KBr pressure scale used in the present experiments was calibrated against the Pt scale of Dorogokupets and Oganov (2007). Grocholski et al. (2013) used gold as a pressure standard, and their pressures were recalculated using the gold equation of state of Dorogokupets and Oganov (2007). Andrault et al. (2003) used quartz as a pressure standard; their data were not corrected, but they were all obtained from pressures below 10 GPa, where most pressure scales are compatible.

A Mie-Grüneisen equation of state was fit to the combined dataset, in which the total pressure is described as the sum of an isothermal pressure, a harmonic thermal pressure ($P_{TH}$) term, and a quasi-anharmonic pressure ($P_{AN}$) term:

$$ P(V, T) = P(V, 300K) + [P_{TH}(V, T) - P_{TH}(V, 300K)] + [P_{AN}(V, T) - P_{AN}(V, 300K)] $$ (1)

The isothermal pressure term $P(V, 300K)$ is given by the third-order Birch-Murnaghan equation of state (Birch 1952):

$$ P(V, 300K) = 3K_0 f (1 + 2 f)^{5/2} \left(1 + \frac{3}{2} (K'_0 - 4) f \right) $$ (2)

where $K_0$ is the isothermal bulk modulus, $K'_0$ is its pressure derivative at constant temperature, $f = 0.5 \times [(V/V_0)^{2/3} - 1]$ is the Eulerian strain, and the subscript 0 indicates values at 1 bar. The harmonic thermal pressure term in Eq. (1) can be derived from a Debye-type thermal energy (e.g., Dewaele et al. 2006):

$$ P_{TH}(V, T) = \frac{9nR\gamma}{V} \left(\frac{\Theta_D}{8} + T \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} z^3 \frac{dz}{e^{z} - 1}\right) $$ (3)

where $n$ is the number of atoms per formula unit, $R$ is the ideal gas constant, $\gamma = \gamma_0(V/V_0)^q$ is the Grüneisen parameter, $q$ is a constant describing the volume dependence of $\gamma$, and $\Theta_D = \Theta_0 \exp[(1-(V/V_0)^q) \gamma_0/q]$ is the Debye temperature. The quasi-anharmonic pressure term is fit as:
\[ P_{AN}(V, T) = \frac{\gamma}{V} c T^2 \]  

(4)

where \( c \) is a fitted constant. The \( T^2 \) dependence is derived from the lowest-order term of the high-temperature expansion of the anharmonic free energy (Oganov and Dorogokupets 2004).

Since stishovite can be recovered as a metastable phase to ambient conditions, its properties at 1 bar are well-characterized. Here a measured volume of 14.02 cm\(^3\)/mol was used (Wang et al. 2012); this value is in agreement with those of most recent experimental studies (e.g., Table 1). Recent Brillouin spectroscopy and ultrasonic interferometry measurements of stishovite constrain its adiabatic bulk modulus at 1 bar to be 301–316 GPa (Brazhkin et al. 2005; Jiang et al. 2009; Li et al. 1996; Yoneda et al. 2012) (Table 1). Here the value of 305 GPa was used for the adiabatic \( K_0 \) from Li et al. (1996). The adiabatic (\( K_S \)) to isothermal (\( K_T \)) conversion is given by \( K_S = K_T (1 + \alpha \gamma T) \), where \( \alpha \) is the thermal expansion coefficient. Using \( T = 300 \) K, \( \alpha = 1.647 \times 10^{-5}/\text{K} \) from Nishihara et al. (2005), and the calculated \( \gamma_0 \) (see below), an isothermal \( K_0 \) of 302 GPa was calculated. The heat capacity (\( C_P \)) of stishovite at 1 bar was measured by Akaogi et al. (2011), and the corresponding Debye temperature (\( \theta_0 \)) was calculated to be 1109 K (Akaogi et al. 2011). Using these values for \( C_P \), \( V_0 \), \( K_S \), and \( \alpha \) at one bar, the Grüneisen parameter can be calculated as:

\[ \gamma_0 = \frac{\alpha + K_S V}{C_P} = 1.71 \]  

(5)

Using this value for \( \gamma_0 \) along with the measured \( V_0 \) and \( K_{0T} \), an unweighted nonlinear least-squares minimization was used to fit Eqs. (1–4) to the combined stishovite dataset. Since fitting \( q \) always resulted in a value of 1, a common approximation, \( q \) was fixed at 1 to determine \( K_0' \) and \( c \).

