1	Revision 3: Crystal Structure of CaSiO ₃ Perovskite at 28–62 GPa and 300 K
2	under Quasi-hydrostatic Stress Conditions
3	
4	Huawei Chen ^{1,*} , Sang-Heon Shim ¹ , Kurt Leinenweber ² , Vitali Prakapenka ³ , Yue Meng ⁴ ,
5	and Clemens Prescher ^{3,5}
6	
7	¹ School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
8	85287-1404, U.S.A.
9	² School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604,
10	U.S.A.
11	³ GeoSoilEnviroCars, University of Chicago, Chicago, Illinois 60439, U.S.A.
12	⁴ HPCAT, Carnegie Institution of Washington, Argonne, Illinois 60439, U.S.A.
13	⁵ Institut für Geologie und Mineralogie, Universität zu Köln, Köln 50674, Germany.
14	
15	Abstract
16	In order to find the thermodynamically stable crystal structure of $CaSiO_3$
17	perovskite (CaPv) at high pressure and 300 K, we have conducted synchrotron X-ray
18	diffraction (XRD) on thermally stress-annealed samples in a Ne pressure medium in the
19	diamond-anvil cell at 28-62 GPa. Rietveld refinements of the diffraction patterns are
20	significantly improved in fitting the positions and intensities of the split lines of CaPv if
21	the starting model is a tetragonal perovskite-type structure with the SiO_6 octahedral
22	rotation around the tetragonal c -axis. The result is in contrast with other previous

*Corresponding author: Huawei Chen, hchen156@asu.edu

23	experiments, but is consistent with first-principles calculations, reconciling the
24	discrepancy between computations and experiments on the crystal structure of CaPv. We
25	attribute the observed difference to the formation of the thermodynamically more stable
26	phase under improved stress conditions in our experiments. Our fitting shows that the
27	bulk modulus of Ca-Pv is 223±6 GPa when its pressure derivative fixed to 4, which is
28	also consistent with first-principles calculations. The previous observations of the
29	diffraction patterns of CaPv inconsistent with the first-principles studies could be due to
30	the formation of a metastable crystal structure of CaPv under elevated deviatoric stresses.
31	
32	Keywords: CaSiO ₃ perovskite; crystal structure; hydrostatic stress; X-ray diffraction;
33	equation of state.
34	
35	Introduction
35 36	Introduction Perovskite-structured $CaSiO_3$ (hereafter CaPv) is the third most abundant mineral
35 36 37	Introduction Perovskite-structured CaSiO ₃ (hereafter CaPv) is the third most abundant mineral (5–7 wt%) in the pyrolitic model composition of the Earth's mantle (Kesson et al. 1998;
35 36 37 38	Introduction Perovskite-structured CaSiO ₃ (hereafter CaPv) is the third most abundant mineral (5–7 wt%) in the pyrolitic model composition of the Earth's mantle (Kesson et al. 1998; Murakami et al. 2005; Ricolleau et al. 2009). CaPv is stable over a wide depth range from
35 36 37 38 39	Introduction Perovskite-structured CaSiO ₃ (hereafter CaPv) is the third most abundant mineral (5–7 wt%) in the pyrolitic model composition of the Earth's mantle (Kesson et al. 1998; Murakami et al. 2005; Ricolleau et al. 2009). CaPv is stable over a wide depth range from the transition zone to the lowermost mantle (Shim et al. 2000; Ohta et al. 2008). In mid-
35 36 37 38 39 40	Introduction Perovskite-structured CaSiO ₃ (hereafter CaPv) is the third most abundant mineral (5–7 wt%) in the pyrolitic model composition of the Earth's mantle (Kesson et al. 1998; Murakami et al. 2005; Ricolleau et al. 2009). CaPv is stable over a wide depth range from the transition zone to the lowermost mantle (Shim et al. 2000; Ohta et al. 2008). In mid- oceanic ridge basalt (MORB) in subducting slabs at lower-mantle pressures, CaPv
 35 36 37 38 39 40 41 	Introduction Perovskite-structured CaSiO ₃ (hereafter CaPv) is the third most abundant mineral (5–7 wt%) in the pyrolitic model composition of the Earth's mantle (Kesson et al. 1998; Murakami et al. 2005; Ricolleau et al. 2009). CaPv is stable over a wide depth range from the transition zone to the lowermost mantle (Shim et al. 2000; Ohta et al. 2008). In mid- oceanic ridge basalt (MORB) in subducting slabs at lower-mantle pressures, CaPv represents 23 wt% of the mineralogy, comparable to the amount of bridgmanite, that is 35
 35 36 37 38 39 40 41 42 	Introduction Perovskite-structured CaSiO ₃ (hereafter CaPv) is the third most abundant mineral (5–7 wt%) in the pyrolitic model composition of the Earth's mantle (Kesson et al. 1998); Murakami et al. 2005; Ricolleau et al. 2009). CaPv is stable over a wide depth range from the transition zone to the lowermost mantle (Shim et al. 2000; Ohta et al. 2008). In mid- oceanic ridge basalt (MORB) in subducting slabs at lower-mantle pressures, CaPv represents 23 wt% of the mineralogy, comparable to the amount of bridgmanite, that is 33 wt% (Hirose et al. 2005; Ricolleau et al. 2010, Grocholski et al. 2012).
 35 36 37 38 39 40 41 42 43 	Introduction Perovskite-structured CaSiO ₃ (hereafter CaPv) is the third most abundant mineral (5–7 wt%) in the pyrolitic model composition of the Earth's mantle (Kesson et al. 1998; Murakami et al. 2005; Ricolleau et al. 2009). CaPv is stable over a wide depth range from the transition zone to the lowermost mantle (Shim et al. 2000; Ohta et al. 2008). In mid- oceanic ridge basalt (MORB) in subducting slabs at lower-mantle pressures, CaPv represents 23 wt% of the mineralogy, comparable to the amount of bridgmanite, that is 33 wt% (Hirose et al. 2005; Ricolleau et al. 2010, Grocholski et al. 2012). Existing studies are in agreement in that CaPv has a phase transition from a more
 35 36 37 38 39 40 41 42 43 44 	Introduction Perovskite-structured CaSiO ₃ (hereafter CaPv) is the third most abundant mineral (5–7 wt%) in the pyrolitic model composition of the Earth's mantle (Kesson et al. 1998; Murakami et al. 2005; Ricolleau et al. 2009). CaPv is stable over a wide depth range from the transition zone to the lowermost mantle (Shim et al. 2000; Ohta et al. 2008). In mid- ceanic ridge basalt (MORB) in subducting slabs at lower-mantle pressures, CaPv represents 23 wt% of the mineralogy, comparable to the amount of bridgmanite, that is 33 wt% (Hirose et al. 2005; Ricolleau et al. 2010, Grocholski et al. 2012). Existing studies are in agreement in that CaPv has a phase transition from a non- cubic to a cubic perovskite-type structure with heating (<i>T</i> >500 K).

