1	Surface-modified phillipsite-rich tuff from the Campania region (southern Italy)
2	as a promising drug carrier: An Ibuprofen sodium salt trial
3	
4	Mariano Mercurio ^{1*} , Francesco Izzo ¹ , Alessio Langella ¹ , Celestino Grifa ¹ , Chiara
5	Germinario ¹ , Aleksandra Daković ² , Paolo Aprea ³ , Rossana Pasquino ³ , Piergiulio
6	Cappelletti ⁴ , Fabio Sossio Graziano ⁴ , Bruno de Gennaro ³
7	
8	¹ Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei
9	Mulini 59/A, 82100 Benevento, Italy
10	² Institute for Technology of Nuclear and Other Mineral Raw Materials, Franche d'
11	Epere 86, 11000 Belgrade, Serbia
12	³ DICMAPI, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80,
13	80125 Naples, Italy
14	⁴ Department of Earth Sciences, Environment and Resources, Federico II University,
15	via Cinthia, 80126, Napoli, Italy
16	*Corresponding author: e-mail: mariano.mercurio@unisannio.it, ph. +390824305196,
17	fax. +390824305199
18	
19	Abstract
20	The encapsulation and delivery of drugs often involves the use of expensive
21	microporous materials, and we have investigated the potential for natural zeolites from
22	the widespread volcanic formations of southern Italy as alternatives to these carriers.
23	Surface-modified natural zeolites (SMNZs) with diverse micellar structures (patchy

45	INTRODUCTION
44	
43	functionalization; SMNZ; carrier; drug delivery; SIPS model; TOTH model.
42	Keywords: phillipsite; Neapolitan Yellow Tuff; Ibuprofen sodium salt;
41	
40	totally available for pharmaceutical purposes.
39	phillipsite. The active amount of IBU on the modified zeolite surface was almost
38	and Weibull equations, shedding new light on the release mechanism of IBU from
37	Goodness of Fit. Good fits to the release kinetic data were obtained using first-order
36	first-order and pseudo second-order fits to the loading kinetic data provided significant
35	Equilibrium adsorption results were fit using Langmuir, Sips and Toth models. Pseudo
34	patchy bilayer micellar structure formed, the lowest adsorptions of IBU were observed.
33	HDTMA-Br (PHB), which showed a complete bilayer micellar structure. Whenever a
32	The maximum loaded amount of IBU was attained for organo-phillipsite modified with
31	mathematically modeled to evaluate IBU adsorption and release mechanisms.
30	coupled with evolved gas analysis (EGA). Results from these tests were
29	composites using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis
28	kinetics tests of sodium Ibuprofen (IBU) were carried out with organo-phillipsite
27	phillipsite-rich tuff from the Campania region (southern Italy). Loading and release
26	hexadecyltrimethylammonium chloride (HDTMA-Cl) and bromide (HDTMA-Br) with
25	(cetylpyridinium chloride (CP-Cl), benzalkonium chloride (BC-Cl),
24	and complete bilayers) were obtained by using different cationic surfactants

46	Recent research has demonstrated that natural and surface-modified zeolites containing
47	cationic surfactants are selective towards some pharmacological molecules (i.e.,
48	diclofenac sodium, diclofenac diethylamine, and Ibuprofen). Available data suggest
49	that zeolites represent a low cost and easily accessible natural excipient that can be
50	used in biomedicine as carriers for drug delivery (Cerri et al. 2004, 2016, Krajišnik et
51	al. 2013b, 2015, 2010a, 2010b, 2011, 2013a; Cappelletti et al. 2017; de Gennaro et al.
52	2015, 2016; Janićijević et al. 2015; Marković et al. 2016, 2017; Pasquino et al. 2016;
53	Serri et al. 2016, 2017). Based on the premise that such natural carriers are non-toxic
54	(Mercurio et al. 2012, 2016b; Krajišnik et al. 2013b; Cerri et al. 2016), several aspects
55	of their performance should be clarified before modified zeolites can be used on an
56	industrial scale. In order to evaluate their functional therapeutic performance, it is
57	particularly important to expand the data for a breadth of different systems such as
58	zeolite vs. surfactant vs. active substance. Careful evaluation of loading and release
59	performances under controlled conditions is also required (Krajišnik et al. 2015, 2010a,
60	2010b, 2011, 2013a, 2013b, de Gennaro et al. 2015, 2016, 2017; Janićijević et al.
61	2015; Marković et al. 2016, 2017; Pasquino et al. 2016; Serri et al. 2016, 2017; Izzo et
62	al. 2017). Several recent studies have documented the efficacy of zeolites as
63	pharmacological carriers. Serri et al. (2017) demonstrated that granulate could be
64	formed using a functionalized natural clinoptilolite, suitable for the release of sodium
65	diclofenac. Krajišnik et al. (2016) demonstrated that non-steroidal anti-inflammatory
66	drugs (NSAID), for example IBU, benefit particularly from use with therapeutic
67	devices providing prolonged release, such as clinoptilolite-rich carriers. For loading
68	purposes, Krajišnik et al. (2016) used clinoptilolite modified with two surfactants

69	(cetylpyridinium chloride and benzalkonium chloride) at different concentrations, and
70	their results showed that different adsorbed amounts of IBU depended on the type
71	and/or the amount of surfactant used to functionalize the zeolite-rich carrier. In vitro
72	release tests also demonstrated that IBU was released from the composite material for
73	up to eight hours, as illustrated by mathematical models Bhaskar (Bhaskar et al. 1986)
74	and Higuchi (Higuchi 1963). Krajišnik et al. (2016) hypothesized that the adsorption
75	process involved hydrophobic-hydrophilic interactions between the drug molecules
76	and the surfactants on the zeolite surface.
77	In order to meet the demand of the pharmaceutical industry searching for new and
78	inexpensive carriers for the encapsulation and delivery of drugs (Tan et al. 2013), we
79	investigated natural and widespread phillipsite-rich rock from southern Italy
80	(Campania region) as alternatives to the usual expensive prepared mesoporous
81	materials. This geomaterial, widely occurring in the Neapolitan Yellow Tuff (NYT)
82	Formation and the Campanian Ignimbrite (CI) Formation, has been studied in detail
83	(de Gennaro et al. 1992, 1995, 1999, 2000a; Colella et al. 1998, 2013, 2017; Langella
84	et al. 2002, 2013; Cappelletti et al. 2003; Calcaterra et al. 2004; Buondonno et al.
85	2008; Morra et al. 2010), and existing data support applications in the areas of cation
86	exchange (Pansini et al. 1996; Colella et al. 1998; Gatta et al. 2015), animal feeding
87	(Mercurio et al. 2012, 2016b), oenotechnical (Mercurio et al. 2010, 2014, 2016a), soil
88	remediation (Coppola et al. 2003), production of lightweight aggregates (de Gennaro et
89	al. 2004, 2005, 2007, 2008; Dondi et al. 2016), and ceramic manufacturing (de
90	Gennaro et al. 2003; Cappelletti et al. 2011).

4

91	Application of natural zeolites in the pharmaceutical field requires evaluation of the
92	performance of functionalized zeolites as carriers for drug delivery. Modification of
93	the zeolite surface was performed in our studies using four different surfactants
94	(cetylpyridinium chloride, benzalkonium chloride, hexadecyltrimethylammonium
95	chloride and bromide) at a concentration equal to 200% of the external cation exchange
96	capacity (ECEC) of the zeolite. The amount of surfactant was chosen based on
97	published results (Li and Bowman 1997; de Gennaro et al. 2016; Cappelletti et al.
98	2017) that demonstrated that this concentration guarantees the almost complete
99	formation of a bilayer of the surfactants on the zeolite surface.
100	In order to clarify the properties of this specific phillipsite-IBU composite material,
101	equilibrium isotherms as well as IBU loading and release kinetics were measured.
102	Basic characterization of the composite material was obtained using thermal analysis
103	(STA coupled with EGA) and FT-IR spectroscopy.
104	
105	MATERIALS
106	A phillipsite-rich tuff from the Campania Region (southern Italy) and four cationic
107	surfactants were selected for the preparation of surfactant modified natural zeolites
108	(SMNZs) and were used for subsequent IBU sodium loading and release tests.
109	Mineralogical and technological characterization of the natural zeolite-rich material
110	has been reported by Cappelletti et al. (2017) and is only briefly summarized here.
111	NYT phillipsite-rich rocks from Marano (Savanelli quarry, Naples, Italy; hereafter
112	PHI_SAV) contain about 70 wt.% phillipsite with minor chabazite (~5 wt.%) and
113	analcime (~3 wt.%) (de' Gennaro et al. 2000b). This phillipsite from the PHI_SAV

