Revision 2

1 Textural and mineral chemical evidence for the cumulate origin and evolution of high-

2 titanium basalt fragment 71597

³ Patrick H. Donohue¹* and Clive R. Neal¹

⁴ ¹Civil and Environmental Engineering and Geological Sciences, University of Notre Dame,

5 Notre Dame, IN 46556, U.S.A.

6 *Corresponding author: phd2@alumni.nd.edu; Present Address: Hawai'i Institute of Geophysics

7 and Planetology, University of Hawai'i at Manoa, 1680 East-West Road, POST 602, Honolulu,

8 HI 96822 USA.

9

Abstract

Basalt fragment 71597 is the sole high-titanium mare basalt showing evidence for olivine 10 accumulation during formation. The petrogenesis of this unique sample was investigated using 11 quantitative textural analysis and major- and trace-element mineral geochemistry. Crystal size 12 distribution analysis identified two size populations of olivine, which we separate into cumulate 13 14 and matrix olivine. The spatial distribution of olivine also supports clustering of olivine crystals, likely during accumulation. Observed mineral chemistry was consistent with an origin through 15 16 olivine accumulation, although where this occurred cannot be discerned (e.g., in ponded melts at 17 the base of or in the lunar crust, or within a thick high-Ti basalt flow). Attempts to place 71597 within a geochemical group were inconclusive both using subtraction of cumulate olivine from 18 19 bulk composition, and by modal recombination of major phases. However, equilibrium liquid 20 compositions of augite and plagioclase are determined to be consistent with an origin by fractionation from the Type B2 chemical suite of Apollo 17 high-Ti basalts. This method of 21 classification has potential for placing other Type U ("Unclassified") basalts into chemical 22 23 suites.

24 **Keywords**: mare basalts, cumulates, crystal size distributions, LA-ICP-MS 25 26 27 Introduction 28 Olivine cumulates have been recovered from multiple lunar locales, although they form 29 only a small part of the mare basalt sample collection. The majority of cumulates are low-30 titanium (TiO₂ < 6 wt.%) composition comprising Apollo 12 ilmenite basalts 12005 and 12036 31 32 (Dungan and Brown 1977; Rhodes et al. 1977), several members of the Apollo 12 olivine basalt suite (Neal et al. 1994), Apollo 15 basalts 15385 and 15387 (Ryder 1985), Apollo 14 clast 33 14305,122 (Taylor et al. 1983), and six fragments in lunar meteorite NWA 773 (Jolliff et al. 34 2003). The only high-Ti cumulate is basalt 71597 (8.4 wt% TiO₂), a 12.35 g fragment collected 35 with Apollo 17 mission rake samples (Murali et al. 1977; Warner et al. 1977). The composition 36 37 and formation of this fragment relative to Apollo 17 high-Ti basalts provides information on an end-member of lunar volcanic textures. 38 39 Whole-rock analyses (major and trace element abundances) conducted by neutron 40 activation techniques (Murali et al. 1977) and mineral compositions (major element) have been interpreted to indicate basalt 71597 experienced 24-27% olivine and possible minor ilmenite 41 accumulation (Warner et al. 1977). The evidence for accumulation described by Warner et al. 42 43 (1977) can be summarized in four main points: 71597 contains the highest whole-rock MgO content (15.8 wt%) and the highest modal 44

45

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

olivine abundance (19.3%) of any high-Ti basalt.

Revision 2

46	• Whole-rock REE abundances are lower than – but sub-parallel to – typical Apollo 17 high-
47	Ti basalts, indicating dilution by REE-poor olivine (± ilmenite).
48	• There is a bimodal distribution of olivine Fo-content between large, anhedral olivine cores
49	and small "matrix" olivine grains (Figure 1).
50	• It is unusual to find olivine crystals several millimeters in size in a coarse-grained matrix,
51	as large olivine crystals within other Apollo 17 samples are typically found as phenocrysts
52	in fine-grained basalts (e.g., 74275).
53	Warner et al. (1979) further suggested 71597 originated in a Type B flow (after Rhodes et
54	al. 1976; separated into Type B1 and B2 by Neal et al. 1990). However, the small sample size of
55	71597 (12.35 g; Neal and Taylor 1993) and coarse grain size has precluded the determination of
56	an incontrovertibly representative whole-rock analysis, which means that 71597 remains
57	unclassified. Apollo 17 high-Ti basalts are classified into several groups (Types A, B1, B2, C, D,
58	and U for "unclassified") on the basis of whole-rock geochemistry (Rhodes et al. 1976; Warner
59	et al. 1979; Neal et al. 1990; Ryder 1990). Type A basalts contain 50-60% higher incompatible
60	trace element abundances than the other groups (Rhodes et al. 1976). Types B1 and B2 basalts
61	were split primarily on the basis of La/Sm ratios (Neal et al. 1990). Type C basalts contain high
62	MgO and Cr ₂ O ₃ , and have less ilmenite on the liquidus at early stages of crystallization. The
63	Type D group is defined by a single basalt fragment (,2144) from drive tube 79001, and has the
64	highest MgO/TiO ₂ ratio and lowest incompatible trace element abundance of any other classified
65	Apollo 17 basalt (Ryder 1990). Classification schemes for Apollo 17 basalts are weighted toward
66	incompatible elements, and are thus strongly affected by the amount of mesostasis and late stage
67	components sampled. This effect is more pronounced in samples where <1 g material is used in

Revision 2

68	bulk analyses (e.g., Haskin and Korotev 1977). Thus, the bulk composition of 71597 determined
69	using a 0.61 g subsample (Murali et al. 1977) still may not be representative.
70	The explanation for the origin of 71597 given by Warner et al. (1977) favors the
71	formation of large, skeletal olivine and ilmenite crystals towards the margins of a large flow that
72	accumulate via gravitational settling towards the flow's interior. Other processes, such as mixing
73	of magmas containing different crystal cargoes, have not been explored. Aspects of mare
74	volcanic processes and the nature of olivine accumulation (e.g., gravitational settling during a
75	single, large flow versus magma mixing) can be addressed by mineral geochemistry and
76	quantitative petrographic analysis. We present electron probe microanalysis and laser ablation
77	inductively couple plasma mass spectrometry (LA-ICP-MS) analyses of mineral phases in two
78	new thin sections of basalt 71597. Microscale details of basalt evolution are recorded in core-to-
79	rim and inter-crystal compositional variations, and can best be constrained by <i>in-situ</i> techniques.
80	In addition, equilibrium liquid trace element compositions are used to constrain a petrogenetic
81	model of magma evolution. We also undertake quantitative petrography on 71597 through
82	Crystal Size Distribution (CSDs; Marsh 1988, 1998; Cashman and Marsh 1988; Higgins 2000,
83	2002, 2006; Higgins and Roberge 2003) and Spatial Distribution Patterns (SDPs; Jerram et al.
84	2003) analysis. Particularly relevant to this study is the work of Day and Taylor (2007) who
85	demonstrated that a combined CSD-SDP approach could show not only variability in cooling
86	rates, but also the importance of clumping and formation of clustered crystal frameworks during
87	the cooling of lunar lava flows. Additional studies have demonstrated the practicality of using
88	the CSD technique to differentiate endogenous mare basalts from impact melts (Cushing et al.
89	1999; Neal et al. 2015), and the CSD-SDP methods to equate Apollo 17 samples with
90	experimentally determined cooling rates (Donohue and Neal 2015).

Revision 2

91	Samples and Methodology
92	As noted above, the coarse grain size and small mass of 71597 has precluded an
93	unambiguously representative whole-rock analysis. This represents an issue of obtaining
94	representative CSD-SDP analyses of the sample due to its coarse grain size. In order to alleviate
95	the effect of non-representivity when undertaking a textural analysis of 71597, two thin sections
96	were requisitioned from sub-sample 71597,0, designated 71597,12 and 71597,13 (Figure 1). The
97	data obtained from each thin section were combined where possible, allowing for a more robust
98	statistical analysis.
99	Crystal Size Distribution (CSD) and Spatial Distribution Profile (SDP) Methods
100	The application of CSD and SDP methods to lunar basalts has been discussed in detail in
101	Day and Taylor (2007) and Donohue and Neal (2015). We present a brief summary here.
102	Quantitative textural analyses were conducted on digital photomicrograph mosaics (Figure 1).
103	Crystal outlines were manually traced in the Adobe Photoshop [©] program using reflected light
104	photomosaics for ilmenite, and plane polarized light photomosaics for olivine, pyroxene, and
105	plagioclase. Crystals larger than ~ 0.03 mm could be traced at the image resolution; smaller
106	crystals were not included in the analyses due to issues with resolution and intersection effects,
107	where grains smaller than the thin section thickness are underrepresented. Monomineralic layers
108	were processed in the image-processing program ImageJ (ver. 1.44m) (Schneider et al. 2012) to
109	determine crystal center coordinates (X,Y), major and minor crystal axis lengths and areas. Best-
110	fit 3D crystal dimensions were estimated from a database of major and minor axis lengths,
111	CSDSlice (Morgan and Jerram 2006). Stereological corrections were made using the
112	CSDCorrections (ver. 1.3.9) program (Higgins 2000) to calculate a semi-logarithmic CSD of
113	population density versus size. Crystal populations were split into size bins with five bins per

114	decade (each size bin contains a range of crystal lengths 0.2 times larger than the previous).
115	Using more than five bins per decade introduces errors because there are fewer crystals in each
116	bin, and because more cycles of correction are needed during stereological conversion (Higgins
117	2000).

A reliable estimate of 3D crystal shape requires at least 75 total crystals (for tabular 118 morphologies); a minimum of 250 crystals is recommended for more acicular shapes (Morgan 119 and Jerram 2006). A size bin must contain three or more crystals in order to calculate upper and 120 lower uncertainties on the population density. The CSDCorrections program calculates a 121 122 goodness of fit (Q) of the data to a straight line, which allows for quantitative distinction between linear $(Q \ge 0.1)$, sub-linear (Q between 0.001 and 0.1) and non-linear $(Q \le 0.001)$ CSDs 123 (Higgins 2006). Sub-populations can also be isolated if a CSD appears kinked rather than curved. 124 125 A CSD is considered kinked if the profile can be divided into two (or more) linear segments with unique slopes. 126

127 The CSD profile slope is a function of crystallization and is the inverse reciprocal of a characteristic crystal length (C_L) for a given population (Marsh 1988). The C_L is the product of 128 129 growth rate (G) multiplied by residence time (τ). Growth rate is typically approximated based on 130 experimental work and for a given phase may vary by several orders of magnitude between and even within specific studies (e.g., Burkhard 2005; Cabane et al. 2005; Vinet and Higgins 2010). 131 For example, it us evident that temperature plays a critical role in growth rate (e.g., Burkhard 132 133 2005), which changes throughout crystallization. Thus, without additional knowledge of the system from which a phase crystallized, there are significant assumptions associated with 134 residence time calculations and, therefore, potentially significant errors are introduced. 135 136 Therefore, we do not use calculated absolute residence times as part of this study.