46	mantle. However, there remain significant discrepancies between computations and
47	experiments on the crystal structure of the lower-temperature form of CaPv and its
48	compressibility. In the 1980s, it was believed that CaPv adopts the cubic perovskite
49	structure $(Pm\overline{3}m)$ at 300 K and lower mantle pressures from energy-dispersive X-ray
50	diffraction (Liu and Ringwood 1975; Mao et al. 1989; Tamai and Yagi 1989; Wang et al.
51	1996). Ab initio calculations first predicted a lower symmetry structure for CaPv.
52	Stixrude et al. (1996) found the instability of the cubic structure with a SiO_6 octahedral
53	rotation of 7 degrees towards the tetragonal I4/mcm subgroup. Caracas et al. (2005)
54	performed a more exhaustive search for the ground state of CaPv and tetragonal I4/mcm
55	was regarded as one of the most energetically competitive structures at low temperature
56	and high pressure.

57 Using high-resolution angle-dispersive diffraction technique, Shim et al. (2002) 58 found a non-cubic unit cell for CaPv at 20-46 GPa and 300 K. However, they found that 59 the positions and intensities of the split peaks (in particular the 200_{pc} peak, where the 60 subscript "pc" represents the Miller indices referred to the cubic aristotype unit cell of 61 perovskite) are more consistent with a longer *a*-axis than *c*-axis ($c_{pc}/a_{pc} < 1$). The ratio is 62 opposite to what is expected for the crystal structures predicted by computations, which 63 predicted the octahedral rotation $(c_{pc}/a_{pc} > 1)$ as an origin of the non-cubic structure. 64 Instead, the experimental observation is more straightforward to understand if one of the 65 three axes of the SiO_6 octahedra is shorter than the other two (therefore, direct distortion 66 of the octahedra). Later XRD studies have shown a similar pattern of the 200_{pc} peak 67 splitting as Shim et al. (2002) in $CaSiO_3$ (Komabayashi et al. 2007; Sun et al. 2016), 68 peridotite (Ono et al. 2004) and MORB (Hirose et al. 2005) compositions at room

(ambient) *T* and high *P*. A multi-anvil press experiment identified an orthorhombic CaPv
at *P-T* up to 20 GPa and 1600 K (Uchida et al. 2009). However, such a low symmetry
phase in CaPv has not been identified at higher pressures. Therefore, the discrepancy
between theory and experiments remain unresolved for the stable crystal structure of
CaPv at 300 K and high pressure.

74 The rotations of the rigid octahedra are responsible for the low-symmetry crystal 75 structures of a wide range of perovskite-structured materials (Glazer 1975; Woodward 76 1997). For example, the rotation of the framework octahedra in a cubic perovskite 77 structure can result in a number of lower symmetry structures, including three tetragonal 78 subgroups, *I4/mcm*, *P4/mbm*, and *I4/mmm*. Rotation along the *c*-axis can lead to the 79 I4/mcm and P4/mbm structures with $c_{pc}/a_{pc} > 1$, as the rotation reduces the dimension in 80 the (110) plane. In the case of the I4/mmm structure, rotation around the a axis can result 81 in $c_{pc}/a_{pc} < 1$. This symmetry also allows for octahedral distortion during the rotation. 82 Because of this relationship between the axial ratio and the crystal structure, Shim et al. 83 (2002) found that the observed $c_{pc}/a_{pc} < 1$ is difficult to explain with the octahedral 84 rotation alone and some degree of the octahedral distortion should be invoked. Therefore, 85 they use P4/mmm, which is purely based on the octahedral distortion along the c-axis, as 86 a proxy to explore the possibility for the distorted octahedra case. In P4/mmm, the Si-O 87 bonds along the *c*-axis are shorter than the bond along the *a*-axes in a tetragonal unit cell. 88 From the strong Si-O bonding, it is surprising that CaPv has a lower symmetry structure 89 through the direct distortion of the octahedra, which would require more energy than the 90 rigid octahedral rotation. Also, P4/mmm structured perovskites are much less common 91 than many other subgroups (Comyn et al. 2004).

92	It is possible that the measured crystal structure of CaPv is sensitive to the deviatoric
93	stresses in diamond-anvil cell (DAC). Most experimental studies on CaPv have been
94	conducted in DACs where pressure medium play an important role for the stress
95	conditions of the sample. Earlier studies used Ar (Shim et al. 2002) or MgO (Kurashina
96	et al. 2004; Komabayashi et al. 2007) as pressure media, but some were conducted even
97	without a pressure medium (Ono et al. 2004, 2005). All these studies have observed non-
98	cubic CaPv (P4/mmm) upon temperature quench. Although laser annealing reduces the
99	deviatoric stress in a DAC, 40-80% of stress can be reintroduced upon temperature
100	quench in a MgO pressure medium (Kavner and Duffy 2001). Because computational
101	studies have shown that differences of free energy among competing crystal structures
102	are very small (Caracas et al. 2005), it is important to reduce the effects from non-
103	equilbrium conditions, such as deviatoric stresses, as much as possible. In this study, we
104	use Ne as a pressure medium combined with laser annealing to 1,700-2,300 K in order to
105	measure the stable crystal structure of CaPv under quasi-hydrostatic stress conditions at
106	300 K and high pressures.
107	
108	Experimental procedures
109	We synthesized a $CaSiO_3$ glass using the laser levitation method (Tangeman et al.
110	2001) for a starting material. We measured the composition of the glass using wavelength
111	dispersive X-ray spectrometry (WDS) in an electron probe microanalyzer (EPMA; JXA-
112	8530F) at Arizona State University. The glass starting material has a Ca/Si molar ratio of

 $113 \quad 0.993 \pm 0.009$ and is compositionally homogeneous.