114	sample has a low Si/Al ratio (approximately 2.5) and it is characterized by a high K^+
115	content, which reflects the typical composition of trachytic rocks from Campi Flegrei
116	(southern Italy) (Morra et al. 2010). It contains subordinate amounts of Ca^{2+} and Na^{+} .
117	The experimental ECEC value (0.144 mEq/g) was evaluated using the method
118	suggested by de Gennaro et al.(2014), which involves contacting a zeolite sample (2.5
119	g) with 10 mL of 20-mM surfactant solution in a 50-mL polyallomer centrifuge tube,
120	shaking at 100 rpm for 24 h at 25 °C. The sample was then centrifuged and the
121	supernatant analyzed for the anion concentration by HPLC.
122	Leaching tests confirmed that the available contents of heavy metals such as Ni, As,
123	Cd and Pb were all below 20 mg/kg, confirming the correlation with the total amount
124	of these elements in the whole rock (Mercurio et al. 2012).
125	PHI_SAV was surface modified using cetylpyridinium chloride (CP-Cl),
126	benzalkonium chloride (BC-Cl), hexadecyltrimethylammonium chloride (HDTMA-Cl)
127	and bromide (HDTMA-Br). The resulting SMNZs were labeled as PCC, PBC, PHC
128	and PHB, respectively. Anion exchange capacity (AEC) values for these were ~ 0.09
129	mEq/g for PBC and PC, and ~0.110 mEq/g and 0.140 mEq/g for PHC and PHB. These
130	results are consistent with the different micellar structure (patchy and complete bilayer)
131	obtained using different surfactant molecules (Cappelletti et al., 2017).
132	These organo-phillipsite composites were used for loading and release tests of sodium
133	IBU. Chemical characteristics of surfactants and IBU are presented in Figures 1 and 2.
134	
135	METHODS

136 SMNZs preparation

6

137	In order to obtain SMNZs for the IBU loading tests, a suspension containing PHI_SAV
138	and each of the selected surfactants, having an initial concentration equivalent to 200%
139	of the ECEC, was prepared. The suspension was mixed at 3,000 rpm using a FALC
140	AT-M 20 stirrer at ~ 50 °C for ~ six hours, with a solid to liquid (S/L) ratio of 1/40.
141	The suspensions were then filtered and the obtained SMNZs were washed with
142	ultrapure water to remove the unnecessary surfactant and were then dried at room
143	temperature for 24 hours.
144	
145	Drug loading tests
146	Maximum IBU adsorption capacities of SMNZs were determined by means of
147	equilibrium and kinetics adsorption tests. The pH of each suspension was adjusted to
148	7.4 with a sodium tetraborate buffer solution (CAS No. [1303-96-4]) as this pH value
149	allows the IBU sodic salt to remain in its ionic form (Krajišnik et al. 2015; Oh et al.
150	2016).
151	For the equilibrium adsorption measurements, 100 mg of each SMNZ were treated
152	with 20 mL of IBU solution, having concentrations ranging between 50 and 1000 mg/L,
153	and continuously stirred in 25 mL Nalgene centrifuge tubes at room temperature. After
154	four hours (sufficient time to attain equilibrium based on the kinetic tests), samples
155	were centrifuged to separate solid from liquid and the supernatant was analyzed using
156	an AquaMate UV-VIS spectrophotometer. The IBU calibration curve ($R^2=0.999$) was
157	obtained using the adsorption band at 224 nm, in accordance with (Sena et al. 2007;
158	Gondalia et al. 2010; Joshi et al. 2011). Each measurement was made in triplicate.

159	Kinetic studies were carried out in batch experiments at room temperature and under
160	continuous stirring, by shaking 100 mg of each sample with 20 mL of IBU solution
161	(400 mg/L). To avoid variation of this solution/SMNZ ratio the mixture was placed
162	into 25 mL high density polyethylene centrifuge tubes. A test tube was withdrawn
163	(after 5', 10', 15', 30', 60', 90'240), centrifuged, and the non-adsorbed amount of
164	IBU was determined in the supernatant.
165	
166	Drug release tests
167	IBU in vitro release experiments were carried out using IBU-loaded SMNZs dispersed
168	in simulated intestinal fluid (SIF), prepared as described in the United States
169	Pharmacopoeia 25 Ed. and later editions (USP-NF 2002, 2003). 15 mg of IBU-loaded
170	SMNZs were added to 10 mL of SIF and placed in a thermostatic bath at 37 °C under
171	continuous stirring (100 rpm). Samples were kept in the thermostatic bath until the
172	released amount of the drug reached a plateau. The IBU-loaded SMNZ/SIF ratio was
173	chosen in order to ensure sink conditions. 5 mL aliquots of supernatant were
174	withdrawn at fixed interval times (30 min), centrifuged at 9,000 rpm (room
175	temperature, 5 min), and replaced by the same volume of fresh medium. IBU was
176	quantified by spectrophotometric assay (Aquamate UNICAM) at 224 nm. Experiments
177	were run in triplicate.
178	
179	Mathematical modeling

- 180 To evaluate IBU adsorption and release mechanisms of SMNZs, adsorption isotherms
- and kinetic measurements were fit using several mathematical models proposed in the

literature (Hinz 2001; Ho 2004, 2006; Ho et al. 2005; Limousin et al. 2007; Dash et al.

Revision 2

182

- 183 2010; Foo and Hameed 2010; Wang and Peng 2010; Chen 2013; Yadav et al. 2013). 184 Fit parameters were determined by non-linear regression using the Generalized 185 Reduced Gradient algorithm (Gabriele and Ragsdell 1977), based on the assumption 186 that non-linear regression provides the best fit results (Ho et al. 2005; Lin and Wang 187 2009; Chen 2013; Markandeya and Kisku 2015). 188 Model fit and applicability were evaluated by considering determination coefficients (R²), as well as other statistical methods for non-linear regression (Costa et al. 2003; 189 190 Spiess and Neumeyer 2010) such as the Akaike Information Criterion (AIC) (1) and 191 the Bayesian Information Criterion (BIC) (2). These methods take into account the 192 number of parameters of the mathematical model and the number of experimental data 193 and can be expressed as follows: 194 195 $AIC = 2p - 2\ln(L)$ (1)196 197 $BIC = p\ln(n) - 2\ln(L)$ (2)
- where *p* is the number of parameters and *n* is the sample size. In (*L*), the maximum loglikelihood of the estimated model (Spiess and Neumeyer 2010), was calculated as follows: $ln(L) = 0.5 * [-N * (ln2\pi + 1 - lnN + ln\sum_{i=1}^{n} x_i^2)]$, where x_i are the residuals from the nonlinear least squares fit and N = the number of residuals.

202

203 Thermal analyses

204	Thermal analysis (thermogravimetry and differential scanning calorimetry, TG/DSC)
205	was performed on phillipsite-rich material, cationic surfactants, IBU, SMNZs and IBU-
206	loaded SMNZs using a NETZSCH STA 449 F3 Jupiter instrument with alumina
207	crucibles. Samples were heated from room temperature to 1050 °C at a heating rate of
208	10 °C/min in an ultra-pure air atmosphere (N ₂ /O ₂ = 80/20; flow 60 mL/min). EGA
209	were carried out by FTIR with a BRUKER Tensor 27 instrument, coupled to the STA
210	449 F3 instrument by a transfer line heated to 200 °C.
211	Netzsch Proteus 6.1.0 (NETZSCH-Gerätebau GmbH) and Opus 7.2 (Bruker Optics
212	GmbH) software packages were used for data analysis.
213	
214	FTIR
215	The phillipsite-rich material, cationic surfactants, IBU, SMNZs and IBU-loaded
216	SMNZs were analyzed using a Bruker Alpha FTIR spectrometer in attenuated total
217	reflectance (ATR)-mode with 128 scans at a spectral resolution of 4 cm ⁻¹ in the
218	spectral range of 400-4000 cm ⁻¹ . Spectra were analyzed with Opus 7.2 software
219	(Bruker Optics GmbH).
220	
221	R ESULTS AND D ISCUSSION
222	Characterization of SMNZs
223	FTIR spectroscopy
224	The infrared spectrum of PHI_SAV shows the typical absorption bands of zeolite-rich
225	tuffs (Cappelletti et al. 2017), including absorption bands associated with internal and
226	external framework vibrations of primary building units (PBUs) and secondary

227	building units (SBUs) of zeolites (Karge 2001; Byrappa and Kumar 2007; Mozgawa et
228	al. 2011). A strong band at ~1000 cm ⁻¹ (Table 1 and Fig. 3) was assigned to
229	asymmetric stretching Si-O vibrations. Bands at \sim 780 and \sim 719 cm ⁻¹ were assigned to
230	asymmetric and symmetric stretching T-O-T vibrations, respectively, and the
231	remaining bands are generally referred to bending vibrations characteristic for silicates,
232	also occurring in the sample, such as pyroxene (3.3 wt.%), K-feldspar (13.3 wt.%) and
233	traces of mica. The weak, broad band at ~ 3419 cm ⁻¹ and the band at ~1638 cm ⁻¹
234	suggest the presence of hydrogen-bonded H ₂ O molecules.
235	Moreover, a very weak broad band at \sim 1456 cm ⁻¹ could indicate traces of carbonate
236	minerals (C-O asymmetric stretching in the carbonate ion).
237	IR vibrations associated with exchangeable cations usually occur in the far-IR region
238	(200-50 cm ⁻¹) (Karge 2001), and any structural modification caused by external cation
239	substitution with cationic surfactants could not be detected by mid-IR spectroscopy.
240	On the other hand, FTIR spectra of SMNZs and IBU-loaded SMNZs can be clearly
241	distinguished from those of the starting materials by the presence of absorption bands
242	in the spectral range 3000-2800 cm ⁻¹ (Table 1; Fig. 3) (Barczyk et al. 2014), which
243	correspond to the strong bands (C-H stretching vibrations) observed both in surfactants
244	and IBU (Figures 1 and 2). These organic compounds also share two very weak bands
245	at ~1487 cm ⁻¹ and ~1468 cm ⁻¹ (C-H bending vibrations). However, IBU-loaded
246	SMNZs show increased intensity of C-H stretching vibrations (Krajišnik et al. 2010b,
247	2015), as well as the occurrence of additional bands at ~1578 cm^{-1} and ~1380 cm^{-1}
248	(Table 1; Fig. 3) attributable to asymmetric and symmetric stretching vibrations in
249	carboxylate ions (Ambrogi et al. 2001; Wray et al. 2011).