Revision 2

137	The mineral SDPs can be used to investigate the relative ordering and frameworks of
138	mineral phases. Relative ordering is quantified by " R " values, where R is determined by
139	comparing observed phase distributions to a similarly-sized population of randomly packed
140	spheres (Jerram et al. 1996, 2003). R can be compared to the percent matrix (porosity) to
141	distinguish touching from non-touching frameworks, as well as the relative ordering or clustering
142	of phases. The SDP is a function of spatial relationships, and because we do not know exactly
143	the separation of the two thin sections, the SDP is calculated for individual thin sections.
144	Combining CSD and SDP analyses allows the effects of crystal nucleation and growth, magma
145	mixing (Martin et al. 2006), and the relative position of a given sample in lava flows and
146	intrusions (Jerram et al. 2003, 2010; Day and Taylor 2007; Donohue and Neal 2015).
147	Major and trace element analysis
148	Major element compositions of select ilmenite, pyroxene, plagioclase, and olivine
149	crystals were obtained using a JEOL JXA-8200 electron microprobe at the Earth and Planetary
150	Sciences Microanalysis Facility, Washington University in St. Louis (St. Louis, MO). The
151	microprobe was equipped with five wavelength-dispersive spectrometers and a JEOL (e2v /
152	Gresham) silicon-drift energy-dispersive spectrometer. Beam operating conditions were 15 kV
153	accelerating potential, 25 nA probe current, and a 5 micrometer spot size. A defocused beam
154	(~10 micrometers diameter) was used to avoid loss of volatiles (e.g., Na, K) during plagioclase
155	analyses.
156	Compositional analyses of several large (>10 µm) melt inclusions in olivine and ilmenite
157	crystals, as well as additional olivine (spot and line raster), armalcolite, and mesostasis analyses
158	were obtained using a Cameca SX50 electron microprobe at the University of Chicago (Chicago,
159	IL; see Supplementary Table S1). Line raster analyses were obtained across two large, partially

resorbed olivines in 71597,12. Typical operating conditions were 15 kV accelerating potential
 and a 30 nA probe current and a 1 or 5 micrometer spot size (for oxides and silicates,
 respectively).

163	Trace element abundances of crystals were obtained using an Element2 inductively
164	coupled plasma mass spectrometer (ICP-MS) coupled to a UP213 Nd:YAG laser ablation system
165	at the Notre Dame Midwest Isotope and Trace Element Research Analytical Center (MITERAC,
166	Notre Dame, IN). Laser operating conditions were 5 Hz repetition rate and 5 ns pulse duration to
167	achieve <15 J/cm ² fluence for 15-80 µm beam sizes. An optimum carrier gas (He) flow rate of
168	0.6 L min ⁻¹ was used to move ablated particles downstream to a 'Y'-connection where it was
169	mixed with Ar-gas and introduced to the mass spectrometer. The NIST SRM 610 (for olivine,
170	ilmenite, and armalcolite) and NIST SRM 612 (for plagioclase and pyroxene) glasses (Pearce et
171	al. 1997) were used for external calibration purposes. Detection limits (3σ) for pyroxene
172	calculated in GLITTER® (van Achterberg et al. 2001) were 0.001-0.03 ppm for Y, Nb, Cs, La,
173	Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Lu, Hf, Ta, Th, U; 0.03-1 ppm for Sc, Mn, Co, Ga, Rb,
174	Zr, Ba, Gd, Yb, Pb; 1-5 ppm for Cr, Ni, Sr; 5-10 ppm for Ti; and >200 ppm for Ca. Detection
175	limits for plagioclase were 0.03-1 ppm for Y, Sm, Eu, Dy, and Er, and similar to that for
176	pyroxene for other elements. Analyses of ilmenite and olivine were performed in medium
177	resolution (resolution = mass/peak width of \sim 4000) to reduce spectral interferences, but at the
178	cost of reduced sensitivity. Thus, detection limits for elements in olivine and Fe-Ti oxides were
179	0.08-5 ppm for Sc, V, Co, Y, Zr, Sr, Hf, Ta; 5-20 ppm for Cr and Mn; 20-100 ppm for Ti and Ni
180	in olivine; and 100-200 ppm for Ti in Fe-Ti oxides. The Ti-content obtained by microprobe was
181	utilized as the internal standard for ilmenite and armalcolite; similarly, MnO was the internal
182	standard for olivine, and CaO for plagioclase and pyroxene. Data were reduced using the

183	GLITTER [®] software, which allows for time-resolved background (~50 seconds) and signal (~60
184	seconds) selection. Cracks, inclusions and adjacent phases were avoided using a combination of
185	transmitted and reflected light prior to ablation and confirmed by time-resolved signal review.
186	Results
187	Textural Analysis
188	In general, the two new thin sections are petrographically similar to the detailed
189	description given by Warner et al. (1977), although absolute mineral abundances differ. Manual
190	point-counting of 71597,12 (3,454 points over an area 67 mm ²) shows the sample contains 37%
191	pyroxene, 33% olivine, 15% plagioclase, and 15% opaques (ilmenite and trace armalcolite,
192	spinel, and troilite). Warner et al. (1977) conducted point-counting over a larger area (~240
193	mm ²), and report less olivine (19.3%), more plagioclase (28.3%), and other minor differences
194	compared point-counting results for 71597,12. Visual estimates of bulk fragments 71597,0 and
195	71597,5 range from 19-30% olivine (Warner et al. 1977; Neal and Taylor 1993).
196	Olivine CSD profiles for 71597,12 and ,13 were previously presented in Neal et al.
197	(2015). They are nearly identical and are multiply kinked, but the two largest size bins of the
198	71597,12 olivine CSD do not contain statistically significant numbers of crystals (n=2 each)
199	(Table 1, Figure 2a). In addition, only 43 olivine crystals could be reliably traced in 71597,13,
200	almost half the recommended minimum for CSD calculations (Morgan and Jerram 2006). A
201	more robust CSD was created by combining the olivine populations ($n = 161$) of 71597,12 and
202	,13. The resulting CSD (Figure 2a) is consistent with the individual sample CSDs with kinks at
203	crystal lengths of ~0.4 mm and ~2.2 mm. However, the two largest size bins have the largest
204	error and do not represent a statistically unique population, especially given the low number of
205	crystals $(n = 4)$ so we do not interpret this portion of the CSD as being a third distinct population

206	of olivine crystals. Consideration of all crystals >0.4 mm in length yields a sub-linear CSD
207	profile ($Q = 0.013$) with a C _L of 0.57 mm. To avoid over-interpretation of the CSD data, we only
208	consider the olivine CSD as representing two populations (C_L of 0.07 mm and 0.57 mm) in
209	further calculations.
210	Ilmenite CSD profiles of both thin sections are indistinguishable, and strongly concave
211	upward ($Q \ll 0.001$) (Table 1, Figure 2b). Linear regression through the steep and shallow
212	segments of the ilmenite CSD profile yields slopes corresponding to characteristic lengths of 0.4
213	and 0.8 mm, respectively. The largest ilmenites (up to 1.1 mm as measured in thin section) are
214	similar in habit to but not as large as the elongate skeletal ilmenite (up to 5 mm) reported by
215	Warner et al. (1977). The CSD reconstructs 3D morphologies from 2D cross-sections. So, given
216	the X:Y:Z shape ratios calculated for ilmenite, the "true" length of a randomly-oriented prismatic
217	grain would likely be larger than the observed length. In addition, the CSD breaks population
218	density (number of crystals for the measured area) into a range of sizes. The points represent the
219	largest size of crystals in each bin, such that the 6.4 mm bin represents the population of crystals
220	of sizes ranging from ~4 to 6.4 mm. Therefore, the large crystal sizes observed by Warner et al.
221	(1977) are represented in the analysis here.
222	Pyroxene and plagioclase CSDs for 71597,12 are sub-linear with Q of 0.001 and 0.01,
223	respectively (Table 1, Figure 2c-d). The characteristic lengths range from 0.3-0.4 mm. There is
224	also a downturn of the CSD profile at the smallest crystal sizes for pyroxene and plagioclase, a
225	feature not observed in ilmenite or olivine CSDs. Pyroxene and plagioclase crystals extend to
226	size bins below the estimated limit of resolution of the CSD technique, and so this downturn
227	likely is due to an under-representation of these smaller crystal sizes.

228	Spatial distribution profiles were determined for pyroxene (porosity, $P = 64\%$, $R = 1.03$),
229	plagioclase (<i>P</i> = 89%, <i>R</i> = 0.91), ilmenite (<i>P</i> = 94%, <i>R</i> = 0.76), and olivine (<i>P</i> = 90%, <i>R</i> = 0.59)
230	in thin section 71597,12 (Table 1). Multiple thin sections cannot be combined for SDPs, as can
231	be done for CSDs, because the SDP calculation is based on nearest neighbor distances. These
232	SDP results are presented in Figure 3 along with SDP results of several Apollo 17 high-Ti basalts
233	(Donohue and Neal 2015). Olivine and pyroxene form a touching crystal framework in 71597
234	(Figure 3). The higher abundance of olivine appears to have offset the ilmenite and plagioclase
235	populations to higher densities compared to other high-Ti basalts. A similar relationship was
236	observed in low-Ti basalts (Day and Taylor 2007).
237	Petrography and Mineral Chemistry
238	Representative analyses of silicate, Fe-Ti oxide, and melt inclusion compositions are
239	presented in Table 2 and Table 3 (all analyses are available in Supplementary Table S1). Large
240	olivine crystals (Fo72-75) typically exhibit normal zonation to higher-Fe margins (Fo66-72) (Figure
241	4). However, this zonation is less gradual at sharp olivine-olivine contacts or where mantled by
242	titanaugite. Mantled olivines have a thin (<0.05 mm) reaction rim. The cores of large olivine
243	crystals are compositionally distinct from cores of small olivine crystals (Fo ₆₂₋₆₈). The data
244	follow a crystal fractionation trend, wherein there is a corresponding decrease in Fo-content with
245	decreasing Cr (698-1880 ppm) and V (17-55 ppm), and increasing Y (1.5-7.1 ppm) (Figure 5).
246	Compared to olivine from other mare basalt suites as well as olivine vitrophyres, 71597 olivines
247	have unique compositions in terms of Ti/V and Cr/Y ratios on plots of Ti/V and Cr/V against Fo
248	contents (Figure 6).
249	Individual ilmenite compositions $(n = 15)$ are homogeneous in regards to major element

abundance, with the range in Mg# (12-19) representing inter-crystal variation (Figure 7). Warner

Revision 2

251 et al. (1977) noted a broader range in ilmenite Mg# of 4-29 (MgO = 1-8 wt%) from an unreported number of crystals. Paired core and rim trace element analyses are also similar, with 252 the exception of Co in one crystal in 71597,12 and Cr and Co in one crystal of 71597,13. In both 253 cases, ilmenite rims show elevated Co abundance. There is inter-crystal variation, with a positive 254 correlation between Zr (~110 to 750 ppm) and Hf (~5 to 20 ppm) (Figure 7). Ilmenite typically 255 contains blebs and lamellae of rutile and Al-rich chromite (too small for analysis by LA-ICP-256 MS), with inclusions of silicate melt, troilite, and/or Fe-metal. 257 The sole armalcolite crystal observed is partially rimmed by an ilmenite grain of average 258 259 composition. The armalcolite crystal itself is at the low MgO (5.6 wt%) and high Al₂O₃ (2.0

wt%) range of armalcolite compositions in Apollo 17 mare basalts (Dymek et al. 1975; Papike et al. 1974; Warner et al. 1975; Warner et al. 1976a). Stanin and Taylor (1980) experimentally constrained the relationship between the Fe/Ti³⁺ component and oxygen fugacity in armalcolite. Our calculation of the Ti³⁺ component yielded an average oxygen fugacity, relative to the ironwüstite (IW) buffer, of IW-0.66 \pm 0.2. This is within the range determined for high-Ti basalts collected during the Apollo 17 mission, where armalcolite *f*O₂ was found to range from IW-0.4 to IW-0.8 (Stanin and Taylor 1980).

