- 1 Revision 2
- 2 High-pressure phase behavior and equations of state of ThO₂ polymorphs
- 3 Authors: Bethany A. Chidester^{1,*,†}, Olivia S. Pardo^{1,††}, Rebecca A. Fischer^{1,†††}, Elizabeth
- 4 C. Thompson¹, Dion L. Heinz¹, Clemens Prescher^{2,††††}, Vitali B. Prakapenka², and
- 5 Andrew J. Campbell¹
- 6 Affiliations: ¹Department of the Geophysical Sciences, University of Chicago, Chicago,
- 7 IL 60637
- 8 ²GeoSoilEnviroCARS, University of Chicago, Argonne National Laboratory, Argonne,
- 9 IL 60439
- 10 [†]Present address: Earth and Planetary Sciences Department, University of California
- 11 Davis, Davis, CA 95616
- 12 ^{††}Present address: Division of Geological and Planetary Sciences, California Institute of
- 13 Technology, Pasadena, CA 91125
- 14 ^{†††}Present address: Department of Earth and Planetary Sciences, Harvard University,
- 15 Cambridge, MA 02138
- 16 ^{††††}Present address: Institut für Geologie und Mineralogie, Universität zu Köln, 50674
- 17 Köln, Germany
- 18 *Email: bchides@sandia.gov
- 19
- 20 Submitted to American Mineralogist, June 13, 2017.
- 21 Revised and resubmitted to American Mineralogist, November 16, 2017
- 22 Final revision resubmitted to American Mineralogist,

24 ABSTRACT

25	ThO ₂ is an important material for understanding the heat budget of Earth's mantle, as
26	well as the stability of nuclear fuels at extreme conditions. We measured the in situ high-
27	pressure, high-temperature phase behavior of ThO ₂ to \sim 60 GPa and \sim 2500 K. It
28	undergoes a transition from the cubic fluorite-type structure (thorianite) to the
29	orthorhombic α -PbCl ₂ cotunnite-type structure between 20 and 30 GPa at room
30	temperature. Prior to the transition at room temperature, an increase in unit cell volume is
31	observed, which we interpret as anion sub-lattice disorder or pre-transformation
32	"melting" (Boulfelfel et al., 2006). The thermal equation of state parameters for both
33	thorianite ($V_0 = 26.379(7)$, $K_0 = 204(2)$, $\alpha K_T = 0.0035(3)$) and the high-pressure cotunnite-
34	type phase ($V_0 = 24.75(6)$, $K_0 = 190(3)$, $\alpha K_T = 0.0037(4)$) are reported, holding K_0 ' fixed
35	at 4. The similarity of these parameters suggests that the two phases behave similarly
36	within the deep Earth. The lattice parameter ratios for the cotunnite-type phase change
37	significantly with pressure, suggesting a different structure is stable at higher pressure.
38	

39 INTRODUCTION

Actinides, specifically U and Th, are important in the Earth as long-lived radioactive heat producing elements. Assuming the refractory lithophile element budget of the bulk silicate Earth is chondritic in composition, these elements produce up to 36% of the total heat fluxed out of the planet's surface, but their distribution and role within the dynamics of the deepest part of Earth's mantle is unknown (McDonough and Sun, 1995). These elements are highly refractory (ThO₂ has the highest melting temperature of any oxide at ambient pressures at 3663 K) and nominally incompatible in major mantle

47	minerals, meaning they tend to partition into melts or accessory phases, which makes
48	them excellent tracers for chemical reservoirs in the deep Earth as well as within other
49	planetary bodies (Arevalo Jr. et al., 2009; Fonseca et al., 2014). Additionally, U and Th
50	and their oxides are increasingly important as nuclear energy sources for our growing
51	population and they are used in thermally resistant ceramics (Cuney, 2013). However,
52	stable materials that resist decomposition or amorphization under varying pressure,
53	temperature, and radiation conditions are needed to contain and immobilize the resulting
54	waste from this industrial usage. Actinide-bearing minerals that are stable under a variety
55	of thermodynamic conditions can point to analogous materials that are stable at ambient
56	conditions. Thus, exploring the mineralogy of actinide-bearing minerals at the extreme
57	pressure and temperature conditions of Earth's mantle (tens of gigapascals and thousands
58	of Kelvin) is universally important. This paper focuses on the high-pressure, high-
59	temperature phase behavior and equations of state of the simplest Th-bearing mineral,
60	ThO ₂ .
61	End-member ThO ₂ (thorianite) takes the cubic fluorite-type (CaF ₂ , $Fm3m$)
62	structure at ambient conditions (Fig. 1a). Room temperature X-ray diffraction (XRD)
63	studies show that upon compression this material undergoes a reconstructive phase
64	transition to the orthorhombic cotunnite-type structure (α-PbCl ₂ , <i>Pnma</i>) (Fig. 1b)
65	(Dancausse et al., 1990; Idiri et al., 2004; Jayaraman et al., 1988; Olsen et al., 2004). This
66	phase transition results in an increase in coordination number of the Th cation, from 8-
67	fold (cubic) in the fluorite-type structure to 9-fold in the cotunnite-type structure. At
68	room temperature, this phase transition is kinetically inhibited, with the high-pressure

69 phase first appearing between 30-40 GPa, and coexisting with the metastable low-

pressure phase until 55-57 GPa when the transition is observed to be complete. Because
of this sluggishness, the precise position of the equilibrium phase boundary is not well
constrained.

