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ABSTRACT 37	

  It is very difficult to synthesize dolomite under Earth-surface conditions in the 38	

laboratory. However, multiple carbonate phases, including low-Mg-calcite (LMC), 39	

high-Mg-calcite (HMC), and dolomite, have been discovered in authigenic carbonate 40	

deposits that precipitated at cold methane seeps. The formation of such seep carbonates is 41	

triggered by the sulfate-driven anaerobic oxidation of methane (SD-AOM), which is 42	

mediated by a consortium of methane-oxidizing archaea and sulfate-reducing bacteria; 43	

this process releases bicarbonate and dissolved sulfide. Thus, the formation of Ca-Mg 44	

carbonate phases and, particularly, their respective MgCO3 contents are likely to be 45	

intimately related to SD-AOM and the methane supply at cold seeps. Yet, the driving 46	

forces for MgCO3 enrichment and the actual mechanism responsible for the incorporation 47	

of Mg2+ into the crystal lattice are not fully understood. Interestingly, recent laboratory 48	

experiments succeeded in synthesizing disordered dolomite under the catalysis of 49	

dissolved sulfide and extracellular polymeric substances (EPS) at low-temperatures. To 50	

characterize the effect of these catalyses on the formation of seep carbonates, we 51	

investigated mineral phases, microstructure, and contents of Ca, Mg, and rare earth 52	

elements of seep carbonates from the Shenhu area and the Southwest (SW) Taiwan basin 53	

of the northern South China Sea (SCS). The studied carbonates are composed of multiple 54	

Ca-Mg carbonate phases, including HMC, weakly ordered dolomite, and dolomite with a 55	

wide range of MgCO3 contents. Transmission electron microscopy indicates that the 56	



4 
 

microstructure of some Shenhu dolomite is almost stoichiometric, only a few domains 57	

exhibit the structure of Mg-calcite. Weakly ordered dolomite from the SW Taiwan basin 58	

contains less MgCO3 than the Shenhu dolomite, and is composed of heterogeneously 59	

distributed domains of Mg-calcite and dolomite. A positive correlation between MgCO3 60	

contents, cerium anomalies, NdN to YbN ratios, and 13C-depletion suggests that Mg2+ 61	

incorporation into the crystal lattice is favored by reducing conditions produced by 62	

pronounced SD-AOM. Based on previous studies, we put forward that SD-AOM derived 63	

sulfide and EPS produced by the SD-AOM consortium are the most plausible drivers for 64	

Ca-Mg carbonate formation at cold seeps. Precipitated under conditions similar to 65	

laboratory experiments, the initial Ca-Mg carbonates are apparently disordered 66	

nano-crystals with various MgCO3 contents. In the course of maturation and 67	

recrystallization, the Ca-Mg carbonates evolve into weakly ordered dolomite or dolomite. 68	

This study contributes to the understanding of dolomite formation at cold seeps and the 69	

relationship between carbonate mineralogy, the supply of methane, and microbial 70	

activity.  71	

Keywords: Dolomite, dolomite problem, authigenic Ca-Mg carbonate, SD-AOM, cold 72	

seep, South China Sea 73	

 74	

 75	

 76	
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 77	

INTRODUCTION 78	

The problem of sedimentary dolomite formation has sustained for over 200 years 79	

(Lippmann, 1973; Hardie, 1987; Burns et al., 2000; Warren, 2000; Machel, 2004). The 80	

dolomite content of sedimentary rock that formed before the Pleistocene is much higher 81	

than that of modern sediments and laboratory syntheses of ordered and stoichiometric 82	

dolomite at surface conditions have not succeeded (Lippmann, 1973; Land, 1998; Burns 83	

et al., 2000; Machel, 2004; Gregg et al., 2015). Several models of dolomite formation 84	

have been suggested based on studies of different geological settings (Zenger and 85	

Dunham, 1980; Hardie, 1987; Warren, 2000; Machel, 2004), but primary or 86	

penecontemporaneous dolomite formation as opposed to dolomitization is still 87	

insufficiently understood. Sulfate was once considered as a major factor that inhibits 88	

primary dolomite formation (Baker and Kastner, 1981; Compton, 1988). However, an 89	

inhibition effect prevails when the concentration of sulfate in the fluid from which 90	

carbonate minerals precipitate is low, which is not the case under conditions of dolomite 91	

precipitation in marine environments (Hardie, 1987; Brady et al., 1996; Machel, 2004). It 92	

seems likely that one of the rate-limiting steps of dolomite precipitation is the 93	

dehydration of Mg2+ ions. As the dehydration of Ca2+ ions is much easier than that of 94	

Mg2+ ions, more Ca2+ than Mg2+ enters the cation sites of initially formed layers of 95	

Ca-Mg carbonate minerals (Pokrovsky, 1998; Higgins and Hu, 2005; Hu et al., 2005; 96	
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Romanek et al., 2009). The few incorporated Mg2+ ions distort the lattice structure 97	

(Wasylenki et al., 2005; Xu et al., 2013), making the new layer unstable and preventing 98	

the growth of Ca-Mg carbonates (Mazzullo, 2000; de Leeuw and Parker, 2001; Fenter et 99	

al., 2007). For dolomite to form under surface conditions, the kinetic barrier to 100	

Mg2+-water dehydration must be overcome (Lippmann, 1973; Brady, et al., 1996; Land, 101	

1998; de Leeuw, 2002; Machel, 2004). Some studies suggested that microorganisms can 102	

assist in dolomite formation by creating Mg2+- and bicarbonate-rich and sulfate-free 103	

conditions in micro-environments affected by sulfate reduction (Vasconcelos and 104	

McKenzie, 1997; Wright, 1999; Van Lith, et al., 2003a) or by providing extracellular 105	

polymeric substances (EPS) as nucleation sites for dolomite precipitation (Riding, 2000; 106	

Van Lith, et al., 2003b; Roberts et al., 2004; Ayllón-Quevedo, et al., 2007; Perri and 107	

Tucker, 2007). Dead cell pellets of some anaerobic microorganisms have been found to 108	

be unable to promote the formation of dolomite after EPS extraction (Zhang et al., 2015), 109	

whereas microbially produced carbonate ions, dissolved sulfide, and EPS are able to 110	

facilitate the dehydration of Mg2+ and the precipitation of Ca-Mg carbonates including 111	

disordered dolomite (Lippmann, 1973; Zhang et al., 2012a, 2012b, 2015). However, 112	

recent studies indicate that Mg2+ dehydration alone is not sufficient to form ordered 113	

dolomite. On the one hand, synthesis of Ca-Mg carbonates in anhydrous solvent with 114	