114	The glass starting material was mixed with 10 wt% platinum (99.98% purity with
115	a grain size less than 3 μ m; Alfa Aesar). We used platinum as an internal pressure
116	standard (Ye et al. 2017) and a laser absorber. The sample+Pt powder mixture was
117	pressed into a foil and loaded into a chamber drilled in a Re gasket with the diamond
118	anvils mounted on symmetric-type DAC. We used 400 μ m culet diamond anvils for a
119	peak pressure less than 35 GPa, and 200 μ m culet diamond anvils for experiments above
120	this pressure. We loaded Ne using the gas-loading system at the GSECARS sector as a
121	pressure transmitting medium and thermal insulator (Rivers et al. 2008). Small $CaSiO_3$
122	glass grains (diameter < 10 μm and thickness < 2 μm) were placed below and above the
123	sample foil, in order to allow Ne to flow above and below the sample foil in the sample
124	chamber during the gas loading. This setup ensures that Ne forms layers between the
125	sample and the diamond anvils for thermal insulation. In one experiment, we loaded the
126	starting material without any medium, in order to examine the effects of deviatoric stress
127	and thermal gradients.
128	We measured XRD patterns at in-situ high <i>P</i> - <i>T</i> in the laser heated DAC at beamlines
129	13ID-D in the GSECARS sector (Prakapenka et al. 2008) and 16ID-B in the HPCAT
130	sector (Meng et al. 2006) at the Advanced Photon Source. Monochromatic X-ray beams
131	with beam sizes of 3×4 and 5×6 μm^2 at GSECARS and HPCAT, respectively, were
132	focused on the sample and the diffraction patterns were collected using a Mar-CCD
133	detector. We focused near-infrared laser beams (1- μ m wavelength) on the sample with a
134	hot spot size of 20-25 μ m in diameter and aligned them coaxially with the X-ray beam
135	(Meng et al. 2006; Prakapenka et al. 2008). We measured the temperature of the heated

136	spots by fitting Planck equation to the thermal radiation spectra from both sides of the
137	sample after subtracting the effects of the optical systems.

138	Before laser heating, we confirmed the amorphous state of $CaSiO_3$ glass through
139	XRD. In a typical experiment, we compressed the sample to target pressures at 300 K,
140	and then heated a spot on the sample foil for approximately 5 minutes. We increased the
141	laser power to the target temperature (1,700-2,300 K) within 1 minute to avoid the
142	possible synthesis of metastable phases at low temperatures. We measured several XRD
143	patterns during and after heating. CaPv forms within 1 minute upon heating above 1,700
144	K. The diffraction pattern of CaPv remains essentially the same during heating after the
145	formation. After temperature quench, we acquired diffraction patterns on the stress
146	annealed spot at high pressure.
147	It is challenging to detect the subtle peak splitting in a quasi-hydrostatic pressure
148	medium. Therefore, we have optimized X-ray energy and detector-sample distance to
149	achieve the maximum resolution of the systems we used. Our maximum resolution was
150	achieved at a detector distance of 249.92 mm for an X-ray energy of 25 keV. The use of a
151	low-energy X-ray beam limited the measurable d -spacing to >1.557 Å, but enabled us to
152	detect the peak splitting of the 200pc line from CaPv.
153	We used the software package Dioptas (Prescher and Prakapenka 2015) to integrate

the 2D diffraction images to 1D diffraction patterns. We identified phases and measured

155 full width at half maximum (FWHM) of XRD peaks by the software PeakPo (Shim

156 2017). The data obtained from the GSECARS and HPCAT beamlines agreed well with

157 each other for the peak positions and intensities of CaPv. We performed Rietveld

refinements of the XRD patterns using the general structure analysis system (GSAS)

159	software combined with EXPGUI (Toby 2001). We refined the phase fractions first, then
160	the atomic positions, the lattice parameters and the spherical harmonic terms for the
161	preferred orientation. After reaching a good visual fit, we refined all the parameters
162	together to minimize the fit residuals.
163	A few different possible crystal structures have been proposed for CaPv at low
164	temperature and high pressures (Stixrude et al. 1996, 2007; Akber-Knutson et al. 2002;
165	Shim et al. 2002; Caracas et al. 2005; Jung and Oganov 2005; Adams and Oganov 2006;
166	Caracas and Wentzcovitch 2006; Li et al. 2006; Uchida et al. 2009). The focus of our
167	experiments presented here is: should the direct distortion of the SiO ₆ octahedra (for
168	example, <i>P4/mmm</i> in Shim et al. 2002) be invoked in order to explain the diffraction
169	patterns from the CaPv phase stable at high pressure and 300 K? Or is the octahedral
170	rotation (for example, <i>I</i> 4/ <i>mcm</i> in Stixrude et al. 2007) sufficient as has been shown in the
171	computation and seen from a wide range of perovskite-structured materials?
172	In order to demonstrate the differences in powder diffraction patterns, we
173	conducted calculations using the crystal structures proposed for CaPv (Figure 1) (Shim et
174	al. 2002; Caracas and Wentzcovitch 2006). The cubic 200 diffraction line of CaPv splits
175	the most in both tetragonal diffraction patterns ($P4/mmm$ and $I4/mcm$). However, the
176	relative intensities of the two split lines from the 200_{pc} peaks differ depending on the
177	space groups. For example, the lower-angle diffraction line (004 in Figure 1) has a lower
178	intensity in I4/mcm, while it has a higher intensity in the P4/mmm structure (200 in
179	Figure 1). More importantly, the higher 2θ -angle split line of 200_{pc} existed at a similar
180	angle as the original cubic 200 line for the octahedral rotation cases. However, for the
181	octahedral distortion case, it is the lower angle split line that exists at a similar 2θ angle

182	as the cubic 200 line (P4/mmm). These peak position differences are related to the fact
183	that through the rotations of the SiO ₆ octahedra in the (001) plane, the c_{pc} axis becomes
184	longer than the a_{pc} axis in the <i>I</i> 4/ <i>mcm</i> structure, resulting in $c_{pc}/a_{pc} > 1$. Although the
185	<i>I4/mcm</i> structure does not result in $c_{pc}/a_{pc} < 1$, shorter Si-O bonding distances in the
186	octahedra can make the c_{pc}/a_{pc} ratio is smaller than 1 in the P4/mmm space (Shim et al.
187	2002). Therefore, for $c_{pc}/a_{pc} < 1$, as observed by Shim et al. (2002), it is difficult to
188	explain the crystal structure of CaPv with the octahedral rotation alone and some degree
189	of octahedral distortion (shorter Si-O bonding along the c axis) needs to be invoked.
190	According to our calculation, the cubic 110, 211, and 220 diffraction peaks also show
191	splitting but with smaller degrees in both I4/mcm and P4/mmm structures. Therefore, the
192	splitting of these latter lines is more difficult to resolve.
193	While the peak splitting of the relatively intense lines are helpful to distinguish the
194	octahedral distortion ($P4/mmm$) versus octahedral rotation ($I4/mcm$ and $P4/mbm$), the
195	presence and absence of some lines could further help to distinguish these two
196	possibilities. Also, those weak diffraction features would help to further distinguish a
197	range of different symmetries possible for the octahedral rotation case, such as I4/mcm,
198	P4/mbm, and I4/mmm. However, the weak diffraction lines are difficult to detect
199	convincingly through powder diffraction in DAC. Although our 2D diffraction images
200	show some weak spots in those angular ranges, it is difficult to unambiguously assign
201	them to the diffraction peaks of CaPv because they could result also from other materials
202	along the beam path, such as beam stoppers, X-ray optics, and X-ray guides. Such task
203	can be better addressed through multi-grain diffraction (Margulies et al. 2001; Nisr et al.
204	2012) or single crystal diffraction techniques. Therefore, for our powder diffraction study

presented here, we focus on peak splitting and their implications for the octahedralrotation versus octahedral distortion.