11

250

251 STA coupled with FT-IR/EGA

252	Thermal analysis has been widely used in the characterization of natural zeolites and
253	their modified forms (Sullivan et al. 1997; Bish and Carey 2001; Langella et al. 2003;
254	Krajišnik et al. 2011, 2013a, 2013b; de Gennaro et al. 2016; Marković et al. 2017). So-
255	called "zeolitic water" is found in the open cavities (channels and cages) of zeolites
256	(Coombs et al. 1997), where it can move more-or-less freely through the
257	interconnected cavities (Bish and Carey 2001; Langella et al. 2003). The phillipsite-
258	rich starting material shows the typical thermal behavior of a zeolite with a high kinetic
259	pore diameter (Bish and Carey 2001; Langella et al. 2003), as much of the weight loss
260	occurs below 250 °C with the maximum dehydration rate at ~ 176 °C (Fig. 4).
261	Dehydration continued gradually to ~ 550 °C, likely due to the presence of other
262	natural zeolites with lower kinetic diameters such as chabazite and minor analcime as
263	well as hydroxilated phases (micas). Cumulatively, the "zeolitic" $\mathrm{H_2O}$ evolving over
264	the 40-550 °C range is ~10 wt.%. This H ₂ O content is consistent with the high $K^{\rm +}$
265	content of the zeolites in the tuff. The presence of large monovalent cations, such as K^+ ,
266	generally results in moderate or low H ₂ O contents (Bish 1984, 1988; Kranz et al. 1989;
267	Carey and Bish 1996; Fialips et al. 2005; Esposito et al. 2015).
268	H ₂ O evolved during dehydration was detected via FTIR/EGA (Fig. 4), along with a
269	weak emission of CO_2 attributable to the decomposition of calcite in the 550-800 °C
270	thermal range.
271	The thermal behavior of SMNZs and IBU-loaded SMNZs is mainly characterized by
272	the occurrence of two principal processes (Table 2). The first, occurring below 200 °C,

273	is related to dehydration of the zeolitic component, and decomposition of cationic
274	surfactants was not significant in this temperature range (Fig. 4). The second process
275	(>200 °C) is linked to decomposition and subsequent combustion of surfactants
276	(SMNZs) and IBU (IBU-loaded SMNZs) (Table 2; Figs 1 and 2). Thus the total mass
277	loss for IBU-loaded SMNZs is greater than the mass loss for the starting material and
278	the SMNZs before drug adsorption (Table 2).
279	These results could attest the effective functionalization of zeolite and subsequent drug
280	loading although, it requires a further validation by technological performance.
281	
282	Technological performance of the phillipsite-IBU composite material
283	Equilibrium isotherms
284	Table 3 and Figure 5 report the results of equilibrium adsorption measurements fit
285	using three mathematical models, Langmuir (Fig. 5a) (Langmuir 1916), Sips (also
286	called Langmuir-Freundlich, Fig. 5b), and Toth (Fig. 5c) equations.
287	The shape of the curves shows that the plateau, i.e., the maximum drug adsorption, was
288	reached for the initial IBU concentration of 400 mg/L, regardless of the type of
289	surfactant. Moreover, the maximum loaded amount was attained for the PHB (~29
290	mg/g), in agreement with complete bilayer formation, whereas lower adsorption was
291	achieved for PBC and PCC (21.2 mg/g) where the two surfactants formed only a
292	patchy bilayer at the zeolitic surface. The latter are in agreement with Cappelletti et al.
293	(2017), who emphasized the effects of the counterions on micellar structure formation.
294	The same behavior was also recorded for PHC, although it achieved a higher IBU
295	loaded amount. This may indicate that, for its benzene ring-free structure (different

- from benzalkonium and cetylpyridinium), the HDTMA-Cl can form a more
- 297 homogeneous patchy bilayer than the other two chlorinated surfactants, as found in
- 298 previous research (Cappelletti et al., 2017).
- 299 The Langmuir adsorption isotherm model is commonly used to fit the performance of
- different bio-mineral adsorbents such as SMNZs (Li et al. 1998, 1999; Krajišnik et al.
- 2010a; Wang and Peng 2010; Cappelletti et al. 2017; de Gennaro et al. 2016; Marković
- et al. 2017) and other geomaterials (Campbell and Davies 1995; Li and Bowman 1997,
- 303 1998, 2001; Janićijević et al. 2015), although it was originally developed to describe
- 304 gas-solid-phase adsorption onto activated carbon (Langmuir 1916; Foo and Hameed
- 2010). On the other hand, the Sips (1948) and Toth (1971) models were developed to
- 306 improve fits based on Langmuir isotherms (Hinz 2001; Limousin et al. 2007; Foo and
- 307 Hameed 2010).
- The Langmuir (equation 3), Sips (equation 4), and Toth (equation 5) equations can beexpressed as follows:
- 310

$$311 \quad S = S_m \frac{KC_{\theta}}{1+KC_{\theta}},\tag{3}$$

312

313
$$S = S_m \frac{(KC_e)^n}{1+(KC_e)^n}$$
, and (4)

314

315
$$S = S_m \frac{KC_{\theta}}{[1+(KC_{\theta})^n]_n^{\frac{1}{n}}},$$
 (5)

where *S* is the amount of solute adsorbed by the solid at equilibrium conditions (mg/g); C_e is the concentration of solute in solution after equilibrium (mg/L); S_m is the

318	maximum adsorption capacity at equilibrium (mg/g), K (L/mg) is the adsorption
319	intensity, a constant related to binding energy, and n is a fitting parameter related to
320	heterogeneity of the system. If $n = 1$, the Sips and Toth equations become a simple
321	Langmuir equation.
322	The Sips and Toth models generally provided improved Goodness-Of-Fit (GOF)
323	values observed as a reduction of AIC and BIC values, as well as an increase in the
324	determination coefficient \mathbb{R}^2 (Table 3). Maximum IBU adsorption capacities (S_m) of
325	22.0 mg/g, 20.4 mg/g, and 20.4 mg/g was calculated for sample PCC according to the
326	Langmuir, Sips, and Toth isotherm equations, respectively (Table 3). Both the Sips
327	(1948) and Toth (1971) provided best fits ($R^2 = 0.987$; AIC = 23.1; BIC = 22.9) for
328	PCC, but no significant differences were found between these three models for IBU
329	adsorption by PBC (Table 3).
330	Greater maximum adsorption capacities were obtained for PHC and PHB compared
331	with PCC and PBC, and the Toth equation provided the best fit to the data (Table 3 and
332	Fig. 5), particularly for PHB.
333	The Toth fit parameters yield an amount of adsorbed IBU of 24.4 mg/g for PHC and
334	28.8 mg/g for PHB. The better performance of PHB can be explained by the tendency
335	of this composite to form a more compact bilayer sheet micelle due to the presence of a
336	Br counterion (Li and Bowman 1997; Cappelletti et al. 2017; de Gennaro et al. 2016).
337	The general improvement of the GOF with the Sips and Toth equations instead of the
338	Langmuir can be explained by taking into account the theoretical basis of the Langmuir
339	isotherm model (Langmuir 1916; Limousin et al. 2007; Foo and Hameed 2010). The
340	Langmuir model is strictly intended for materials where sorption mechanisms are fully