The resulting parameters are shown in Table 1, and isotherms calculated from this fit are compared to the data in Figure 4a. Figure 4b shows the residuals to this fit, which range from –
4.2 GPa to +4.9 GPa. The root mean squared (rms) misfit in pressure is 1.8 GPa when considering only the data from this study, comparable to the 2\(\sigma\) uncertainty on the pressure measurements; the rms misfit is 1.6 GPa when considering all of the data in the fit. The covariance between \(K'_0\) and \(c\) is \(-0.0027 \times 10^{-8}\), corresponding to a correlation coefficient of \(r = -0.74\), which reflects a significant anti-correlation between these two parameters in this fit. This equation of state is fit to data spanning up to 75 GPa and 300–3300 K, a significant advance over previous equations of state of stishovite, which reached a maximum pressure of 54 GPa (Wang et al. 2012) and maximum temperature of 2400 K (Pigott et al. 2015).

Table 1 compares our equation of state parameters to those of a variety of previous studies on stishovite. Table S1 includes equation of state parameters from a more exhaustive list of prior studies, reaching back as far as the 1960s. The fitted value of \(K'_0 = 5.24(9)\) agrees with a variety of previous studies within mutual 2\(\sigma\) uncertainties, including those based on ultrasonic interferometry at high pressures (Li et al. 1996), X-ray diffraction under static compression (Panero et al. 2003), dynamic compression (Luo et al. 2002a; Lyzenga et al. 1983), and theoretical calculations (Luo et al. 2002b). This result for \(K'_0\) is broadly consistent with other recent studies (e.g. Table 1) reporting that stishovite has a \(K'_0\) greater than the canonical value of 4 (Birch 1952). It falls above the values obtained in some recent studies (e.g., Table 1), which may be understood as a tradeoff between \(K_0\) and \(K'_0\) (Supplemental Figure S1a). \(K_0\) and \(K'_0\) are inversely correlated in literature studies of stishovite, and this fit agrees with the trend defined by previous studies (Supplemental Figure S1a). Prior studies have not resolved an anharmonic pressure term for stishovite, so comparisons to previous fits cannot be made.

4.3. Thermal equation of state of CaCl\(_2\)-type silica
Eqs. (1–4) have been similarly fit to the $P$-$V$-$T$ data on CaCl$_2$-type silica to construct a thermal equation of state for this phase. As for stishovite, the data on the CaCl$_2$-type phase were combined with data obtained in previous studies at 300 K to ensure that the fit correctly captures the properties of this phase at ambient temperature. The data of Hemley et al. (2000) and Grocholski et al. (2013) were used and corrected to a common pressure scale (Section 4.2).

The CaCl$_2$-type phase of SiO$_2$ cannot be recovered to 1 bar, which makes fitting its thermal equation of state more challenging. To reduce the number of fitting parameters, which was necessary given the resolution of the data, the same $V_0$, $\theta_0$, $q$, and $c$ as for stishovite were used. The volumes predicted by the CaCl$_2$-type equation of state were also forced to match those of the stishovite equation of state at the phase boundary, since this transition is second-order with no accompanying volume change (e.g., Andrault et al. 2003). Again, a nonlinear least-squares minimization routine was used to determine $K_0$, $K'_0$, and $\gamma_0$. The resulting parameters are listed in Table 2, and isotherms calculated from the fit are compared to the data in Figure 4a. The residuals to this fit are shown in Figure 4b, which span from $-2.6$ GPa to $+3.1$ GPa. The rms misfit in pressure is $1.5$ GPa, or $1.4$ GPa for the data in this study alone, comparable to the $2\sigma$ uncertainty on the pressure measurements. This is the first thermal equation of state of this phase determined in a diamond anvil cell; previously, its only thermal equation of state was based on a meta-analysis of shock wave data (Akins and Ahrens 2002). Here the quantity of equation of state data for this phase have been markedly increased, improving our understanding of its physical properties and its role in the Earth’s interior.