73 Materials in the fluorite-type structure, including ThO₂, have been shown to 74 undergo a "superionic" transition at about 80% the melting temperature of the material, 75 whereby a critical concentration of Frenkel defects occur in the crystal, resulting in anion 76 sub-lattice "melting" (Clausen et al., 1989; Kuksin and Smirnova, 2014; Kupryazhkin et 77 al., 2011; March et al., 1980; Matveev and Veshchunov, 1997). This transition includes 78 an exponential increase in the enthalpy and specific heat of the material. One 79 computational study has suggested that this transition also occurs at ambient temperature 80 under increasing pressure in the type specimen of fluorite, CaF₂ (Boulfelfel et al., 2006). 81 In this case, the formation of a Frenkel defect, in which a F⁻ anion shifts from its 82 tetrahedral site to a previously empty octahedral site, allowing another F⁻ anion to take its 83 place, locally expands the lattice and allows the Ca cations to subsequently shift to their 84 new crystallographic position in the cotunnite-type structure at high pressures. 85 Previous experiments have shown that phase transitions in similar systems, such 86 as some of the rare Earth pyrochlore $(A_2Zr_2O_7)/defect-fluorite ((A,Zr)_4O_7)$ zirconate 87 materials, which often undergo either amorphization or structural transition to the (defect) 88 cotunnite-type structure under pressure, exhibit anomalous volume expansion just prior to 89 the phase transition (Rittman et al., 2017; Zhang et al., 2010). However, this volume 90 expansion has not been recognized universally in other pyrochlore systems (Li et al., 2016; Rittman et al., 2017). It is likely that the anions in these more complicated 91 92 pyrochlore compounds are undergoing a similar distortion to the one described above for

93	CaF ₂ , although it may be dependent upon the relative radii of the cations in the A and B
94	sites (Rittman et al., 2017). A recent Raman spectroscopy study on bulk ThO2 under
95	pressure has suggested that this material also experiences anion sub-lattice disorder at
96	high pressures (Kamali et al., 2017). It was recognized in that study that one Raman
97	mode appeared within the ThO ₂ spectrum at ~25 GPa as shoulder on the F_{2g} mode of
98	fluorite-type ThO ₂ , approximately 10 GPa lower than the rest of the cotunnite-type
99	modes appeared in the spectrum (~37 GPa). This mode is thought to signal anion disorder
100	since the F_{2g} mode results from the breathing of O anions around the Th cation, thus it is
101	only sensitive to movements of the O atoms. UO2 also exhibits shoulders on the F_{2g} peak,
102	which are thought to be related to anion sub-lattice disorder, but in this case the disorder
103	may be enhanced due to a slight excess of O in the structure (hyperstoichiometry)
104	(Crowhurst et al., 2015).
105	The thermo-elastic parameters (e.g. bulk modulus, K , and thermal expansion, α)
106	of this material are necessary for describing its thermodynamic behavior at extreme
107	conditions of pressure and temperature. Recent measurements (XRD, ultrasonic) and
108	calculations of the ambient-pressure isothermal bulk modulus (K_0) of pure thorianite at
109	300 K are consistent around 185-198 GPa with a pressure derivative ($dK/dP = K_{\theta}'$, where
110	relevant) of ~5 (Boettger, 2009; Boudjemline et al., 2011; Idiri et al., 2004; Kanchana et
111	al., 2006; Li et al., 2014; Macedo et al., 1964; Olsen et al., 2004; Shein et al., 2007; Wang
112	et al., 2010). Earlier XRD studies resulted in much higher values of K_0 and K_0' - 262 GPa
113	and 6.7, respectively (Dancausse et al., 1990), while an inelastic X-ray scattering
114	experiment and a different series of calculations predicted Ko values around 220 GPa
115	(Clausen et al., 1989; Kanchana et al., 2006; Li et al., 2002; Olsen et al., 2004; Sevik and

116	Çağın, 2009).	These results are	summarized in T	able 1. 7	Го date, n	o experimental studies
-----	---------------	-------------------	-----------------	-----------	------------	------------------------

- 117 have reported on the behavior of this material at simultaneous high pressures and high
- temperatures or on the equation of state of the high-pressure cotunnite-type phase.
- 119 Calculations of the elastic parameters of the high-pressure phase are inconsistent, ranging
- in values between $K_0 = 148-207$ and $K_0' = 4.2-7.8$ (Boettger, 2009; Boudjemline et al.,
- 121 2011; Li et al., 2014; Wang et al., 2010). In this study, we conducted in situ XRD
- 122 measurements of ThO₂ to ~60 GPa and ~2500 K to more precisely define the thorianite-
- 123 cotunnite-type phase boundary and to measure the thermal equation of state parameters
- 124 for both the low- and high-pressure phases of this material.
- 125

126 SYNCHROTRON X-RAY DIFFRACTION AND RAMAN SPECTROSCOPY

127 **EXPERIMENTS**

128 Four synchrotron powder X-ray diffraction (XRD) experiments on ThO₂ were 129 conducted in the laser-heated diamond anvil cell (LH-DAC), with diamond culets of 300 130 μm or 250 μm. ThO₂ (99.99%) was purchased from Strem Chemical. The ThO₂ starting 131 material was characterized by an ambient condition XRD measurement at the University 132 of Chicago using incident radiation of $\lambda = 1.5418$ Å (Cu K_a) and Si powder (NBS 640a) 133 as an X-ray standard. In high P-T experiments, amorphous Pt (Alfa Aesar, 0.2-1.6 μ m, 134 99.9%) was mixed with the ThO₂ as an absorber for laser heating. The ThO₂/Pt mixture 135 was loaded as a powder between flakes of KCl (reagent grade, Alfa Aesar) or KBr 136 (spectroscopy grade, Alfa Aesar), which acted as the pressure medium, thermal insulator 137 and pressure standard in the high-temperature experiments (Dewaele et al., 2012). 138 Sample B12 was measured at room temperature using cryogenically-loaded Ar as the

139 pressure medium and pressure standard (Ross et al., 1986). A 3% uncertainty was

140 assigned to the accuracy of the Ar pressure standard.

141	Following safety regulations for radiogenic samples at the Department of Energy
142	facilities where these measurements were made, experiments used double containment to
143	prevent accidental environmental contamination or dispersal. The gasket and diamonds
144	provided the first layer of containment. For the second layer of containment, the DACs
145	were securely wrapped in Kapton® tape around the diameter of the cell. In the laser-
146	heating path, thin (0.5 mm) sapphire windows (6.35 mm diameter, Edmund Optics) were
147	adhered to the outside of the diamond seat by epoxy. The sapphire windows typically
148	resulted in several large and distinctive X-ray diffraction spots on the detector, which
149	were masked during data analysis.
150	Room temperature angle-dispersive powder XRD experiments were performed at
151	sector 12.2.2 at the Advanced Light Source (ALS), Lawrence Berkeley National
152	Laboratory, using a monochromatic incident X-ray beam ($\lambda = 0.4959$ Å) of ~10 μ m in
153	diameter. High-temperature XRD experiments were conducted at sector 13-ID-D (GSE-
154	CARS) of the Advanced Photon Source (APS), Argonne National Laboratory, using a
155	monochromatic incident X-ray ($\lambda = 0.3344$ Å) typically measuring ~3 x 4 µm. At both
156	facilities, sample to detector distance and tilt were calibrated using LaB ₆ . High-
157	temperature samples were compressed to a target pressure and laser heated while XRD
158	measurements were simultaneously collected. The heating laser was co-aligned with the
159	X-ray beam using the X-ray induced fluorescence of the KCl or KBr insulator. Laser-
160	heating was done from both sides of the sample, adjusting upstream and downstream
161	laser power to balance the temperature. Surface temperatures were measured spectro-