207

208	Results and Discussion
209	During laser heating, we did not observe any splitting of the CaPv diffraction lines
210	at temperatures between 1,700 K and 2,300 K up to our highest resolution XRD setup (X-
211	ray wavelength = 0.4959 Å and sample-to-detector distance = 197.52 mm) (Figure 2).
212	The observations support the stability of the cubic structure at high temperatures as
213	proposed by previous studies (Ono et al. 2004; Stixrude et al. 2007; Kurashina et al.
214	2004).
215	After temperature quench, we observed the clear splitting of the CaPv 200_{pc} line
216	(Figure 2a) at pressures between 28 and 62 GPa. In the 2D diffraction images (Figure 2c),
217	we also observed diffraction spots split into two. This shows that the symmetry change
218	occurs during temperature quench.
219	Unlike previous experiments (Shim et al. 2002; Kurashina et al. 2004; Komabayashi
220	et al. 2007), we found that the higher-angle diffraction line of the split 200_{pc} line has a
221	greater intensity throughout our studied pressure range at 300 K in both 2D and 1D
222	diffraction data (Figures 2a and c). As shown in Figures 1b and 2a, our new results is
223	more consistent with the XRD patterns expected for the tetragonal structures induced by
224	octahedral rotation (such as, I4/mcm), which has been proposed by first-principles
225	calculations (e.g., Stixrude et al. 1996, 2007; Caracas et al. 2005), than octahedral
226	deformation (P4/mmm), which has been indicated by previous XRD experiments (e.g.,
227	Shim et al. 2002; Kurashina et al. 2004; Komabayashi et al. 2007).

228	Diffraction intensities can be strongly affected by preferred orientation in powder
229	samples in the DAC. Preferred orientation can be caused by such effects as plastic flow
230	and preferential twinning, in response to the stress field. These effects can be reduced
231	when deviatoric stress is minimized. We performed Rietveld refinements with fitting for
232	the preferred orientation. We refined the diffraction patterns measured under our best
233	resolution setup (Figure 3). These refinements were performed with two different crystal
234	structures for CaPv: I4/mcm (the octahedral rotation, Stixrude et al. 1996) and P4/mmm
235	(the octahedral deformation, Shim et al. 2002) (Table 1). In order to facilitate the
236	comparison, we used the same parameters for the background in the fitting with the
237	14/mcm and P4/mmm starting structural models of CaPv.
238	Even when we fitted up to 14 parameters in a spherical harmonic function, we found
239	significant mismatch between measured and calculated intensities of 200_{pc} and 211_{pc} for
240	the octahedral distortion case (Figure 3b). We found significantly better fits for the
241	octahedral rotation case. The improvement is mainly because the octahedral rotation
242	requires the higher- 2θ split line to be closer in peak position to that of the cubic 200_{pc}
243	line. In contrast, the octahedral distortion requires the lower- 2θ split line to be closer in
244	peak position to that of the cubic 200_{pc} line. Therefore, if the observed diffraction is more
245	consistent with the octahedral rotation, the fit with the octahedral distortion would result
246	in large positive residue at the lower-angle side of the 200_{pc} split lines. The expected
247	positive residue can be indeed found in Figure 3b. In other words, the intensity residual
248	for the 200_{pc} line is significantly impacted by the relative position of the split lines (and
249	therefore the c/a ratio), which is not sensitive to the preferred orientation, as well as the
250	intensities of the split lines, which is sensitive to the preferred orientation.

251	From our Rietveld refinements, we obtained the c_{pc}/a_{pc} of CaPv (Figure 4). The
252	c_{pc}/a_{pc} remains constant within the pressure range we studied. Therefore, we averaged
253	c_{pc}/a_{pc} over our pressure range and the value is 1.0054±0.0005. Shim et al. (2002) showed
254	that the octahedral rotation will lead to a c_{pc}/a_{pc} higher than 1, while the ratio can be
255	either greater or smaller than 1 for the octahedral distortion depending on the shape of the
256	SiO_6 octahedra. Shim et al. (2002) reported 0.995, which cannot be explained by the
257	octahedral rotation alone but requires octahedral distortion. However, in our study, we
258	found that the c_{pc}/a_{pc} value is higher than 1, suggesting octahedral rotation as the main
259	source of symmetry lowering in CaPv. In other words, it is not necessary to invoke direct
260	deformation of the octahedra, which is less common among perovskite-structured
261	materials (Woodward et al. 1997).
262	Based on <i>ab initio</i> calculation, Stixrude et al. (2007) suggested an increase in c_{pc}/a_{pc}
263	from 1.013 to 1.020 with an increase in pressure from 1 bar to 140 GPa at 0 K from the
264	octahedral rotation. Because our pressure range is smaller, such a small increase per unit
265	of pressure would be difficult to resolve from our data. On the other hand, because the
266	value from the <i>ab initio</i> calculation is performed for 0 K, thermal effects could further
267	decrease c_{pc}/a_{pc} . Stixrude et al. (2007) estimated that the value would decrease to 1.0094
268	at 25.2 GPa and 300 K, which is more similar to our new results.
269	As indicated by Caracas et al. (2006), several competing structures can explain
270	c_{pc}/a_{pc} greater than 1 based on octahedral rotation, such as I4/mcm, P4/mbm or I4/mmm,
271	all of which cause the elongation of the <i>a</i> -axes. Because of the subtle differences in their
272	expected diffraction patterns as discussed earlier and the limitation of power XRD, the
273	space group of the CaPv at 300 K and high pressure remains uncertain. The space group

