1	Revision 2
2	
3	Comparative compressional behavior of chabazite with Li^+ , Na^+ , Ag^+ , K^+ ,
4	Rb ⁺ , and Cs ⁺ as extra-framework cations
5	by
6	Mihye Kong, Yongmoon Lee, G. Diego Gatta, Yongjae Lee
7	
8	Corresponding author: Yongjae Lee, Department of Earth System sciences, Yonsei
9	University, Seoul 03722, Republic of Korea - E-Mail: yongjaelee@yonsei.ac.kr
10	
11	Manuscript submitted to The American Mineralogist for the special collection: "Microporous
12	materials: crystal-chemistry, properties and utilizations"
13	
14	
15	
16	
17	
18	
19	
20	
21	

22	Revision 2
23	
24	Comparative compressional behavior of chabazite with Li ⁺ , Na ⁺ , Ag ⁺ , K ⁺ ,
25	Rb ⁺ , and Cs ⁺ as extra-framework cations
26	
27	Mihye Kong ¹ , Yongmoon Lee ² , G. Diego Gatta ³ , Yongjae Lee ^{1, 2, *}
28	
29	¹ Department of Earth System sciences, Yonsei University, Seoul 03722, Republic of Korea
30	² Center for High Pressure Science and Technology Advanced Research, Shanghai 201203,
31	China
32	³ Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-
33	20133 Milano, Italy
34	
35	Abstract
36	The high-pressure behavior of monovalent-cation-exchanged chabazites was
37	investigated by means of <i>in-situ</i> synchrotron X-ray powder diffraction with a diamond anvil
38	cell, and using water as penetrating pressure-transmitting medium, up to 5.5 GPa at room
39	temperature. In all cases, except for Na-containing chabazites, a phase transition from the
40	original rhombohedral $(R\overline{3}m)$ to triclinic symmetry (likely $P\overline{1}$) was observed in the range
41	between 3.0 GPa and 5.0 GPa. The phase transition is accompanied by an abrupt decrease of
42	the unit-cell volume by up to 10 %. Evidence of pressure-induced hydration (PIH), i.e., P-
43	induced penetration of H ₂ O molecules through the zeolitic cavities, was observed, as
44	reflected by the incompressibility of the cation-exchanged chabazites, which is governed by

45	the distribution of the extra-framework cations. The reversibility of the PIH and P-induced
46	phase transitions in the high-pressure behavior of the cation-exchanged chabazites are
47	discussed in the context of the role played by the chemical nature and bonding configuration
48	of the extra-framework cations, along with that of the $\mathrm{H}_2\mathrm{O}$ content at room conditions.
49	
50	Keywords: Chabazite, compressibility, high pressure, pressure-induced hydration,

51 synchrotron diffraction

53 Introduction

54 There is a growing interest in understanding the behavior of microporous materials at non-ambient conditions and, in particular, at high pressure (e.g., Bish and Carey 2001; Alberti 55 56 and Martucci 2005; Cruciani 2006; Gatta and Lee 2014; Gatta et al. 2017 and references therein). Pressure can cause important structural changes in microporous materials, 57 modifying their physical-chemical properties and hence affecting their potential technological 58 utilizations. Pressure-induced hydration (PIH) or pressure-induced insertion (PII), i.e., P-59 induced penetration of external molecules through the zeolitic sub-nanocavities at moderate 60 pressure (≤ 1 GPa), is one of the most fascinating discovery in material science over the last 61 decade, with potential technological and geological implications, recently reviewed by Gatta 62 63 et al. (2017), promoting new routes for creating hybrid host-guest composite materials or for understanding the stability of clathrates or the role played by zeolites as carrier of H₂O or 64 CO₂ in subduction zones (e.g., Lee et al. 2011; Seoung et al. 2013; Seoung et al. 2014; 65 Seoung et al. 2015; Im et al. 2015). Framework topology and extra-framework content are the 66 key factors that govern the structural deformations at high pressure (e.g., Gatta et al. 2005; 67 68 Gatta 2010; Danisi et al. 2015). Previous studies showed that the pressure-induced 69 deformation of the tetrahedral framework in zeolites can be described in terms of tilting of quasi-rigid tetrahedra (e.g., Gatta 2008; 2010; Gatta and Lee 2014). There has not, however, 70 71 been any systematic study on how the framework distortion in response to the applied pressure is influenced by the nature and distribution of the extra-framework cations. Only the 72 73 "fibrous zeolites group", which was extensively investigated at high pressure, provided a preliminary model to describe the effect of the extra-framework population on the elastic 74 behavior of isotypic materials (e.g., Gatta 2005; Gatta et al. 2005; Seoung et al. 2013; Seoung 75 et al. 2015). 76