162	radiometrically using the Plank radiation function (Prakapenka et al., 2008), and
163	corrected by -3% to account for the axial temperature gradient across the sample
164	(Campbell et al., 2007). The temperature of the alkali halide thermal insulator was
165	estimated as the midpoint between the surface of the sample and the surface of the
166	diamond anvil as described by Campbell et al. (2009).
167	Powder XRD patterns were collected on a CCD and azimuthally integrated to
168	intensity vs. 20 (degrees) plots using DIOPTAS (Prescher and Prakapenka, 2015). Lattice
169	parameters as a function of pressure and temperature were determined by fitting
170	reflection positions using PeakFit (Systat Software). At least one XRD pattern per
171	heating cycle was fully indexed to confirm the space group and lattice parameters at each
172	pressure step using GSAS-II (Toby and Von Dreele, 2013) or DICVOL04 (Boultif and
173	Louër, 2004), which is part of the FULLProf Suite (Rodriguez-Carvajal, 1993).
174	In addition to XRD measurements, the room-temperature phase behavior of ThO_2
175	was investigated using Raman spectroscopy in the Laboratory for Mineral Physics at the
176	University of Chicago. Samples were prepared either as ThO ₂ powder pressed between
177	two MgO flakes, which acted as a Raman-inactive pressure-transmitting medium, or
178	without a pressure medium. All samples were loaded in a steel gasket with an 80 μ m
179	sample chamber and 300 μ m culet DAC. Measurements were taken using a 0.75-meter
180	Acton SpectraPro monochromator with a 473 nm 150 mW blue laser. Pressure was
181	determined using the Raman shift of the diamond, which was calibrated to ruby under
182	quasi-hydrostatic conditions after Akahama and Kawamura (2007). Raman acquisitions
183	were centered at 712 cm ⁻¹ to minimize nearby diamond Raman interference and were the
184	average of 600 one-second exposures at full laser power. Compression measurements

185 began at 3-5 GPa and samples were incrementally brought to ~60 GPa before

186 decompressing to ambient pressure. Raman mode frequencies were determined by peak

187 fitting using PeakFit (Systat Software). The reported frequencies are an average of three

individual fits and the reported uncertainty is the corresponding standard deviation.

189

190 RESULTS AND DISCUSSION

191 Phase diagram ThO₂

192 The measured lattice parameters and pressure-volume-temperature (P-V-T) data 193 points from the in situ XRD experiments are listed in Supplemental Table 1 (thorianite) 194 and Supplemental Table 2 (cotunnite-type ThO₂). Ambient pressure XRD measurement 195 of the ThO₂ starting material confirmed an initial fluorite-type structure (Fig. 1a) with a lattice parameter of $a = 5.5958 \pm 0.0005$ Å ($V_0 = 26.379 \pm 0.007$ cm³/mole), consistent 196 197 with literature values for end-member thorianite (Table 1). As with previous studies, 198 synchrotron XRD measurements at high pressure and room temperature demonstrate that 199 thorianite exists in this fluorite-type structure until ~34 GPa, at which point new 200 diffraction peaks appear between the (111) and (200) fluorite peaks, indicating the 201 emergence of the cotunnite-type phase, illustrated in Fig. 1b (Dancausse et al., 1990; Idiri 202 et al., 2004; Jayaraman et al., 1988; Olsen et al., 2004). Figure 2 shows high-temperature 203 examples of raw diffraction images and their corresponding integrated spectra (intensity 204 vs. 20) for this phase transition, as well as a higher P-T pattern containing only the 205 cotunnite-type phase. 206 The fluorite-cotunnite phase transition requires a crystallographic reconstruction,

207 which is characterized by a large degree of kinetic inhibition. As with previous XRD

208	measurements at room temperature, the fluorite-type phase was present up to the highest
209	pressures achieved at room temperature in this study, ~54 GPa (Dancausse et al., 1990;
210	Idiri et al., 2004; Olsen et al., 2004). This kinetic barrier has been previously observed in
211	room temperature compression studies using different techniques. Using Raman
212	spectroscopy, Jayaraman et al. (1988) observed the initiation of the phase transition
213	between 30 and 37 GPa, but did not reach high enough pressures to observe the
214	disappearance of the fluorite-type phase. The slight differences in the observed transition
215	pressure range in these studies (i.e. 54-57 GPa) are likely due to the use of different
216	pressure-transmitting media. Klotz et al. (2009) have measured the hydrostatic limits, as
217	well as the standard deviation from true pressure (calibrated to ruby) across the sample
218	chamber over a wide range of pressures for all of the pressure media used in the studies
219	described here. Our study used Ar as the room-temperature pressure medium, which is
220	more hydrostatic (i.e. exhibits a lower standard deviation from true pressure) at these
221	pressures and allows for a greater range of metastability than the pressure media in
222	previous studies, silicone oil, N2, or 16:3:1 methanol:ethanol:water (Dancausse et al.,
223	1990; Idiri et al., 2004; Klotz et al., 2009; Olsen et al., 2004). The less hydrostatic
224	conditions in these studies created higher strains, resulting in more abrupt phase
225	transitions compared to the more hydrostatic conditions reported here.
226	In the room temperature volume vs. pressure (V-P) XRD data from this study and
227	those from the literature (Fig. 3), a discontinuity in compression behavior is observed
228	around ~16 GPa, similar to the discontinuities observed previously in other fluorite-type
229	and pyrochlore materials at high pressures (Rittman et al., 2017; Zhang et al., 2010).
230	Although the crystal structure remains in the fluorite-type phase above this pressure, the

231	measured volume is greater than expected by normal compressibility. We interpret this as
232	evidence of anion sub-lattice disorder in ThO ₂ (Boulfelfel et al., 2006).