Mg/Ca ratios of seawater resulted in amorphous phases, although with high MgCO3 115	

contents (Xu et al., 2013). On the other hand, the incorporation of Ba2+ and Mg2+ at 116	
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similar rates into norsethite with dolomite-like structure put into question the inhibiting 117	

effect of a dehydration barrier of Mg2+ on the formation of ordered dolomite (Pimentel 118	

and Pina, 2014). A fundamental barrier has been suggested to be the factor that prevents 119	

cation ordering in Ca-Mg carbonates, which is likely to be caused by cation sizes (Xu et 120	

al., 2013; Pimentel and Pina, 2014). Perhaps, fluctuation of the conditions during 121	

precipitation, such as pH, and/or a sequence of solvent-mediated processes may facilitate 122	

formation of ordered dolomite (Liebermann, 1967; Deelman, 2011)	 or dolomite-like 123	

phases (Pimentel and Pina, 2014). Therefore, overcoming the intrinsic crystallographic 124	

barrier to develop cation ordering in Ca-Mg carbonates is another rate-limiting step to 125	

form ordered dolomite. 126	

Multiple Ca-Mg carbonate phases, including LMC, HMC, and dolomite have been 127	

identified as constituents of seep deposits (Greinert et al., 2001; Roberts et al., 2010). The 128	

MgCO3 content of HMC and dolomite varies over a wide range (Ferrell and Aharon, 129	

1994; Han et al., 2008; Robert et al., 2010; Lu et al., 2015). In cold seep environments, 130	

sulfate-driven anaerobic oxidation of methane (SD-AOM), mediated by a consortium of 131	

methane-oxidizing archaea and sulfate-reducing bacteria, produces bicarbonate and 132	

sulfide and drives carbonate formation (Boetius, et al., 2000; Peckmann and Thiel, 2004; 133	

Suess, 2010, 2014).  134	

OHHCOHSSOCH 23
2
44 ++→+

−−−  135	
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The released bicarbonate and sulfide trigger the precipitation of authigenic carbonates 136	

and pyrite in or near the SD-AOM zone (e.g. Greinert et al., 2001; Suess, 2014; Lin et al., 137	

2016, 2017a, 2017b). Since fluid flow at seeps varies with time (e.g. Solomon et al., 138	

2008), the redox conditions during the precipitation of seep carbonates typically vary and 139	

are influenced by different degrees of seawater influence on the composition of pore 140	

waters, which is reflected in changing carbonate mineralogies and the patterns of 141	

biomarkers, stable oxygen and sulfur isotopes of carbonate associated sulfate, magnesium 142	

isotopes, and redox sensitive elements (Feng et al., 2009b, 2016; Peckmann et al., 2009; 143	

Himmler et al., 2010; Birgel et al., 2011; Hu et al., 2014; Lu et al., 2017).  144	

The precipitation of dolomite is believed to be facilitated by sulfate-free conditions in 145	

or near the SD-AOM zone deeper in the sediment (Haas et al., 2010; Magalhães et al., 146	

2012) or by the microorganisms of the SD-AOM consortium (Han et al., 2008; Feng and 147	

Roberts, 2010). However, sulfate is in fact not an effective inhibitor for dolomite 148	

precipitation (Hardie, 1987; Brady et al., 1996; Machel, 2004) and dissolved sulfate does 149	

not inhibit dolomite crystallization in the presence of dissolved sulfide (Zhang et al., 2012, 150	

2013). Modeling, using the density functional theory, demonstrated that sulfide adsorbed 151	

on dolomite surface can weaken the bond between water and surface Mg2+ ions (Shen et 152	

al. 2014). Interestingly, SD-AOM releases sulfide ions and the SD-AOM consortium 153	

produces EPS, and both dissolved sulfide and EPS have been found to be able to catalyze 154	

the precipitation of dolomite. In this paper, we assess the significance of sulfide 155	
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production by SD-AOM for dolomite formation at seeps based on carbonate phases, 156	

microstructures, carbon and oxygen isotope compositions, and rare earth element patterns 157	

of authigenic carbonates from the northern South China Sea.  158	

 159	

SAMPLES 160	

  During cruises in 2003 and 2004, two dredge surveys were carried out in the SW 161	

Taiwan basin and the Shenhu area, respectively, by the research vessel “Hai Yang Si 162	

Hao” of the Guangzhou Marine Geological Survey. Authigenic carbonates were sampled 163	

at sites HS4 and HS4a in the Shenhu area and at the site HD314 in the SW Taiwan basin 164	

(Fig. 1). The water depths of these sites were about 350 m to 400 m, respectively. 165	

Favorable conditions for seep activity have been encountered in both areas. Hydrocarbon 166	

source rocks are represented by Cenozoic strata (Pang et al., 2006; Huang et al., 2008; 167	

Chen et al., 2009; Gong et al., 2009), which are connected with the shallow sediments by 168	

tectonic pathways, such as gas chimneys, mud diapirs, mud volcanos, and normal faults 169	

(Huang et al., 2008; Chen et al., 2009; Sun et al., 2012a; Sun et al., 2012b). Methane 170	

enrichment was detected in the sediments of these two areas (Zhu et al., 2003; Huang et 171	

al., 2006; Wu et al., 2006; Yin et al., 2008). Subsequently, a currently active cold seep 172	

site was discovered by the deep submergence vehicle Jiaolong in the SW Taiwan basin 173	

(Feng and Chen, 2015).  174	
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  The surfaces of the samples from Shenhu area are smooth and dark. Polished slabs 175	

reveal that the colors of rock pieces evolve from gray to brown from the near center to the 176	

rim, indicating alteration after exposure to oxic seawater (Fig. 2a to e). The sample from 177	

site HD314 appears yellow and porous on the surface. The internal part is mostly gray, 178	

disseminated with some yellow components (Fig. 2f).  179	

 180	

METHODS 181	

Powder X-ray diffraction (PXRD), scanning transmission electron microscopy 182	

(STEM), and transmission electron microscopy (TEM) analyses 183	

  Small particles of the internal unaltered parts of each sample were cut off and ground 184	

into powder. About 1 mg of each sample was used for PXRD analysis. Powder was 185	

loaded into a fiberglass mount and analyzed by a Rigaku Rapid II X-ray diffraction 186	

system (Mo Kα radiation) in the Department of Geoscience of the University of 187	

Wisconsin (UW)-Madison. The diffraction data were recorded on a plate detector and, 188	

then, transformed into 2θ-intensity profiles by Rigaku’s 2DP software. The d values of 189	

each profile were calibrated using the profile of Si powder of SRM 610b. Major mineral 190	

phases were identified with the Jade 9 software. Mineral contents were calculated using 191	

the Rietveld Method, in which a simulated pattern was calculated based on each 192	

identified phase to fit the experimental result. At peak overlap position, all the peaks from 193	

each phase were summed up (Rietveld, 1967).  194	
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  Small parts of the gray, internal unweathered portions of samples 4-3, 4a-2, and 314-1 195	

were cut off using a diamond saw and milled to about 30 µm thick slices, with each side 196	

polished. The thin slices were pasted on copper grids and ion milled by a Fischione 1010. 197	