Pyroxene compositional variability is similar to that observed in Apollo 17 plagioclasepoikilitic mare basalts (Figure 8, Table 3). Titanaugite is present as discrete crystals and as mantles (up to 0.3 mm) on olivine. Pigeonite is limited to extreme margins of augite and small crystals near the margins of partially resorbed olivine. There is only minor Fe-enrichment (up to Fs₃₅) in the crystals investigated here, although Warner et al. (1977) found ~5 pyroxenes with up to Fs₅₀. The Al/Ti ratio decreases from 2.4:1 in augite to ~2:1 in augite rims and pigeonite crystals, and the absolute abundance of Al₂O₃ and TiO₂ also decreases from core to rim in

274	individual crystals. Augite REE profiles are subparallel and convex upward with strong negative
275	Eu anomalies (Eu/Eu*, where Eu* = $\sqrt{[Sm_{CN} * Gd_{CN}]}$, "CN" = CI Chondrite Normalized")
276	(Figure 8). Pigeonite and augite crystals are LREE depleted and have steep profiles from La-Sm,
277	and relatively flat HREE profile. The La-Sm slope decreases with increasing total LREE
278	abundance.
279	Plagioclase exhibits minor core-to-rim compositional zonation from An ₉₀ to An ₈₄ (Figure
280	4). Poikilitic plagioclase grains contain 250-660 ppm Sr and 13-95 ppm Ba. One small grain
281	(~0.2 mm; An_{84}) in a partially resorbed olivine grain contains 1100 ppm Sr and 250 ppm Ba.
282	REE profiles are typical for lunar basalts, with large positive Eu-anomalies of 42 to 83. The
283	LREE profiles are flat, and inter-crystal REE-abundance varies by an order of magnitude (Figure
284	8).
285	Silicate melt inclusions are common in large, partially resorbed olivine crystals (>20 melt
286	inclusions in some olivines) and are ubiquitous in ilmenite laths. These melt inclusions generally
287	range in size from <0.01 mm to 0.05 mm. The majority of melt inclusions in olivine are
288	microcrystalline intergrowths of pyroxene and plagioclase, with occasional anhedral troilite or
289	ilmenite. Melt inclusions in ilmenite are generally glassy and occasionally contain troilite.
290	Compositions were determined by microprobe only (Supplementary Table S1) as the inclusion
291	size precluded trace element determinations by LA-ICP-MS. There was some degree of host
292	control on melt inclusion composition, where one melt inclusion in ilmenite contained lower
293	TiO_2 compared to those in olivine and spinel, and one inclusion in spinel contained higher Cr_2O_3
294	than others. The largest melt inclusion (0.08 mm) was heterogeneous, with two separate analyses
295	of 6.5 (center) and 4.5 (rim) wt% MgO. We did not have access to a heated stage to
296	rehomogenize these inclusions but this remains as an avenue for future study.

Revision 2

297

Discussion

298 Evidence of crystal accumulation

Using the methodology of Longhi et al. (1978) to calculate the equilibrium olivine 299 composition for a given bulk composition, the Fe/Mg partition coefficient between melt and 300 olivine was adjusted for TiO₂ content (Delano 1980). The equilibrium olivine composition 301 calculated for 71597 using the bulk composition from Murali et al. (1977) is Fo₈₃, which is not 302 observed in this sample (Warner et al. 1977; this work). This suggests the bulk composition is 303 not representative of a liquid composition as the MgO abundance is inflated due to olivine 304 305 accumulation. Jerram et al. (2003) have used SDP textural analysis to define crystal frameworks that 306 have high melt porosity and are loosely packed (produced from a mixed population of irregular-307 shaped clusters or clumps of crystals), and more tightly packed frameworks with lower melt 308 porosity (produced from individual crystals). Figure 3 evaluates 71597 petrography in terms of R 309 310 and porosity, comparing the mineral data to those from other Apollo 17 high-Ti basalts (Donohue and Neal 2015). Pyroxene is the most abundant groundmass phase in the Apollo 17 311 312 high-Ti basalts (e.g., Dymek et al. 1975; Neal et al. 1990) so it is not surprising that pyroxene 313 from all Apollo 17 basalts, including 71597, create a touching framework of crystals (Figure 3).

In comparison, the plagioclase analysis closest to the touching framework line (P = -75%, R =

1.1) is from the equilibrated basalt 75015,52, which has the highest abundance of plagioclase (25

vol%) of the Apollo 17 basalts reported by Donohue and Neal (2015). Relative to other Apollo

17 basalts, plagioclase in 75015 has a lower calculated porosity (Figure 3), consistent with

compaction or overgrowth (e.g., Jerram et al. 1996, 2003). Olivine in 71597,12 has the lowest *R*

(0.59) of any phase, and is the sole non-pyroxene phase to create a touching crystal framework

Revision 2

320	(Figure 3). Compared to other high-Ti basalt olivine, the 71597 olivine SDP is offset to a lower
321	R and decreased porosity. This is an indication of increased poor sorting (i.e. accumulation), an
322	interpretation further supported by the kinked olivine CSD reflecting two olivine crystal size
323	populations (Fig. 2a). The combination of SDP and CSD analyses support the observation that
324	olivine accumulation occurred as clusters in 71597 but was not a significant factor in any other
325	high-Ti basalt (cf., Neal et al. 1990; Donohue and Neal 2015).
326	Crystal size distribution characteristics (CSD profile slope, y-intercept, and linearity)
327	vary between phases (Figure 2). However, direct comparisons first require accounting for
328	variable growth rates of the different phases in order to estimate residence time of the different
329	crystal cargoes present in 71597. It was noted above that growth rates are variable and are
330	dependent on many factors that change as a magma crystallizes, which leads to residence times
331	with large errors. We can, however, estimate relative residence times simply by examining the
332	gradients of the CSD profiles. For olivine and ilmenite, the CSDs are divided into two segments.
333	Warner et al. (1977) suggested there was some ilmenite accumulation in 71597, and here the
334	CSD has been subdivided at ~1 mm size bin. The populations of larger olivine and ilmenite
335	crystals have the lowest CSD gradients (-2.8 \pm 0.3 and -1.5 \pm 0.1, respectively), indicating
336	relatively longer residence times relative to other phases in 71597. This is consistent with the
337	either prolonged olivine and ilmenite crystallization or accumulation of these phases.
338	The variation in modal olivine between our analysis and that of Warner et al. (1977) and
339	Neal and Taylor (1993) indicates heterogeneous distribution of olivine at the thin section scale,
340	consistent with crystal accumulation, possibly as clusters of olivine. The bimodal Fo-content
341	distribution between large and matrix olivine (Figure 5) is also consistent with accumulation in
342	an evolving melt. Furthermore, compositional data suggest accumulation from a fractionating

Revision 2

343	magma rather than from different magma batches, as there is no evidence of an antecryst origin
344	for some olivines or for mixing between magmas with olivine on the liquidus. Olivine
345	compositions also suggest that ilmenite was co-crystallizing with those containing the highest Fo
346	contents, but ceased crystallizing around Fo ₆₉ (Figure 6a).
347	The crystallization sequence and conditions for 71597 derived from textural analysis are
348	consistent with sample geochemistry. The general sequence of crystallization is olivine +
349	armalcolite \rightarrow olivine + ilmenite \rightarrow ilmenite + augite \rightarrow ilmenite + augite + plagioclase \rightarrow
350	pigeonite + plagioclase. The CSDs and general textures indicate olivine crystallized first at an
351	initial cooling rate of 1-3 degrees per hour (cf. Usselman et al. 1975; Usselman and Lofgren
352	1976; Donohue and Neal 2015). Olivine and ilmenite were on the liquidus prior to eruption, and
353	some matrix olivines likely crystallized at the surface. Ilmenite contains relatively high MgO
354	contents (3.2-5.2 wt% MgO here, up to 8 wt% noted by Warner et al. 1977) compared to other
355	Apollo 17 high-Ti basalts (0.17-4.87 wt% MgO), which may have resulted from reaction with
356	the evolving melt during crystallization. This reaction is supported by abundant exsolution
357	lamellae similar to those found in other re-equilibrated ilmenite from Apollo 17 basalts (e.g., El
358	Goresy and Ramdohr 1975). This relatively high-Mg content in ilmenite is likely buffered by
359	olivine resorption, with titanaugite and high-Ca plagioclase crystallization lowering CaO in the
360	residual melt (as evidenced by decreasing CaO content in plagioclase with decreasing compatible
361	element abundance) and leading to late pigeonite crystallization. There may also be a
362	contribution from isothermal diffusion, which can inhibit Fe-enrichment commonly observed
363	during pyroxene crystallization (e.g., Dungan and Brown 1977).
364	Type source of 71597

Revision 2

365	Mineral compositions and CSDs can be used to evaluate not only crystallization history
366	but also source characteristics (e.g., Hui et al. 2011). Apollo 17 basalt 71597 is currently
367	unclassified (being part of the "Type U" classification of Rhodes et al. 1976) because of the
368	coarse grain size and small sample mass (12.35 g; Neal and Taylor 1993) making a
369	representative whole-rock analysis difficult to produce. This is why the whole rock data reported
370	by Murali et al. (1977) cannot be used to classify 71597. According to Haskin and Korotev
371	(1977), Haskin et al. (1977), and Ryder and Schuraytz (2001), coarse grained samples require up
372	to 5 grams of sample to be powdered in order to obtain a representative WR analysis. This would
373	require consuming almost half of the original 12.35 g that comprised 71597. Murali et al. (1977)
374	only used 0.612 g of this coarse-grained sample in their whole rock analysis, strongly suggesting
375	this is not representative of the true whole rock composition. The data obtained as part of this
376	study are used to propose a method for classifying 71597 within the chemical schemes already
377	proposed, thus enhancing the science return on these precious samples.
378	Apollo 17 high-Ti basalts are separated into groups (Types A, B1, B2, C, D) based on
379	whole-rock major and trace element abundances and ratios (Figure 9; Rhodes et al. 1976; Neal et
380	al. 1990; Ryder 1990). For example, the Type B basalt suite first identified by Rhodes et al.
381	(1976), and later split into Types B1 and B2, were divided based on whole rock rare earth
382	element (REE) and high field strength element (HFSE) abundances and La/Sm ratios (Neal et al.
383	1990). Prior to the split, Warner et al. (1979) proposed 71597 originated in a thick high-Ti basalt
384	flow of Apollo 17 Type B basalt composition. The fraction of olivine in the bulk analysis has
385	consequences for La, Sm, and Yb, which are controlled by the amount of mesostasis in the
386	analysis (Haskin and Korotev 1977). However, ratios of these olivine-incompatible elements
387	should be unaffected by olivine addition. Olivine (\pm ilmenite) accumulation should only dilute -

Revision 2

388	and not fractionate - elements incompatible in olivine (and ilmenite - e.g., REEs). We attempted
389	to distinguish the Apollo 17 high-Ti basalt source group for 71597 by accounting for trace
390	element variation caused by olivine accumulation. The reported La/Yb ratio (0.63; Murali et al.
391	1977; Warner et al. 1977) is similar to Type B1 basalts, while the La/Sm ratio (0.77) is consistent
392	with Type B2 basalts (Figure 9b,c). The Yb/Sm ratio (1.23) is higher than all other A17 high-Ti
393	basalts (0.83-1.13). Uncertainty in the INAA-determined REE abundances reported by Murali et
394	al. (1977) are given only in general terms of $\pm 1-5\%$. With this consideration, the Yb/Sm ratio of
395	71597 may then be within uncertainty of the upper limit of Type B1 basalts. However, calculated
396	pre-cumulate values for 71597 yield compositions outside any Apollo 17 group (Figure 9b),
397	Type B2 basalts (Figure 9c), and Type B1 basalts (Figure 9d). The conflicting groupings and
398	unique ratios of 71597 indicate at least some incompatible element ratios are not representative
399	of the whole-rock.
400	Major element oxide compositions of Apollo 17 high-Ti basalts group into trends (Figure
401	9) that can be explained by simple fractional crystallization evolution (<i>cf.</i> Neal et al. 1990).
402	Warner et al. (1977) showed that subtraction of 24-27% olivine from the measured 71597 bulk
403	composition brought the sample into the range of other high-Ti basalts (cf., Table 4 of Warner et
404	al. 1977). We expanded this model to include trace elements via Rayleigh fractionation.
405	Incompatible trace element fractionation results (Table 4 and Figure 9) for removal of 24% or
406	27% olivine (± 1% ilmenite) are essentially identical due to low olivine-melt and ilmenite-melt
407	partition coefficients. The resultant trace element compositions once again yield conflicting
408	classifications (Figure 9). The La/Yb ratio is consistent with Type B1 basalts, while La/Sm is
409	within the range of Type B2 basalts. The pre-cumulate abundances of La, Sm, and Cr are closest
410	to Type B1 basalts. Modeled Yb and Eu abundances do not distinguish between Type B1 and B2

groups, and Co abundance is distinct only from Type B2 basalts. Therefore, either cumulate
71597 resulted from accumulation in a new magma type, one or more of the INAA-determined
REEs are not representative of the parent melt, or the simple model of olivine accumulation is
insufficient. An argument for any of these three possibilities would remain equivocal if only bulk
whole rock analyses were considered.