Table 2 lists equation of state parameters for the CaCl$_2$-type phase from several previous studies. In comparison to other experimental studies (Andrault et al. 1998, 2003; Grocholski et al. 2013), a higher $K_0$ (341(4) GPa) and lower $K'_0$ (3.20(16)) are reported here, though this is the
first study to report an experimentally-determined $K'_0$ for this phase. This variability in measured parameters can be understood in terms of the strong tradeoff between $K_0$ and $K'_0$ (Supplemental Figure S1b). If $K'_0$ is fixed at 4 as in Andrault et al. (2003) and Grocholski et al. (2013), then $K_0 = 321.8(11)$ GPa, in much better agreement with these studies. This fit (Table 2) indicates a correlation coefficient between $K_0$ and $K'_0$ of $r = -0.97$ (Table S3), indicating that these parameters are almost perfectly inversely correlated. The Grüneisen parameter also exhibits moderate tradeoffs with the other fitted parameters, with an $r = 0.45$ with $K_0$ and $r = -0.63$ with $K'_0$. The fitted value of $\gamma_0 = 2.14(4)$ is higher than that of Akins and Ahrens (2002) (1.4), who do not report an uncertainty on their fit but cover less of $P$-$T$ space. In comparison to theoretical studies, this value for $K_0$ is significantly higher than that of Oganov et al. (2005) at 1 bar; at 50 GPa, the new equation of state yields $K_T = 490$ GPa, not far from the calculated values of Karki et al. (1997b) (509 GPa) and Yang and Wu (2014) (501–504 GPa) at this pressure.

Stishovite and the CaCl$_2$-type phase of silica have similar behavior under high pressures and temperatures, but with several differences in their properties that are resolved here. The CaCl$_2$-type structure has a higher $K_0$ than stishovite does (Tables 1–2), with a much lower value of $K'_0$. This results in the CaCl$_2$-type being more compressible at the phase boundary, and is reflected in the different curvatures of their isotherms (Figure 4a). At 49 GPa and 300 K, the isothermal bulk modulus of CaCl$_2$-type SiO$_2$ (487 GPa) is lower than that of stishovite (541 GPa). The $\gamma_0$ found for the CaCl$_2$-type phase is higher than that of stishovite for the same value of $q$, indicating that the CaCl$_2$-type has greater thermal expansivity.

4.4. Stishovite lattice parameter fits
The compressibility and thermal expansion of each axis of a tetragonal phase can be described independently using a pseudo-equation of state, replacing $V$ with $a^3$ or $c^3$. Here a high-temperature third-order Birch-Murnaghan equation of state was used, to better facilitate comparisons with results of previous studies (e.g., Nishihara et al. 2005; Pigott et al. 2015). The high-temperature Birch-Murnaghan equation of state is identical to the regular Birch-Murnaghan equation of state (Eq. 2), except that the bulk modulus is replaced by:

$$K_0(T) = K_0(300K) + (T - 300K)\left(\frac{\partial K}{\partial T}\right)$$

and the 1 bar volume is replaced by:

$$V_0(T) = V_0(300K) * \exp \left[ \int_{300K}^{T} \alpha dT \right]$$

where $\alpha$ is the thermal expansion coefficient, approximated here as a constant (e.g., Angel 2001).

The 1 bar lattice parameters $a_0 = 4.178$ Å and $c_0 = 2.668$ Å were used for stishovite, as measured by Nishihara et al. (2005). Again the present data were pooled with those of several 300 K compression studies (Andrault et al. 2003; Grocholski et al. 2013; Hemley et al. 2000; Ross et al. 1990; Yamanaka et al. 2002), corrected to a common pressure scale (Section 4.2). For the $a$ axis of stishovite, $K_{0a}$, $K_{0a}'$, $\alpha_a$, and $\partial K_{0a}/\partial T$ were fit (Table 3). A linear temperature dependence of $\alpha$ was found to be statistically insignificant. The $a$ axis of stishovite is much more compressible than the bulk crystal ($K_{0a} = 269(4)$ GPa compared to $K_0 = 302$ GPa), with a lower $K_0'$ ($K_{0a}' = 4.55(19)$ compared to $K_0' = 5.24(9)$). Figure 5 (upper panel) shows the raw data from this study and the previous studies used in the fit (Andrault et al. 2003; Grocholski et al. 2013; Hemley et al. 2000; Ross et al. 1990; Yamanaka et al. 2002), compared to calculated isotherms. The pressure residuals span a range of $-3.6$ GPa to $+2.9$ GPa (Supplemental Figure S2), with an rms misfit of 1.0 GPa. All of the parameters covary strongly with each other ($|r| > 0.6$), with the
Strongest correlations between $K_{0a}$ and $K_{0a}'$ and between $\alpha_a$ and $\partial K_{0a}/\partial T$ (both $r = -0.95$) (Supplemental Table S4).