TEM-energy-dispersive X-ray spectroscopy (EDS), STEM, and selected-area electron 198	

diffraction (SAED) were carried out with a FEG-(S)TEM (Titan 80-200) equipped with a 199	

spherical aberration corrector in Materials Science Center of UW-Madison.  200	

 201	

Ca, Mg, and rare earth element (REE) contents, and C and O isotope compositions 202	

  Samples for geochemical analyses were micro-drilled from polished surfaces of the 203	

unweathered internal portions of samples and ground into powder. About 7 mg of each 204	

sample was prepared for Ca and Mg measurements. Powder was leached by 10 ml 5 205	

vol% purified acetic acid for 1 h on an oscillator to separate carbonates and residue 206	

phases. After centrifugation at 4000 r/min for 10 min, the upper half solutions were 207	

transferred and filtered by a Millex®GP 0.22 µm filter-unit. The cleaned solutions were 208	

dried on a hotplate at 120°C. Finally, the leachates were dissolved in 3 vol% purified 209	

HNO3 and sent to Instrumental Analysis & Research Center (IARC) of Sun Yat-sen 210	

University (SYSU) for ICP-AES analyses.  211	

  40 mg of sample was used for REE measurements. The rock powder was reacted with 212	

40 ml 5 vol% purified acetic acid for 1 h on an oscillator. Afterward, the procedure was 213	

similar to that for Ca and Mg measurements. After the filtered solutions were dried out, 214	
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the residues were dissolved by 2 vol% purified HNO3 and sent to IARC of SYSU for 215	

ICP-MS analysis. The Ce/Ce* and Pr/Pr* denote 2CeN/(La+Pr)N and 2PrN/(Ce+Nd)N, 216	

respectively, where N refers to normalization by the standard Post Archean Australian 217	

Shale (PAAS; McLennan, 1989).  218	

  Less than 1 mg of rock powder of each sample was transferred to a sealed vessel and 219	

heated to 70°C. The vessels were squirted with pure helium gas (99.99%) to flush out any 220	

air. Three droplets of 100% phosphate acid were injected into the vessel to turn the 221	

carbonates into carbon dioxide, which was used to obtain the stable C and O isotope 222	

compositions with a Thermo Gasbench II linked to a Delta V Advantage mass 223	

spectrometer in the School of Earth Science and Geological Engineering of SYSU. The 224	

isotopic ratios are expressed as the δ-notation (‰) relative to the V-PDB standard. The 225	

accuracy was better than ±0.1‰.  226	

 227	

RESULTS 228	

Carbonate mineralogy 229	

Thin sections and STEM observation. Rock samples from both sampling areas are 230	

similar. Coarse silicate grains, such as quartz and feldspar, are cemented by a matrix of 231	

finely crystalline carbonate minerals, which are gray to brown. Bioclasts and pyrite are 232	

scattered in the carbonate matrix (Fig. 3a and 3b). Pyrite commonly fills in chambers of 233	

the tests of foraminifers; it is oxidized to different degrees (Fig. 3c), except in sample 234	
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4a-2, where pyrite is not affected by weathering. In addition to its occurrence in 235	

foraminifer tests, individual crystals of pyrite are scattered in the carbonate matrix (Fig. 236	

3d). High-angle angular dark-field (HAADF) STEM images reveal that the interspace 237	

between carbonate crystals, about 1 µm in size, is filled by clay minerals (Fig. 4). The 238	

carbonate crystals of the samples from the Shenhu area are sub-euhedral to anhedral (Fig. 239	

4a and 4b), while those from the SW Taiwan basin are anhedral (Fig. 4c and 4d).  240	

PXRD results. Quartz, albite, orthoclase, illite, HMC, and dolomite are identified 241	

from the PXRD patterns (Fig. 5 and Table 1). Although the superstructure reflections or 242	

ordering reflections of dolomite, (01.−1{note to typesetting, the minus sign is the overbar 243	

on top of the 1}) and (01.5), are respectively overlapped by the (−201{note to typesetting, 244	

the minus sign is the overbar on top of the 2}) of albite and the (131) of illite (Fig. 5), 245	

superstructure reflections are shown in the electron diffraction patterns of Ca-Mg 246	

carbonates with high MgCO3 content (see next paragraph). Patterns of the samples from 247	

the two sampling areas can be distinguished by the shape and the position of the (10.4) 248	

peaks of carbonate minerals, which are distributed between those of Mg-free calcite and 249	

stoichiometric dolomite (Fig. 5). Shenhu area samples are characterized by a pronounced 250	

peak close to that of stoichiometric dolomite accompanied by a wide shoulder, whereas 251	

two peaks, in between those of Mg-free calcite and dolomite, are apparent in the SW 252	

Taiwan sample 314-1. According to the classification of Lu et al. (2015), the carbonate 253	

phases of Shenhu samples are mainly dolomite with some HMC, while those of SW 254	



14 
 

Taiwan samples are HMC and dolomite. The positions of (10.4) peaks are variable 255	

among the samples, and the (10.4) peaks are broad compared with the ideal peaks of 256	

Mg-free calcite and dolomite. The results of Rietveld analysis show that the carbonate 257	

content is approximately 50 weight% to 66 weight%. In most Shenhu samples, the 258	

content of dolomite is over 50 weight% (Table 1). HMC and dolomite are unevenly 259	

distributed in the SW Taiwan sample. Some parts are dominated by HMC or dolomite, 260	

while some other parts are composed of both minerals with the content close to 30 261	

weight%, respectively (Table 1).  262	

TEM studies. According to PXRD results, samples 4a-2, 4-3, and 314-1 containing 263	

near-stoichiometric dolomite, Ca-rich dolomite, and HMC were selected for TEM studies. 264	

The EDS profiles show that the difference of the peak heights of Mg and Ca is increased 265	

from samples 4a-2 over 4-3 to 314-1, corresponding to a trend to lower MgCO3 contents 266	

(Fig. 6). The [010]-zone axis SAED results reveal a corresponding trend. Patterns of 267	

sample 4a-2 and one carbonate mineral of sample 4-3 show bright reflections similar to 268	

those of ordered and stoichiometric dolomite (Fig. 6a and 6b) and another carbonate 269	

mineral of sample 4-3 reveals slightly weaker superstructure reflections (e.g. (00.3), see 270	

Fig. A1 for details) (Fig. 6c). Since the MgCO3 contents of these minerals are similar, the 271	

SAED patterns indicate that they represent dolomite and slightly disordered dolomite. 272	

The carbonate mineral of sample 314-1 contains slightly less MgCO3 but reveals much 273	

weaker intensities of the superstructure reflections (Fig. 6d), indicating that this mineral 274	