As described in the Introduction, during the fluorite-cotunnite transition the 233 234 anions are subject to local disordering, described by Boulfelfel et al. (2006) as "melting" 235 of the anionic sub-lattice. This effectively increases the local volume, and allows the 236 cations to subsequently rearrange. Thus, the change in compressibility is interpreted as 237 the onset of the fluorite-cotunnite phase transition. Our data show this discontinuity 238 much more intensely than the earlier literature data for ThO₂ (Idiri et al., 2004; Olsen et 239 al., 2004), which again is likely due to the differences in deviatoric stress conditions of 240 the measurements (Klotz et al., 2009). It is unclear whether this process is also evident in 241 the room temperature compression curve for the cotunnite-type phase because the room 242 temperature XRD patterns that contained that phase were not well enough resolved to 243 extract lattice parameters or volumes.

244 To further investigate this phase transition process, we performed Raman 245 spectroscopy at room temperature under non-hydrostatic conditions. As described in the 246 Methods section, measurements were made both on compression and decompression. 247 Examples of the compression spectra are shown in Fig. 4. Under these conditions, 248 thorianite exhibits a single (triply degenerate) Raman absorption mode representing the symmetric breathing of the O anions around the Th cation (F_{2g}) at ~474 cm⁻¹ at 5 GPa. 249 250 This peak broadens and shifts to higher wavelengths with increasing pressure throughout 251 the pressure range investigated. At ~ 22 GPa new peaks appear as a shoulder or very near 252 the F_{2g} peak at 540 (M1) and 622 (M2) cm⁻¹. Above 32 GPa a triplet of absorption modes (M3-M5) become apparent at low wavenumbers, 330-390 cm⁻¹ and a single peak 253

254	becomes resolvable at 495 cm ⁻¹ (M6). One final peak at \sim 330 cm ⁻¹ (M8) is resolved
255	above 50 GPa (Figs. 4 and 5). Group theory indicates that the cotunnite-type structure
256	should result in 18 distinct Raman modes. We observe 8 at the highest pressures reached.
257	Although our spectra are rather broad due to pressure effects, they are very similar to
258	those observed at ambient pressures in samples of cotunnite-type ZrO2 and HfO2
259	recovered from high pressures (Haines et al., 1997). The pressure dependence of these
260	high-pressure absorption frequencies is shown in Fig. 5 and tabulated, along with
261	calculated mode Grüneisen parameters in Table 2. Mode Grüneisen parameters describe
262	the volume dependence of the frequency of each individual vibrational mode. The
263	thermodynamic Grüneisen parameter is a weighted mean of all mode Grüneisen
264	parameters for the material, including the acoustic modes and other Raman-inactive
265	modes which were not probed in this study.
266	We interpret the additional peaks in the 20-30 GPa range as the rearrangement of
267	the anion sub-lattice, which is consistent with previous interpretations of Raman
268	measurements of ThO ₂ (Kamali et al., 2017), although these limited data cannot be used
269	to determine the extent of disorder. The peaks appearing at 32 GPa are the final stages of
270	the fluorite-cotunnite phase transition. The vibrational modes exhibit a regular linear
271	slope as a function of pressure above 37 GPa. Thus, the full crystallographic
272	reconstruction of the cubic fluorite-type structure to the orthorhombic cotunnite-type
273	structure appears to be complete for both the anions and cations between 32 and 37 GPa.
274	This is approximately the pressure at which the cotunnite phase emerges in the room
275	temperature XRD data (Fig. 6) (Dancausse et al., 1990; Idiri et al., 2004; Olsen et al.,
276	2004). Since XRD is more sensitive to the Th atoms in this material, it appears that the

277	phase transition will not be evident using diffraction until a significant portion of the
278	cation sub-lattice has undergone transformation (i.e. above 32 GPa). Given the change in
279	slope of the Raman frequencies, none of the high-pressure modes appear to be directly
280	related to the low-pressure phase. Upon decompression, the cotunnite-type absorption
281	peaks remain until ~2 GPa while continually decreasing in Raman frequency. At ~1 GPa,
282	there is only a single peak remaining, at 463 cm ⁻¹ , suggesting that it has fully reverted
283	back to the fluorite-type structure.
284	The thorianite-cotunnite-type phase transition is also observed at high
285	temperatures. In synchrotron XRD experiments at \sim 17 GPa, the phase transition occurred
286	on increasing temperature between 1534 ± 114 K and 1583 ± 119 K. Again, this
287	transition is sluggish, even at high temperatures. The high-pressure phase was not
288	observed at all in the pressure step at \sim 18-19 GPa, which suggests that in those cases
289	heating was faster than the phase transition could proceed. Additionally, from 20-30 GPa
290	at high temperatures both phases are observed, but only one of them (likely the cotunnite-
291	type phase) can be thermodynamically stable. Above ~30 GPa at high temperatures, only
292	the cotunnite-type phase is observed up to the highest pressures reached in this study, ~ 62
293	GPa. All of this information was compiled as our preferred <i>P</i> - <i>T</i> phase diagram for this
294	material in Fig. 6. Based on our observations, it is likely that the phase boundary is very
295	close to vertical or slightly negative around 18-20 GPa in <i>P-T</i> space, although it is not
296	observed in the XRD data until \geq 30 GPa.
207	

297

298 Equations of state of ThO₂ polymorphs

Given the range of P-V-T data obtained for the polymorphs of ThO₂ in this study, we were able to extract equation of state parameters for each phase. We fit both sets of data to the Mie-Grüneisen type equations of state (eq. 1), where the reference pressure (300 K) equation took the Birch-Murnaghan form (eq. 2).

303
$$P = P_{300K} + P_{thermal}$$
 (1)

304
$$P_{300K} = 3K_0 f(1+2f)^{\frac{5}{2}} \left(1 + \frac{3}{2}f(K'_0 - 4)\right)(2)$$

305 Here, f is the finite Eularian strain,
$$\frac{1}{2}\left(\left(\frac{V}{V_0}\right)^{\frac{-2}{3}}-1\right)$$
, V is the measured volume of the

306 material at pressure, P, V_0 is the ambient pressure volume, K_0 is the ambient pressure

307 isothermal bulk modulus, and K_0 is its pressure derivative. For the thorianite equation of

308 state, we only used the room temperature data prior to the volume discontinuity (<15

309 GPa). For the cotunnite-type phase, there were no room temperature patterns of high

310 enough quality to extract lattice parameters. Thus, no room temperature data were used in

- 311 the fits for the high-pressure phase. Because of the limited room temperature data, we
- 312 chose to define the thermal pressure as in equation 3.