Table 3 also compares the lattice parameter fit for the stishovite $a$ axis to results from previous studies, obtained using X-ray diffraction, Brillouin spectroscopy, and theoretical calculations. There is a remarkable degree of consensus on the compressibility of the $a$ axis, with $K_{0a}$ in the studies listed in Table 3 spanning the range 240(5)–284(5) GPa; the value found in this study, 269(4) GPa, falls in the middle of this range. The value of $\partial K_{0a}/\partial T = -0.020(2)$ GPa/K agrees well with that reported by Nishihara et al. (2005) ($-0.023(4)$ GPa/K), and the value of $\alpha_a = 2.11(12) \times 10^{-5} K^{-1}$ matches those of Nishihara et al. (2005) ($2.06(14) \times 10^{-5} K^{-1}$) and Wang et al. (2012) ($2.46(19) \times 10^{-5} K^{-1}$) within mutual 2σ uncertainties, and is compatible with the thermal expansion expression of Pigott et al. (2015) at high temperatures.

The data from this study and literature data (Grocholski et al. 2013; Hemley et al. 2000) on the $c$ axis of stishovite exhibit a much higher degree of scatter than those on the $a$ axis (Figure 5, lower panel), as observed in previous studies (e.g., Nishihara et al. 2005). Therefore, in the lattice parameter fit for the stishovite $c$ axis, $K_{0c}'$ and $\partial K_{0c}/\partial T$ were held fixed to the values found for the $a$ axis (Table 3), and $K_{0c}$ and $\alpha_c$ were fit (Table 3). Isotherms calculated from the fit are compared to the data in Figure 5 (lower panel). The pressure residuals range from $-10.1$ GPa to $+13.6$ GPa (Supplemental Figure S3), and the fit has an rms misfit in pressure of $4.5$ GPa. $K_{0c}$ and $\alpha_c$ have a correlation coefficient $r = -0.93$.

Previous experimental studies on the $c$ axis of stishovite have reported $K_{0c}$ values spanning 411–556 GPa. The value of 435(9) GPa reported here falls within this range, agreeing within mutual 2σ uncertainties with values reported previously using X-ray diffraction (Liu et al. 1999; Nishihara et al. 2005; Pigott et al. 2015), which tend to be lower than values reported using
Brillouin spectroscopy (Jiang et al. 2009; Weidner et al. 1982) and computational results (Cohen 1991). The value of \( \alpha_c = 1.70(11) \times 10^{-5} \text{K}^{-1} \) falls intermediate between those reported previously by Nishihara et al. (2005) and Wang et al. (2012), agreeing with both of these values within mutual 2\( \sigma \) uncertainties, and also agrees well with the expression of Pigott et al. (2015) for thermal expansion at high temperatures. The \( c \) axis of stishovite exhibits a lower thermal expansion than the \( a \) axis by 19%, as reported previously (Table 3). It is more incompressible than the bulk crystal \( (K_{0c} = 435(9) \text{GPa}) \), and significantly (62%) more incompressible than the \( a \) axis, an effect that has also been reported previously (Table 3). The higher compressibility of the \( a \) axis has been attributed to a greater degree of flexibility in the corner-sharing linkages of \( \text{SiO}_6 \) octahedra along the \( a \) axis, as opposed to the stiffer edge-sharing linkages along the \( c \) axis (Nishihara et al. 2005).

The axial \( c/a \) ratio of stishovite can be calculated from our lattice parameter fits (Supplemental Figure S4). The \( c/a \) ratio of stishovite increases approximately linearly with decreasing volume, by \( \sim 0.0057 \text{ per cm}^3/\text{mol} \). The temperature effect on the \( c/a \) ratio is not apparent from the data given the measurement uncertainties, which are large relative to the observed variations in \( c/a \) (variation of only \( \sim 1.5\% \) over the range of conditions in this study).