77 Chabazite (ideally $|(Ca_{0.5},K,Na)_x(H_2O)_{12}|[Al_xSi_{12-x}O_{24}]|$, with x = 2.4 - 5.0, 78 http://www.iza-online.org/natural/Datasheets/Chabazite/chabazite.htm) is one of the most 79 widespread natural zeolites with excellent ion-exchange properties (*e.g.*, Barrer et al. 1969;

80 Shang et al. 2012). Its framework is built up by double 6-membered rings (D6R), stacked in an ABC sequence and linked together through single 4-membered rings (S4R) (e.g., 81 Calligaris et al. 1982; Zema et al. 2008). As a result, the framework contains large ellipsoidal 82 cavities (*i.e.*, the CHA cage) with apertures of about 6.7×10 Å, which are accessible through 83 single 8-rings (S8R) (Breck 1974). The largest opening of the S8R has a dimension of $3.8 \times$ 84 3.8 Å and is located in the direction normal to the (001) crystal plane (Smith et al. 2001; 85 Shang et al. 2012). Chabazites crystallizes with rhombohedral symmetry (space group $R\overline{3}m$), 86 with only one independent tetrahedral framework site, populated by Al and Si with a 87 88 statistically disordered distribution (Dent and Smith 1958). Exchangeable extra-framework cations and H₂O molecules are distributed over the D6R, S8R, and CHA cages with various 89 occupancies (e.g., Fialips et al. 2005). A recent structural study of our group on various 90 monovalent cation-exchanged chabazites revealed the systematic interplay between the 91 framework and the extra-framework cations, *i.e.*, the unit-cell volume of monovalent-cation-92 exchanged chabazites varies in response to the ion selectivity, in the order of $Cs^+ \ge K^+ > Ag^+$ 93 $> Rb^+ > Na^+ > Li^+$ (Kong et al. 2016). 94

95 The aim of this study is the description of the comparative compressional behavior of these monovalent cation-exchanged chabazites (Kong et al. 2016) and the potential crystal-96 97 fluid interactions in response to the applied hydrostatic pressure. We have performed *in-situ* 98 high-pressure (at room temperature) synchrotron X-ray powder diffraction experiments on Li-, Na-, Ag-, K-, Rb-, and Cs-exchanged chabazites, using a diamond-anvil cell and pure 99 100 water as a nominally pore-penetrating pressure-transmitting medium, in order to emulate the same conditions generated in industrial processes, or occurring in nature, in which water is 101 102 the dominant *P*-fluid.

103

104 **Experimental methods**

105

A natural chabazite (hereafter ORI-CHA, Ca_{1.6}Na_{0.5}Si_{8.4}Al_{3.6}O₂₄·14.3H₂O, space

group $R\overline{3}m$, a = 9.405(5) Å, $\alpha = 94.22(2)^{\circ}$) from Rubendorfel, Bohemia, was used in this 106 study. Cation exchange was performed by stirring a mixture of ground ORI-CHA and the 107 respective nitrate solution of Li, Na, Ag, K, Rb, and Cs, in a 1:100 weight ratio, in a closed 108 system at 80°C for 72h. The final product was filtered, washed with distilled water, and air-109 110 dried. Elemental analysis (by X-ray fluorescence with energy-dispersive system detector) revealed that a complete ion-exchange was achieved, with the respective aforementioned 111 112 cations. Further details pertaining to the ion-exchange protocols and cristallochemical characterization of the natural and final products are reported by Kong et al. (2016). 113