274	I4/mcm is a reasonable option because it is known to occur as an intermediate distortion
275	between the aristotype $Pm\overline{3}m$ and the common <i>Pbnm</i> orthorhombic distortion, including
276	for example in the prototype compound CaTiO ₃ (Yashima and Ali, 2009).
277	Using our Rietveld results with the I4/mcm structure, we fit the pressure-volume
278	data at 300 K to the Vinet equation (Vinet et al. 1989). Using the Pt scale of Ye et al.
279	(2017), we obtained an isothermal bulk modulus of 223(6) GPa (Table 2). In the fitting,
280	we fixed the pressure derivative of the isothermal bulk modulus (B_0) to 4.0, while we
281	also fit the volume at 1 bar and 300 K (V_0), because CaPv is unstable at these conditions
282	and therefore V_0 is unknown. From the fitting we obtained $V_0 = 46.3(1) \text{ Å}^3$.
283	Former studies have used the V_0 value projected through the extrapolation of CaPv
284	equation of state (EOS) measured between 0.59 and 10.07 GPa by Wang et al. (1996).
285	We also conducted fitting for the bulk modulus with V_0 fixed to the value by Wang et al.
286	(1996). As shown in (Figure 5c), we found severe misfit for our data points below 35
287	GPa as well as the data points from Shim et al. (2002) at the similar pressure range. We
288	also attempted fitting B_0 and B_0 ' by fixing V_0 to the value by Wang et al. (1996).
289	However, we found unusually low B_0 ' (2.3) for $B_0 = 290$ GPa with much larger fit
290	residual.
291	Although Wang et al. (1996) measured most of the data points of CaPv outside of
292	the stable pressures, all of our data points are measured within the stability field of CaPv.
293	For the case of bridgmanite, Wang et al. (1994) discussed that the phase may show
294	abnormal volume behavior and such effects appear to be particularly severe near the
295	conditions where the phase is amorphized. We note that CaPv amorphizes as pressure
296	approaches 1 bar. It cannot be ruled out that CaPv may have different crystal structure

297	outside of its stability field because of the subtle free energy differences among candidate
298	structures and subtle differences in their expected XRD patterns. We note that Wang et
299	al. (1996) used a cubic perovskite structure to fit their data.
300	Our bulk modulus value is consistent with the computational studies (Table 2)
301	(Chizmeshya et al. 1996; Akber-Knutson et al. 2002; Magyari-Köpe et al. 2002; Jung and
302	Oganov 2005). If the thermal effect is taken into consideration, the bulk modulus of CaPv
303	at 300 K based on the 0 K value from some theoretical studies (such as, Caracas et al.
304	2005; Stixrude et al. 2007; Kawai and Tsuchiya 2014) would become more similar to our
305	value and therefore are also consistent with our results.
306	We compare our data points with those from Shim et al. (2002) in Figure 5. In this
307	comparison, we use the Pt and Au pressure scales by Ye et al. (2017), which are inter-
308	calibrated and consistent with each other within ± 1 GPa. Our new EOS agrees well the
309	data from Shim et al. (2002) at 20-60 GPa. Two experimental studies have reported the
310	zero-pressure bulk modulus of CaPv projected from its cubic stability field (>700 K): 249
311	GPa from Sun et al. (2016) and 225 GPa from Noguchi et al. (2013). The latter is more
312	consistent with our value based on measurements performed directly at 300 K. The
313	discrepancy between two high temperature studies may be because they need
314	extrapolation and the bulk modulus can be also changed by the crystal structure. In
315	addition, in EOS fitting, strong correlation among fit parameters can result in differences,
316	and thermal gradients can contribute to the uncertainties.
317	In this study, we improve the stress conditions of experiments for CaPv by
318	combining a soft pressure medium (Ne) and laser annealing. The improved stress
319	conditions in our new experiments may be important for explaining the different results

320	we obtained in this study. In order to test this hypothesis, we conducted a laser-heated
321	DAC experiment for the same starting material but without a pressure medium. In this
322	"no medium" experiment, we found that the CaPv 200_{pc} diffraction peak is much broader
323	and much more asymmetric than runs with Ne both during and after laser heating (Figure
324	6). We note that even at 1550 K 200_{pc} shows splitting at 31 GPa. The peak width of CaPv
325	200_{pc} without a medium is a factor of 2.3 greater than that in a Ne pressure medium at
326	similar P - T conditions (Figure 6). We also find that other lines have asymmetric peak
327	shapes, which were not observed in our experiments with a Ne medium. Because thermal
328	annealing does not relieve the deviatoric stress completely (Kavner and Duffy 2001),
329	some degree of deviatoric stresses still remain in our "no-medium" experiments likely to
330	much higher degree than our Ne medium experiments. Therefore, we interpret that the
331	non-hydrostatic stresses cause the broadening and splitting of the 200_{pc} peak in the "no
332	medium" experiments.
333	We estimate pressures from individual diffraction lines of Pt. For the experiments
334	with a Ne medium and laser annealing, we obtain -0.5~2.5 GPa differences in pressure
335	between the 111 and 200 lines of Pt. The value is comparable to that reported for laser-
336	annealed Pt in a Ne medium by Ye et al. (2017) where they estimated unit-axial stress
337	component (<i>t</i>) of -0.5~1.0 GPa. Instead, for the no medium data point, we found much a
338	higher value for the pressure difference, 7.5 GPa. The elevated deviatoric stresses can
339	affect the crystal structure of CaPv. They may enhance the existing distortions, or even
340	induce different distortions and consequently stabilize a metastable structure.
341	It is also possible that the thermal gradients during the heating without an insulation

342 medium and the pressure gradients remaining after heating would produce a range of

343	CaPv crystals with different degree of distortions or even with different crystal structures
344	along the X-ray path. Indeed, the diffraction patterns are difficult to fit with the candidate
345	structures we tried for the data measured in a Ne medium.
346	High shear strength pressure-transmitting media can support larger amounts of
347	deviatoric stress in the DAC. Magnesium oxide (MgO), which is used for CaPv
348	(Komabayashi et al. 2007), is a highly nonhydrostatic medium, with a 10 GPa shear
349	strength at pressures between 60 and 100 GPa (Duffy et al. 1995). The shear strength of
350	Ar, which was used in Shim et al. (2002), is about 0.8 GPa at 65 GPa when the stress is
351	not thermally annealed, while thermal annealing at 700 K reduces the stress to 0.56 GPa
352	at 65 GPa (Marquardt et al. 2013). The pressure gradient using a Ne medium is less than
353	0.5 GPa at a pressure of 50 GPa without annealing (Klotz et al. 2009).
354	In this study, we used cold compressed foils of the powdered starting material.
355	Under a microscope, we found that the foil contains small pore spaces and cracks, which
356	should allow significant amounts of Ne to penetrate the grain boundaries. We also found
357	that the foils disintegrated during decompression to 1 bar. Therefore, we believe that the
358	soft Ne medium should have controlled the stress field of individual CaPv grains in our
359	experiment.
360	Although noble gas media in general support smaller deviatoric stresses, CaPv
361	appears to be still sensitive to such smaller deviatoric stress in the media. The different
362	crystal structures of CaPv, which are metastable in the stress-free state, can appear easily
363	with small deviatoric stress, because of their similar free energies (Caracas et al. 2005).
364	
365	