To evaluate internal consistency, volumes calculated from the equation of state of stishovite were compared to volumes calculated as \( V = a^2c \) from the lattice parameter fits for the \( a \) and \( c \) axes. Supplemental Figure S5 shows the misfit between these volumes as a function of volume for temperatures of 300–3500 K over the entire pressure range of stishovite stability (Shen and Lazor 1995; Zhang et al. 1996) (Figure 3). It reaches a maximum of \( \sim 0.5\% \) misfit in volume at 2500 K and low pressures, but is less than \( \sim 0.1\% \) over most of the range of conditions investigated (less than uncertainties on most measured volumes). The fits of the \( a \) and \( c \) axes
slightly overestimate the volume at lower volumes (up to ~13.5 cm$^3$/mol) and underestimate the volume at higher volumes.

Just beyond the transition pressure, the $a$ axis of the CaCl$_2$-type phase expands and the $b$ axis shrinks (Supplemental Figure S6) (e.g., Andrault et al. 2003; Hemley et al. 2000); this behavior precludes a simple fit for the CaCl$_2$-type lattice parameters as was done here for stishovite. A much smaller splitting between the $a$ and $b$ axes was observed here than in previous studies at 300 K (Grocholski et al. 2013; Hemley et al. 2000). This difference does not appear to be a thermal effect, since both axes expand with increasing temperature, such that the difference between them is approximately independent of temperature. It may be due to the more hydrostatic conditions of this study caused by the high temperatures at which the data were collected (Section 3). The data from this study on the $c$ axis of the CaCl$_2$-type phase are compatible with those of previous studies at 300 K (Grocholski et al. 2013; Hemley et al. 2000), and shows a higher compressibility than the $c$ axis of stishovite at these conditions (Figure S6).

4.5. SiO$_2$ in the deep Earth

It has been demonstrated experimentally that free silica is one of the phases that forms when mid-ocean ridge basalt (MORB) compositions are subjected to the pressures and temperatures of Earth’s lower mantle, which may occur in subducting slabs. For example, at 40–60 GPa and 2100 K, a MORB composition has been shown to contain 15–19 wt% stishovite (Hirose et al. 2005; Perrillat et al. 2006; Ricolleau et al. 2010). Subducted continental crust likely contains an even higher proportion of free silica (e.g., Irifune et al. 1994; Ishii et al. 2012). Due to its abundance in these geological settings, it is important to consider the density of SiO$_2$ at lower mantle conditions.
Figure 6 shows the density of SiO$_2$ at the $P$-$T$ conditions of the Earth’s transition zone and lower mantle. Along a mantle geotherm (Brown and Shankland 1981), the phase transition from stishovite to CaCl$_2$-type SiO$_2$ occurs at a pressure of 78 GPa, or a depth of 1840 km. Two possible slab temperature profiles were also considered, a “hot slab” that is 200 K cooler than the mantle geotherm and a “cold slab” that is 600 K cooler (e.g., Syracuse et al. 2010). These lower temperatures increase the density of SiO$_2$, and push the phase transition to lower pressures (75 GPa in a hot slab and 68 GPa in a cold slab). The minimum temperature inside the slab can be ~100–500 K cooler than the slab surface (e.g., Syracuse et al. 2010); any silica present in the interior of a slab could therefore have a slightly higher density and lower transition pressure than considered here. Figure 6 also shows the density profile of the Earth from the Preliminary Reference Earth Model, PREM (Dziewonski and Anderson 1981). Along a mantle geotherm, silica is denser than the surrounding mantle to a pressure of 58 GPa, or a depth of 1420 km, and is less dense than the mantle at greater depths. In a cold slab, silica is denser than the mantle up to 68 GPa or 1640 km. At greater depths in the Earth (124–128 GPa or 2690–2770 km, depending on temperature), the CaCl$_2$-type silica will transform to seifertite (Grocholski et al. 2013).

5. Implications

A thermal equation of state has been constructed for stishovite that extends to significantly higher pressures and temperatures than previous studies (e.g., Pigott et al. 2015; Wang et al. 2012), and the first thermal equation of state of CaCl$_2$-type silica measured in a laser-heated diamond anvil cell is reported (Figure 4), greatly improving the pressure and temperature coverage for this phase. This $P$-$T$ coverage makes these equations of state more
accurate and less prone to errors in extrapolation when applying them to understanding the deep
Earth.