Equilibrium melt calculations theoretically yield compositions wherein mineral phases 416 crystallized. Melt compositions (Figure 10) were calculated for each phase by dividing trace 417 element abundances by mineral-specific partition coefficients for V, Cr, and the REEs (Table 5). 418 419 Olivine partition coefficients were calculated using the relationship of D to bulk MgO of Bédard (2005). Other partition coefficients were determined at low fO₂ (between IW-0 and IW-2) and 420 421 with trace elements present at natural abundances (see references in Table 5). Equilibrium melts 422 could be explained by a model in which fractional crystallization evolution is modified by olivine resorption (Figure 10b). Equilibrium liquid compositions calculated from the cores of 423 424 augite are similar to light REEs (LREE) or elevated above the heavy REEs (HREE) compared to whole-rock values from Murali et al. (1977) (Figure 10c). The LREEs are more incompatible 425 426 than HREEs in olivine, and so this discrepancy may result from an unaccounted for dilution of 427 LREEs by olivine addition. Pigeonite equilibrium melts are similar to the compositional dispersion observed in plagioclase (Figure 10c), but the majority are depleted in Eu, as seen on 428 Figure 10d. Pigeonite likely originated in olivine reaction rims after plagioclase crystallized, 429 430 which limited available Eu. Plagioclase equilibrium compositions follow the expected positive correlation between La and Eu (Figure 10d). 431

Apollo 17 high-Ti basalts are classified primarily based on whole-rock trace element
 compositional variation. The trace elements obtained for olivine in 71597 are similar to olivines

Revision 2

434	found in other chemical groups. In addition, the paucity of olivine in Type B1 basalts is not
435	conducive to such comparisons. Here, we utilize augite to trace source evolution, because augite
436	crystallizes early in high-Ti basalts, and has sufficient incompatible trace element abundance for
437	quantification by LA-ICP-MS analyses. On Figure 10d, the whole-rock fractionation trends of La
438	and Eu in Apollo 17 high-Ti basalts are compared to the plagioclase and pyroxene equilibrium
439	liquids. Pigeonite, as might be expected from a phase appearing late in the crystallization
440	sequence after modification by partial resorption, does not appear to represent true liquid
441	composition. Finally, the evolution from augite equilibrium melt to relatively late-stage
442	plagioclase most closely follows a fractional crystallization trend from a Type B2 basalt source
443	composition.
444	
445	Implications
445 446	Implications Through careful characterization of sample petrography and mineral geochemistry, we
	-
446	Through careful characterization of sample petrography and mineral geochemistry, we
446 447	Through careful characterization of sample petrography and mineral geochemistry, we are able to place constraints on the geochemical evolution of a unique Apollo sample and tie it to
446 447 448	Through careful characterization of sample petrography and mineral geochemistry, we are able to place constraints on the geochemical evolution of a unique Apollo sample and tie it to the Type B2 mare basalt suite. The Type B2 suite comprises nine fine-grained vitrophyric-
446 447 448 449	Through careful characterization of sample petrography and mineral geochemistry, we are able to place constraints on the geochemical evolution of a unique Apollo sample and tie it to the Type B2 mare basalt suite. The Type B2 suite comprises nine fine-grained vitrophyric-olivine porphyritic basalts, and one plagioclase poikilitic basalt. Prior investigation suggesting a
446 447 448 449 450	Through careful characterization of sample petrography and mineral geochemistry, we are able to place constraints on the geochemical evolution of a unique Apollo sample and tie it to the Type B2 mare basalt suite. The Type B2 suite comprises nine fine-grained vitrophyric-olivine porphyritic basalts, and one plagioclase poikilitic basalt. Prior investigation suggesting a spread in Rb-Sr and Sm-Nd isotopes for whole-rock samples indicated the Type B2 basalts were
 446 447 448 449 450 451 	Through careful characterization of sample petrography and mineral geochemistry, we are able to place constraints on the geochemical evolution of a unique Apollo sample and tie it to the Type B2 mare basalt suite. The Type B2 suite comprises nine fine-grained vitrophyric-olivine porphyritic basalts, and one plagioclase poikilitic basalt. Prior investigation suggesting a spread in Rb-Sr and Sm-Nd isotopes for whole-rock samples indicated the Type B2 basalts were affected by open system processes (Paces et al. 1991). We are not able to determine where
 446 447 448 449 450 451 452 	Through careful characterization of sample petrography and mineral geochemistry, we are able to place constraints on the geochemical evolution of a unique Apollo sample and tie it to the Type B2 mare basalt suite. The Type B2 suite comprises nine fine-grained vitrophyric-olivine porphyritic basalts, and one plagioclase poikilitic basalt. Prior investigation suggesting a spread in Rb-Sr and Sm-Nd isotopes for whole-rock samples indicated the Type B2 basalts were affected by open system processes (Paces et al. 1991). We are not able to determine where olivine accumulation occurred, but it could have been in ponded melts at the base of or in the

grained material represented in the Type B2 sample suite, which might be present butunrecognized in the Apollo sample collection.

Approximately one-third of high-Ti mare basalts returned by the Apollo 17 mission are 458 designated as Type U or "unclassified" basalts. These have remained unclassified for 40+ years 459 due to issues with obtaining representative bulk analyses, primarily due to small sample masses 460 and coarse grain sizes. The approach used here has the potential to place petrogenetic constraints 461 on these samples, and has demonstrated potential for classification and discrimination of Type U 462 basalts within the current whole-rock classification scheme for Apollo 17 high-Ti basalts, and 463 464 potentially identifying new basalt types. The Earth and the Moon share many similarities in eruption styles of basalts. The characterization of end-member samples like 71597 will be 465 important for comparative analyses with the growing collection of mare basalt textures that have 466 467 been defined through quantitative analysis. Finally, application of these microscale techniques will maximize the science potential of future robotic sample return missions to the Moon and 468 469 other planetary bodies.

470

Acknowledgments

471 This research was funded by NASA Grant NNX09-AB92G to CRN. We thank lunar 472 sample curators at the Johnson Space Center (NASA) for preparing the two new thin sections of 71597 used in this study. Microprobe data collection was facilitated by Paul Carpenter at the 473 University of Washington at St. Louis (St. Louis, MO) and Ian Steele at the University of 474 475 Chicago (Chicago, IL). Tony Simonetti (University of Notre Dame, Notre Dame, IN) provided LA-ICP-MS training, support, and advice at MITERAC. We thank James D Day and Bruce 476 Marsh for critical comments on an earlier version of this manuscript. Additional reviews by Arya 477 Udry and Tabb Prissel, and associate editor Steve Simon further improved the paper. 478

479	References
480	van Achterbergh, E., Ryan, C.G., Jackson, S.E., and Griffin, W.L. (2001) Data reduction
481	software for LA-ICP-MS: Appendix. In P.J. Sylvester, Ed., Laser ablation-ICP-mass
482	spectrometry in the Earth Sciences: Principles and applications, Vol. 29, pp. 239–243.
483	Mineralogical Association of Canada, Short Course Series.
484	Alexander, L., Snape, J.F., Crawford, I.A., Joy, K.H., and Downes, H. (2014) Searching for
485	nonlocal lithologies in the Apollo 12 regolith: A geochemical and petrological study of
486	basaltic coarse fines from the Apollo lunarsoil sample 12023,155. Meteoritics & Planetary
487	Science, 49, 1288–1304.
488	Bédard, J.H. (2005) Partitioning coefficients between olivine and silicate melts. Lithos, 83, 394-
489	419.
490	Bindeman, I.N., Davis, A.M., and Drake, M.J. (1998) Ion microprobe study of plagioclase-basalt
491	partition experiments at natural concentration levels of trace elements. Geochimica et
492	Cosmochimica Acta, 62, 1175–1193.
493	Burkhard, D.J.M. (2005) Nucleation and growth rates of pyroxene, plagioclase, and Fe-Ti oxides
494	in basalt under atmospheric conditions. European Journal of Mineralogy, 17, 675-686.
495	Cabane, H., Laporte, D., and Provost, A. (2005) An experimental study of Ostwald ripening of
496	olivine and plagioclase in silicate melts: Implications for the growth and size of crystals in
497	magmas. Contributions to Mineralogy and Petrology, 150, 37-53.
498	Cashman, K.V., and Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics
499	and dynamics of crystallization II: Makaopuhi lava lake. Contributions to Mineralogy and
500	Petrology, 99, 292–305.
501	Cushing, J.A., Taylor, G.J., Norman, M.D., and Keil, K. (1999) The granulitic impactite suite:

502	Impact melts and metamorphic breccias of the early lunar crust. Meteoritics & Planetary
503	Science, 34, 185–195.
504	Day, J.M.D., and Taylor, L.A. (2007) On the structure of mare basalt lava flows from textural
505	analysis of the LaPaz Icefield and Northwest Africa 032 lunar meteorites. Meteoritics &
506	Planetary Science, 42, 3–17.
507	Delano, J.W. (1980) Chemistry and liquidus phase relations of Apollo 15 red glass: Implications
508	for the deep lunar interior. Proceedings of the 11 th Lunar and Planetary Science Conference,
509	251-288.
510	Donohue, P.H., and Neal, C.R. (2015) Quantitative textural analysis of ilmenite in Apollo 17
511	high-titanium mare basalts. Geochimica et Cosmochimica Acta, 149, 115–130.
512	Dungan, M.A., and Brown, R.W. (1977) The petrology of the Apollo 12 ilmenite basalt suite.
513	Proceedings of the 8 th Lunar Science Conference, 1339–1381.
514	Dygert, N., Liang, Y., and Hess, P.C. (2013) The importance of melt TiO ₂ in affecting major and
515	trace element partitioning between Fe-Ti oxides and lunar picritic glass melts. Geochimica et
516	Cosmochimica Acta, 106, 134–151.
517	Dymek, R.F., Albee, A.L., and Chodos, A.A. (1975) Comparative mineralogy and petrology of
518	Apollo 17 mare basalts: Samples 70215, 71055, 74255, and 75055. Proceedings of the 6 th
519	Lunar Science Conference, 49–77.
520	El Goresy, A., and Ramdohr, P. (1975) Subsolidus reduction of lunar opaque oxides: Textures,
521	assemblages, geochemistry, and evidence for a late-stage endogenic gaseous mixture.
522	Proceedings of the 6 th Lunar Science Conference, 729–745.
523	Fagan, A.L., Neal, C.R., Simonetti, A., Donohue, P.H., and O'Sullivan, K.M. (2013)
524	Distinguishing between Apollo 14 impact melt and pristine mare basalt samples by

525	geochemical and textural analyses of olivine. Geochimica et Cosmochimica Acta, 106, 429-
526	445.
527	Hallis, L.J., Anand, M., and Strekopytov, S. (2014) Trace-element modelling of mare basalt
528	parental melts: Implications for a heterogeneous lunar mantle. Geochimica et Cosmochimica
529	Acta, 134, 289–316.
530	Haskin, L.A., and Korotev, R.L. (1977) Test of a model for trace element partition during closed-
531	system solidification of a silicate liquid. Geochimica et Cosmochimica Acta, 41, 921–939.
532	Haskin, L.A., Jacobs, J.W., Brannon, J.C., and Haskin, M.A. (1977) Compositional dispersions
533	in lunar and terrestrial basalts. Proceedings of the 8 th Lunar and Planetary Science
534	Conference, 1731-1750.
535	Higgins, M.D. (2000) Measurement of crystal size distributions. American Mineralogist, 85,
536	1105–1116.
537	Higgins, M.D. (2002) Closure in crystal size distributions (CSD), verification of CSD
538	calculations, and the significance of CSD fans. American Mineralogist, 87, 171–175.
539	Higgins, M.D. (2006) Verification of ideal semi-logarithmic, lognormal or fractal crystal size
540	distributions from 2D datasets. Journal of Volcanology and Geothermal Research, 154, 8–16.
541	Higgins, M.D., and Roberge, J. (2003) Crystal size distribution of plagioclase and amphibole
542	from Soufrière Hills Volcano, Montserrat: Evidence for dynamic crystallization-textural
543	coarsening cycles. Journal of Petrology, 44, 1401–1411.
544	Hodges, F.N., and Kushiro, I. (1974) Apollo 17 petrology and experimental determination of
545	differentiation sequences in model moon compositions. Proceedings of the 5 th Lunar
546	Conference, 505–520.
547	Hui, H., Oshrin, J.G., and Neal, C.R. (2011) Investigation into the petrogenesis of Apollo 14