366	Implication
367	Experimental and theoretical mineral physics studies on the properties of minerals
368	play an important role in understanding the structures and processes in the Earth's
369	interior. In theoretical studies, in order to compute the physical properties accurately, it
370	is important to know the stable crystal structures of the mantle phases. In this study, we
371	resolve long-standing discrepancy on the crystal structure of CaPv at 300 K and mantle-
372	related high pressure between theoretical and experimental studies. For experimentalists,
373	our finding of extreme sensitivity of CaPv on deviatoric stress highlights the importance
374	of conducting measurements on crystal structures and physical properties under better
375	controlled/characterized stress conditions relevant to those of the Earth's interior.
376	
377	Acknowledgments
378	We thank two anonymous reviewers and Dr. Speziale for helping us to improve this
379	paper. The results reported herein benefitted from collaborations and/or information
380	exchange within NASA's Nexus for Exoplanet System Science (NExSS) research
381	coordination network sponsored by NASA's Science Mission Directorate. This work was
382	supported by NSF grants EAR1321976 and EAR1401270 to S.H.S. The synchrotron
383	experiments were conducted at GSECARS and HPCAT, Advanced Photon Source
384	(APS), and Argonne National Laboratory. GSECARS is supported by NSF-Earth Science
385	(EAR-1128799) and DOE-GeoScience (DE-FG02-94ER14466). HPCAT is supported by
386	DOE-NNSA (DE-NA0001974), DOE-BES (DE-FG02-99ER45775), and NSF. APS is
387	supported by DOE-BES, under contract DE-AC02-06CH11357. The experimental data

- 388 for EOS are available in Table 1. Other data for this paper are available by contacting
- 389 SHDShim@asu.edu.

- 390 Table 1: Structural parameters of CaPv determined by Rietveld refinements. The
- numbers in the parentheses are 2σ uncertainties for the last digit. Pressure was
- 392 calculated from the Pt scale by (Ye et al. 2017).

2	a	2
ັ	,	J

Run#	P (GPa)	Structure	Tilting angle (°)	a (Å)	<i>c</i> (Å)
71012	29.924	I4/mcm	8.0(4)	4.8896(3)	6.9677(8)
/1015	20.024	P4/mmm	0	3.4690(2)	3.4496(4)
81021	20.128	I4/mcm	8.6(7)	4.8941(1)	6.9546(4)
81021	29.138	P4/mmm	0	3.4685(3)	3.4582(5)
81030	22 207	I4/mcm	9.4(2)	4.8805(2)	6.9611(8)
81050	52.507	P4/mmm	0	3.4610(2)	3.4477(4)
71050	41.072	I4/mcm	10.2(1)	4.8351(1)	6.8683(3)
/1050	41.972	P4/mmm	0	3.4297(1)	3.4134(2)
81066	47 878	I4/mcm	7.8(1)	4.8070(2)	6.8354(3)
01000	47.070	P4/mmm	0	3.4119(1)	3.3922(3)
81074	53 88/	I4/mcm	9.2(3)	4.7870(2)	6.8065(4)
01074	55.004	P4/mmm	0	3.3978(2)	3.3784(4)
71088	62 477	I4/mcm	8(1)	4.7535(1)	6.7571(3)
/1000	02.477	P4/mmm	0	3.3737(1)	3.3546(2)

396	Table 2: Compres	sibility of CaPv	v at high pressure	e and 300 K.
-----	------------------	------------------	--------------------	--------------

,					
Refs	V_0 (Å ³)	B_0 (GPa)	B_0	Symm. ^a	Notes ^e
		Experim	ents		
This work	46.3(1)	223(6)	4^d	Tet.	300 K, V, Pt-Y, Ne
Wang et al. (1996)	45.58(4)	232(8)	4.8 ^d	Cub.	300 K, BM, NaCl, NaCl
Shim et al. (2002)	45.58 ^d	255(5)	4^d	Tet.	300 K, BM, Pt-H, Ar
Shim et al. (2002)	45.58 ^d	259(8)	4^d	Tet.	300 K, V, Pt-Y, Ar
Ricolleau et al. (2009) ^b	45.60 ^d	244(1)	4^d	Tet.	300 K, BM, Au-F, Ne
Noguchi et al. (2013) ^c	45.80	225	4^d	Cub.	300 K, BM, Pt-F, NaCl
					300 K, BM, Pt-F,
Sun et al. $(2016)^{\circ}$	45.4(1)	249(4)	4^{u}	Cub.	KCl/NaCl
		Computa	tion		
Kawai and Tsuchiya					
(2014)	46.17	203.5	4.76	Cub.	1000 K, V, LDA
Magyari-Köpe et al.					
(2002)	45.69	216	4.82	Orth.	300 K, V, LDA
Chizmeshya et al. (1996)	45.62	227	4.29	Cub.	300 K, BM, LDA
Caracas et al. (2005)	44.537	249	4.09	Tet.	0 K, BM, LDA
Stixrude et al. (2007)	44.00	252	4.1	Tet.	0 K, BM, LDA
Jung and Oganov (2005)	46.89	219	4.08	Tet.	0 K, BM, GGA
Akber-Knutson et al.					
(2002)	45.90	228	4.3	Orth.	300 K, BM, VIB

398

399 Notes: The numbers in the parentheses are 2σ uncertainties for the last digit.

400 ^aCub., Tet., and Orth. refer to cubic, tetragonal, and orthorhombic CaPv structures

401 respectively.

402 ^bThey used pyrolitic composition as a starting material.

403 ^c The values were projected from high temperature to 300 K and 1 bar.

404 ^d The values were fixed during EOS fitting.