Free silica is unlikely to be present in a pyrolitic lower mantle, but may occur in a
subducting slab (e.g., Hirose et al. 2005). Based on measurements of the phase boundary
between stishovite and CaCl$_2$-type SiO$_2$ (Figure 3), this phase transition should occur at
pressures of 68–78 GPa in the Earth’s lower mantle, with uncertainty due to temperature.
Because this transition is second-order with no discontinuity in density, it is unlikely that it
would be observable as a seismological reflection, though it may be detectable based on seismic
velocities and anisotropy (e.g., Yang and Wu 2014). However, it is important to know the depth
of this transition in modeling the density of silica in the Earth, because these two phases have
different compressibilities and thermal properties (Tables 1–2). Silica is denser than the
surrounding mantle up to pressures of 58–68 GPa, or depths of 1420–1640 km, depending on
temperature. At shallower depths, silica can contribute to the gravitational force pulling on a
sinking slab. At greater depths, silica is less dense than the mantle, providing a source of
buoyancy to resist the downward motion of the slab. It has recently been suggested that SiO$_2$
may exsolve from the core as it cools (Hirose et al. 2017). Silica entering the lower mantle this
way will tend to ascend buoyantly until it is consumed by the SiO$_2$-undersaturated mantle.

Acknowledgments

We are grateful to the editor for handling our manuscript and to two anonymous
reviewers for their constructive feedback. We thank Dion Heinz, Jacob Britz, and beamline
scientist Clemens Prescher for assistance with running experiments. This work was supported by
a National Science Foundation (NSF) Graduate Research Fellowship, Illinois Space Grant

23
Consortium Graduate Research Fellowship, International Centre for Diffraction Data Ludo Frevel Crystallography Scholarship, University of Chicago Plotnick Fellowship, and NSF Postdoctoral Fellowship (EAR-1452626) to RAF and NSF grant EAR-1427123 to AJC. JSP was supported by the OSU Presidential Fellowship and NSF grant EAR-0955647 awarded to Wendy R. Panero and would like to thank CDAC for the HPCAT beamtime award. JSS acknowledges the support of DOE-BES/DMSE under Award DE-FG02-99ER45775. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory (ANL). GeoSoilEnviroCARS is supported by the NSF – Earth Sciences (EAR-1634415) and the Department of Energy (DOE) – Geosciences (DE-FG02-94ER14466). Portions of this work were performed at HPCAT (Sector 16), APS, ANL. HPCAT operation is supported by DOE-NNSA under Award No. DE-NA0001974, with partial instrumentation funding by NSF. This research used resources of the APS, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by ANL under Contract No. DE-AC02-06CH11357.

References


Figure captions

**Figure 1:** Previous results on the phase transition from stishovite to CaCl$_2$-type SiO$_2$, compared to the phase boundary found in this study. Top: phase boundary at high temperatures. Filled grey hexagons: observations of stishovite. Open grey pentagons: observations of the CaCl$_2$-type structure. Phase boundary from this study is from Figure 3. Bottom: transition pressures measured or calculated at room temperature. Result from Wang et al. (2012) is a lower bound. Results from Hemley et al. (2000) were obtained on either compression (higher pressure) or decompression (lower pressure).

**Figure 2:** X-ray diffraction patterns of SiO$_2$. (a) Representative pattern from 74(2) GPa and 2160(120) K. All peaks correspond to B2-KBr, stishovite, or platinum, with one reflection from the rhenium gasket. Black rectangle indicates region enlarged in part (b). Inset: 2D diffraction image before integration. Yellow arrow indicates region enlarged in part (b). (b) Splitting of the stishovite 301 peak into the CaCl$_2$-type 301 and 031 peaks across the phase transition as a function of temperature. Patterns were collected on cooling at ~74 GPa. Yellow pattern is from
part (a). Patterns are offset vertically for clarity. The stishovite 301 peak splits between 2160(120) K and 1870(110) K, bracketing the phase transition. Insets: Fixed location in the lower left quadrant of the 2D diffraction images from 2160 K (upper) and 1870 K (lower), showing the splitting of a single 301/031 reflection. Image encompasses a 2° range of ~0.5°. Temperature uncertainties are 110–180 K.