341	associated with adsorption processes. The model is therefore inappropriate for SMNZs
342	where sorption of NSAIDs is controlled by multiple mechanisms, including both
343	external anionic exchange and partition into the hydrophobic portion of the micelle
344	(Krajišnik et al. 2010a, 2010b, 2011, 2013a, 2013b, 2015; de Gennaro et al. 2015;
345	Marković et al. 2016; Pasquino et al. 2016; Serri et al. 2017). In case of multiple
346	sorption mechanism, although the adsorption mechanism always predominates (de
347	Gennaro et al. 2015; Krajišnik et al. 2015), partition may influence the sorption of IBU
348	by SMNZs, especially when IBU molecules can change their ionic form (e.g. by pH
349	variations). Thus, from a mathematical point of view, the Sips or Toth equations fit the
350	adsorption data better than the Langmuir model and they provide a well-defined
351	equilibrium asymptotic plateau, useful for the identification of the real maximum
352	adsorption capacity of SMNZs. In this way, equilibrium isotherm modeling can be
353	used to optimize the appropriate initial concentration of IBU for kinetic experiments.
354	
355	In vitro IBU loading and release tests
356	As mentioned above, the initial concentration of the IBU solution for the kinetic tests

was 400 mg/L; at this concentration, complete saturation of the host composite
material (SMNZ) is guaranteed, as suggested by the model equilibrium isotherms, and
greater initial concentrations of the drug do not provide further IBU uptake. Figure 6
highlights the rapid rate of the loading process, and > 90% of IBU was loaded onto the

- 361 SMNZs after 30 min, except for PBC which required ~120 min. Comparison of kinetic
- 362 curves reveals that the maximum amount of loaded IBU was reached for PHC and
- 363 PHB (26.8 and 28.1 mg/g, respectively). The latter case illustrates that a compact

364	bilayer is not an indication of the best loading, as it can create a "crowding" of anionic
365	sites that are not all available for drug adsorption due to the larger size of IBU when
366	compared with the Br ion. The maximum loaded amounts for PBC and PCC are still
367	comparable (20.0 and 19.2 mg/g, respectively), confirming the similar behavior of
368	SMNZs modified with these two surfactants. Lastly, the similarity of the values (Table
369	4, in mEq/g) of the maximum amounts of drug loaded onto SMNZs and their
370	respective AECs (with the exception of PHB, as reported above) strongly suggests that
371	anion exchange is the primary mechanism involved in the loading of IBU on SMNZs.
372	As often reported in the literature (Bowman 2003; de Gennaro et al. 2015; Serri et al.
373	2016), the drug adsorption kinetics of SMNZs generally follow pseudo-first order
374	(PFO) (6) (Ho 2004) and pseudo-second order models (PSO) (7) (Ho 2006) . These
375	models can be written as follows:
376	

377
$$Q_t = Q_0 (1 - e^{-K_1 t})$$
 and (6)

378

379
$$Q_t = \frac{K_2 Q_0^2 t}{1 + K_2 Q_0 t},$$

381

where Q_t is the amount of IBU loaded in SMNZ (mg/g) as a function of time t (min), 382

.

.

383
$$Q_0$$
 is the drug concentration at equilibrium, and K_1 (min⁻¹) and K_2 (g/mg⁻¹ min⁻¹) are

384 the pseudo-first and the pseudo-second order constants, respectively.

385 Non-linear regression validated both of these models (Table 4 and Fig. 6), although the

386 best fit was obtained with the pseudo-second order model, consistent with previous

- 387 research on NSAIDs loaded on SMNZs (de Gennaro et al. 2015). Maximum adsorption
- capacities were 19.3 mg/g for PCC, 20.9 mg/g for PBC, 26.4 mg/g for PHC, and 27.9
- 389 mg/g for PHB (calculated using the PSO model). Once again, the highest IBU
- adsorption was achieved by PHB and PHC, whereas the amount of IBU adsorbed by
- 391 PCC and PBC were lower, although quite similar.
- 392 IBU-release kinetics, rapid and practically complete (> 95%) for all the SMNZs, were
- 393 fit using several mathematical models reported in the literature (Costa and Sousa Lobo
- 2001; Costa et al. 2003; Dash et al. 2010; Yadav et al. 2013), but the best fit was
- obtained using the first-order equation (8) and the Weibull equation (9), expressed asfollows:
- 397

398
$$M_t = M_0 (1 - e^{-K_1 t})$$
 and (8)

399

400
$$M_t = M_0 \left[1 - e^{-\left(\frac{t-T_i}{a}\right)^b} \right],$$
 (9)

401

402 where M_t is the amount of IBU released by SMNZ (mg/g) as a function of time t (min), 403 M_0 is the drug concentration at equilibrium (mg/g), K_1 is the first-order constant (min⁻¹), 404 T_i is the lag time (usually zero), a defines the time scale of the process (min), and b is a 405 parameter describing the shape of the dissolution profile. In particular, the curve is 406 exponential when b = 1, the profile becomes sigmoidal with a turning point after an 407 upward curvature if b > 1, and the profile is parabolic with a steeper initial slope when 408 b < 1.

409	Table 5 reports the parameters of these two models fitted by non-linear regression, and
410	the dissolution profiles are shown in Figure 7, which shows that 50-60% of IBU was
411	released by all samples in the first 30 min and 85-90 % released within the first hour.
412	Nevertheless, slower drug release from the SMNZs occurred up to 5 hours, with none
413	of them achieving 100% release (Table 5).
414	Although the Weibull model is often useful for comparing dissolution profiles of
415	matrix-type drug delivery (Costa and Sousa Lobo 2001), providing good fitting results
416	(Costa et al. 2003), it represents an empirical model without any kinetic basis. The
417	Weibull model can therefore not be used to adequately describe the dissolution rate of
418	a drug or to establish effective correlations between in vitro and in vivo experiments
419	(Costa and Sousa Lobo 2001).
420	Alternatively, a first-order kinetic equation may better describe dissolution profiles of
421	IBU-loaded SMNZs, as the drug release appears to be proportional to the IBU
422	remaining in the composites (Yadav et al. 2013). In particular, much of the released
423	NSAID may be related to the amount of IBU adsorbed on the surface of SMNZs,
424	whereas minor amounts of IBU located in the hydrophobic chains of micelles would be
425	more slowly released due to diffusion processes (Pasquino et al. 2016).
426	
427	IMPLICATIONS
428	One of the most important implications of this research is the possible use of low-cost
429	and largely available natural zeolites in advanced technological sectors such as
430	biomedicine. Our research has demonstrated that a phillipsite-rich rock is a good drug
431	carrier, comparable to clinoptilolite-bearing rock carriers. Our results provide added

432 value to the southern Italian zeolitite deposits, representing a by-product of the 433 building stone industry that is currently disposed in landfills. However, due to the 434 natural variability of this resource, careful characterization of production batches is 435 mandatory.

436 Experimental results provide evidence that this material, properly surface modified by 437 long-chain surfactants, is an excellent carrier of NSAIDs. Appropriate pharmaceutical 438 preparations for oral use can be developed, possibly as granulates or as dispersions in 439 order to increase the amount of the released drug. This application is supported by 440 laboratory data that have shown the prompt release of a pain-killing drug within the 441 first 30-50 min, thereby making these natural materials suitable for providing rapid 442 palliative effects to the patient. It should be remarked however that the formulation of a 443 composite system able to provide a sustained- in time drug release is required by 444 pharmacologists. The IBU-phillipsite composite material investigated in the present 445 research provided a slow release of a small amount of drug (5-10 %). Further 446 investigation is required to understand if this low amount is significant of 447 pharmacological point of view.

The functionalized phillipsite-rich rock may have other important applications in environmental fields (Hailu et al. 2017) such as the absorption/removal of pharmaceuticals from ground or surface waters, a rather growing problem which has yet to find a satisfactorily solution (Larsson 2014; Płuciennik-Koropczuk 2014).

452

453

ACKNOWLEDGMENTS

454	This work was carried out with the financial support of MIUR (Ministero
455	dell'Istruzione, dell'Università e della Ricerca) Progetti di Ricerca di Interesse
456	Nazionale (PRIN 2010). Authors wish to thank K. Putirka and two anonymous referees
457	for their suggestions, which deeply improved the manuscript. The Authors are also in
458	debt with L. Campbell and D.L. Bish for the invaluable contribution to the clarity of
459	the manuscript.
460	
461	References cited
462	Ambrogi, V., Fardella, G., Grandolini, G., and Perioli, L. (2001) Intercalation
463	compounds of hydrotalcite-like anionic clays with antiinflammatory agents - I.
464	Intercalation and in vitro release of ibuprofen. International Journal of
465	Pharmaceutics, 220, 23–32.
466	Barczyk, K., Mozgawa, W., and Król, M. (2014) Studies of anions sorption on natural
467	zeolites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,
468	133, 876–882.
469	Bhaskar, R., Murthy, R.S.R., Miglani, B.D., and Viswanathan, K. (1986) Novel
470	method to evaluate diffusion controlled release of drug from resinate.
471	International Journal of Pharmaceutics, 28, 59–66.
472	Bish, D.L. (1984) Effects of exchangeable cation composition on the thermal
473	expansion/contraction of clinoptilolite. Clays and Clay Minerals, 32, 444-452.
474	Bish, D.L. (1988) Effects of composition on the dehydration behavior of clinoptilolite
475	and heulandite. In Occurrence, Properties and Utilization of Natural Zeolites pp.
476	565–576. Akadémiai Kiadó, Budapest.