15 
 

is weakly ordered dolomite. Microstructure features are revealed by the [010]-zone axis 275	

fast Fourier transform (FFT) patterns of High-resolution TEM (HRTEM) images. 276	

Dolomite reflection patterns are displayed in most parts of the selected minerals of 277	

samples 4a-2 and 4-3. Only a few areas reveal weak superstructure reflections (Fig. 7a to 278	

7e). In contrast, FFT patterns of calcite and dolomite structures are detected in the 279	

analyzed minerals in sample 314-1, which form three combinations in different 280	

nano-scale domains. Firstly, areas with calcite and dolomite reflection patterns are almost 281	

equal (Fig. 7f to 7j). Secondly and thirdly, the dolomite micro-areas are surrounded by 282	

calcite areas (Fig. 7k to 7o) and vice versa (Fig. 7p to 7t). Additional reflections are found 283	

in some small domains with dark contrast in HRTEM images of the three selected 284	

carbonate minerals, occurring almost midway between (00.0) and (10.4) reflections and 285	

between (00.0) and (10.−2{note to typesetting, the minus sign is the overbar on top of the 286	

2}) reflections in dolomite patterns (Fig. 8a to 8f) and between (00.0) and (10.4) 287	

reflections in calcite patterns (Fig. 8g and 8h). 288	

 289	

Carbonate geochemistry 290	

Ca and Mg contents. The contents of Ca and Mg and Ca/Mg mole ratios of carbonate 291	

phases are shown in Table 2. The Ca content of Shenhu samples is lower than that of the 292	

SW Taiwan sample, ranging from 12.7% to 15.5% and 16.3% to 19%, respectively. 293	

Reversely, the Mg content of Shenhu samples, varying from 3.9% to 5.6%, is higher than 294	
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that of the SW Taiwan sample, which spans from 2.9% to 4.2%. The Mg/Ca mole ratios 295	

of Shenhu samples range from 0.5 to 0.67 and are overall higher than those of the SW 296	

Taiwan sample, ranging from 0.28 to 0.37.  297	

Rare earth elements contents. The REE contents are listed in Table 3. The ΣREE of 298	

Shenhu samples range from 20 to 23 ppm and are higher than those of SW Taiwan 299	

samples, which range from 16 to 22 ppm. The cerium anomalies (Ce/Ce*) of Shenhu 300	

samples cluster around 1.14, while those of the SW Taiwan sample cluster around 1.04. 301	

The NdN/YbN ratios, representing the enrichment of light REE (LREE) over heavy REE 302	

(HREE), increase from about 1.13 to 1.37 from the SW Taiwan sample to Shenhu 303	

samples. The PAAS-normalized patterns of all the samples show a middle REE (MREE) 304	

bulge (Fig. 9), very different from the REE pattern of seawater (Fig. A2). The Shenhu 305	

samples reveal positive Ce anomalies (Fig. 10).  306	

C and O stable isotope compositions. The δ13C values of all the samples are 307	

extremely negative (Table 2). From the SW Taiwan sample to the Shenhu samples, δ13C 308	

values decrease from approximately −34 to −44‰; with δ13C values decreasing, Mg/Ca 309	

ratios increase. The δ18O values of Shenhu samples range from 2.5 to 3.5‰, while those 310	

of SW Taiwan samples are round 1.4‰. 311	

 312	

DISCUSSION 313	

Interpretation of carbonate mineralogies 314	
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  The Mg/Ca ratios of carbonate phases from the two study areas reveal characteristic 315	

differences, which are reflected in distinct carbonate mineralogies as indicated by PXRD 316	

and SAED patterns as well as HRTEM images. The (10.4) peak is the most characteristic 317	

feature of the PXRD patterns of Ca-Mg carbonates. This peak is broad in the SCS seep 318	

carbonates, compared with the (10.4) peaks of Mg-free calcite and stoichiometric 319	

dolomite (Fig. 5). Since the d10.4 values and the 2θ of the (10.4) peak between calcite and 320	

dolomite of Ca-Mg carbonates correspond to the MgCO3 content (Goldsmith and Graf, 321	

1958; Zhang et al., 2010) and the analyzed carbonates are well crystalized, the 322	

broadening of (10.4) peaks indicate the presence of composite, shifting peaks, in accord 323	

with carbonate phases with variable MgCO3 contents. For example, the broadening HMC 324	

peak of sample 314-1b suggests that the dominant HMC phase with a MgCO3 content 325	

corresponding to about 2θ = 13.6° is accompanied by some LMC, HMC, or even weakly 326	

ordered dolomite with lower or higher MgCO3 content, respectively (Fig. 5). The PXRD 327	

profiles consequently reveal that the carbonates are not well-defined LMC, HMC, or 328	

dolomite, but Ca-Mg carbonates with a nearly continuous spectrum of MgCO3 contents. 329	

The main (10.4) peaks of the Shenhu area Ca-Mg carbonates are more close to that of the 330	

stoichiometric dolomite than those of the SW Taiwan basin Ca-Mg carbonates, which is 331	

reflected in the higher MgCO3 contents of the former. 332	

  The [010]-zone axis SAED patterns of the SW Taiwan basin Ca-Mg carbonate sample 333	

314-1 show only weak superstructure reflections compared to the Shenhu area Ca-Mg 334	
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carbonates (Fig. 6). Because the superstructure reflections of dolomite patterns are caused 335	

by the substitution of Ca2+ layers by Mg2+ layers in the calcite structure (Fig. A1), the 336	

SAED patterns indicate that the 314-1 sample contains fewer Mg2+ layers than the 337	

Shenhu area samples. More details on the crystal structure become apparent from the 338	

in-situ FFT results obtained from the HRTEM images. The dolomite structure of Shenhu 339	

Ca-Mg carbonates is rather homogeneous, whereas only some micro-areas of the Taiwan 340	

basin carbonate reveal superstructure reflections (Fig. 7). The deficient MgCO3 is 341	

scattered in the crystal lattice of the latter carbonate, representing a metastable structure 342	

with irregularly distributed CaCO3 and MgCO3 units. The additional reflections in the 343	

FFT patterns are best explained as c reflections (cf. Gunderson and Wenk, 1981; Van 344	

Tendeloo et al., 1985; Miser et al., 1987; Wenk et al., 1991; Schubel et al., 2000; Larsson 345	

and Christy, 2008; Shen et al., 2013). For a long time such reflections were believed to be 346	

derived from γ and ν carbonates with special arrangements of Ca2+ and Mg2+ layers (Van 347	

Tendeloo et al., 1985; Wenk and Zhang, 1985; Tsipursky and Buseck, 1993; Reeder, 348	