**Figure 3:** Phase diagram results on silica. Filled orange circles: observations of the stishovite structure. Open green circles: CaCl$_2$-type structure.

**Figure 4:** Pressure-volume-temperature data and equation of state fits (Tables 1–2) for stishovite and CaCl$_2$-type SiO$_2$ (a), and residuals to these fits (b). Curves in (a) are isotherms calculated for the midpoint of the indicated temperature ranges. Solid curves and filled symbols: stishovite. Dashed curves and open symbols: CaCl$_2$-type SiO$_2$. Curves in (a) are truncated at the edge of the stability fields of the phases (Grocholski et al. 2013; Shen and Lazor 1995; Zhang et al. 1996) (Figure 3), but some metastable data are shown. Circles: this study. Diamonds: Hemley et al. (2000). Squares: Grocholski et al. (2013). Upward-pointing triangles: Ross et al. (1990). Right-pointing triangles: Andrault et al. (2003). Left-pointing triangles: Yamanaka et al. (2002). Horizontal and vertical error bars in (b) are both uncertainties in measured pressure. Data have been corrected to a common pressure scale.

**Figure 5:** Pressure-lattice parameter-temperature data and fits (Table 3) for the $a$ axis (upper panel) and $c$ axis (lower panel) of stishovite. Curves are isotherms calculated for the midpoint of the indicated temperature ranges, and are truncated at the edge of the stability field of stishovite.
(Shen and Lazor 1995; Zhang et al. 1996) (Figure 3), but some metastable data are shown. Symbols are as in Figure 4. Data have been corrected to a common pressure scale. Residuals to these fits are shown in Supplemental Figures S2–S3.

Figure 6: Density of SiO$_2$ in Earth’s transition zone and lower mantle calculated from the equations of state of this study (Tables 1–2) for different temperature profiles, compared to PREM (Dziewonski and Anderson 1981). Solid curves: stishovite. Dashed curves: CaCl$_2$-type SiO$_2$. Density of the stable phase is plotted, according to the phase boundary in Figure 3. Mantle geotherm is from Brown and Shankland (1981); hot and cold slab temperatures are 200 K and 600 K cooler, respectively (e.g., Syracuse et al. 2010). Pressure-depth relationship is from Dziewonski and Anderson (1981).

Table captions

Table 1: Equation of state parameters for stishovite, from this study and a selection of previous studies. Equation of state parameters are as defined in the text for 1 bar and 300 K, and all bulk moduli are isothermal, unless otherwise noted. Entries in *italics* were held fixed in the fits. Stated uncertainties for this study do not incorporate covariance between terms. For more stishovite equations of state from the literature, see Supplemental Table S1.

Table 2: Equation of state parameters for the CaCl$_2$-type phase of silica, from this study and previous studies. Equation of state parameters are as defined in the text for 1 bar and 300 K, and all bulk moduli are isothermal. Entries in *italics* were held fixed in the fits. Stated uncertainties
for this study do not incorporate covariance between terms; the variance-covariance matrix for this fit is shown in Supplemental Table S3.