^e Temperature, EOS, Pressure scale or Computational methods, Pressure medium. V and

406 BM refer to the Vinet and third order Birch-Murnaghan equations, respectively. Pt-H, Pt-

407 Y refer to the Pt scales Holmes et al. (1989) and (Ye et al. 2017) respectively. Au-F and

408 Pt-F refer to the Au and Pt scales by Fei et al. (2007). LDA (Local Density

409 Approximation); GGA (Generalized Gradient Approximation); VIB (Variationally

- 410 Induced Breathing.)
- 411
- 412
- 413
- 414
- 415

431 Figure 2: X-ray diffraction patterns of CaPv at 50-55 GPa and 300 K (a) and 2000 K (b). 432 The samples include CaSiO₃ perovskite (CaPv), platinum (Pt, laser coupler) and neon 433 (Ne, pressure medium). The peaks are indexed with the cubic $Pm\overline{3}m$ space group. The 434 inset images show the (a) splitting and (b) no-splitting of the 200_{nc} diffraction peak at 300 435 K and 2000 K, respectively. The wavelength of the X-ray beam is 0.4959 Å. The unrolled 436 projections of the 2D raw diffraction areas are shown for temperatures at (c) 300 K, and 437 (d) 2000 K for the same 2θ range (1.2°). In (d), the black area in the middle is from the 438 laser mirrors for heating. 439 440 441

443 444 Figure 3: Rietveld refinements of the XRD pattern of CaPv at 53.8 GPa and 300 K with 445 (a) the *I*4/*mcm* and (b) *P*4/*mmm* space groups. The crosses are observed intensities and 446 the line behind crosses is the calculated diffraction patterns. Differences between 447 observed and calculated intensities are plotted below. The small bars represent calculated 448 CaPv peak positions. We did not include the angular ranges for the Pt and Ne peaks in the 449 Rietveld refinements, in order to make $R_{wp-bknd}$ (residual factor after background 450 subtraction) only sensitive to CaPv. 451

453

Figure 4: The axial ratio, c_{pc}/a_{pc} , of the tetragonal CaPv unit cell from Shim et al. (2002) (open circles) and this study (close circles). Error bars represent the estimated 1 σ uncertainties.

solid line shows fitting our data to the Vinet equation (Table 2). Pressure was calculated

462 from Ye et al. (2017). We also include the compressional curves from Shim et al. (2002)

and Wang et al. (1996) for comparison. Error bars represent estimated 1σ uncertainties.

464 Z is the number of formula unit per unit cell and for pseudo-cubic cell Z is 1. ΔP is the

465 fit residues in pressure with fixed V_0 in (b) or fitted V_0 in (c).

466

458 459

- 467
- 468

471 Figure 6: Cubic 200 diffraction peaks of CaPv measured with (a) Ne and (b) without

- 472 pressure mediums at in situ high *P* and *T*. The diffraction patterns were measured with
- 473 an X-ray wavelength of 0.3344 Å and a detector distance of 196.56 mm. Unrolled
- 474 projection of 2D diffraction area of CaPv 200_{pc} peak (c) with a Ne pressure medium and
- 475 (d) without a pressure medium with same range (1.4°) .

476 **References**:

477 478 479	Adams, D.J., and Oganov, A.R. (2006) Ab initio molecular dynamics study of CaSiO ₃ perovskite at P-T conditions of Earth's lower mantle. Physical Review B, 73, 184106.
480 481	Akber-Knutson, S., Bukowinski, M.S.T., and Matas, J. (2002) On the structure and compressibility of CaSiO ₃ perovskite. Geophysical Research Letters, 29, 4–1.
482 483 484	Caracas, R., and Wentzcovitch, R.M. (2006) Theoretical determination of the structures of CaSiO ₃ perovskites. Acta Crystallographica Section B: Structural Science, 62, 1025–1030.
485 486	Caracas, R., Wentzcovitch, R., Price, G.D., and Brodholt, J. (2005) CaSiO ₃ perovskite at lower mantle pressures. Geophysical Research Letters, 32, L06306.
487 488 489	Chizmeshya, A.V.G., Wolf, G.H., and McMillan, P.F. (1996) First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO ₃ perovskite. Geophysical Research Letters, 23, 2725–2728.
490 491	Comyn, T.P., McBride, S.P., and Bell, A.J. (2004) Processing and electrical properties of BiFeO3–PbTiO3 ceramics. Materials Letters, 58, 3844–3846.
492 493 494	Duffy, T.S., Hemley, R.J., and Mao, H. (1995) Equation of State and Shear Strength at Multimegabar Pressures: Magnesium Oxide to 227 GPa. Physical Review Letters, 74, 1371–1374.
495 496 497	Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104, 9182–9186.
498 499	Glazer, A.M. (1975) Simple ways of determining perovskite structures. Acta Crystallographica Section A, 31, 756–762.
500 501 502	Grocholski, B., Catalli, K., Shim, SH., and Prakapenka, V. (2012) Mineralogical effects on the detectability of the postperovskite boundary. Proceedings of the National Academy of Sciences, 109, 2275–2279.
503 504 505	Hirose, K., Takafuji, N., Sata, N., and Ohishi, Y. (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237, 239–251.
506 507 508	Holmes, N.C., Moriarty, J.A., Gathers, G.R., and Nellis, W.J. (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). Journal of Applied Physics, 66, 2962– 2967.
509 510	Jung, D.Y., and Oganov, A.R. (2005) Ab initio study of the high-pressure behavior of CaSiO3 perovskite. Physics and Chemistry of Minerals, 32, 146–153.

511 512	Kavner, A., and Duffy, T.S. (2001) Pressure–volume–temperature paths in the laser- heated diamond anvil cell. Journal of Applied Physics, 89, 1907–1914.
513 514 515	Kawai, K., and Tsuchiya, T. (2014) P-V-T equation of state of cubic CaSiO ₃ perovskite from first-principles computation. Journal of Geophysical Research: Solid Earth, 119, 2013JB010905.
516 517	Kesson, S.E., Fitz Gerald, J.D., and Shelley, J.M. (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393, 252–255.
518 519	Klotz, S., Chervin, JC., Munsch, P., and Marchand, G.L. (2009) Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42, 075413.
520 521 522	Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y., and Dubrovinsky, L.S. (2007) Phase transition in CaSiO ₃ perovskite. Earth and Planetary Science Letters, 260, 564–569.
523 524 525	Kurashina, T., Hirose, K., Ono, S., Sata, N., and Ohishi, Y. (2004) Phase transition in Al- bearing CaSiO ₃ perovskite: implications for seismic discontinuities in the lower mantle. Physics of the Earth and Planetary Interiors, 145, 67–74.
526 527 528	Li, L., Weidner, D.J., Brodholt, J., Alfè, D., David Price, G., Caracas, R., and Wentzcovitch, R. (2006) Elasticity of CaSiO ₃ perovskite at high pressure and high temperature. Physics of the Earth and Planetary Interiors, 155, 249–259.
529 530	Liu, LG., and Ringwood, A.E. (1975) Synthesis of a perovskite-type polymorph of CaSiO ₃ , 28, 209–211.
531 532 533	Magyari-Köpe, B., Vitos, L., Grimvall, G., Johansson, B., and Kollár, J. (2002) Low- temperature crystal structure of CaSiO ₃ perovskite: An ab initio total energy study. Physical Review B, 65, 193107.
534 535 536	Mao, H.K., Chen, L.C., Hemley, R.J., Jephcoat, A.P., Wu, Y., and Bassett, W.A. (1989) Stability and equation of state of CaSiO3-Perovskite to 134 GPa. Journal of Geophysical Research: Solid Earth, 94, 17889–17894.
537 538	Margulies, L., Winther, G., and Poulsen, H.F. (2001) In Situ Measurement of Grain Rotation During Deformation of Polycrystals. Science, 291, 2392–2394.
539 540 541 542	Marquardt, H., Speziale, S., Gleason, A., Sinogeikin, S., Kantor, I., and Prakapenka, V.B. (2013) Brillouin scattering and x-ray diffraction of solid argon to 65 GPa and 700 K: Shear strength of argon at HP/HT. Journal of Applied Physics, 114, 093517.
543 544 545	Meng, Y., Shen, G., and Mao, H.K. (2006) Double-sided laser heating system at HPCAT for in situ x-ray diffraction at high pressures and high temperatures. Journal of Physics: Condensed Matter, 18, S1097.