114 In-situ high-pressure (HP) synchrotron X-ray powder diffraction experiments on the as-prepared cation-forms of chabazites were performed at beamline 10-2 at the Stanford 115 116 Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory. At the beamline 10-2, the synchrotron radiation from the wiggler insertion device impinges 117 on a Si(111) crystal followed by two pinholes in order to generate an approximately 200 µm 118 119 diameter beam of monochromatic X-rays with a wavelength of 0.61992(5) Å. A Pilatus 300K-w Si-diode CMOS detector, manufactured by DECTRIS, was used to collect the 120 121 powder diffraction data. The detector, held at a distance of 1032(2) mm from the sample, was 122 stepped to produce scattering angle coverage in 2θ up to ca. 40° . The position of the incident 123 beam, sample to detector distance, and detector tilt were determined using LaB_6 (SRM 660) 124 as a standard polycrystalline material.

A modified Merrill-Bassett diamond anvil cell (DAC), with two opposing diamonds 125 supported by tungsten-carbide plates, was used for the high-pressure X-ray diffraction 126 127 measurements. A stainless-steel foil of 250 µm thickness was pre-indented to a thickness of about 100 µm, and a 300 µm hole was obtained by electro-spark erosion. The powdered 128 129 samples of Li-, Na-, Ag-, K-, Rb-, and Cs-exchanged chabazites were placed in the gasket hole together with a few ruby chips (~20 µm in diameter) for pressure measurements by the 130 131 ruby-fluorescence method (following the protocol of Mao et al. 1986; error: \pm 0.05 GPa). Ambient pressure data were collected first on the dry zeolite powder sample inside the DAC. 132

Subsequently, pure water was added into the gasket hole as a (hydrostatic, at $P \le 1$ GPa) P-133 transmitting medium (PTM), and the second ambient pressure data were collected using the 134 'wet' sample. The pressure was then increased and, at any pressure point, the sample was 135 136 equilibrated for about 10 minutes before collecting the X-ray diffraction data. Water transforms to a solid phase at $P \ge 1$ GPa (and room temperature), and the diffraction peaks of 137 ice VI and VII were observed at pressure in excess of 1 GPa. The experiments were 138 deliberately performed under non-hydrostatic conditions at P > 1 GPa, in order to emulate the 139 140 conditions of natural or industrial processes.

Pressure-dependent changes of the unit-cell lengths and volumes were derived from a series of Le Bail profile fittings (Le Bail et al. 1988) using the GSAS-EXPGUI suite of programs (Larson and Von Dreele 2004; Toby 2001). The background was fitted with a Chebyshev polynomial (with \leq 24 coefficients), and the pseudo-Voigt profile function of Thompson et al. (1987) was used to model the Bragg peaks shape. Unfortunately, any attempt to perform Rietveld structure refinements (Rietveld 1969) was unsuccessful.

147 The (isothermal) bulk compressibility of the (low-*P*) rhombohedral polymorphs of 148 Li⁺-, Na⁺-, Ag⁺-, K⁺-, Rb⁺- and Cs⁺-chabazites is here described by the bulk modulus K_0 ($K_0 =$ 149 $1/\beta = -V \cdot \partial P/\partial V$, where β is the isothermal compressibility coefficient), obtained by a second-150 order Birch-Murnaghan Equation of State (II-BM-EoS) fit (Birch 1947), using the EOS-fit 151 V7.0 program (Angel et al. 2014) and the data weighted by the uncertainties in *P* and *V*.

152

153 **Results**

154 Synchrotron X-ray powder diffraction patterns collected at high pressure, using pure 155 water as PTM, are shown in Fig. 1. A visual examination of the diffraction patterns reveals 156 that, upon increasing pressure, the diffraction peaks exhibit gradual broadening. The 157 broadening effect can be due to a number of factors, such as an increase in the long-range 158 structural disorder and the growth of microstrains in response to the non-hydrostatic