548	high-Al basaltic melts	s through crystal	l stratigraphy of plagioclase.	Geochimica et
540	mgn-m basance men	s unougn orysia	i shangiapily of plagioclase.	Ococimina

- 549 Cosmochimica Acta, 75, 6439–6460.
- ⁵⁵⁰ Irving A. J., Merrill R. B. and Singleton D. E. (1978) Experimental partitioning of rare earth
- elements and scandium among armalcolite, ilmenite, olivine and mare basalt liquid.
- ⁵⁵² Proceedings of the 9th Lunar and Planetary Science Conference, 601–612.
- Jerram, D.A., Cheadle, M.J., Hunter, R.H., and Elliott, M.T. (1996) The spatial distribution of
- grains and crystals in rocks. Contributions to Mineralogy and Petrology, 125, 60–74.
- Jerram, D.A., Cheadle, M.J., and Philpotts, A.R. (2003) Quantifying the building blocks of
- igneous rocks: Are clustered crystal frameworks the foundation? Journal of Petrology, 44,
 2033–2051.
- Jerram, D.A., Davis, G.R., Mock, A., Charrier, A., and Marsh, B.D. (2010) Quantifying 3D
- crystal populations, packing and layering in shallow intrusions: A case study from the

560 Basement Sill, Dry Valleys, Antarctica. Geosphere, 6, 537–548.

- Jolliff, B.L., Korotev, R.L., Zeigler, R.A., and Floss, C. (2003) Northwest Africa 773: Lunar
- 562 mare breccia with a shallow-formed olivine-cumulate component, inferred very-low-Ti
- (VLT) heritage, and a KREEP connection. Geochimica et Cosmochimica Acta, 67, 4857–
 4879.
- 565 Klemme, S., Günther, D., Hametner, K., Prowatke, S. and Zack, T. (2006) The partitioning of
- trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications
- ⁵⁶⁷ for the early differentiation of the moon. Chemical Geology, 234, 251–263.
- Laul, J.C., Schmitt, R.A., Robyn, M., and Goles, G.G. (1975) Chemical Composition of 18
- 569 Apollo 17 Rake Basalts and One Basalt Breccia. Proceedings of the 6th Lunar and Planetary
- 570 Science Conference, 492–493.

571	Longhi, J., Walker, D., and Hays, J.F. (1978) The distribution of Fe and Mg between olivine and
572	lunar basaltic liquids. Geochimica et Cosmochimica Acta, 42, 1545-1558.

- 573 Mallmann, G., and O'Neill, H.S.C. (2009) The crystal/melt partitioning of V during mantle
- melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc,
- 575 Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50, 1765–1794.
- 576 Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of
- crystallization I. Theory. Contributions to Mineralogy and Petrology, 99, 277–291.
- 578 Marsh, B.D. (1998) On the interpretation of crystal size distributions in magmatic systems.
- 579 Journal of Petrology, 39, 553–599.
- 580 Martin, V.M., Pyle, D.M., and Holness, M.B. (2006) The role of crystal frameworks in the
- preservation of enclaves during magma mixing. Earth and Planetary Science Letters, 248,
 787–799.
- 583 Masuda, A., Tanaka, T., Nakamura, N., and Kurasawa, H. (1974) Possible REE anomalies of
- Apollo 17 REE patterns. Proceedings of the 5th Lunar Conference, 2, 1247–1253.
- 585 McCallum, I.S., and Charette, M.P. (1978) Zr and Nb partition coefficients: Implications for the
- genesis of mare basalts, KREEP, and sea floor basalts. Geochimica et Cosmochimica Acta,
 42, 859–869.
- McDonough, W.F. and Sun, S.-S. (1995) The composition of the Earth. Chemical Geology, 120,
 223–253.
- 590 Morgan, D.J., and Jerram, D.A. (2006) On estimating crystal shape for crystal size distribution
- analysis. Journal of Volcanology and Geothermal Research, 154, 1–7.
- 592 Murali, A.V., Ma, M.-S., and Schmitt, R.A. (1977) Chemistry of 30 Apollo 17 rake basalts;
- ⁵⁹³ 71597 a product of partial olivine accumulation. Abstracts of the 8th Lunar and Planetary

- 594 Science Conference, 703–704.
- Neal, C.R. (2001) Interior of the Moon: The presence of garnet in the primitive deep lunar
 mantle. Journal of Geophysical Research, 106, 27865–27886.
- ⁵⁹⁷ Neal, C.R., and Taylor, L.A. (1990) Modeling of lunar basalt petrogenesis: Sr isotope evidence
- from Apollo 14 high-alumina basalts. Proceedings of the 20th Lunar and Planetary Science
 Conference, 101–108.
- Neal, C.R., and Taylor, L.A. (1993) Catalog of Apollo 17 Rocks Volume 2 Central Valley, Part
 1, 472 pp. NASA.
- Neal, C.R., Taylor, L.A., Hughes, S.S., and Schmitt, R.A. (1990) The significance of fractional
- crystallization in the petrogenesis of Apollo 17 Type A and B high-Ti basalts. Geochimica et
 Cosmochimica Acta, 54, 1817–1833.
- Neal, C.R., Hacker, M.D., Snyder, G.A., Taylor, L.A., Liu, Y.-G., and Schmitt, R.A. (1994)
- Basalt generation at the Apollo 12 site, Part 2: Source heterogeneity, multiple melts, and
- crustal contamination. Meteoritics, 29, 349–361.
- Neal, C.R., Donohue, P.H., Fagan, A.L., O'Sullivan, K.M., Oshrin, J., and Roberts, S. (2015)
- 609 Distinguishing between basalts produced by endogenic volcanism and impact processes: A
- non-destructive method using quantitative petrography of lunar basaltic samples. Geochimica
- et Cosmochimica Acta, 148, 62–80.
- Paces J.B., Nakai S., Neal C.R., Taylor L.A., Halliday A.N. and Lee D.-C. (1991) A strontium
- and neodymium isotopic study of Apollo 17 high-Ti mare basalts: Resolution of ages,
- evolution of magmas, and origins of source heterogeneities. Geochimica et Cosmochimica
- 615 Acta, 55, 2025–2043.
- Papike, J.J., Bence, A.E., and Lindsley, D.H. (1974) Mare basalts from the Taurus-Littrow

- region of the moon. Proceedings of the 5^{th} Lunar Conference, 471–504.
- Papike, J.J., Hodges, F.N., Bence, A.E., Cameron, M., and Rhodes, J.M. (1976) Mare basalts:
- 619 Crystal chemistry, mineralogy, and petrology. Reviews of Geophysics and Space Physics, 14,
- 620 **475–540**.
- 621 Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., and
- 622 Chenery, S.P. (1997) A compilation of new and published major and trace element data for
- NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21,
- 624 115–144.
- Rhodes, J.M., Hubbard, N.J., Wiesmann, H., Rodgers, K.V., Brannon, J.C., and Bansal, B.M.
- (1976) Chemistry, classification, and petrogenesis of Apollo 17 mare basalts. Proceedings of
 the 7th Lunar Science Conference, 1467–1489.
- Rhodes, J.M., Brannon, J.C., Rodgers, K.V., Blanchard, D.P., and Dungan, M.A. (1977)
- 629 Chemistry of Apollo 12 mare basalts: Magma types and fractionation processes. Proceedings
- 630 of the 8th Lunar Science Conference, 1305–1338.
- Ryder, G. (1985) Catalog of Apollo 15 Rocks Part 2. 15306-15468. Curatorial Branch
- 632 Publication, 72, 443 pp. NASA.
- Ryder, G. (1990) A distinct variant of high-titanium mare basalt from the Van Serg core, Apollo
- 634 17 landing site. Meteoritics, 25, 249–258.
- 635 Ryder, G., and Schuraytz, B.C. (2001) Chemical variation of the large Apollo 15 olivine-
- normative mare basalt rock samples. Journal of Geophysical Research, 106, 1435-1451.
- 637 Schnare, D.W., Day, J.M.D., Norman, M.D., Liu, Y., and Taylor, L.A. (2008) A laser-ablation
- 638 ICP-MS study of Apollo 15 low-titanium olivine-normative and quartz-normative mare
- basalts. Geochimica et Cosmochimica Acta, 72, 2556–2572.

- 640 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of
- image analysis. Nature Methods, 9, 671–675.
- 642 Shih, C.-Y., Wiesmann, H., Bansal, B.M., Brannon, J.C., and Haskin, L.A. (1975) On the origin
- of high-Ti mare basalts. Proceedings of the 6th Lunar Science Conference, 1255–1285.
- 644 Stanin, F.T., and Taylor, L.A. (1980) Armalcolite: An oxygen fugacity indicator. Proceedings of
- the 11^{th} Lunar and Planetary Science Conference, 117–124.
- 646 Sun, C., and Liang, Y. (2012) Distribution of REE between clinopyroxene and basaltic melt
- along a mantle adiabat: effects of major element composition, water, and temperature.
- 648 Contributions to Mineralogy and Petrology, 163, 807–823.
- Taylor, L.A., Shervais, J.W., Hunter, R.H., Shih, C.-Y., Bansal, B.M., Wooden, J.L., Nyquist,
- L.E., and Laul, L.C. (1983) Pre-4.2 AE mare-basalt volcanism in the lunar highlands. Earth
- and Planetary Science Letters, 66, 33–47.
- Usselman, T.M., Lofgren, G.E., Donaldson, C.H., and Williams, R.J. (1975) Experimentally
- reproduced textures and mineral chemistries of high-titanium mare basalts. Proceedings of
- the 6^{th} Lunar Science Conference, 997–1020.
- Usselman, T.M., and Lofgren, G.E. (1976) The phase relations, textures, and mineral chemistries
- of high-titanium mare basalts as a function of oxygen fugacity and cooling rate. Proceedings
- of the 7th Lunar Science Conference, 1345–1363.
- Vinet, N., and Higgins, M.D. (2010) Magma solidification processes beneath Kilauea Volcano,
- Hawaii: A quantitative textural and geochemical study of the 1969-1974 Mauna Ulu lavas.
- 660 Journal of Petrology, 51, 1297–1332.
- Vobecký, M., Frána, J., Bauer, J., Řanda, Z., Benada, J., and Kuncíř, J. (1971) Radioanalytical
- determination of elemental compositions of lunar samples. Proceedings of the 2nd Lunar