313
$$P_{thermal} = \alpha K_T (T - 300) (3)$$

314 α is thermal expansion and K_T is the bulk modulus at temperature, *T*. In this case, the

315 coefficient on temperature is taken to be constant.

The equation of state parameters for each phase are given in Table 1, along with the available literature values. For thorianite, V_0 was measured prior to the compression experiments to be 26.379(7) cm³/mole, so it was fixed in the fitting routine. Additionally, K_0 was fixed to a value of 4 to allow for more precise determination of the thermal term. Our choice of 4 of K_0 is slightly lower than has previously been measured (~5), so our

measured bulk modulus is slightly higher at 204 GPa than other recent XRD studies (Idiri et al., 2004; Olsen et al., 2004). The thermal pressure coefficient, αK_T , for thorianite was determined to be 0.0035(3) GPa/K.

324 The properties of the high-pressure cotunnite-type phase of ThO₂ are very similar 325 to those of the low-pressure phase. Holding K_{θ} at a value of 4, the bulk modulus for this 326 phase was determined to be 190(3) GPa. This is slightly more compressible, but very 327 similar to the value for thorianite. Additionally, the thermal pressure coefficient was 328 found to be 0.0037(4) GPa/K, suggesting that the high-pressure phase reacts very 329 similarly to pressure and temperature as the low-pressure phase. The fitted zero-pressure 330 volume for the cotunnite-type phase is 24.75(6) cm³/mole, which is 6.2% more dense 331 than thorianite at ambient conditions. This is virtually the same volume contrast that was 332 observed at \sim 35 GPa, by Idiri et al. (2004). The compiled *P-V-T* data from this study are 333 plotted in Fig. 7 along with calculated isotherms for comparison. 334 The values for the individual lattice parameters of the cotunnite-type phase are 335 given in the top panel of Fig. 8. Each one decreases with pressure, as expected, but the a-336 axis appears to be compressing at a faster rate than either b or c, while the short b-axis 337 changes very little. This relationship is best demonstrated in the lattice parameter ratios as 338 a function of pressure in the lower panels of Fig. 8. In general, the ratios of the lattice 339 parameters change linearly with pressure, with only small dependencies on temperature. 340 This would occur if the coordination polyhedra within the cotunnite-type structure are

341 continuously distorting with pressure, and suggests that upon increasing compression the

342 material will undergo another structural phase transition. A transition of this type has

been predicted theoretically for ThO₂ above ~80 GPa by Perry et al. (2017). In the

344	calculation, the phase transition was signaled by a collapse in the <i>a</i> -axis and a
345	corresponding expansion of the <i>b</i> - and <i>c</i> -axes, which is consistent with the compression
346	behavior observed here. Some likely options for this higher pressure phase are common
347	post-cotunnite structures, including the hexagonal Fe_2P structure (P-62 <i>m</i>) observed in the
348	ZrO ₂ system (Nishio-Hamane et al., 2015) or the Ni ₂ In structure (<i>P</i> 6 ₃ / <i>mmc</i>) and
349	orthorhombic distortions thereof (Song et al., 2012). For convenience, the ratios have
350	been fitted to a linear dependence of pressure. The slopes and hypothetical zero-pressure
351	values from these fits are given in Table 3.

352

353 IMPLICATIONS

354 This study explores the simultaneous high-pressure, high-temperature behavior of 355 ThO₂. We find that the thorianite–cotunnite-type phase transition is kinetically inhibited, 356 even at 2000 K. The onset of the transition at room temperature begins at \sim 15-20 GPa, as 357 evidenced by an anomalously low compressibility of the cubic structure with pressure. 358 We interpret this change as anion sub-lattice disorder, which has been theoretically predicted for the same phase transition in CaF₂ (Boulfelfel et al., 2006) and observed in 359 360 several analogous phase transitions in the pyrochlore/disordered fluorite system under 361 pressure (Rittman et al., 2017; Zhang et al., 2010). This transition pressure is 362 corroborated by Raman spectroscopy measurements (Figs. 4 and 5) (Jayaraman et al., 363 1988; Kamali et al., 2017). At room temperature, the phase transition was not complete, 364 even at the highest pressures reached in this study, ~55 GPa. At high temperatures, the 365 onset of the phase transition was observed at ~18 GPa and was complete by ~30 GPa. If 366 Th exists in oxide form in the Earth's lower mantle, it is likely in a solid solution with

367	other large cations of +4 valence whose oxides also take the cotunnite structure, e.g.
368	(Zr,Th,U)O ₂ . Such a phase, with Zr as the dominant (i.e. most abundant) cation, could
369	exist in the cotunnite-type structure to at least ~1430 km (~60 GPa), as ZrO ₂ has been
370	shown to be stable in the cotunnite-type structure well above this pressure (Nishio-
371	Hamane et al., 2015).
372	The isothermal equation of state parameters measured here for thorianite are
373	consistent with previous measurements (Idiri et al., 2004; Olsen et al., 2004).
374	Additionally, this study provides a thermal dependence for the high-pressure behavior of
375	thorianite, as well as thermal equation of state parameters for the high-pressure cotunnite-
376	type phase. These parameters are necessary for predicting the behavior of this material at
377	extreme conditions, such as within a nuclear reactor (a very high radiation environment at
378	~15 MPa and several hundred Celsius for pressurized water reactors (Office of Nuclear
379	Reactor Regulation, 2012)) or in the Earth's lower mantle (up to 137 GPa and ~4000 K at
380	the core-mantle boundary). We find that, although the cotunnite-type phase of ThO_2 is
381	\sim 6% denser than its lower-pressure polymorph, they have a very similar compressibilities
382	and thermal pressure coefficients. We also find that the cotunnite structure is
383	continuously deforming under pressure, which suggests that this material will undergo
384	another phase transition on increasing pressure. Such a phase transition has been
385	predicted above ~80 GPa theoretically (Perry et al., 2017). Thus, actinide-bearing oxides
386	in the lowermost region of Earth's lower mantle may not be stable in the cotunnite-type
387	phase. This behavior has the potential to influence the distribution of large ion lithophile
388	elements among accessory phases, particularly if the post-cotunnite structure exhibits a
389	significantly different coordination environment than the cotunnite-type structure.