Table 3: Lattice parameter fits for the $a$ and $c$ axes of stishovite, from this study and a selection of previous studies. Entries in *italics* were held fixed in the fits. Stated uncertainties for this study do not incorporate covariance between terms; the variance-covariance matrix for the $a$ axis fit is shown in Supplemental Table S4.
<table>
<thead>
<tr>
<th>Study</th>
<th>$K_{0a}$ (GPa)</th>
<th>$K_{0a}'$</th>
<th>$\partial K_{0a}/\partial T$ (GPa/K)</th>
<th>$a$ (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>269(4)</td>
<td>4.55(19)</td>
<td>$-0.020(2)$</td>
<td>$2.11(12) \times 10^{-5}$</td>
</tr>
<tr>
<td>Andrault et al. (2003)</td>
<td>250.9(16)</td>
<td>5.48(32)</td>
<td>$-0.020(2)$</td>
<td></td>
</tr>
<tr>
<td>Liu et al. (1999)</td>
<td>269(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nishihara et al. (2005)</td>
<td>240(5)</td>
<td>6.2(5)</td>
<td>$-0.023(4)$</td>
<td>$2.06(14) \times 10^{-5}$</td>
</tr>
<tr>
<td>Pigott et al. (2015)</td>
<td>284(5)</td>
<td>4</td>
<td>$-0.050(3)$</td>
<td></td>
</tr>
<tr>
<td>Wang et al. (2012)</td>
<td></td>
<td></td>
<td></td>
<td>$2.46(19) \times 10^{-5}$</td>
</tr>
<tr>
<td>Jiang et al. (2009)</td>
<td>256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weidner et al. (1982)</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen (1991)</td>
<td>262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{0c}$ (GPa)</td>
<td>$K_{0c}'$</td>
<td>$\partial K_{0c}/\partial T$ (GPa/K)</td>
<td>$c$ (K$^{-1}$)</td>
<td>Method</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>435(9)</td>
<td>4.55</td>
<td>-0.020</td>
<td>$1.70(11) \times 10^{-5}$</td>
<td>XRD</td>
</tr>
<tr>
<td>513(32)</td>
<td></td>
<td></td>
<td></td>
<td>XRD</td>
</tr>
<tr>
<td>411(9)</td>
<td>4</td>
<td>-0.036(21)</td>
<td>$1.22(24) \times 10^{-5}$</td>
<td>XRD</td>
</tr>
<tr>
<td>450(20)</td>
<td>4</td>
<td>-0.091(7)</td>
<td>$1.87(20) \times 10^{-5}$</td>
<td>XRD</td>
</tr>
<tr>
<td>521</td>
<td></td>
<td></td>
<td></td>
<td>Brillouin</td>
</tr>
<tr>
<td>556</td>
<td></td>
<td></td>
<td></td>
<td>Brillouin</td>
</tr>
<tr>
<td>615</td>
<td></td>
<td></td>
<td></td>
<td>calculated</td>
</tr>
</tbody>
</table>
This study
Akins and Ahrens (2002)
Nomura et al. (2010)
Ono et al. (2002)
Yamazaki et al. (2014)
Tsuchiya et al. (2004)
Yang and Wu (2014)
Oganov et al. (2005)
Wang et al. (2012)
Shieh et al. (2005)

Temperature (K)

Pressure (GPa)

Figure 1

stishovite

CaCl$_2$-type
Figure 2(a)

Intensity (arbitrary units)

2θ (degrees)

KBr 110
Pt 111
stishovite 110
Re 101
stishovite 111
Pt 111
KBr 111
Pt 200
KBr 200
stishovite 211
Pt 211
KBr 210
stishovite 220
Pt 220
stishovite 301
Pt 301
KBr 300
stishovite 312
Pt 311
KBr 311
stishovite 311
+ Pt 222
KBr 222
stishovite 212
KBr 211
stishovite 201
Pt 200
stishovite 101
KBr 111
Pt 111
KBr 101

74 GPa, 2160 K
Figure 2(b)

![Graph showing intensity vs. 2θ degrees for different temperatures (2450 K, 2350 K, 2160 K, 1870 K, 1690 K, 1590 K) at ~74 GPa.](image)
Figure 3

This figure shows the phase transitions of stishovite and CaCl$_2$-type structures as a function of pressure and temperature. The data points indicate the stability ranges of these phases under different conditions.
Figure 4(b)

Measured–calculated pressure (GPa) vs. Pressure (GPa) for different temperature ranges:

- 300 K
- 750–1250 K
- 1250–1750 K
- 1750–2250 K
- 2250–2750 K
- 2750–3250 K
- 3250–3750 K

The graph shows the deviation of measured pressures from calculated pressures for various temperature ranges.
Figure 6

Density (g/cm$^3$) vs. Pressure (GPa) for different SiO$_2$ conditions along the mantle geotherm.

- **Red**: SiO$_2$ along mantle geotherm
- **Orange**: SiO$_2$ in hot slab
- **Blue**: SiO$_2$ in cold slab
- **Black**: Bulk mantle (PREM)

Depth (km) is shown on the y-axis, ranging from 15 to 2500 km, with increments of 100 km. Pressure (GPa) is shown on the x-axis, ranging from 2000 to 2500 GPa, with increments of 500 GPa.