- 663 Science Conference, 2, 1291–1300.
- 664 Walker, D., Longhi, J., and Hays, J.F. (1976) Heterogeneity in titaniferous lunar basalts. Earth
- and Planetary Science Letters, 30, 27–36.
- Warner, R.D., Keil, K., Prinz, M., Laul, J.C., Murali, A.V., and Schmitt, R.A. (1975)
- 667 Mineralogy, petrology, and chemistry of mare basalts from Apollo 17 rake samples.
- 668 Proceedings of the 6th Lunar Science Conference, 193–220.
- 669 Warner, R.D., Berkley, J.L., Mansker, W.L., Warren, R.G., and Keil, K. (1976a) Electron
- 670 microprobe analyses of spinel, Fe-Ti oxides and metal from Apollo 17 rake sample mare
- basalts. Spec. Pub. #16, UNM Institute of Meteoritics, Albuquerque, 114 pp.
- Warner, R.D., Warren, R.G., Mansker, W.L., Berkley, J.L., and Keil, K. (1976b) Electron
- microprobe analyses of olivine, pyroxene and plagioclase from Apollo 17 rake sample mare
- basalts, Spec. Pub. #15, UNM Institute of Meteoritics, Albuquerque, 121 pp.
- Warner, R.D., Keil, K., and Taylor, G.J. (1977) Coarse-grained basalt 71597: A product of
- partial olivine accumulation. Proceedings of the 8th Lunar Science Conference, 1429–1442.
- Warner, R.D., Taylor, G.J., Conrad, G.H., Northrop, H.R., Barker, S., Keil, K., Ma, M.-S., and
- 678 Schmitt, R.A. (1979) Apollo 17 high-Ti mare basalts: New bulk compositional data, magma
- types, and petrogenesis. Proceedings of the 10th Lunar and Planetary Science Conference,
- 680 225–247.
- 681

Revision 2

682 Figure Captions

- Figure 1. Plane-polarized light views and composites of traced phases of the two new thin
- sections of 71597. (a) 71597,12 and (b) composite of traced ilmenite, olivine, plagioclase, and
- ⁶⁸⁵ pyroxene. Note pyroxene was only traced for half of the section. For (c) section 71597,13, only
- (d) ilmenite and olivine were traced. The more subdued color of olivine and pyroxene on the
- bottom half of 71597,13 is due to the lower thickness of the thin section. Crystals intersecting the
- edge of the sections were not traced. Gray areas in (b) and (d) represent the sample area.
- ⁶⁸⁹ Figure 2. Crystal size distribution profiles for 71597,12 and ,13. (a) Olivine CSD profiles appear
- to be multiply kinked, and (b) ilmenite CSDs are concave upward. The CSD profiles are sub-
- 691 linear for (c) pyroxene and (d) plagioclase.
- ⁶⁹² Figure 3. R-value (relative ordering) versus Porosity (% matrix) for phases in Apollo 17 high-Ti
- basalts (open symbols; Donohue and Neal 2015) and basalt 71597,12 (filled symbols). RSDL =
- Random Sphere Distribution Line for modeled population of uniform spheres; points to the left
- of the Touching Framework line (TF) form a touching framework of crystals. Besides olivine in
- ⁶⁹⁶ 71597, plagioclase in coarse-grained Type A basalt 75015 is the only other non-pyroxene phase
- ⁶⁹⁷ to approach a clustered crystal distribution. The processes resulting in trends for related samples
- are included schematically. Figure after Jerram et al. 2003.
- ⁶⁹⁹ Figure 4. Ranges of (a) olivine Fo and (b) plagioclase An compositions observed in 71597
- compared to literature values for individual samples of other lunar basalt types. Data from Fagan
- ro1 et al. (2013), Hallis et al. (2014), Schnare et al. (2008), and Neal and Taylor (1990).
- Figure 5. Element variation diagrams for large olivine interiors (filled) and rims (open symbols)
- as well as matrix olivine depicting (a) decreasing V (ppm) with melt evolution, and (b)

704	corresponding increase in Y (ppm) abundance. Vertical lines indicate 1σ errors. Multiple
705	analyses of individual crystals are connected with a gray line.

- Figure 6. Olivine forsterite variability versus (a) Ti/V and (b) Cr/Y versus olivine forsterite
- contents. Fields drawn from literature: Apollo 12 (A12) ilmenite basalts, pigeonite basalts,
- olivine basalts, Apollo 14 (A14) Groups A, B, and C basalts, Apollo 14 olivine vitrophyres
- (OV), and Apollo 17 sample 74275 from Fagan et al. (2013); Apollo 15 (A15) olivine normative
- and quartz normative basalts from Schnare et al. (2008).
- Figure 7. Ilmenite major and trace element variation diagrams. 1σ errors for trace elements
- ⁷¹² indicated for each point where larger than the symbol.
- Figure 8. (a) Composition of pyroxene projected onto pyroxene quadrilateral with data from
- ⁷¹⁴ Warner et al. (1977) for comparison. (b) REE profiles of augite, pigeonite, and plagioclase of
- 715 71597 are typical of Apollo 17 basalts. Whole-rock values from 71597,1 (Murali et al. 1977).
- 716 Values for CI chondrite from McDonough and Sun (1995).
- Figure 9. Compositional fields drawn from bulk rock analyses of Apollo 17 high-Ti basalts of (a)
- TiO2 (wt.%) versus MgO (wt.%), (b) Sm (ppm) versus Cr/La, (c) La/Sm versus La (ppm), and
- (d) Hf (ppm) versus La/Yb. Gray shaded circles are compositions resulting from 24% (dark gray)
- and 27% (light gray) olivine subtraction from analysis of 71597,1 (black circle, Murali et al.
- 1977). Gray triangle represents subtraction of 27% olivine and 1% ilmenite.
- Figure 10. Element variation diagrams for calculated equilibrium melts from crystal interiors
- (filled symbols) and rims (open symbols). (a) Mg# versus V (ppm). (b) Cr/Y versus Cr (ppm)
- vith inferred magma compositional path shown (dashed line). (c) Chondrite-normalized
- pyroxene and plagioclase equilibrium melt REE profiles compared to reported whole-rock and

Revision 2

726	olivine subtracted compositions. (d) La versus Eu correlation of whole-rock compositions from
727	each group, and equilibrium liquid compositions of augite, pigeonite, and plagioclase. Fractional
728	crystallization (FC) paths for Types B1 and B2 basalts are from Neal et al. (1990) to 70%
729	crystallization. Two analyses of high-REE plagioclase are not shown, as they represent extreme
730	fractionation during late stage cooling. Calculations for removal of 24% olivine and 27% olivine
731	+ 1% ilmenite (not shown) are within uncertainty of the -27% olivine on (c) and (d). Open
732	symbols in (a), (b), and (d) represent rim analyses. Literature bulk La and Eu values from
733	(Masuda et al. 1974; Laul et al. 1975; Shih et al. 1975; Warner et al. 1975; Rhodes et al. 1976;
734	Murali et al. 1977; Warner et al. 1979; Neal et al. 1990; Neal 2001).
725	
735	
736	Supplementary Material
737	
738	Supplementary Table S1 (Deposit item)
739	

Tables

Table 1. Crystal size distribution data for major phases.

Phase	Area	Crystals	vol %	Slope1		y-int1		Slope2		y-int2		shape	R2	NND	SDP
split(s)	(mm2)											parameters		average	R value
Olivine															
,12	102.2	118	16.4%	-9.04	± 1.70	4.55	± 0.49	-2.48	± 0.10	1.27	± 0.12	1:1.4:2	0.80	0.345	0.59
,13	61.7	43	19.2%	-8.47	± 1.15	4.15	± 0.35	-2.07	± 0.13	0.81	± 0.25	1:1.5:2.3	0.81	n.a.	<i>n.a</i> .
,12+,13	163.9	161	17.5%	-13.41	± 0.45	5.12	± 0.12	-1.76	± 0.39	0.09	± 0.79	1:1.4:1.9	0.84	n.a.	n.a.
Ilmenite															
,12	102.2	482	5.7%	-2.60	± 0.58	3.86	± 0.30	-1.53	± 0.17	2.29	± 0.49	1:1.25:7	0.78	0.116	0.76
,13	95.7	393	6.9%	-3.06	± 0.10	4.08	± 0.04	-1.63	± 0.21	1.73	± 0.59	1:1.7:6	0.73	0.113	0.65
,12 + ,13	197.9	875	6.3%	-2.28	± 0.30	3.57	± 0.15	-1.22	± 0.13	1.67	± 0.53	1:1.25:7	0.77	n.a.	n.a.
Plagioclase															
,12	102.2	286	10.9%	-2.25	± 0.13	2.93	± 0.20	-		-		1:1.7:4.5	0.79	0.260	0.91
Pyroxene															
,12	102.2	362	35.5%	-3.51	± 0.29	4.77	± 0.35	-		-		1:1.6:2.9	0.81	0.181	1.03

n.a.: not applicable. Vol % = volume percent.

Slope# and y-int# = slope and intercept of portions of CSD profiles representing different size populations. NND: nearest neighbor distance (mm) to crystal of same phase.

Phase	Large olivine			Matrix ol			Ilmenite	A	Armalcolite		A17 Type A, E	1, B2, C, U	A11 low-K, high-K		A12 Ilm, Ol, and	1 Pigeonite suites	A14 high-Al and C	I. Vitrophyre	A15 KREEP &	Ol normative
	core	2σ	rim	2σ	core	2σ	average	2σ	average	2σ	Olivine	Ilmenite	Olivine	Ilmenite	Olivine	Ilmenite	Olivine	Ilmenite	Olivine	Ilmenite
<i>n</i> =	8		8		4		14		2											
wt.%																				
SiO_2	37.7	0.7	37.3	0.8	36.9	1.6					24.7 - 41.0	0.01 - 0.38	29.2 - 38.6	0.12 - 0.23	33.4 - 39.9	0.03 - 8.90	35.7 - 42.3	0.16	27.2 - 48.2	b.d 3.42
TiO ₂							54.4	2.0	73.2	1.4	0.03 - 0.48	50.6 - 56.1		52.1 - 53.0	b.d 0.20	43.7 - 54.3	0.01 - 0.15	53.24	0.01 - 1.03	39.7 - 52.9
Al_2O_3							0.04	0.02	2.03	0.04	b.d 0.47	b.d 0.62	b.d 0.3		b.d 0.74	b.d 1.13	b.d 0.21	0.09		0.03 - 1.28
Cr_2O_3	0.21	0.06	0.18	0.08	0.15	0.02	0.73	0.26	1.39	0.15	0.04 - 0.37	0.15 - 1.11	0.02 - 0.28	0.52 - 2.12	0.05 - 0.74	b.d 0.75	b.d 1.39	0.35	b.d 0.51	b.d 1.08
FeO	25.4	2.9	27.8	2.6	30.7	2.40	39.9	2.5	17.6	1.1	15.6 - 46	34.8 - 46.4	25.4 - 68.7	44.4 - 45.1	20.7 - 65.3	41.7 - 47.3	11.6 - 41.8	45.3	22.6 - 67.8	42.5 - 56.7
MnO	0.28	0.05	0.29	0.05	0.33	0.12	0.37	0.07	0.07	0.04	0.18 - 0.48	0.3 - 0.59	0.22 - 1.10	0.45	b.d 0.52	0.27 - 0.43	0.10 - 0.42	0.47	0.26 - 0.75	0.19 - 0.39
MgO	36.1	3.0	34.1	2.4	31.9	2.37	4.47	0.95	5.54	0.13	19.5 - 44	0.1 - 8.7	0.5 - 36.5	0.75 - 1.35	3.54 - 40.1	b.d 3.17	23.6 - 48.7	0.72	0.45 - 34.4	0.04 - 2.12
CaO	0.26	0.02	0.26	0.03	0.26	0.03					0.2 - 0.78	0.06 - 0.44	0.26 - 0.33	0.01 - 0.10	0 - 0.34	b.d 2.51	0.03 - 0.85	0.05	0.24 - 11.7	0.004 - 0.36
TOTAL	100.05	0.73	100.07	0.94	100.26	1.14	99.91	0.96	99.85	2.22										
Ol. Fo%	72	4	69	3	65	3					37 - 82		1 - 73.3		9 - 78		50 - 88		1.22 - 70.5	
Ilm Mg#							17	3	36	2		0.22 - 29		2.9 - 5.1		0 - 11.9		2.8		0.10 - 8.12
ppm																				
Sc	15	8	14	9	18	7	101	20	233	24	7.73 - 15.0	83 - 104		123	4.42 - 85.6		1.31 - 37.18		7.9 - 44.5	17.2 - 32.9
Ti	462	142	417	112	584	357					219 - 962				102 - 865		30.7 - 3028		122 - 2930	
v	43	21	33	23	24	13	412	254	1399	118	26.4 - 51.5			107	20.5 - 157		9.95 - 121		27.1 - 316	47.5 - 153
Cr	1299	642	1061	514	946	489	3741	2349	7655	1074	991 - 1991	132 - 163			530 - 4840		140 - 3698		675 - 6047	532 - 1601
Mn	2129	441	2196	436	2581	912	2391	725	753	90	1358 - 2202				1626 - 5208		589 - 3245		1970 - 4028	1841 - 3309
Co	65	16	63	28	71	26	8	9	20	2	39.5 - 56.8	20.9		24	80.6 - 238		14.7 - 85.6		86.2 - 148	22.7 - 29.2
Ni	35	20	23	6							21.7 - 68.8				6.55 - 500		4.17 - 362		38.8 - 203	4.4 - 6.3
Zn							3	1							1.58 - 6.94					
Y	3	3	4	3	5	3					0.18 - 2.14				0.14 - 3.66		0.03 - 72.1		0.2 - 4.7	1.7 - 8.2
Zr			2		2		426	843	233	4					b.d 0.65				0.1 - 3.7	289 - 1127
Nb							51	178	32	1					b.d 0.37				0 - 0.1	43.2 - 75.8
Hf							19	50	12	2		17.4		11	b.d 0.02				0 - 0.2	6.9 - 18.1
Та							3	7	3	4		4.9			b.d.				0	4.0 - 5.9
Sr							2	3	b.d.						b.d 0.43				0 - 3.0	2.1 - 2.3

Table 2. Average olivine and Fe-Ti oxide mineral chemistry for 71597 and for mare basalt gr

749 b.d.: below detection limit; $2\sigma = two$ standard deviation of average value listed.