391 ACKNOWLEDGMENTS

- 392 The authors are grateful to Jinyuan Yan for his assistance with the room temperature
- 393 measurements. This study was funded by NSF Graduate Research Fellowship Grant
- 394 #DGE-1144082, NSF Grants #EAR-1427123 and #EAR-0944298, and the
- 395 Carnegie/DOE Alliance Center (CDAC). Portions of this work were done at
- 396 GeoSoilEnviroCARS (The University of Chicago, Sector 13) of the Advanced Photon
- 397 Source, Argonne National Laboratory, and at Sector 12.2.2 of the Advanced Light
- 398 Source, Lawrence Berkeley National Laboratory. GeoSoilEnviroCARS is supported by
- the National Science Foundation Earth Sciences (EAR 1634415) and Department of
- 400 Energy- GeoSciences (DE-FG02-94ER14466). This research used resources of the
- 401 Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User
- 402 Facility operated for the DOE Office of Science by Argonne National Laboratory under
- 403 Contract No. DE-AC02-06CH11357. Sector 12.2.2. is funded in part by the Consortium
- 404 for Materials Properties Research in Earth Sciences (COMPRES) under NSF Cooperative
- 405 Agreement EAR 10-43050. The Advanced Light Source is supported by the Director,
- 406 Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy
- 407 under Contract No. DE-AC02-05CH11231.
- 408
- 409

410

411

REFERENCES

412 Akahama, Y., and Kawamura, H. (2007) Diamond anvil Raman gauge in multimegabar
413 pressure range. High Pressure Research, 27(4), 473-482.

414	Arevalo Jr., R., McDonough, W.F., and Luong, M. (2009) The K/U ratio of the silicate
415	Earth: Insights into mantle composition, structure and thermal evolution. Earth
416	and Planetary Science Letters, 278, 361-369.
417	Boettger, J.C. (2009) Theoretical zero-temperature isotherm and structural phase stability
418	of thorium dioxide. International Journal of Quantum Chemistry, 109(15), 3564-
419	3569.
420	Boudjemline, A., Louail, L., Islam, M.M., and Diawara, B. (2011) Dependence of
421	pressure on elastic, electronic and optical properties of CeO2 and ThO2: A first
422	principles study. Computational Materials Science, 50(7), 2280-2286.
423	Boulfelfel, S.E., Zahn, D., Hochrein, O., Grin, Y., and Leoni, S. (2006) Low-dimensional
424	sublattice melting by pressure: Superionic conduction in the phase interfaces of
425	the fluorite-to-cotunnite transition of CaF2. Physical Review B, 74(9), 094106.
426	Boultif, A., and Louër, D. (2004) Powder pattern indexing with the dichotomy method.
427	Journal of Applied Crystallography, 37, 724-731.
428	Campbell, A.J., Danielson, L., Righter, K., Seagle, C.T., Wang, Y., and Prakapenka, V.B.
429	(2009) High pressure effects on the iron-iron oxide and nickel-nickel oxide
430	oxygen fugacity buffers. Earth and Planetary Science Letters, 286(3-4), 556-564.
431	Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G., and Prakapenka, V.B. (2007) Partial
432	melting in the iron-sulfur system at high pressure: A synchrotron X-ray
433	diffraction study. Physics of the Earth and Planetary Interiors, 162(1-2), 119-128.
434	Clausen, K.N., Hackett, M.A., Hayes, W., Hull, S., Hutchings, M.T., MacDonald, J.E.,
435	McEwen, K.A., Osborn, R., and Steigenberger, U. (1989) Coherent Diffuse
436	Neutron Scattering From UO2 and ThO2 at Temperatures Above 2000 K. Physica
437	B, 156-157, 103-106.
438	Crowhurst, J.C., Jeffries, J.R., Aberg, D., Zaug, J.M., Dai, Z.R., Siekhaus, W.J., Teslich,
439	N.E., Holliday, K.S., Knight, K.B., Nelson, A.J., and Hutcheon, I.D. (2015) A
440	combined theoretical and experimental investigation of uranium dioxide under
441	high static pressure. Journal of Physics: Condensed Matter, 27(26), 265401.
442	Cuney, M. (2013) Uranium and thorium resources and the sustainability of nuclear
443	energy. In P.C. Burns, and G.E. Sigmon, Eds. Uranium: Cradle to Grave,

444	Mineralogical Association of Canada Short Course Series, 43, p. 417-437.
445	Mineralogical Association of Canada.
446	Dancausse, JP., Gering, E., Heathman, S., and Benedict, U. (1990) Pressure-induced
447	phase transition in ThO2 and PuO2. High Pressure Research, 2(5-6), 381-389.
448	Dewaele, A., Belonoshko, A.B., Garbarino, G., Occelli, F., Bouvier, P., Hanfland, M.,
449	and Mezouar, M. (2012) High-pressure-high-temperature equation of state of KCl
450	and KBr. Physical Review B, 85(21), 214105.
451	Dorfman, S.M., Jiang, F., Mao, Z., Kubo, A., Meng, Y., Prakapenka, V.B., and Duffy,
452	T.S. (2010) Phase transitions and equations of state of alkaline earth
453	fluoridesCaF2,SrF2, andBaF2to Mbar pressures. Physical Review B, 81(17).
454	Fonseca, R.O.C., Mallmann, G., Sprung, P., Sommer, J.E., Heuser, A., Speelmanns, I.M.,
455	and Blanchard, H. (2014) Redox controls on tungsten and uranium crystal/silicate
456	melt partitioning and implications for the U/W and Th/W ratio of the lunar
457	mantle. Earth and Planetary Science Letters, 404, 1-13.
458	Haines, J., Léger, J.M., Hull, S., Petitet, J.P., Pereira, A.S., Perottoni, C.A., and da
459	Jornada, J.A.H. (1997) Characterization of the cotunnite-type phases of zirconia
460	and hafnia by neutron diffraction and Raman spectroscopy. Journal of the
461	American Ceramic Society, 80(7), 1910-1914.
462	Idiri, M., Le Bihan, T., Heathman, S., and Rebizant, J. (2004) Behavior of actinide
463	dioxides under pressure: UO2 and ThO2. Physical Review B, 70(1), 014113.
464	Jayaraman, A., Kourouklis, G.A., and Van Uitert, L.G. (1988) A high pressure Raman
465	study of ThO2 to 40 GPa and pressure-induced phase transition from fluorite
466	structure. Pramana - Journal of Physics, 30(3), 22-231.
467	Kamali, K., Ananthasivan, K., Ravindran, T.R., and Kumar, D.S. (2017) High pressure
468	Raman spectroscopic studies on nanocrystalline ThO 2. Journal of Nuclear
469	Materials, 493, 77-83.
470	Kanchana, V., Vaitheeswaran, G., Svane, A., and Delin, A. (2006) First-principles study
471	of elastic properties of CeO2, ThO2 and PoO2. Journal of Physics: Condensed
472	Matter, 18(42), 9615-9624.