- 477 Bish, D.L., and Carey, J.W. (2001) Thermal Behavior of Natural Zeolites. Reviews in
- 478 Mineralogy and Geochemistry, 45, 403 LP-452.
- 479 Bowman, R.S. (2003) Applications of surfactant-modified zeolites to environmental
- 480 remediation. Microporous and Mesoporous Materials, 61, 43–56.
- 481 Buondonno, A., Colella, A., Coppola, E., de Gennaro, M., Grilli, E., Langella, A., and
- 482 Rubino, M. (2008) Distribution of Al, Ca, Fe and Mg in weathering extracts from
- 483 Campanian Ignimbrite (yellow facies). Studies in Surface Science and Catalysis,
- 484 174, 525–528.
- 485 Byrappa, K., and Kumar, B.V.S. (2007) Characterization of zeolites by infrared
- 486 spectroscopy. Asian Journal of Chemistry, 19, 4933–4935.
- 487 Calcaterra, D., Cappelletti, P., Langella, A., Colella, A., and de Gennaro, M. (2004)
- 488 The ornamental stones of Caserta province: the Campanian Ignimbrite in the
- 489 medieval architecture of Casertavecchia. Journal of Cultural Heritage, 5, 137–148.
- 490 Campbell, L.S., and Davies, B.E. (1995) Soil sorption of caesium modelled by the
- 491 Langmuir and Freundlich isotherm equations. Applied Geochemistry, 10, 715–
 492 723.
- 493 Cappelletti, P., Cerri, G., Colella, A., de'Gennaro, M., Langella, A., Perrotta, A., and

494 Scarpati, C. (2003) Post-eruptive processes in the Campanian Ignimbrite.

- 495 Mineralogy and Petrology, 79, 79–97.
- 496 Cappelletti, P., Rapisardo, G., De Gennaro, B., Colella, A., Langella, A., Graziano,
- 497 S.F., Bish, D.L., and De Gennaro, M. (2011) Immobilization of Cs and Sr in
- 498 aluminosilicate matrices derived from natural zeolites. Journal of Nuclear
- 499 Materials, 414, 451–457.

500	Cappelletti, P., Colella, A., Langella, A., Mercurio, M., Catalanotti, L., Monetti, V.,
501	and de Gennaro, B. (2017) Use of surface modified natural zeolite (SMNZ) in
502	pharmaceutical preparations Part 1. Mineralogical and technological
503	characterization of some industrial zeolite-rich rocks. Microporous and
504	Mesoporous Materials, 250, 232–244.
505	Carey, J.W., and Bish, D.L. (1996) Equilibrium in the clinoptilolite-H2O system.
506	American Mineralogist.
507	Cerri, G., de Gennaro, M., Bonferoni, M.C., and Caramella, C. (2004) Zeolites in
508	biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for
509	antibiotics in anti-acne topical therapy. Applied Clay Science, 27, 141-150.
510	Cerri, G., Farina, M., Brundu, A., Daković, A., Giunchedi, P., Gavini, E., and Rassu, G.
511	(2016) Natural zeolites for pharmaceutical formulations: Preparation and
512	evaluation of a clinoptilolite-based material. Microporous and Mesoporous
513	Materials, 223, 58–67.
514	Chen, C. (2013) Evaluation of Equilibrium Sorption Isotherm Equations. The Open
515	Chemical Engineering Journal, 7, 24–44.
516	Colella, A., Calcaterra, D., Cappelletti, P., Di Benedetto, C., Langella, A., Papa, L.,
517	Perrotta, A., Scarpati, C., and de Gennaro, M. (2013) Il Tufo Giallo Napoletano.
518	In Le pietre storiche della Campania dall'oblio alla riscoperta pp. 129–154.
519	Luciano Editore.
520	Colella, A., Di Benedetto, C., Calcaterra, D., Cappelletti, P., D'Amore, M., Di Martire,
521	D., Graziano, S.F., Papa, L., de Gennaro, M., and Langella, A. (2017) The
522	Neapolitan Yellow Tuff: An outstanding example of heterogeneity. Construction

523	and Building Materials, 136, 361–373.
524	Colella, C., de Gennaro, M., Langella, A., and Pansini, M. (1998) Evaluation of
525	Natural Phillipsite and Chabaziteas Cation Exchangers for Copper and Zinc.
526	Separation Science and Technology, 33, 467–481.
527	Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D.,
528	Liebau, F., Mandarino, J.A., Minato, H., and others (1997) Recommended
529	nomenclature for zeolite minerals: report of the subcommittee on zeolites of the
530	International Mineralogical Association, Commission on new Minerals and
531	Mineral names. Canadian Mineralogist, 35, 1571–1606.
532	Coppola, E., Battaglia, G., Bucci, M., Ceglie, D., Colella, A., Langella, A., Boundonno,
533	A., and Colella, C. (2003) Remediation of Cd- and Pb-polluted soil by treatment
534	with organo-zeolite conditioner. Clays and Clay Minerals, 51, 609-615.
535	Costa, F.O., Sousa, J.J.S., Pais, A.A.C.C., and Formosinho, S.J. (2003) Comparison of
536	dissolution profiles of Ibuprofen pellets. Journal of Controlled Release, 89, 199-
537	212.
538	Costa, P., and Sousa Lobo, J.M. (2001) Modeling and comparison of dissolution
539	profiles. European Journal of Pharmaceutical Sciences.
540	Dash, S., Murthy, P.N., Nath, L., and Chowdhury, P. (2010) Kinetic modeling on drug
541	release from controlled drug delivery systems. Acta poloniae pharmaceutica, 67,
542	217–23.
543	de Gennaro, B., Catalanotti, L., Bowman, R.S., and Mercurio, M. (2014) Anion
544	exchange selectivity of surfactant modified clinoptilolite-rich tuff for
545	environmental remediation. Journal of Colloid and Interface Science, 430, 178-

- 546 183.
- de Gennaro, B., Catalanotti, L., Cappelletti, P., Langella, A., Mercurio, M., Serri, C.,
- 548 Biondi, M., and Mayol, L. (2015) Surface modified natural zeolite as a carrier for
- 549 sustained diclofenac release: A preliminary feasibility study. Colloids and
- 550 Surfaces B: Biointerfaces, 130, 101–109.
- 551 de Gennaro, B., Mercurio, M., Cappelletti, P., Catalanotti, L., Daković, A., De Bonis,
- A., Grifa, C., Izzo, F., Kraković, M., Monetti, V., and others (2016) Use of
- surface modified natural zeolite (SMNZ) in pharmaceutical preparations. Part 2.
- A new approach for a fast functionalization of zeolite-rich carriers. Microporous
 and Mesoporous Materials, 235, 42–49.
- de Gennaro, B., Izzo, F., Catalanotti, L., Langella, A., and Mercurio, M. (2017)
- 557 Surface modified phillipsite as a potential carrier for NSAIDs release. Advanced
 558 Science Letters, 23, 5941–5943.
- de Gennaro, M., Colella, C., Pansini, M., and Langella, A. (1992) Reconstruction of a
- natural zeolitization process through laboratory simulations. In Ninth International
- 561Zeolite Conference Vol. 2, pp. 207–214. Butterworth-Heinemann, Boston.
- de Gennaro, M., Colella, C., Langella, A., and Cappelletti, P. (1995) Decay of
- 563 Campanian ignimbrite stoneworks in some monuments of the Caserta area.
- 564 Science and technology for cultural heritage, 4, 75–86.
- de Gennaro, M., Langella, A., Cappelletti, P., and Colella, C. (1999) Hydrothermal
- 566 conversion of trachytic glass to zeolite. 3. Monocationic model glasses. Clays and
- 567 Clay Minerals, 47, 348–357.
- de Gennaro, M., Calcaterra, D., Cappelletti, P., Langella, A., and Morra, V. (2000)

569	Building stone and related weathering in the architecture of the ancient city of
570	Naples. Journal of Cultural Heritage, 1, 399-414.
571	de Gennaro, R., Cappelletti, P., Cerri, G., de' Gennaro, M., Dondi, M., Guarini, G.,
572	Langella, A., and Naimo, D. (2003) Influence of zeolites on the sintering and
573	technological properties of porcelain stoneware tiles. Journal of the European
574	Ceramic Society, 23, 2237–2245.
575	de Gennaro, R., Cappelletti, P., Cerri, G., de' Gennaro, M., Dondi, M., and Langella, A.
576	(2004) Zeolitic tuffs as raw materials for lightweight aggregates. Applied Clay
577	Science, 25, 71–81.
578	de Gennaro, R., Cappelletti, P., Cerri, G., De'Gennaro, M., Dondi, M., and Langella, A.
579	(2005) Neapolitan Yellow Tuff as raw material for lightweight aggregates in
580	lightweight structural concrete production. Applied Clay Science, 28, 309-319.
581	de Gennaro, R., Cappelletti, P., Cerri, G., de' Gennaro, M., Dondi, M., Graziano, S.F.,
582	and Langella, A. (2007) Campanian Ignimbrite as raw material for lightweight
583	aggregates. Applied Clay Science, 37, 115-126.
584	de Gennaro, R., Langella, A., D'Amore, M., Dondi, M., Colella, A., Cappelletti, P.,
585	and De'Gennaro, M. (2008) Use of zeolite-rich rocks and waste materials for the
586	production of structural lightweight concretes. Applied Clay Science, 41, 61-72.
587	Dondi, M., Cappelletti, P., D'Amore, M., de Gennaro, R., Graziano, S.F., Langella, A.,
588	Raimondo, M., and Zanelli, C. (2016) Lightweight aggregates from waste
589	materials: Reappraisal of expansion behavior and prediction schemes for bloating.
590	Construction and Building Materials, 127, 394–409.
591	Esposito, S., Marocco, A., Dell'Agli, G., De Gennaro, B., and Pansini, M. (2015)