⁷⁵⁰ Literature data from Vobecký et al. (1971); Papike et al. (1974, 1976); Dymek et al. (1975); Warner et al. (1975, 1976a, 1976b, 1977);

⁷⁵¹ Walker et al. (1976); Haskin and Korotev (1977); McCallum and Charette (1978); Neal et al. (1990); Schnare et al. (2008); Fagan et

⁷⁵² al. (2013); Alexander et al. (2014); and Hallis et al. (2014).

753

754

Phase	-	Pigeonite	Plagioclase	A11 low-K and high-K					0	A15 KREEP and ONB		A17 Type A, B1, B2, C,	
Analysis	average 2σ	average 2σ	average 2σ	Pyroxene	Plagioclase	Pyroxene	Plagioclase	Pyroxene	Feldspar	Pyroxene	Feldspar	Pyroxene	Feldspar
n =	13	5	19										
wt.%													
SiO ₂	48.7 3.6	51.6 3.6	47.3 1.5	44.1 - 52.5	45.7 - 53.3	45.0 - 53.5	44.3 - 48.2	45.3 - 51.3	42.8 - 49.5	41.2 - 54.0	43.1 - 48.5	38.1 - 78.5	45.5 - 52.
TiO ₂	3.52 1.79	1.33 1.79	0.13 0.07	0.72 - 3.74	0.5	0.35 - 2.64	0.03 - 0.16	0.84 - 1.62	0.02 - 0.11	0.19 - 3.99		0.26 - 14.1	0.03 - 0.3
Al2O ₃	4.78 2.75	1.67 2.75	32.7 1.4	0.57 - 5.25	17.2 - 34.5	0.66 - 7.90	30.9 - 35.7	1.20 - 3.01	31.3 - 36.0	0.26 - 11.9	30.1 - 34.6	0.42 - 23.4	0.11 - 34
Cr_2O_3	0.91 0.40	0.39 0.40	-	0 - 0.61	0.04	0 - 1.54		0 - 0.73		0 - 1.44		0.04 - 1.12	
FeO	9.39 3.77	18.9 3.8	0.45 0.18	9.6 - 45.8	0.30 - 2.8	12.9 - 46.5	0.49 - 1.85	15.4 - 34.7	0.07 - 0.99	12.9 - 45.9	0.37 - 1.06	2.31 - 48	0.28 - 32
MnO	0.22 0.10	0.36 0.10	-	0 - 0.67	0.05	0 - 0.56	< 0.05	0 - 0.53		0.18 - 0.80		0 - 0.62	
MgO	14.4 2.7	18.8 2.7	0.30 0.10	1.40 - 22.0	0.07 - 2.5	0.29 - 24.3	0.01 - 0.51	0.57 - 21.2	0.03 - 0.38	0.15 - 26.3	0.15 - 1.16	0.27 - 24.4	0.01 - 0.3
CaO	17.8 5.0	6.61 5.02	17.2 1.0	3.52 - 18.8	11.7 - 18.6	2.61 - 16.9	16.3 - 19.2	4.37 - 18.2	15.6 - 19.4	2.02 - 18.2	16.3 - 19.0	0.75 - 20.7	0.11 - 17.
Na ₂ O	0.07 0.04	0.02 0.04	1.35 0.32	0 - 0.12	0.55 - 2.70	0 - 0.05	0.40 - 1.72	0 - 0.09	0.41 - 2.21	0 - 0.12	0.70 - 1.67	0 - 0.55	0.78 - 2.4
TOTAL	99.86 1.17	99.78 1.17	99.41 1.51										
Mg#	73 4	64 4	55 13	5 - 73	18 - 54	1 - 72	1 - 54			18 - 75			
En	44 6	55 6	-	0.6 - 63.4		0.41 - 67.0		5.8 - 63.7		1.9 - 80.1		0.9 - 67.1	
Fs	16 6	31 6	-			22.1 - 80.5						13.3 - 91.1	
Wo	40 12	14 12	-	0.55 - 43.5		6.55 - 42.2		7.5 - 33.7		2.6 - 36.2		5 - 49.3	
An	-	-	88 3		72.2 - 94.0		82.3 - 95.6		65.1 - 96.2		81.4 - 93.4		35.6 - 93
ррт													
Sc	196 270	220 270	b.d.	133	10.1	32 - 207	2.8 - 7.1			21.6 - 168	1.7 - 3.5	54 - 129	1
Ti	22566 10445	8432 10445	857 290			2840 - 16400	266 - 825			1409 - 12596	166 - 418		
Cr	4521 1617	1945 1617	63			132 - 22000	1.5 - 26.7			20.2 - 18636	2.4 - 13.9		
Mn	1437 483	591 483	57 7			760 - 8480	50.5 - 107			416 - 8191	42.7 - 83.2		
Со	10 5	12 5	0.4 0.3	22	8.5	10 - 159	b.d 1.7			7.7 - 140	0.3 - 1.6	14 - 24	0.84
Ga	1.2 0.4	0.7 0.4	11 26						2.3 - 85	0.3 - 2.3	4.2 - 13.3		
Sr	9.7 3.5	4.0 3.5	381 414			0.32 - 24	221 - 629		23.5 - 420	0.2 - 21.9	136 - 503		
Y	32 9	24 9	0.5 0.8			3.3 - 153	0.23 - 2.13		0.14 - 17.7	1.6 - 373	0.1 - 0.4		
Zr	25 14	11 14	b.d.	400		1.2 - 158	b.d 5.6			0.7 - 156	0.02 - 0.53		
Nb	0.09 0.07	0.07 0.07	0.02 0.02			0.4 - 3.5	b.d 0.78			0 - 1.5	0.01 - 0.02		
Ba	0.05 0.03	0.06 0.03	38 112	230	210	0.6 - 40	13.4 - 103		4.47 - 464	0 - 57.1	9.4 - 56.9		
La	0.31 0.16	0.14 0.16	0.36 0.93	12.2	16.4	0.05 - 4.21	0.28 - 1.29		0.18 - 7.7	0 - 1.9	0.1 - 0.5	0.44 - 1.4	0.84
Ce	1.63 0.53	0.78 0.53	0.98 2.64	30	47	0.11 - 10.6	0.59 - 2.46		0.44 - 14.2	0 - 9.5	0.4 - 1.3	2.6 - 7.8	2.6
Pr	0.46 0.12	0.23 0.12	0.14 0.37			0.08 - 2.51	b.d 0.36			0 - 2.6	0.04 - 0.15		
Nd	3.64 0.90	1.83 0.90	0.70 1.64		45	0.29 - 18.1	b.d 1.43		0.22 - 18	0.1 - 22.2	0.2 - 0.7		
Sm	2.34 0.63	1.23 0.63	0.21 0.54	11.2	7.1	0.33 - 10.5	b.d.		0.04 - 5.8	0 - 15.4	0.1 - 0.2	0.99 - 5.1	0.59
Eu	0.21 0.06	0.08 0.06	3.09 5.35	1.2	1.8	0.09 - 0.56	1.29 - 4.52		0.40 - 3.3	0 - 1.0	0.8 - 3.4	0.10 - 0.45	5.34
Gd	4.38 1.35	2.78 1.35	0.19 0.27		1.4	0.42 - 18.1	b.d.		0.09 - 51	0.1 - 33.0	0.04 - 0.15		
Tb	0.81 0.22	0.51 0.22	0.04 0.06	3.3		0.10 - 3.69	b.d.			0 - 7.8	0.01 - 0.02	0.42 - 2.0	0.09
Dy	6.17 1.74	4.24 1.74	0.13 0.21	20		0.64 - 27.2	b.d.		0.03 - 2.6	0.2 - 58.5	0.02 - 0.10		
Ho	1.30 0.34	0.96 0.34	0.02 0.04	3.3		0.10 - 6.16				0.1 - 14.2	0.01 - 0.02		

Table 3. Average compositions of pyroxene and plagioclase compared to major mare basalt groups.

Revision 2

Er	3.65 0.93	2.96 0.93	0.06 0.08			0.30 - 17.8	b.d 0.21	0.03 - 9.3	0.2 - 41.6	0.05		
Tm	0.53 0.16	0.46 0.16	0.02 0.01	4.6	1.3	0.08 - 2.83	b.d.					
Yb	3.55 0.78	3.27 0.78	0.08 0.09	11.2	5	0.44 - 21.2	b.d 0.25	0.03 - 2.5	0.2 - 40.5	0.07	2.4 - 7.2	0.27
Lu	0.47 0.14	0.49 0.14	0.012 0.004	1.65	0.56	0.09 - 3.27	b.d.		0 - 5.8	0.011 - 0.012	0.37 - 0.92	0.034
Hf	1.75 0.96	0.79 0.96	b.d.	5.5	5	0.18 - 8.26	b.d 0.21		0 - 6.4		0.58 - 1.2	0.15

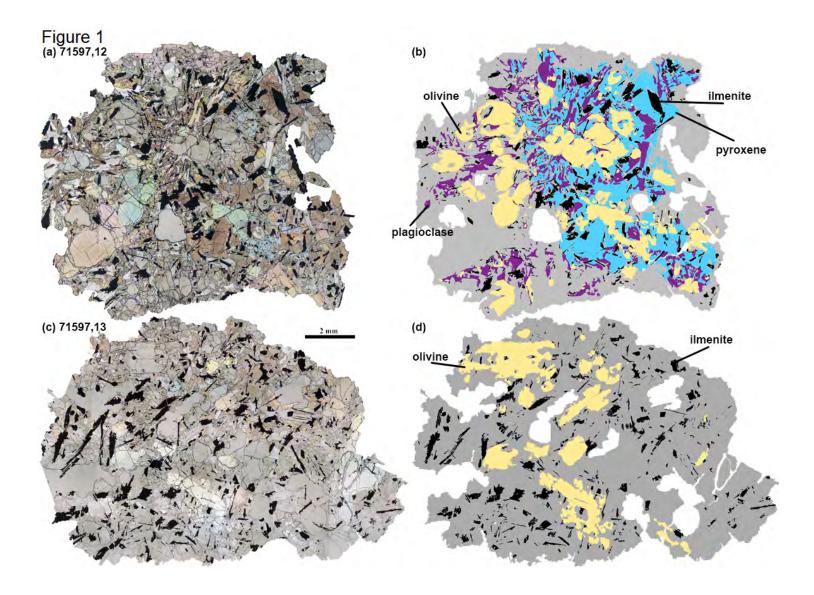
Dashes indicate element not analyzed; b.d. = below detection limit. Literature data from Hodges and Kushiro (1974); Papike et al. (1974, 1976); Dymek et al. (1975); Warner et al. (1975, 1976a, 1977); Haskin and Korotev (1977); Neal et al. (1990); Schnare et al. (2008); Hui et al. (2011); Alexander et al. (2014); and Hallis et al. (2014).