473	Klotz, S., Chervin, J.C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of
474	11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7),
475	075413.
476	Kuksin, A.Y., and Smirnova, D.E. (2014) Calculation of diffusion coefficients of defects
477	and ions in UO2. Physics of the Solid State, 56(6), 1214-1223.
478	Kupryazhkin, A.Y., Svetlichnyi, D.G., and Zhiganov, A.N. (2011) Self-diffusion of
479	oxygen in superstoichiomertric uranium dioxide in the range of the superion
480	phase transition. Technical Physics, 56(2), 221-225.
481	Li, H., Tao, Q., Li, N., Tang, R., Zhao, Y., Zhu, H., Zhu, P., and Wang, X. (2016)
482	Pressure-induced structural transition of Y 2 Zr 2 O 7. Journal of Alloys and
483	Compounds, 660, 446-449.
484	Li, Q., Yang, JS., Huang, DH., Cao, QL., and Wang, FH. (2014) Phase transition
485	and thermodynamic properties of ThO2: Quasi-harmonic approximation
486	calculations and anharmonic effects. Chinese Physics B, 23(1), 017101.
487	Li, S., Ahuja, R., and Johansson, B. (2002) High pressure theoretical studies of actinide
488	oxides. High Pressure Research, 22, 471-474.
489	Macedo, P.M., Capps, W., and Wachtman Jr., J.B. (1964) Elastic constants of single
490	crystal ThO2 at 25°C. Journal of the American Ceramic Society, 47(12), 651.
491	March, N.H., Richardson, D.D., and Tosi, M.P. (1980) Correlation of the superionic
492	transition temperature and Frenkel energy in fluorite crystals. Solid State
493	Communications, 35, 903-905.
494	Matveev, L.V., and Veshchunov, M.S. (1997) High-temperature transition of uranium
495	dioxide to the super-ion state. Journal of Experimental and Theoretical Physics,
496	84(2), 322-329.
497	McDonough, W.F., and Sun, Ss. (1995) The composition of the Earth. Chemical
498	Geology, 120, 223-253.
499	Nishio-Hamane, D., Dekura, H., Seto, Y., and Yagi, T. (2015) Theoretical and
500	experimental evidence for the post-cotunnite phase transition in zirconia at high
501	pressure. Physics and Chemistry of Minerals, 42(5), 385-392.
502	Office of Nuclear Reactor Regulation. (2012) Standard Technical Specifications Babcock
503	and Wilcox Plants Vol. 1., Washington, D.C.

504	Olsen, J.S., Gerward, L., Kanchana, V., and Vaitheeswaran, G. (2004) The bulk modulus
505	of ThO2—an experimental and theoretical study. Journal of Alloys and
506	Compounds, 381(1-2), 37-40.
507	Perry, S.N., Pigott, J.S., and Panero, W.R. (2017) Ab initio calculations of uranium and
508	thorium storage in CaSiO3-perovskite in the Earth's lower mantle. American
509	Mineralogist, 102(2), 321-326.
510	Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers,
511	M.L., and Sutton, S.R. (2008) Advanced flat top laser heating system for high
512	pressure research at GSECARS: application to the melting behavior of
513	germanium. High Pressure Research, 28(3), 225-235.
514	Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: A program for reduction of two-
515	dimensional X-ray diffraction data and data exploration. High Pressure Research,
516	35(3), 223-230.
517	Rittman, D.R., Turner, K.M., Park, S., Fuentes, A.F., Yan, J., Ewing, R.C., and Mao,
518	W.L. (2017) High-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti,
519	Zr). Journal of Applied Physics, 121(4), 045902.
520	Rodriguez-Carvajal, J. (1993) Recent advanes in magnetic structure determination by
521	neutron powder diffraction + FULLProf. Physica B: Condensed Matter, 192(55-
522	56).
523	Ross, M., Mao, H.K., Bell, P.M., and Xu, J.A. (1986) The equation of state of dense
524	argon: A comparison of shock and static studies. The Journal of Chemical
525	Physics, 85(2), 1028-1033.
526	Sevik, C., and Çağın, T. (2009) Mechanical and electronic properties of CeO2, ThO2,
527	and (Ce,Th)O2 alloys. Physical Review B, 80(1), 014108.
528	Shein, I.R., Shein, K.I., and Ivanovskii, A.L. (2007) Elastic and electronic properties and
529	stability of SrThO3, SrZrO3 and ThO2 from first principles. Journal of Nuclear
530	Materials, 361(1), 69-77.
531	Song, H.X., Geng, H.Y., and Wu, Q. (2012) Pressure-induced group-subgroup phase
532	transitions and post-cotunnite phases in actinide dioxides. Physical Review B,
533	85(6), 064110.

534	Toby, B.H., and Von Dreele, R.B. (2013) GSAS-II: The genesis of a modern open-source
535	all purpose crystallography software. Journal of Applied Crystallography, 46(544-
536	549).
537	Wang, BT., Shi, H., Li, WD., and Zhang, P. (2010) First-principles study of ground-
538	state properties and high pressure behavior of ThO2. Journal of Nuclear
539	Materials, 399(2-3), 181-188.
540	Zhang, F.X., Lang, M., Liu, Z., and Ewing, R.C. (2010) Pressure-induced disordering and
541	anomalous lattice expansion in La2Zr2O7 pyrochlore. Phys Rev Lett, 105(1),
542	015503.
543 544	
545	FIGURE CAPTIONS
546	Figure 1. a) The fluorite crystal structure. b) The cotunnite-type crystal structure. Green
547	spheres represent the Th ⁴⁺ cations, red spheres represent the O ²⁻ anions.
548	Figure 2. Raw diffraction images and integrated diffraction patterns for three in situ
549	XRD measurements of sample B25. KBr was the pressure-transmitting medium, thermal
550	insulator, and pressure standard for the experiment. Pt acted as the laser-absorber for the
551	laser heating experiments.
552	Figure 3. Room temperature <i>P</i> - <i>V</i> data for thorianite from this study and the available
553	literature. The <i>ab initio</i> curve from Olsen et al. (2004) was developed using the
554	Generalized Gradient Approximation. The difference between the pressures predicted
555	from calculations and the measured pressure is shown in the bottom panel. The solid line
556	corresponds to the offset in ambient pressure volumes (predicted-measured). A
557	discontinuity is apparent in the data beginning around 15 GPa.