conditions at P > 1 GPa (e.g., Yamanaka et al. 1997; Weidner et al. 1998; Fei and Wang 2000). 159 Similar effects have been observed for the other isotypic CHA materials (i.e., SAPO-34, 160 ALPO-34) by Leardini et al. (2010, 2013). After pressure release back to ambient conditions, 161 162 the peak positions, widths, and intensities revert back to those before compression, indicating 163 the reversibility of the P-induced deformation mechanisms in all the cation-exchanged chabazites within the *P*-range investigated (Fig. 1). At P > 3 GPa, phase transitions from 164 rhombohedral to triclinic symmetry are observed in chabazites exchanged with Li⁺, K⁺, Ag⁺, 165 Rb⁺ and Cs⁺, whereas the natural chabazite and the Na-form do not experience any transition 166 167 (Figs. 1 and 2 and Table 1). These phase transitions are driven by an abrupt decrease of the unit-cell volume in the range between 2.0 and 10 % (Fig. 2). 168

169 The compressional pattern of the natural chabazite (ORI-CHA, Ca_{1.6}Na_{0.5}Si_{8.4}Al_{3.6}O₂₄·14.3H₂O) in water PTM shows a monotonic trend, though with a 170 softening which is more pronounced at P > 2 GPa (Figs. 1 and 2, Table 1). The refined bulk 171 172 modulus (deduced on the basis of the low-P data pre-softening) is K_0 (ORI-CHA) = 88(3) 173 GPa, while the measured unit-cell volume at ambient pressure is V_0 (ORI-CHA) = 824.9(9) Å³. 174

When Li-CHA (Li_{2.9}Si_{8.6}Al_{3.4}O₂₄·13.2H₂O) is compressed in water PTM from P_{amb} to 175 176 5.5 GPa, the unit-cell volume decreases steadily below 3.0 GPa. Above this pressure, the rhombohedral structure transforms into a triclinic one (Figs. 1 and 2, Table 1), accompanied 177 by abrupt and anisotropic contraction of the unit-cell edges by ca. 0.8 %, 2.0 %, and 4.5 % for 178 the a-, b-, and c-edge lengths, respectively, of the high-P triclinic polymorph (Fig. 2). This 179 180 leads to an overall volume reduction by ca. 3.0 %. Bulk modulus at ambient pressure, 181 calculated for the low-P rhombohedral polymorph of Li-CHA, is K_0 (Li-CHA) = 202(2) GPa with the measured V_0 (Li-CHA) of 819.9(9) Å³. The bulk modulus of Li-CHA is the highest 182 amongst the studied cation-exchanged chabazites (hence with the lowest compressibility), 183 whereas its volume at ambient pressure is the smallest. 184

In the case of Na-CHA (Na_{3.4}Si_{8.6}Al_{3.4}O₂₄·11.4H₂O), compression in water PTM up to 5.3 GPa leads to a steady decrease of unit-cell volume without phase transition, though with a modest volume expansion at very low-*P* (0.5 GPa, Table 1) and softening at *P* > 2 GPa (Figs. 1 and 2, Table 1). The refined bulk modulus at ambient pressure (deduced on the basis of the low-*P* data pre-softening) is K_0 (Na-CHA) = 114(9) GPa with the measured V_0 (Na-CHA) of 824.9(9) Å³.

In Ag-CHA(Ag_{3.5}Si_{8.5}Al_{3.5}O₂₄·15.9H₂O), the steady initial contraction of the unit-cell edges in water PTM is followed by a transition to a triclinic structure above ca. 5.7 GPa, accompanying abrupt and anisotropic contractions of the *a*-, *b*-, and *c*-edge lengths, of the triclinic polymorph, by ca. 0.4 %, 3.3 %, and 8.7 %, respectively (Figs. 1 and 2, Table 1). This leads to an overall volume reduction by ca. 10.0 %. The refined bulk modulus at ambient pressure, calculated for the low-*P* rhombohedral polymorph of Ag-CHA, is K_0 (Ag-CHA) = 116(2) GPa with the measured V_0 (Ag-CHA) of 829.2(2) Å³.