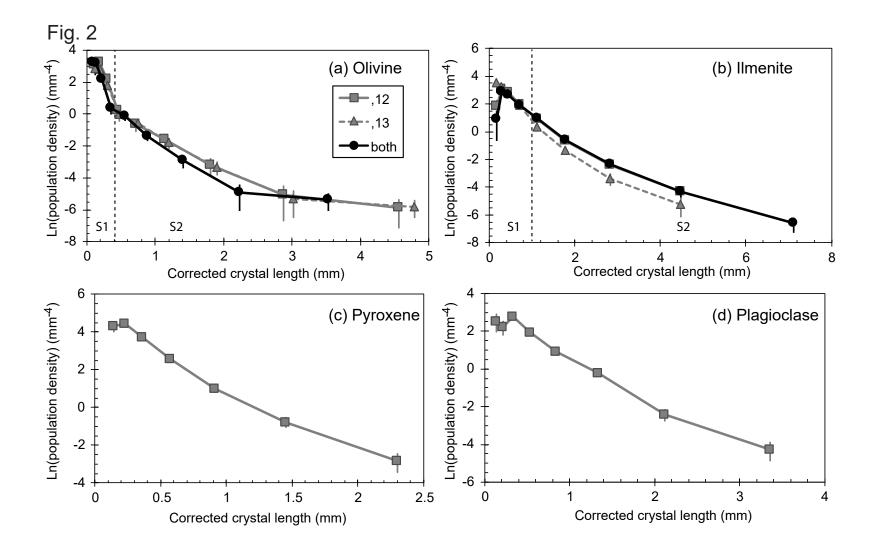
	71597,1 ^a	Olivine	(± ilmer	± ilmenite) subtraction			
wt %					24% ol	27% ol	27% ol + 1% ilm
SiO ₂	39.2	37.9			39.61	39.68	40.44
TiO ₂	8.4	0.047			11.03	11.48	10.60
Al_2O_3	7.9				10.39	10.82	10.97
Cr_2O_3	0.47	0.22			0.55	0.56	0.56
FeO	19.8	24.3			18.49	18.26	17.84
MnO	0.237	0.26			0.23	0.23	0.23
MgO	15.8	37.1			8.96	7.79	8.03
CaO	7.9	0.26			10.31	10.72	10.87
Na ₂ O	0.29				0.38	0.40	0.40
K ₂ O	0.027				0.04	0.04	0.04
TOTAL	100	100.09			99.99	99.99	99.99
ррт							
Cr	3216	1854	0.92	10	3292	3303	2849
Co	43	64	3.5	2.2	21	19	19
La	3	[0.01]	0.011	0.029	3.9	4.1	4.2
Sm	3.9	[0.01]	0.0002	0.053	5.1	5.3	5.4
Eu	1	[0.01]	0.007	0.02	1.3	1.4	1.4
Yb	4.8	[0.01]	0.030	0.051	6.3	6.5	6.6
Hf	4.2	[0.01]	0.010	0.38	5.5	5.7	5.8
Cr/La	1072				836	806	686
La/Sm	0.77				0.77	0.77	0.77
Yb/Sm	1.23				1.22	1.22	1.22

Table 4. Results of fractionation calculations on 71597 composition.

⁷⁶³ ^aINAA Values reported in Murali et al. (1977). SiO₂ calculated to bring total to 100%.

764 D_{Ol/L} values from equations of Bédard (2007), assuming initial bulk MgO was 9 wt%.


⁷⁶⁵ D_{ilm/L} values from Haskin and Korotev (1977) except Hf (Klemme et al. 2006).


Revision 2

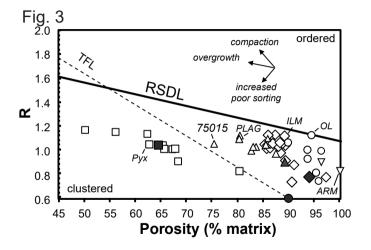
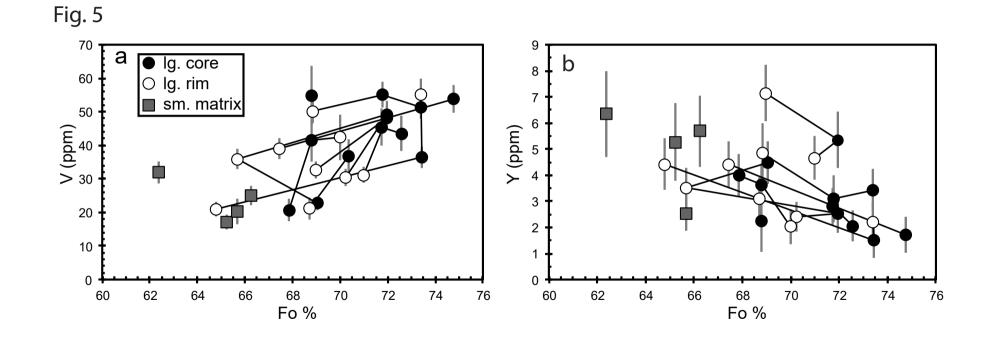
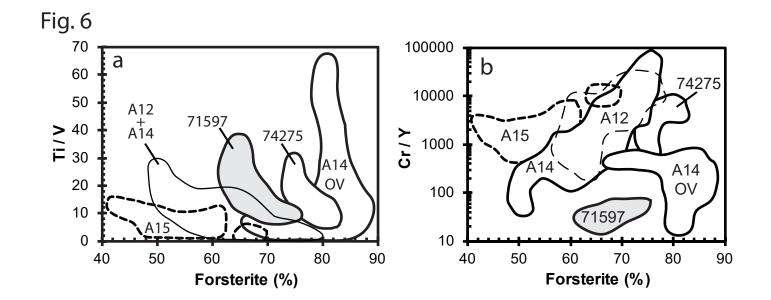
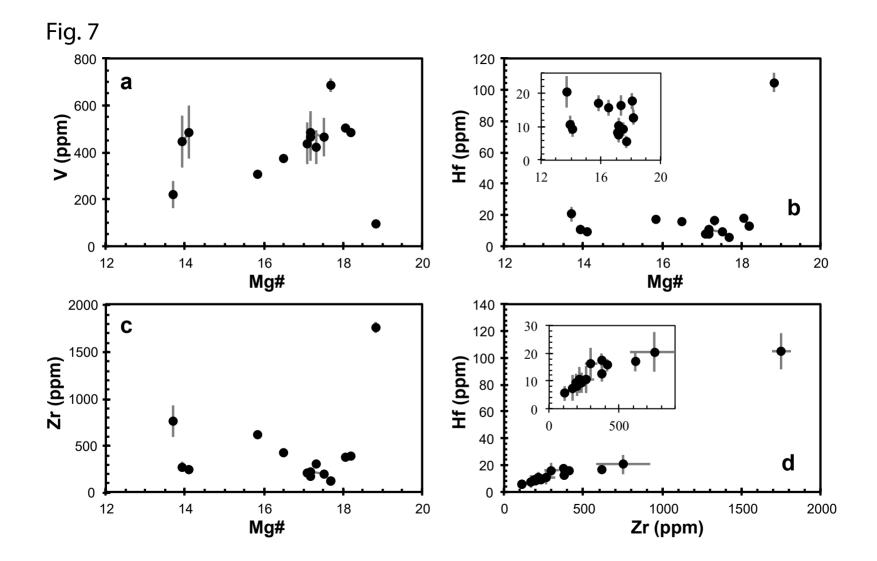

olivine armalcolite ilmenite plagioclase							0		nige	onite
	N Z				* •		augite			onne
	V	0.49 ^a	6.7 ^c	3.4 ^c	0.010 ^h		1.1 ^k		0.33 ^a	
	Cr	0.91 ^a	6.4 ^c	10 ^g	0.018	0.021 ⁱ	3.3 ^g		10 ^g	
	La	0.011^{a}	0.006 ^d	0.029 ^g	0.013	0.022 ^j	0.05	0.14 ¹	0.004	0.023 ¹
	Ce	0.008^{a}	0.007^{d}	0.035 ^g	0.015	0.022^{j}	0.08	0.18 ¹	0.006	0.035 ¹
	Pr	0.006^{b}	0.007^{d}	0.041 ^g	0.037 ^g		0.12	0.22 ¹	0.01	0.052 ¹
	Nd	0.005 ^a	0.008 ^d	0.047 ^g	0.012	0.018 ^j	0.2	0.30 ¹	0.021	0.098 ¹
	Sm	0.0002^{a}	0.008^{d}	0.053 ^g	0.009	0.013 ^j	0.24	0.33 ¹	0.028	0.124 ¹
	Eu	0.007^{a}	0.006 ^d	0.020 ^g	0.817	0.916 ^j	0.26	0.36 ¹	0.036	0.150 ¹
	Gd	0.004^{a}	0.013 ^e	0.081 ^g	0.012 ^g		0.28	0.37 ¹	0.045	0.177 ¹
	Tb	0.01 ^a	0.024^{d}	0.095 ^g	0.012 ^g		0.29	0.38 ¹	0.056	0.206 ¹
	Dy	0.01 ^a	0.035 ^d	0.013 ^c	0.012 ^g		0.29	0.40^{1}	0.068	0.234 ¹
	Но	0.016 ^a	0.045 ^d	0.018 ^c	0.012 ^g		0.29	0.43 ¹	0.079	0.259 ¹
	Er	0.023 ^a	0.056 ^d	0.024 ^c	0.001	0.004 ^j	0.29	0.46 ¹	0.09	0.280 ¹
	Tm	0.026 ^b	0.060^{f}	0.331 ^g	0.012 ^g		0.28	0.47 ¹	0.1	0.297 ¹
	Yb	0.030^{a}	0.070^{d}	0.051 ^c	0.012 ^g		0.27	0.49 ¹	0.109	0.310 ¹
	Lu	0.053 ^a	0.070^{e}	0.067 ^c	0.011 ^g		0.26	0.49 ¹	0.117	0.321 ¹

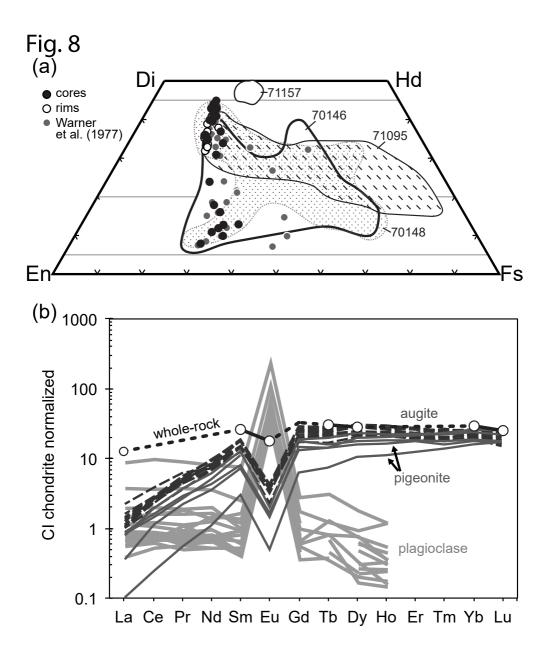
Table 5 Mineral-melt partition coefficients used in modeling of 71597

^aBédard (2005); ^binterpolated; ^cDygert et al. (2013); ^dNeal et al. (1990); ^eKlemme et al. (2006); ^fIrving et al. (1978); ^gHaskin and Korotev (1977); ^hBindeman et al. (1998); ⁱRTlnD; ^jHui et al. (2011); ^kMallman and O'Neill (2009); ^lSun and Liang (2012)








Fig. 4