558	Figure 4. Raman spectra of ThO ₂ collected at room temperature on increasing pressure.
559	Lines indicate the trajectories of peaks with increasing pressure. Colors are coordinated
560	with frequencies plotted in Fig. 5.
561	Figure 5. Raman vibrational frequencies as a function of pressure. Thorianite exhibits a
562	single vibrational mode (black triangles), whereas 8 separate peaks were identified for the
563	cotunnite-type phase. Upward solid triangles were measured on increasing pressure,
564	downward open triangles are decreasing pressure. Pressure dependencies were fit to
565	linear trends, which are shown in their corresponding color.
566	Figure 6. Phase diagram for ThO ₂ . Circles indicate in situ XRD measurements. Black:
567	thorianite; green: mixed phase; blue: cotunnite-type ThO2. Orange X's: low density
568	thorianite determined from Fig. 3 (indicates anion sub-lattice disorder). Triangles indicate
569	relevant Raman measurements. Black: last spectrum with only thorianite; orange: some
570	new vibrational modes observed; green: all high-P modes are present; blue: phase
571	transformation appears complete. The grey shaded region indicates our preferred phase
572	boundary. See text for discussion.
573	Figure 7. Measured <i>P</i> - <i>V</i> - <i>T</i> data for thorianite and cotunnite-type ThO ₂ . Curves are
574	isotherms calculated using the equation of state parameters from Table 1. Isotherms are
575	color-coded by temperature. Residuals to the fits are provided in the bottom panels.
576	Figure 8. Individual lattice parameters and their ratios for cotunnite-type ThO ₂ . Black
577	lines are linear fits to the data. No temperature dependence was resolved for the lattice
578	parameter ratios.
579	TABLES

580	Table 1. Measured and calculated equation of state parameters for the polymorphs of
581	ThO ₂ . Bold values were held fixed in the fitting procedure. LH = laser-heated; $RT =$
582	room temperature; FP = full potential; PAW = projector-augmented wave method; PBE =
583	Perdew-Burke-Ernzerhof functional; LCGTO-FF = linear combinations of Gaussian type
584	orbitals-fitting function; LMTO = linear muffin-tin orbital method; LDA = local density
585	approximation; GGA = general gradient approximation; ASA = atomic-sphere
586	approximation; INS = inelastic neutron scattering. This table was adapted from Olsen et
587	al. 2004.

	Thorianite				
V ₀ (cm ³ /mole)	K ₀ (GPa)	<i>K</i> ′ ₀	αK _T (GPa/K)	Ref.	Method
26.379(7)	204(2)	4	0.0035(3)	This study	LH-DAC
26.44	198(2)	4.6(3)		Idiri et al. (2004)	RT-DAC
26.37	262(4)	6.7(5)		Dancausse et al. (1990)	RT-DAC
26.39	195(2)	5.4(2)		Olsen et al. (2004)	RT-DAC
25.36	225	4.2		Olsen et al. (2004)	FP-LMTO-LDA
26.60	198	4.2		Olsen et al. (2004)	FP-LMTO-GGA
26.68	189	4.10		Perry et al. (2017)	GGA-PAW
26.8	191	4.5		Wang et al. (2010)	GGA-PAW
26.33	187.6	4.19		Li et al. (2014)	GGA-PBE
26.77	184.5	4.49		Boettger (2009)	GGA-LCGTO-FF
25.32	225	4.4		Kanchana et al. (2006)	FP-LMTO-LDA

Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6212					
26.58	198	4.5		Kanchana et al. (2006)	FP-LMTO-GGA
26.16	198	4.91		Boudjemline et al. (2011)	GGA
25.53	290			Kelly and Brooks (1987)	LMTO-ASA
26.76	192.8			Shein et al. (2007)	FLAPW
26.44	216			Sevik and Çağln (2009)	LDA+U
	175			Harding et al. (1994)	Dirac-Fock approx.
	221			Li et al. (2002)	FP-LMTO-GGA
	223			Clausen et al. (1987)	INS
	193(2)			Macedo et al. (1964)	Ultrasound
		Cotu	nnite-type ThC	02	
24.75(6)	190(3)	4	0.0037(4)	This study	LH-DAC
25.07	177	4.2		Perry et al. (2017)	GGA-PAW
25.1	148	7.8		Wang et al. (2010)	GGA-PAW
24.1	202.1	4.22		Li et al. (2014)	GGA-PBE
24.7	206.8	4.94		Boettger (2009)	GGA-LCGTO-FF
24.55	163.2	6.19		Boudjemline et al. (2011)	GGA

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

- 590 **Table 2.** Pressure dependences of the measured Raman modes for thorianite and
- 591 cotunnite-type ThO₂. v_0 is the zero-pressure frequency. γ_i are the mode Grüneisen

592 parameters for each vibrational mode, defined as $K_0(\text{dlnv}_i/\text{dP})$.

Raman mode	v ₀ (cm ⁻¹)	dv _i /dP (cm ⁻¹ /GPa)	γi
F _{2g}	460(2)	2.37(9)	0.96(4)
M1	497(3)	1.55(6)	0.51(2)
M2	577(3)	2.04(8)	0.59(2)
M3	294(3)	1.28(7)	0.69(4)
M4	325(4)	1.05(8)	0.54(4)
M5	365(3)	0.83(6)	0.39(3)
M6	465(3)	0.85(7)	0.32(3)
M7	497(3)	1.55(6)	0.41(4)

- **Table 3.** Linear fits to the lattice parameter ratios as a function of pressure for cotunnite-
- 595 type ThO₂.

Ratio	Slope (GPa ⁻¹)	Zero-pressure value
c/a	0.00081(2)	1.1391(9)
b/a	0.00048(2)	0.5962(8)
c/b	-0.00015(3)	1.910(1)

596

\$35\$ Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

 $36 \\ \mbox{Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld}$