592	Relationships between the water content of zeolites and their cation population.
593	Microporous and Mesoporous Materials, 202, 36-43.
594	Fialips, C.I., Carey, J.W., and Bish, D.L. (2005) Hydration-dehydration behavior and
595	thermodynamics of chabazite. Geochimica et Cosmochimica Acta, 69, 2293-2308.
596	Foo, K.Y., and Hameed, B.H. (2010) Insights into the modeling of adsorption isotherm
597	systems. Chemical Engineering Journal.
598	Gabriele, G.A., and Ragsdell, K.M. (1977) The generalized reduced gradient method:
599	A reliable tool for optimal design. Journal of Engineering for Industry, 99, 394-
600	400.
601	Gatta, G.D., Cappelletti, P., de' Gennaro, B., Rotiroti, N., and Langella, A. (2015) New
602	data on Cu-exchanged phillipsite: a multi-methodological study. Physics and
603	Chemistry of Minerals, 42, 723–733.
604	Gondalia, R., Mashru, R., and Savaliya, P. (2010) Development and validation of
605	spectrophotometric methods for simultaneous estimation of ibuprofen and
606	paracetamol in soft gelatin capsule by simultaneous equation method.
607	International journal of chemtech research, 2, 1881–1885.
608	Hailu, S.L., Nair, B.U., Redi-Abshiro, M., DIaz, I., and Tessema, M. (2017)
609	Preparation and characterization of cationic surfactant modified zeolite adsorbent
610	material for adsorption of organic and inorganic industrial pollutants. Journal of
611	Environmental Chemical Engineering, 5, 3319–3329.
612	Higuchi, T. (1963) Mechanism of sustained-action medication. Theoretical analysis of
613	rate of release of solid drugs dispersed in solid matrices. Journal of
614	pharmaceutical sciences, 52, 1145–1149.

- Hinz, C. (2001) Description of sorption data with isotherm equations. Geoderma, 99,
 225–243.
- Ho, Y.-S., Chiu, W.-T., and Wang, C.-C. (2005) Regression analysis for the sorption
- 618 isotherms of basic dyes on sugarcane dust. Bioresource Technology, 96, 1285–
 619 1291.
- Ho, Y.S. (2004) Citation review of Lagergren kinetic rate equation on adsorption
- 621 reactions. Scientometrics.
- 622 (2006) Review of second-order models for adsorption systems. Journal of
- Hazardous Materials, 136, 681–689.
- 624 Izzo, F., Mercurio, M., Aprea, P., Cappelletti, P., de Gennaro, B., Germinario, C., Grifa,
- 625 C., Pasquino, R., and Langella, A. (2017) Technological performance of Surface
- 626 Modified Natural Zeolite (SMNZ) for in vitro loading/release of ibuprofen
- 627 sodium salt: new insights on chabazite-rich tuff. In CONGRESSO SIMP-SGI-
- 628 SOGEI-AIV 2017 Geosciences: a tool in a changing world p. 221. Pisa.
- 629 Janićijević, J., Krajišnik, D., Čalija, B., Vasiljević, B.N., Dobričić, V., Daković, A.,
- Antonijević, M.D., and Milić, J. (2015) Modified local diatomite as potential
- 631 functional drug carrier—A model study for diclofenac sodium. International
- journal of pharmaceutics, 496, 466–474.
- Joshi, R.S., Pawar, N.S., Katiyar, S.S., Zope, D.B., and Shinde, A.T. (2011)
- 634 Development and validation of UV spectrophotometric methods for simultaneous
- estimation of Paracetamol and Ibuprofen in pure and tablet dosage form. Der
- 636 Pharmacia Sinica, 2, 164–171.
- 637 Karge, H.G. (2001) Characterization by IR spectroscopy. Verified Syntheses of

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6328

638	Zeolitic Materials. New York: John Wiley and Sons Inc, 69–71.
639	Krajišnik, D., Milojević, M., Malenović, A., Daković, A., Ibrić, S., Savić, S., Dondur,
640	V., Matijašević, S., Radulović, A., Daniels, R., and others (2010a) Cationic
641	surfactants-modified natural zeolites: improvement of the excipients functionality.
642	Drug Development and Industrial Pharmacy, 36, 1215–1224.
643	Krajišnik, D., Daković, A., Malenović, A., Milojević, M., Dondur, V., and Milić, J.
644	(2010b) Cationic surfactants-modified natural zeolites: potential excipients for
645	anti-inflammatory drugs. In Proceedings of the 3rd Croatian-Slovenian
646	Symposium on Zeolites, Trogir, Croatia pp. 23–26.
647	Krajišnik, D., Daković, A., Milojević, M., Malenović, A., Kragović, M., Bogdanović,
648	D.B., Dondur, V., and Milić, J. (2011) Properties of diclofenac sodium sorption
649	onto natural zeolite modified with cetylpyridinium chloride. Colloids and
650	Surfaces B: Biointerfaces, 83, 165–172.
651	Krajišnik, D., Daković, A., Malenović, A., Djekić, L., Kragović, M., Dobričić, V., and
652	Milić, J. (2013a) An investigation of diclofenac sodium release from
653	cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient.
654	Microporous and Mesoporous Materials, 167, 94–101.
655	Krajišnik, D., Daković, A., Malenović, A., Milojević-Rakić, M., Dondur, V.,
656	Radulović, Ž., and Milić, J. (2013b) Investigation of adsorption and release of
657	diclofenac sodium by modified zeolites composites. Applied Clay Science, 83-84,
658	322–326.
659	Krajišnik, D., Daković, A., Malenović, A., Kragović, M., and Milić, J. (2015)
660	Ibuprofen sorption and release by modified natural zeolites as prospective drug

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6328

- 661 carriers. (G. Christidis, Ed.)Clay Minerals, 50, 11–22.
- 662 Kranz, R.L., Bish, D.L., and Blacic, J.D. (1989) Hydration and dehydration of Zeolitic
- Tuff from Yucca Mountain, Nevada. Geophysical Research Letters, 16, 1113–
- 664 1116.
- Langella, A., De Simone, P., Calcaterra, D., Cappelletti, P., and De'Gennaro, M.
- 666 (2002) Evidence of the relationship occurring between zeolitization and
- 667 lithification in the yellow facies of Campanian Ignimbrite (southern Italy). Studies
- in Surface Science and Catalysis, 142, 1775–1782.
- Langella, A., Pansini, M., Cerri, G., Cappelletti, P., and De'Gennaro, M. (2003)
- 670 Thermal behavior of natural and cation-exchanged clinoptilolite from Sardinia
- 671 (Italy). Clays and Clay Minerals, 51, 625–633.
- Langella, A., Bish, D.L., Cappelletti, P., Cerri, G., Colella, A., de Gennaro, R.,
- Graziano, S.F., Perrotta, A., Scarpati, C., and de Gennaro, M. (2013) New insights
- 674 into the mineralogical facies distribution of Campanian Ignimbrite, a relevant
- 675 Italian industrial material. Applied Clay Science, 72, 55–73.
- 676 Langmuir, I. (1916) the Constitution and Fundamental Properties of Solids and Liquids.
- Part I. Solids. Journal of the American Chemical Society, 252, 2221–2295.
- 678 Larsson, D.G.J. (2014) Pollution from drug manufacturing: review and perspectives.
- Philosophical transactions of the Royal Society of London. Series B, Biological
 sciences, 369, 20130571-.
- Li, Z., and Bowman, R.S. (1997) Counterion effects on the sorption of cationic
- 682 surfactant and chromate on natural clinoptilolite. Environmental Science and
- 683 Technology, 31, 2407–2412.