Similar transition from rhombohedral to triclinic structure is observed in K-CHA 198 (K_{3.2}Si_{8.7}Al_{3.3}O₂₄·10.7H₂O) compressed in water at ca. 5.1 GPa (Figs. 1 and 2, Table 1). Also 199 200 in this case, the transition is accompanied by abrupt and anisotropic contraction of the unitcell edges by ca. 1.5 %, 1.5 %, and 6.5 % for the a-, b-, and c-edge lengths, respectively (Fig. 201 202 2), which leads to an overall volume reduction of the high-P triclinic polymorph by ca. 6.0 %. The refined bulk modulus of the low-P rhombohedral polymorph of K-CHA is K_0 (K-CHA) = 203 93(1) GPa, the lowest value amongst the ion-exchanged chabazites of this study, whereas the 204 205 measured unit-cell volume at ambient pressure is V_0 (K-CHA) = 830.8(8) Å³.

Compression of Rb-CHA ($Rb_{4.1}Si_{7.9}Al_{4.1}O_{24}\cdot 6.5H_2O$) in water PTM to 6.0 GPa shows a modest volume expansion at very low-*P* (0.5 GPa, Table 1) and then a gradual monotonic decrease of the unit-cell volume up to ca. 4.9 GPa, followed by abrupt contraction by ca. 5.0 % in response to the rhombohedral-to-triclinic phase transition (Figs. 1 and 2, Table 1). This transition is also driven by anisotropic contraction of the unit-cell edges, of the triclinic 214 For Cs-CHA (Cs_{3.4}Si_{8.6}Al_{3.4}O₂₄·6.4H₂O), a modest volume expansion at very low-P (0.5 GPa, Table 1) followed by a monotonic compression is also observed (Figs. 1 and 2, 215 216 Table 1). The degree of volume contraction during the rhombohedral-to-triclinic transition, 217 between 3 and 4 GPa, is modulated to ca. 2.0% with anisotropic reduction of the unit-cell edges by ca. 1.4 %, 1.2 %, and 1.1 % for the a-, b-, and c-edges lengths, respectively, of the 218 triclinic form (Figs. 1 and 2, Table 1). Bulk modulus and (measured) unit-cell volume at 219 ambient pressure for the low-P rhombohedral polymorph are: K_0 (Cs-CHA) = 137(1) GPa 220 and V_0 (Cs-CHA) = 830.4(4) Å³, respectively. 221

222

223

Discussion and Implications

224 The experimental findings of this study, in which a nominally penetrating P-225 transmitting fluid is used (sensu Gatta 2008), allow first of all a comparison between the compressional behavior of a natural chabazite in penetrating and non-penetrating media. 226 227 Leardini et al. (2010, 2013) reported the behavior of two natural chabazites, with slightly 228 different compositions, compressed in silicone oil (a non-penetrating *P*-medium) and showed: a change of the compressional behavior at 1.4 GPa in one of the samples, with chemical 229 230 formula $(K_{1,36}Ca_{1,04}Na_{0,28}Sr_{0,4}Ba_{0,06}Mg_{0,02})[Si_{7,17}Al_{4,87}O_{24}]\cdot 13.16H_2O$, with an estimated bulk modulus of 35(5) GPa at P < 1.4 GPa and 62(1) at P > 1.4 GPa (Leardini et al. 2010); a 231 232 rhombohedral-to-triclinic phase transition at 2.1 GPa in the second chabazite sample, with chemical formula $(Ca_{1,32}K_{0,45}Na_{0,13}Sr_{0,10})[Si_{8,55}Al_{3,45}O_{24}]\cdot 11.30H_2O$, with an estimated bulk 233 modulus of 54(3) GPa for the low-P polymorph. Further HP-experiments on the synthetic 234 235 ALPO-34 and SAPO-34, isotypic materials with CHA framework topology, were performed using non-penetrating fluids: the bulk modulus of the ALPO-34 was reported to be 54(3) 236