2000). Recent work, however, indicated that the c reflection may originate from the 349	

multiple diffraction of dolomite and twinned calcite with similar cell parameters (Larsson 350	

and Christy, 2008; Shen et al., 2013). In the studied samples (Fig. 8), the dark contrast in 351	

micro-areas with c reflection suggests a local change in composition, which is probably 352	

due to a dominance of CaCO3 units (cf. Gunderson and Wenk, 1981; Reeder, 1981; Wenk 353	

and Zhang, 1985; Miser et al., 1987; Reeder, 2000; Shen et al., 2013). Moreover, the 354	
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overlapping of the [010]-zone axis reflection patterns of calcite and dolomite with that of 355	

(10.4) twinning calcite reveals similar patterns as those observed in the studied samples 356	

(Fig. 8 and Fig. A3). Therefore, the c reflection in the samples is most probably caused 357	

by multiple diffraction of the host dolomite or Mg-calcite and (10.4) twinned 358	

nano-Mg-calcite.  359	

To sum up, although the dominant carbonate phases are dolomite in the Shenhu area 360	

samples and HMC and weakly ordered dolomite in SW Taiwan basin samples, all studied 361	

samples must be considered as Ca-Mg carbonates with a wide range of MgCO3 contents 362	

and small scale inhomogeneities. The composition and the structure of Shenhu area 363	

dolomites are close to stoichiometric dolomite, whereas the weakly ordered dolomite of 364	

the SW Taiwan basin sample is typified by heterogeneously distributed micro-domains of 365	

Ca-Mg carbonates, resulting in unevenly distributed microstructures and twinning. 366	

 367	

Conditions during the precipitation of seep carbonates 368	

The conditions during the precipitation of carbonates at methane seeps are indicated by 369	

REE patterns and δ13C values (e.g. Roberts et al., 2010; Birgel et al., 2011). The dynamic 370	

nature of seepage activity impacts the precipitation conditions of carbonate minerals due 371	

to changes of pore water composition in the course of changing fluid flux (e.g. Solomon 372	

et al., 2008). Since the bottom water of the SCS is oxic, while the pore water at seeps is 373	

anoxic (Alibo and Nozaki, 2000; Bayon et al., 2011), the minor but variable influence of 374	
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seawater on the precipitation of seep carbonates is reflected in their Ce anomalies (Feng 375	

et al., 2009a, 2009b, 2010; Birgel et al., 2011). Changes in the Ce distribution, and thus in 376	

the redox conditions during mineral formation, were even identified in different growth 377	

zones of individual carbonate minerals (Himmler et al., 2010). The relative contribution 378	

of seawater to the pore water in which precipitation takes place is also reflected in the 379	

ratios of LREE versus HREE. Seep carbonates precipitated from pore water reveal higher 380	

ratios than those of seawater (Himmler et al., 2013), which is reflected by NdN/YbN ratios 381	

(Fig. A2). Changes of seepage intensity, on the other hand, also have an impact on the 382	

carbon sources of seep carbonates. Methane contained in pore waters (δ13C < −30‰), 383	

seawater-derived dissolved inorganic carbon (δ13C = 0‰), and organic matter (δ13C = ~ 384	

−25‰) are the dominant carbon sources of carbonate minerals at seeps (e.g. Peckmann 385	

and Thiel, 2004; Roberts et al., 2010). If the relative influence of seawater on the 386	

environment of carbonate precipitation is low, i.e. in reducing pore waters shaped by 387	

methane oxidation, the δ13Ccarbonate values will be at the lower end. 388	

The REE patterns of the studied SCS seep carbonates are similar to those of pore water 389	

(Fig. 9 and A1), indicating that precipitation occurred at greater sediment depth within 390	

pore waters largely different from seawater. Still, the Ce/Ce* and NdN/YbN ratios of 391	

Shenhu area and SW Taiwan basin carbonates are different, pointing to differences in the 392	

conditions during precipitation (Table 3). By plotting against Pr/Pr* ratios, real positive or 393	

negative Ce anomalies can be identified (Bau and Dulski, 1996). The majority of analyses 394	
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of the SW Taiwan basin sample revealed no Ce anomaly, while all Shenhu area samples 395	

exhibit real positive Ce anomalies (Fig. 10), pointing to anoxic conditions during 396	

carbonate formation. All studied carbonates precipitated from pore waters that were less 397	

oxidizing than seawater, but the formation environment was more reducing in the case of 398	

the Shenhu area Ca-Mg carbonates than in the case of the SW Taiwan basin carbonates. 399	

The obtained NdN/YbN ratios support this scenario. The NdN/YbN ratios increase from the 400	

SW Taiwan basin to the Shenhu area samples (Fig. 11b) and even reach beyond values 401	

typically observed for pore waters (approximately 1.2, Bayon et al., 2011). Cerium 402	

anomalies and the NdN/YbN ratios consequently both indicate that the Ca-Mg carbonates 403	

precipitated from anoxic pore waters impacted by SD-AOM, yet, the SW Taiwan basin 404	

carbonate formed under less reducing conditions than the Shenhu area carbonates. 405	

The 13C depletion of the SCS carbonates confirms their origin from methane oxidation. 406	

The somewhat higher δ13C values of the SW Taiwan basin sample is probably the result 407	

of a more pronounced incorporation of carbon from sources other than methane including 408	

dissolved inorganic carbon from seawater and organic matter, although it is not possible 409	

to exclude that the observed pattern is caused by higher δ13C values of parent methane 410	

from the SW Taiwan basin. 411	

 412	

Formation of authigenic Ca-Mg carbonates at cold seeps 413	
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  The compositions of Ca-Mg carbonates apparently change as a function of the redox 414	

conditions of pore fluids as outlined above, with the MgCO3 content positively correlated 415	

with more reducing conditions. To illustrate such correlation, the Mg/Ca ratios of 416	

carbonate phases are plotted against Ce/Ce* and NdN/YbN ratios as well as δ13C values 417	

(Figs. 11 and 12). The positive trends in Mg/Ca versus Ce/Ce* and NdN/YbN plots and the 418	

negative trends in the Mg/Ca versus δ13C value plots indicate that more Mg2+ ions are 419	

incorporated into the Ca-Mg carbonates when the environment is more reducing and, thus, 420	

more influenced by SD-AOM. 421	

In a seawater environment with high Mg/Ca ratios, the precipitation of dolomite is 422	

inhibited by the strong hydration of Mg2+ ions (Lippmann, 1973; Brady et al., 1996; Land, 423	

1998; de Leeuw, 2002; Machel, 2004). However, dolomite formation is feasible in 424	

methane-seep environments (e.g. Peckmann et al., 1999; Magalhães et al., 2012; Lu et al., 425	

2015). SD-AOM impacts the local conditions by converting methane and sulfate into 426	

bicarbonate and sulfide (Boetius et al., 2000). Likewise, high concentrations of dissolved 427	

inorganic carbon, sulfide, and the presence of EPS are able to catalyze the dehydration of 428	

Mg2+ ions and facilitate the precipitation of dolomite (cf. Zhang et al., 2012a, 2012b, 429	