684	Li, Z., and Bowman, R.S. (1998) Sorption of chromate and PCE by surfactant-
685	modified clay minerals. Environmental Engineering Science, 15, 237-245.
686	Li, Z., and Bowman, R.S. (2001) Regeneration of surfactant-modified zeolite after
687	saturation with chromate and perchloroethylene. Water Research, 35, 322-326.
688	Li, Z., Anghel, I., and Bowman, R.S. (1998) Sorption of Oxyanions By Surfactant-
689	Modified Zeolite. Journal of Dispersion Science and Technology, 19, 843-857.
690	Li, Z., Jones, H.K., Bowman, R.S., and Helferich, R. (1999) Enhanced reduction of
691	chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron.
692	Environmental Science and Technology, 33, 4326–4330.
693	Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthès, V., and Krimissa, M.
694	(2007) Sorption isotherms: A review on physical bases, modeling and
695	measurement. Applied Geochemistry.
696	Lin, J., and Wang, L. (2009) Comparison between linear and non-linear forms of
697	pseudo-first-order and pseudo-second-order adsorption kinetic models for the
698	removal of methylene blue by activated carbon. Frontiers of Environmental
699	Science & Engineering in China, 3, 320–324.
700	Markandeya, S.P., and Kisku, G.C. (2015) Linear and Non-Linear Kinetic Modeling
701	for Adsorption of Disperse Dye in Batch Process. Research Journal of
702	Environmental Toxicology, 9, 320-331.
703	Marković, M., Daković, A., Krajišnik, D., Kragović, M., Milić, J., Langella, A., de
704	Gennaro, B., Cappelletti, P., and Mercurio, M. (2016) Evaluation of the
705	surfactant/phillipsite composites as carriers for diclofenac sodium. Journal of
706	Molecular Liquids, 222, 711–716.

707	Marković, M., Daković, A., Rottinghaus, G.E., Kragović, M., Petković, A., Krajišnik,
708	D., Milić, J., Mercurio, M., and de Gennaro, B. (2017) Adsorption of the
709	mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with
710	cetylpyridinium surfactant. Colloids and Surfaces B: Biointerfaces, 151, 324-332.
711	Mercurio, M., Mercurio, V., de'Gennaro, B., de'Gennaro, M., Grifa, C., Langella, A.,
712	and Morra, V. (2010) Natural zeolites and white wines from Campania region
713	(Southern Italy): a new contribution for solving some oenological problems.
714	Periodico di Mineralogia, 79, 95–112.
715	Mercurio, M., Langella, A., Cappelletti, P., de Gennaro, B., Monetti, V., and de
716	Gennaro, M. (2012) May the use of Italian volcanic zeolite-rich tuffs as additives
717	in animal diet represent a risk for the human health. Period Mineral, 81, 393-407.
718	Mercurio, M., Grilli, E., Odierna, P., Morra, V., Prohaska, T., Coppola, E., Grifa, C.,
719	Buondonno, A., and Langella, A. (2014) A "Geo-Pedo-Fingerprint" (GPF) as a
720	tracer to detect univocal parent material-to-wine production chain in high quality
721	vineyard districts, Campi Flegrei (Southern Italy). Geoderma, 230–231, 64–78.
722	Mercurio, M., Bish, D.L., Cappelletti, P., Gennaro, B. de, Gennaro, M. de, Grifa, C.,
723	Izzo, F., Mercurio, V., Morra, V., and Langella, A. (2016a) The combined use of
724	steam-treated bentonites and natural zeolites in the oenological refining process.
725	Mineralogical Magazine, 80, 347–362.
726	Mercurio, M., Cappelletti, P., De Gennaro, B., De Gennaro, M., Bovera, F.,
727	Iannaccone, F., Grifa, C., Langella, A., Monetti, V., and Esposito, L. (2016b) The
728	effect of digestive activity of pig gastro-intestinal tract on zeolite-rich rocks: An
729	in vitro study. Microporous and Mesoporous Materials, 225, 133-136.

730	Morra, V., Calcaterra, D., Cappelletti, P., Colella, A., Fedele, L., De'Gennaro, R.,
731	Langella, A., Mercurio, M., and De'Gennaro, M. (2010) Urban geology:
732	relationships between geological setting and architectural heritage of the
733	Neapolitan area. Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei,
734	Sandro Conticelli, and Carlo Doglioni, Journal of the Virtual Explorer, 36, 1-60.
735	Mozgawa, W., Król, M., and Barczyk, K. (2011) FT-IR studies of zeolites from
736	different structural groups. CHEMIK nauka-technika-rynek, 1, 667-674.
737	Oh, S., Shin, W.S., and Kim, H.T. (2016) Effects of pH, dissolved organic matter, and
738	salinity on ibuprofen sorption on sediment. Environmental Science and Pollution
739	Research, 23, 22882–22889.
740	Pansini, M., Colella, C., Caputo, D., De'Gennaro, M., and Langella, A. (1996)
741	Evaluation of phillipsite as cation exchanger in lead removal from water.
742	Microporous Materials.
743	Pasquino, R., Di Domenico, M., Izzo, F., Gaudino, D., Vanzanella, V., Grizzuti, N.,
744	and de Gennaro, B. (2016) Rheology-sensitive response of zeolite-supported anti-
745	inflammatory drug systems. Colloids and Surfaces B: Biointerfaces, 146, 938-944.
746	Płuciennik-Koropczuk, E. (2014) Non-Steroid Anti-Infflamatory Drugs in Municipal
747	Wastewater and Surface Waters/ Niesteroidowe Leki Przeciwzaplane W Ściekach
748	Mieskich I Wodach Powierzchniowych. Civil And Environmental Engineering
749	Reports, 14.
750	Sena, M.M., Freitas, C.B., Silva, L.C., Pérez, C.N., and de Paula, Y.O. (2007)
751	Determinação espectrofotométrica simultânea de paracetamol e ibuprofeno em
752	formulações farmacêuticas usando calibração multivariada. Química Nova, 30,

- 753 75–79.
- 754 Serri, C., De Gennaro, B., Catalanotti, L., Cappelletti, P., Langella, A., Mercurio, M.,
- 755 Mayol, L., and Biondi, M. (2016) Surfactant-modified phillipsite and chabazite as
- novel excipients for pharmaceutical applications? Microporous and Mesoporous
 Materials, 224, 143–148.
- 758 Serri, C., de Gennaro, B., Quagliariello, V., Iaffaioli, R.V., De Rosa, G., Catalanotti, L.,
- Biondi, M., and Mayol, L. (2017) Surface modified zeolite-based granulates for
- the sustained release of diclofenac sodium. European Journal of Pharmaceutical
 Sciences, 99, 202–208.
- Sips, R. (1948) Combined form of Langmuir and Freundlich equations. J. Chem. Phys,
 16, 490–495.
- 764 Spiess, A.-N., and Neumeyer, N. (2010) An evaluation of R2 as an inadequate measure
- for nonlinear models in pharmacological and biochemical research: a Monte Carloapproach. BMC pharmacology, 10, 6.
- 767 Sullivan, E.J., Hunter, D.B., and Bowman, R.S. (1997) Topological and thermal
- 768 properties of surfactant-modified clinoptilolite studied by tapping-mode atomic
- force microscopy and high-resolution thermogravimetric analysis. Clays and Clay
- 770 Minerals, 45, 42–53.
- Tan, D., Yuan, P., Annabi-Bergaya, F., Yu, H., Liu, D., Liu, H., and He, H. (2013)
- 772 Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen.
- 773 Microporous and Mesoporous Materials, 179, 89–98.
- Toth, J. (1971) State equations of the solid-gas interface layers. Acta Chim Acad Sci
- Hungar, 69, 311–328.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6328

776	USP-NF (2002) The United States Pharmacopeia and the National Formulary, 25th ed.
777	United States Pharmacopeial Convention Inc., Rockville, MD, USA.
778	(2003) The United States Pharmacopeia and the National Formulary, 26th ed.
779	United States Pharmacopeial Convention Inc., Rockville, MD, USA.
780	Wang, S., and Peng, Y. (2010) Natural zeolites as effective adsorbents in water and
781	wastewater treatment. Chemical Engineering Journal, 156, 11-24.
782	Wray, P.S., Clarke, G.S., and Kazarian, S.G. (2011) Application of FTIR spectroscopic
783	imaging to study the effects of modifying the pH microenvironment on the
784	dissolution of ibuprofen from HPMC matrices. Journal of pharmaceutical sciences,
785	100, 4745–4755.
786	Yadav, G., Bansal, M., Thakur, N., and Khare, P. (2013) Multilayer Tablets and Their
787	Drug Release Kinetic Models for Oral Controlled Drug Delivery System. Middle-
788	East Journal of Scientific Research, 16, 782–795.
789	
790	

791792 FIGURE CAPTIONS

793

- Figure 1 Physico-chemical and thermal properties of IBU
- Figure 2 Physico-chemical and thermal properties of surfactants
- Figure 3 FTIR spectra of starting materials (PHI_SAV), SMNZ (PCC), IBU-loaded
- 799 SMNZ (PCC+IBU)
- 800
- Figure 4 Thermal properties of starting materials by TG/DSC coupled with FTIR EGA
- 802 803
- 804 Figure 5 Isotherms: A-Langmuir; B-Sips; C-Toth
- 806 Figure 6 Kinetic loading curves: A- Pseudo-first order, B- Pseudo-second order
- 807