546 547 548	Murakami, M., Hirose, K., Sata, N., and Ohishi, Y. (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophysical Research Letters, 32, L03304.
549 550 551 552	Nisr, C., Ribárik, G., Ungár, T., Vaughan, G.B.M., Cordier, P., and Merkel, S. (2012) High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO ₃ post-perovskite at 90 GPa. Journal of Geophysical Research: Solid Earth, 117, B03201.
553 554 555	Noguchi, M., Komabayashi, T., Hirose, K., and Ohishi, Y. (2013) High-temperature compression experiments of CaSiO ₃ perovskite to lowermost mantle conditions and its thermal equation of state. Physics and Chemistry of Minerals, 40, 81–91.
556 557 558 559	Ohta, K., Hirose, K., Lay, T., Sata, N., and Ohishi, Y. (2008) Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core–mantle boundary. Earth and Planetary Science Letters, 267, 107– 117.
560 561 562	Ono, S., Ohishi, Y., and Mibe, K. (2004) Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle. American Mineralogist, 89, 1480–1485.
563 564 565 566	Ono, S., Ohishi, Y., Isshiki, M., and Watanuki, T. (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. Journal of Geophysical Research: Solid Earth, 110, B02208.
567 568 569 570	Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers, M.L., and Sutton, S.R. (2008) Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research, 28, 225–235.
571 572 573	Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two- dimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 223–230.
574 575 576	Ricolleau, A., Fei, Y., Cottrell, E., Watson, H., Deng, L., Zhang, L., Fiquet, G., Auzende, AL., Roskosz, M., Morard, G., and others (2009) Density profile of pyrolite under the lower mantle conditions. Geophysical Research Letters, 36, L06302.
577 578 579 580 581	Ricolleau, A., Perrillat, JP., Fiquet, G., Daniel, I., Matas, J., Addad, A., Menguy, N., Cardon, H., Mezouar, M., and Guignot, N. (2010) Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth's lower mantle. Journal of Geophysical Research: Solid Earth, 115, B08202.

582 583 584	 Rivers, M., Prakapenka, V.B., Kubo, A., Pullins, C., Holl, C.M., and Jacobsen, S.D. (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Pressure Research, 28, 273–292.
585 586 587	Shim, SH., Duffy, T.S., and Shen, G. (2000) The stability and P–V–T equation of state of CaSiO ₃ perovskite in the Earth's lower mantle. Journal of Geophysical Research: Solid Earth, 105, 25955–25968.
588 589	Shim, SH., Jeanloz, R., and Duffy, T.S. (2002) Tetragonal structure of CaSiO ₃ perovskite above 20 GPa. Geophysical Research Letters, 29, 2166.
590 591 592	SH. Shim (2017) PeakPo - A python software for X-ray diffraction analysis at high pressure and high temperature. Zenodo. <u>http://doi.org/10.5281/zenodo.810199</u>
593 594 595	Stixrude, L., Cohen, R.E., Yu, R.C., and Krakauer, H. (1996) Prediction of phase transition in CaSiO ₃ perovskite and implications for lower mantle structure. American Mineralogist, 81, 1293–1296.
596 597 598	Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., and Fumagalli, P. (2007) Phase stability and shear softening in CaSiO ₃ perovskite at high pressure. Physical Review B, 75, 024108.
599 600 601 602	Sun, N., Mao, Z., Yan, S., Wu, X., Prakapenka, V.B., and Lin, JF. (2016) Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO ₃ perovskite. Journal of Geophysical Research: Solid Earth, 121, 2016JB013062.
603 604 605	Tamai, H., and Yagi, T. (1989) High-pressure and high-temperature phase relations in CaSiO ₃ and CaMgSi ₂ O ₆ and elasticity of perovskite-type CaSiO3. Physics of the Earth and Planetary Interiors, 54, 370–377.
606 607 608	Tangeman, J.A., Phillips, B.L., Navrotsky, A., Weber, J.K.R., Hixson, A.D., and Key, T.S. (2001) Vitreous forsterite (Mg ₂ SiO ₄): Synthesis, structure, and thermochemistry. Geophysical Research Letters, 28, 2517–2520.
609 610	Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210–213.
611 612 613 614	Uchida, T., Wang, Y., Nishiyama, N., Funakoshi, K., Kaneko, H., Nozawa, A., Von Dreele, R.B., Rivers, M.L., Sutton, S.R., Yamada, A., and others (2009) Non- cubic crystal symmetry of CaSiO3 perovskite up to 18 GPa and 1600 K. Earth and Planetary Science Letters, 282, 268–274.
615 616	Vinet, P., Rose, J.H., Ferrante, J., and Smith, J.R. (1989) Universal features of the equation of state of solids. Journal of Physics: Condensed Matter, 1, 1941.

617 Wang, Y., Weidner, D.J., and Guyot, F. (1996) Thermal equation of state of CaSiO₃ 618 perovskite. Journal of Geophysical Research: Solid Earth, 101, 661-672. 619 Woodward, P.M. (1997) Octahedral Tilting in Perovskites. I. Geometrical 620 Considerations. Acta Crystallographica Section B: Structural Science, 53, 32–43. 621 Yashima, M.; Ali, R. (2009) Structural phase transition and octahedral tilting in the 622 calcium titanate perovskite CaTiO3. Solid State Ionics 180, 120-126. 623 624 Ye, Y., Prakapenka, V., Meng, Y., and Shim, S.-H. (2017) Inter-comparison of the Gold, 625 Platinum, and MgO Pressure Scales up to 140 GPa and 2,500 K. Journal of 626 Geophysical Research: Solid Earth, 2016JB013811. 627 628 629

- 631 Figure S1, 2D diffraction pattern of CaPv, Pt and Neon. We show different diffraction
- 632 peaks with their Miller indices. We used cubic indices for CaPv. The diffraction pattern
- 633 was collected at 50 GPa and 300 K.