2013; Shen et al., 2014, 2015). Dissolved carbonate ions are believed to be capable of 430	

bonding with Mg2+ ions and enter the lattice of carbonate minerals (Lippmann, 1973; 431	

Compton, 1988; Rushdi et al., 1992; Mazzullo, 2000). When present, sulfide will be 432	

adsorbed on the growing surface of Ca-Mg carbonates and decrease the energy for 433	
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dehydration of Mg2+ ions, promoting the precipitation of Ca-Mg carbonates (Zhang et al., 434	

2012a). This relationship was recognized by atomic force microscopy (AFM; Zhang et al., 435	

2013) and confirmed by modelling (Shen et al., 2014). The effect of EPS – made of 436	

carboxymethyl cellulose, agar, oligosaccharide, and glucose among other organic 437	

molecules – on dolomite formation is similar to that of sulfide (Zhang et al., 2012b; 438	

Zhang et al., 2014; Shen et al., 2015). Both being prominent in SD-AOM environments 439	

(Boetius et al., 2000; Reitner et al., 2005; Treude et al., 2005), sulfide and EPS are likely 440	

candidates to catalyze dolomite formation (Zhang et al., 2012a, 2012b, 2013, 2015; Shen 441	

et al., 2014, 2015). The trends that become apparent in Fig. 11 and Fig. 12 can be 442	

explained along the same lines. It is remarkable that the MgCO3 content of Ca-Mg 443	

carbonates is positively correlated with the presence and concentration of known catalysts 444	

of dolomite formation (cf. Zhang et al., 2012a, 2012b, 2015). Since sulfide ions and 13C 445	

depleted carbonate species are simultaneously released by SD-AOM, negative δ13C 446	

values correlate with high MgCO3 contents in the precipitated Ca-Mg carbonates. Most of 447	

the studied samples from the SCS fully conform to such a relationship, except for some 448	

of the sub-samples of sample 4a-2 that yielded slightly higher δ13C values (see Fig. 12). 449	

Small and scattered pyrite crystals are only found in this sample (Fig. 3d), suggesting that 450	

organoclastic sulfate reduction (OSR) may have been prominent at this site (cf. Lin et al., 451	

2016) and may have contributed to carbonate formation. The combination of sulfide and 452	

EPS catalyses and the incorporation of some carbonate derived from OSR may have 453	
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resulted in the high MgCO3 content but slightly less 13C-depleted Ca-Mg carbonates in 454	

this case.  455	

Newly synthesized disordered dolomites are known to consist of nano-crystals, which 456	

have low-angle grain boundaries among each other (Zhang et al., 2012a, 2012b, 2015). 457	

The weakly ordered dolomite and dolomite in the SCS seep carbonates, however, are 458	

characterized by relatively ordered anhedral to sub-euhedral crystals about 1 µm in 459	

diameter. Since the conditions, such as alkalinity and initial Mg/Ca ratios, that have been 460	

used in the experiments of Zhang et al. (2012a, 2012b, 2015) are similar to those 461	

encountered at seeps (Gieskes et al., 2005; Yang et al., 2008; Wu et al., 2013), the 462	

initially precipitated Ca-Mg carbonates should have been similar to their synthetic 463	

counterparts. Accordingly, nano-crystals of the seep Ca-Mg carbonates may have been 464	

crystallized from precursor clusters (cf. Gebauer et al., 2008; Gebauer and Cölfen, 2011; 465	

Wallace et al., 2013) or amorphous phases (cf. Nielsen et al., 2014a; Raiteri and Gale, 466	

2010; Quigley et al., 2011; Nielsen et al., 2014b; Wolf et al., 2008) by particle attachment 467	

(cf. De Yoreo et al., 2015) under conditions of pronounced supersaturation generated by 468	

SD-AOM. The MgCO3 content of the nano-crystals likely was positively correlated to the 469	

concentration of sulfide and the presence of EPS, which are closely correlated to the 470	

intensity of SD-AOM and the supply of methane. The primarily disordered nano-crystals 471	

apparently continued to grow, possibly by oriented attachment as has been observed for 472	

titania (Lee Penn and Banfield, 1998). Subsequently the crystallographic barrier of 473	
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ordering was overcome (Xu et al., 2013), perhaps, by dissolution-crystallization reactions 474	

(Deelman, 2011; Pimentel and Pina, 2014) or recrystallization (Nordeng and Sibley, 1994; 475	

Kaczmarek et al., 2017). The cations became gradually ordered (see Fig. 13 for the 476	

envisioned scenario). The observed (10.4) twins of nano-crystals between neighboring 477	

Mg-calcite domains or between Mg-calcite and dolomite domains might form through an 478	

attachment mechanism (cf. De Yoreo et al., 2015; Lee Penn and Banfield, 1998) or cation 479	

ordering (cf. Shen et al., 2013). For Ca-Mg carbonates like those from the Shenhu area 480	

seeps that contain high enough MgCO3 contents and are relatively old (~200 ka, Tong et 481	

al., 2013), the structure will predominantly evolve into stoichiometric, ordered dolomite. 482	

Only a few domains in the carbonates developed into Mg-calcite, some of which are 483	

(10.4) twinned with the dolomite host. In contrast, Ca-Mg carbonates with lower MgCO3 484	

contents and of a younger age (~70 ka, Tong et al., 2013) like the SW Taiwan carbonates 485	

will tend to exhibit only small and isolated dolomite domains, resulting in a more 486	

heterogeneous microstructure (Fig. 7 and 13) and (10.4) twins between Mg-calcite and 487	

the dolomite host as well as between neighboring Mg-calcite domains. 488	

 489	

IMPLICATIONS  490	

The “dolomite problem” has not lost much of its significance, despite of an improved 491	

understanding of the factors that impair dolomite formation at low temperatures. Recent 492	

laboratory and modelling studies indicate that disordered dolomite may precipitate at low 493	
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temperatures by catalysis (Zhang et al., 2012a, 2012b, 2015; Shen et al., 2014, 2015). Our 494	

study lends support to this ‘catalysis scenario’, providing evidence from natural 495	

environments that high levels of dissolved sulfide and EPS are capable of inducing 496	

dolomite formation. A positive correlation between MgCO3 contents, cerium anomalies, 497	

NdN to YbN ratios, and 13C-depletion suggests that Mg2+ ion incorporation into the crystal 498	

lattice is favored by strongly reducing conditions caused by pronounced SD-AOM, 499	

agreeing with catalytic dolomite formation induced by (1) SD-AOM derived sulfide and 500	

(2) EPS produced by the SD-AOM consortium. Although the crystal morphologies and 501	

the degree of ordering of the studied seep carbonates from the SCS are different from 502	

those of synthetic disordered dolomite (Zhang et al., 2012a, 2012b, 2015), the latter could 503	

still be an ideal analog for the natural samples if the effects of aging are to be considered 504	