805

- 808 Figure 7 Kinetic release curves: A- First-order, B- Weibull, C- First order (%), D-
- 809 Weibull (%).
- 810

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6328

Revision 2

Table 1 – FTIR data

PHI SAV	PCC	PBC	PHC	PHB	PCC+IBU	PBC+IBU	PHC+IBU	PHB+IBU	Tentative vibrational assignments	Chemical phase
3419 w	3422 w	3436 w	3425 w	3427 w	3426 w	3434 w	3422 w	3425 w	O-H stretching	water
	2958 sh	2959 sh	2958 sh	2959 sh	2955 vw	2960 sh	2954 sh	2954 sh	C–H stretching	Surfactant/IBU
	2917 w	2923 vw	2923 vw	2923 vw	2921 w	2924 vw	2920 w	2922 w	C–H stretching	Surfactant/IBU
	2850 w	2853 vw	2852 vw	2852 vw	2851 w	2853 vw	2851 w	2852 w	C–H stretching	Surfactant/IBU
1638 w	1635 w	1639 w	1638 w	1639 w	1635 w	1638 w	1638 w	1638 w	O-H bending	water
					1572 vw	1573 sh	1580 sh	1582 sh	Asymmetric stretching in carboxylate ion	IBU
	1489 vw	1481 vw	1489 sh	1489 sh	1489 vw	1481 vw	1489 sh	1489 sh	C-H bending	Surfactant/IBU
	1469 vw	1466 vw	1470 vw	1470 vw	1466 vw	1466 vw	1469 vw	1467 vw	C-H bending	Surfactant/IBU
1456 vw									C-O asymmetric stretching	Calcite
					1382 vw	1379 vw	1376 vw	1381 vw	Symmetric stretching in carboxylate ion	IBU
1000 vs	995 vs	992 vs	995 vs	992 vs	989 vs	992 vs	991 vs	989 vs	T-O asymmetric stretching	silicates
780 w	774 w	781 w	779 w	777 w	775 w	781 w	776 w	778 w	T-O-T asymmetric stretching	silicates
719 w	717 w	723 w	720 w	719 w	719 w	724 w	720 w	719 w	T-O-T symmetric stretching	silicates
633 sh	633 sh	633 sh	632 sh	632 sh	633 sh	633 sh	633 sh	633 sh	T-O-T bending	silicates
597 w	596 w	597 w	597 w	599 w	595 w	598 w	596 w	598 w	T-O-T bending	silicates
516 vw	515 vw	519 vw	517 vw	516 vw	514 vw	517 vw	519 vw	516 vw	T-O-T bending	silicates
426 w	427 w	427 w	424 w	429 w	423 w	428 w	427 w	421 w	T-O-T bending	Silicates

Legend: w, weak; vw, very weak; sh, shoulder; s, strong; vs, very strong; T, tetrahedral cation (Si or Al).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6328

Revision 2

Table 2 – Thermal Analysis (TG-DTG-DSC and FTIR-EGA) data

Samples	T < 200 °C				200 °C <	101(%)	RM (%)			
Campico	ΔW(%)	DTG (°C)	DSC ^(a) (°C)	EGA	ΔW(%)	DTG (°C)	DSC ^(b) (°C)	EGA	E.O.I (70)	rt.ivi. (70)
PCC	6.3	157	131	H ₂ O	9.0	230-499-665	246-333-502-672 ^(a) -929	$CO_2 + CH_3 + CH_2 + H_2O^{tr} + CO^{tr}$	15.3	84.7
PCC+IBU	6.6	162	118	H ₂ O	11.0	206-488-655	223-339-498-686 ^(a) -939	$CO_2 + CH_3 + CH_2 + H_2O^{tr} + CO^{tr}$	17.5	82.5
PBC	6.1	153	164	H_2O	7.1	212-384-525-659	226 ^(a) -275-386-528-644 ^(a) -929	$CO_2 + CH_3 + CH_2 + H_2O^{tr} + CO^{tr}$	13.3	86.8
PBC+IBU	6.8	150	167	H ₂ O	7.7	211-384-514-646	230 ^(a) -277-388-519-646 ^(a) -932	$CO_2 + CH_3 + CH_2 + H_2O^{tr} + CO^{tr}$	14.5	85.5
PHC	6.7	144	157	H ₂ O	7.2	235-517-646	225-299-389-495-649 ^(a) -916	$CO_2 + CH_3 + CH_2 + H_2O^{tr} + CO^{tr}$	14.0	86.0
PHC+IBU	7.6	154	151	H_2O	8.5	216-513-648	286-380-481-645 ^(a) -943	$CO_2 + CH_3 + CH_2 + H_2O^{tr} + CO^{tr}$	16.1	83.9
PHB	6.9	146	144	H ₂ O	6.8	381-504-664	283-369-503-651 ^(a) -930	$CO_2 + CH_3 + CH_2 + H_2O^{tr} + CO^{tr}$	13.7	86.3
PHB+IBU	6.8	146	153	H ₂ O	9.1	226-385-499-665	234-296-388-476-658 ^(a) -943	$CO_2 + CH_3 + CH_2 + H_2O^{tr} + CO^{tr}$	15.9	84.1

LEGEND:

^(a)= Endothermic

^(b)= Exothermic

L.O.I. = loss on ignition

R.M. = residual mass

 ΔW = weight loss (by

TG)

 $^{(tr)}$ = traces

Samples	Mathematical model	Paramete	ers		Goodne	Goodness-of-fit		
		K (L/mg)	n	S _m (mg/g)	S _m (mEq/g)	R ²	AIC	BIC
PCC	Langmuir	0.032		22.0 ± 0.6	0.096	0.970	27.1	27.0
	Sips	0.026	2.91	20.4 ± 0.25	0.089	0.987	23.1	22.9
	Toth	0.014	3.85	20.4 ± 0.2	0.089	0.987	23.1	22.9
PBC	Langmuir	0.039		21.9 ± 0.5	0.096	0.981	24.2	24.1
	Sips	0.040	1.06	21.7 ± 0.4	0.095	0.981	26.1	26.0
	Toth	0.033	1.16	21.4 ± 0.4	0.094	0.982	26.0	25.9
PHC	Langmuir	0.018		26.1 ± 0.5	0.114	0.989	22.2	22.1
	Sips	0.018	1.38	24.6 ± 0.3	0.108	0.993	21.1	21.0
	Toth	0.011	1.62	24.4 ± 0.2	0.107	0.993	20.5	20.3
PHB	Langmuir	0.006		36.2 ± 1.6	0.158	0.981	29.6	29.5
	Sips	0.008	1.54	31.0 ± 0.9	0.136	0.991	26.3	26.2
	Toth	0.004	3.83	28.8 ± 0.3	0.126	0.995	21.7	21.6

Table 3 - Isotherm parameters

Table 4 - IBU Loading kinetic runs parameters

Samples	Mathematical model	Paramete	rs		Goodness-of-fit			
		K ₁ (min ⁻¹)	K₂ (g·mg⁻¹·min⁻¹)	Q ₀ (mg/g)	Q ₀ (mEq/g)	R ²	AIC	BIC
PCC	Pseudo-first order	0.333		18.9 ± 1.1	0.083	0.983	27.9	28.7
	Pseudo-second order		0.041	19.3 ± 0.5	0.085	0.987	24.9	25.7
PBC	Pseudo-first order	0.073		19.2 ± 0.7	0.084	0.975	38.9	37.7
	Pseudo-second order		0.005	20.9 ± 0.5	0.091	0.979	35.2	36.0
PHC	Pseudo-first order	0.620		26.3 ± 0.4	0.115	0.996	19.3	20.1
	Pseudo-second order		0.155	26.4 ± 0.4	0.116	0.996	19.3	20.1
PHB	Pseudo-first order	0.005		27.0 ± 1.7	0.118	0.967	43.0	43.8
	Pseudo-second order		0.021	27.9 ± 0.9	0.122	0.988	31.7	32.5

Table 5 - IBU Release kinetic runs parameters

		_							
Samples	Mathematical model	Parameters		Goodness-of-fit					
		K₁ (min⁻¹)	a (min)	b	M ₀ (mg/g)	M ₀ (%)	R ²	AIC	BIC
PCC	First-order	0.033			18.4 ± 0.9	95.45	0.995	14.9	15.7
	Weibull		31.61	1.31	18.3 ± 0.6	94.71	0.997	9.7	10.9
PBC	First-order	0.036			19.0 ± 0.7	98.44	0.990	22.6	23.4
	Weibull		30.53	1.89	18.8 ± 0.2	97.26	0.999	-0.5	0.7
PHC	First-order	0.036			25.5 ± 1.0	96.54	0.995	21.5	22.3
	Weibull		30.08	1.51	25.3 ± 0.5	95.71	0.999	2.4	3.6
PHB	First-order	0.033			25.9 ± 1.2	92.83	0.988	31.4	32.2
	Weibull		33.19	1.68	25.6 ± 0.6	91.58	0.998	13.1	13.3

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6328

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6328