(cf. Hardie, 1987). Since sulfate is continuously supplied from seawater, the amount of 505	

methane transported by seeps is critical for the extent of SD-AOM. Therefore, the overall 506	

MgCO3 contents of the authigenic carbonates from different seep sites are a constraint on 507	

methane supply and cold seep activity. Future work will have to target dolomite of 508	

variable ages from modern seeps and compare it to dolomite from ancient seep deposits. 509	

It will also be insightful to compare dolomite resulting from SD-AOM with dolomite 510	

resulting from OSR. Although both processes should be capable of inducing catalytic 511	

dolomite formation, differences between SD-AOM and OSR derived dolomite may 512	

provide further insight and contribute to the disentangling of the dolomite problem. 513	
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Figure captions 875	
 876	

Figure 1. Map of northern South China Sea. The Shenhu area and SW Taiwan basin are 877	

highlighted by gray squares. Sites HS4 and HS4a from the Shenhu area and site 314 from 878	

the SW Taiwan basin are indicated by red circles. 879	

 880	

Figure 2. Photographs of authigenic carbonates. Red circles indicate spots where samples 881	

have been taken. (a): Sub-sample of sample 4-1, polished surface revealing that the outer 882	

part of the sample to the right is weathered. (b): Polished slab of sample 4-2. (c): Sample 883	

4-3. (d): Polished surface of sample 4a-1, different degrees of weathering are revealed 884	

from the near center to the rim of the sample. (e): Sub-sample of sample 4a-2, similar to 885	

4a-1, the internal gray part reveals no signs of weathering. (f): Sample 314-1, the gray 886	

part is apparently unaffected by weathering. 887	

 888	

Figure 3. Photomicrographs of authigenic carbonates and enclosed pyrite aggregates. (a): 889	

Sample 4-1, microcrystalline carbonate cementing detrital quartz, feldspar, and some 890	

bioclasts. (b): Sample 314-1, microcrystalline carbonate enclosing detrital quartz, 891	

feldspar, and some bioclasts, as well as minor authigenic pyrite (black). (c): Sample 892	

314-1, partly oxidized framboidal pyrite, filling the chambers of a foraminifer. (d): 893	

Sample 4a-2, unaltered pyrite crystals (arrows) and larger aggregates of framboidal pyrite 894	

filling foraminifers scattered in carbonate matrix. 895	
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 896	

Figure 4. High-angle angular dark-field STEM images of microcrystalline authigenic 897	

carbonates of samples 4a-2 (a), 4-3 (b), and 314-1 (c and d). The carbonate crystals are 898	

sub-euhedral to anhedral in Shenhu samples (4a-2 and 4-3), while carbonate crystals of 899	

314-1 are anhedral. Crystal size is about 1 µm. The interspace of carbonates is filled by 900	

illite. Carb = HMC or dolomite; Ilt = illite. 901	

 902	

Figure 5. Powder X-ray diffraction patterns of selected samples and calculated patterns 903	

of Mg-free calcite (Markgraf and Reeder, 1985) and dolomite (Graf, 1961) and 904	

characteristic diffractograms of identified phases. The superstructure reflections or 905	

ordering reflections of dolomite, (01.−1{note to typesetting, the minus sign is the overbar 906	

on top of the 1}) and (01.5), are shown in the diffractogram. The hump at around 2θ = 10° 907	

is caused by the glass fiber. (10.4) peaks of carbonates are magnified on the right. The 908	

peaks of samples are distributed between those of the Mg-free calcite and dolomite. This 909	

region is divided into three sub-regions according to Lu et al. (2015). The sub-regions 1, 910	

2, and 3 correspond to the (10.4) peaks of low-Mg calcite, high-Mg calcite, and dolomite, 911	

respectively. Qz = quartz; Ab = albite; Or = orthoclase; Ilt = illite; Cal = Mg-calcite; Dol 912	

= dolomite. 913	

 914	
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Figure 6. TEM images of selected carbonate minerals of samples 4a-2 (a), 4-3 (b and c), 915	

and 314-1 (d). The insets are [010]-zone axis selected-area diffraction patterns and EDS 916	

results. From a to d, the discrepancy between peak heights of Ca and Mg in EDS spectra 917	

increases. Simultaneously, the intensity of the superstructure reflections becomes weaker. 918	

 919	

Figure 7. HRTEM images and [010]-zone axis Fourier transformation patterns of 920	

samples 4-3 (a to e) and 314-1 (f to t). Only a few domains show weak superstructure 921	

reflections in sample 4-3 (a to e). In contrast, the analyzed carbonate minerals of sample 922	

314-1 are composed of domains with dolomite or calcite structure (with or without 923	

superstructure reflections). In some parts, the domains with these two structures are 924	

almost equal (f to j). In other parts, micro-areas with the dolomite structure are 925	

surrounded by areas with calcite structure (k to o) and vice versa (p to t). 926	

 927	

Figure 8. High-resolution TEM images and [010]-zone axis Fourier transformation 928	

patterns of samples 4a-2 (a and b), 4-3 (c and d), and 314-1 (e to h). Small domains with 929	

dark contrast are apparent in all images. Additional reflection patterns, indicated by 930	

arrows, occur at nearly half way between (00.0) to (10.4) reflections (b, f, and h) and 931	

between (00.0) to (10.−2{note to typesetting, the minus sign is the overbar on top of the 932	

2}) reflections (d). The additional reflections highlighted by yellow arrows are the c 933	

reflections, while those pointed by white arrows are interpreted to be derived from the 934	
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multiple scattering of [10−2{note to typesetting, the minus sign is the overbar on top of 935	

the 2}] or [101] reflections from the host dolomite or Mg-calcite by the twinned 936	

nano-Mg-calcite. 937	

 938	

Figure 9. Shale-normalized rare earth element patterns of the studied authigenic 939	

carbonates with middle REE bulge. 940	

 941	

Figure 10. Plot of Ce/Ce* vs. Pr/Pr* of authigenic carbonates (after Bau and Dulski, 942	

1996). Field 1: real positive Ce anomaly; Field 2: no anomaly; Field 3: real negative Ce 943	

anomaly. 944	

 945	

Figure 11. Plots of Ce/Ce* vs. Mg/Ca (mole ratio) (a) and NdN/YbN vs. Mg/Ca (b) of 946	

authigenic carbonates. The Ce/Ce* and NdN/YbN ratios of seawater (SW, Alibo and 947	

Nozaki, 2000) and pore water (PW, Bayon et al., 2011) are indicated by blue and orange 948	

lines, respectively. Both plots reveal a positive trend to more reducing environments from 949	

seawater composition over the SW Taiwan sample (314) to the Shenhu samples (4 and 950	

4a). 951	

 952	

Figure 12. Diagram of δ13C values vs. Mg/Ca (mole ratio). The red area represents 953	

marine non-seep carbonates. An indistinct negative trend is apparent from marine 954	
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non-seep carbonates over the SW Taiwan sample (314) to Shenhu samples (4 and 4a). 955	

The observed trend is suggested to be caused by the combined effects of sulfide catalysis 956	

and extracellular polymeric substances (EPS) catalysis. 957	

 958	

Figure 13. Scenario for the formation of weakly ordered dolomite and dolomite in the 959	

authigenic seep carbonates induced by the catalysis of sulfate-driven anaerobic oxidation 960	

of methane (SD-AOM) derived sulfide and extracellular polymeric substances (EPS), 961	

involving particle attachment (cf. De Yoreo et al., 2015), and ordering caused by crystal 962	

maturation and recrystallization. Nano-crystals of Ca-Mg carbonates containing various 963	

amounts of MgCO3 may be formed under the influence of sulfide and EPS catalysis from 964	

the attachment of precursor clusters or amorphous phases. The newly crystallized 965	

particles may continue to grow by oriented attachment. The cations are rearranged to 966	

form the dolomite structure during maturation and recrystallization as time passes by. 967	

Ca-Mg carbonates with insufficient MgCO3, like the SW Taiwan basin sample (left), can 968	

only evolve some domains with a dolomite structure, while those with sufficient MgCO3, 969	

such as Shenhu area samples (right), develop into nearly stoichiometric dolomite. (10.4) 970	

twins between nano-Mg-calcite and dolomite and between nano-Mg-calcite and 971	

Mg-calcite may also form. 972	

 973	

974	
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Table 1. Contents of major minerals and d104 values of carbonate minerals in the studied 975	

authigenic carbonates. 976	

Location Sample 
Qz Ab Or Ilt HMC Dol 

 

 

d104  

HMC 

d104 

Dol 

(weight%)  (Å) 

Shenhu 

HS4 

4-1 11.9 3.7 12.5 13.7 0.9 57.3 2.969 2.903 

4-2 19.5 3.7 6.4 14.4 2.2 53.8 2.966 2.911 

4-3 23.5 5.4 3.6 17.9 13.3 36.4 2.974 2.914 

Shenhu 

HS4a 

4a-1 13.5 3.2 9.5 14.1 1.2 58.5 2.981 2.914 

4a-2 14.4 3.3 5.2 20.2 1.4 55.5 2.975 2.905 

SW 

Taiwan 

HD314 

314-1a 19.8 6.6 2.1 11.5 59.3 0.7 2.992 2.934 

314-1b 8.9 3.5 5.2 15.7 51.0 15.7 2.999 2.926 

314-1c 9.1 6.8 7.8 13.8 25.8 36.6 2.995 2.930 

Qz = quartz, Ab = albite, Or = orthoclase, Ilt = illite, HMC = high-Mg calcite, Dol = 

dolomite. 

 977	

978	
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Table 2. Contents of Ca and Mg, Mg/Ca ratios, and C and O isotope compositions of the 979	

studied authigenic carbonates. 980	

Location Sample 
Ca Mg 

Mg/Caa 
δ13C δ18O 

(%) (‰) 

Shenhu 

HS4 

4-1a 12.9 5.3 0.67 −44.8 3.4

4-1b 12.7 3.9 0.50 −46.7 2.5

4-2 13.3 4.5 0.56 −49.2 3.2

4-3 13.0 3.9 0.50 −45.8 3.0

Shenhu 

HS4a 

4a-1a 13.2 4.2 0.52 −47.7 3.4

4a-1b 15.5 5.2 0.56 −47.5 3.5

4a-2a 13.8 5.6 0.67 −39.2 3.1

4a-2b 13.6 5.5 0.67 −36.9 2.7

SW 

Taiwan 

HD314 

314-1a 18.5 3.2 0.28 −39.4 1.4

314-1b 19.0 4.2 0.37 −37.6 1.5

314-1c 18.7 3.5 0.31 −34.6 1.4

314-1d 16.3 2.9 0.30 −27.7 1.4

amole ratio. 

981	
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Table 3. Rare earth elements contents and selected element ratios of the studied authigenic carbonates. 982	

Location Sample 
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE 

Ce/Ce* Pr/Pr* NdN/YbN
a 

(ppm) 

Shenhu 

HS4 

4-1a 3.45 8.92 0.917 3.74 0.839 0.165 0.799 0.101 0.593 0.0930 0.279 0.0330 0.233 0.0291 20.2 1.15 0.934 1.34 

4-1b 3.62 9.03 0.918 3.84 0.863 0.178 0.853 0.105 0.637 0.103 0.311 0.0376 0.247 0.0336 20.8 1.14 0.918 1.29 

4-2 3.78 9.45 0.988 4.06 0.911 0.177 0.881 0.109 0.670 0.105 0.314 0.0362 0.253 0.0342 21.8 1.13 0.937 1.33 

4-3 3.79 9.54 0.977 3.96 0.875 0.173 0.834 0.104 0.630 0.100 0.306 0.0353 0.239 0.0334 21.6 1.14 0.935 1.38 

Shenhu 

HS4a 

4a-1a 3.90 9.67 1.00 4.09 0.911 0.178 0.877 0.108 0.650 0.100 0.304 0.0347 0.245 0.0347 22.1 1.13 0.937 1.39 

4a-1b 3.95 9.95 1.03 4.24 0.921 0.188 0.882 0.112 0.650 0.103 0.312 0.0368 0.250 0.0348 22.7 1.13 0.936 1.41 

4a-2a 3.83 9.57 0.990 4.06 0.903 0.179 0.859 0.106 0.637 0.102 0.297 0.0346 0.235 0.0327 21.8 1.13 0.934 1.44 

4a-2b 3.78 9.53 0.988 3.99 0.904 0.175 0.851 0.105 0.644 0.102 0.288 0.0339 0.247 0.0320 21.7 1.13 0.943 1.35 

SW 

Taiwan 

HD314 

314-1a 2.99 6.90 0.760 3.26 0.740 0.168 0.756 0.0996 0.603 0.0977 0.299 0.0351 0.246 0.0352 17.0 1.05 0.941 1.10 

314-1b 2.95 6.63 0.763 3.17 0.729 0.169 0.741 0.0963 0.578 0.0944 0.283 0.0334 0.222 0.0354 16.5 1.02 0.978 1.19 

314-1c 3.20 7.26 0.825 3.45 0.815 0.186 0.837 0.108 0.655 0.107 0.325 0.0387 0.258 0.0387 18.1 1.03 0.969 1.11 

314-1d 3.92 8.78 1.00 4.30 0.974 0.223 1.01 0.133 0.814 0.133 0.400 0.0478 0.336 0.0458 22.1 1.02 0.958 1.06 

Ce/Ce* = 2CeN/(La+Pr )N; Pr/Pr* = 2PrN/(Ce+Nd)N. 
aThe ratio of PAAS-normalized Nd and Yb. 
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