(Leardini et al. 2012) and that of SAPO-34 of 29(1) GPa (Leardini et al. 2010). While ALPO-237 34 is free of extra-framework cations, SAPO-34 contains organic template and water 238 molecules in the CHA cages. If we consider all the data available in the open literature, the 239 240 "expected" bulk modulus (at room conditions) of a natural (rhombohedral) chabazite is 50±15 GPa. In our study, the bulk modulus of the natural chabazite compressed in water, a 241 nominally penetrating fluid, leads to a bulk modulus of about 90 GPa. This value is, in 242 243 general, unusual for zeolites (*i.e.*, too high, Gatta and Lee 2014) and, in this specific case, suggests that the H₂O molecules penetrate through the zeolitic cavities in response to the 244 245 applied pressure. The continuous penetration of the extra H₂O molecules would lead to more efficient stuffing of the pores by extra-framework species, making the zeolite structure less 246 compressible. This can explain the higher bulk modulus observed in this study if compared to 247 those obtained in previous experiments with non-penetrating *P*-fluids, in which the inherent 248 compressibility is obtained. A similar effect was previously observed in several HP-249 250 experiments on zeolites (compressed in penetrating and non-penetrating fluids) and provides "indirect" evidence of PIH in our experiment, useful when "direct" evidence are missed due 251 to the lack of abrupt structural changes and/or structural models (*i.e.*, impossibility to perform 252 253 Rietveld structure refinements).

254 Without data at atomic scale obtained by structure refinements, it is not certain if the penetration of extra H₂O molecules occurs entirely at very low-P (≤ 0.5 GPa), as suggested 255 by the modest volume expansion in Na-, Rb- and Cs-CHA (Table 1) and as observed for 256 257 several zeolites (Gatta 2008; Gatta and Lee 2014 and references therein), or it is a continuous process within the *P*-range investigated. In the second case, the bulk modulus value does not 258 have a robust physical meaning, because the composition of the zeolite changes with 259 increasing pressure (i.e., the system is "open"). However, the "apparent" compressibility, 260 through the bulk modulus, remains a useful measure for a comparative analysis (e.g., the 261 262 same zeolite compressed in different fluids; zeolites with the same framework topology and 263 different extra-framework population compressed in the same fluid).

The compressional behavior of all the cation-exchanged chabazites of this study allow us to make the following observations and considerations:

266 1) Our results indicate an inverse relationship between the onset pressure of the 267 rhombohedral-to-triclinic transition and the radius of extra-framework cation in chabazite, above the ca. 1.0 Å threshold (Fig. 3). Similar trend is observed between 268 269 the degree of volume contraction and the radius of extra-framework cation, which appears to be mainly driven by the *c*-edge length contraction of the triclinic 270 polymorph (Fig. 3, Table 1). The largest contraction along the *c*-axis is ca. 8.7% in 271 Ag-CHA, whereas in K-CHA, Rb-CHA, and Cs-CHA, the contractions are by ca. 6.5, 272 4.8, and 1.4%, respectively (Fig. 3). The different volume contraction, in response to 273 274 the phase transition, might be partly related to the initial H₂O content at ambient conditions. In Ag-CHA there are ca. 15.9 H₂O molecules per formula unit (p.f.u.), 275 which decrease to ca. 10.7, 6.5, and 6.4 in K-CHA, Rb-CHA, and Cs-CHA, 276 277 respectively (Fig. 3). On the other hand, there are ca. 13.2 H₂O p.f.u. in Li-CHA, which exhibits lower transition pressure and volume contraction than Ag-CHA (Fig. 278 279 3): Li-CHA appears to be an outlier in the contraction vs. cation radius relationship 280 and needs further structural investigation.

281 2) There is an additional experimental finding about a potential relation between the 282 observed bulk modulus and the distribution of extra-framework cations over the different segments forming the chabazite cavities, *i.e.*, D6R, S8R, and CHA-cage (Fig. 283 284 4). The highest bulk modulus of 202(2) GPa is observed for the rhombohedral low-P 285 polymorph of Li-CHA, where Li-cations fill all the three cavities (D6R, S8R, and 286 CHA-cage) at ambient conditions. More compressible than Li-CHA are Rb-CHA and 287 Cs-CHA with bulk moduli of 149(5) and 137(1) GPa, respectively. In these chabazites, 288 the extra-framework cations populate the S8R and CHA-cages only (*i.e.*, no D6R). 289 The most compressible forms are then Ag-CHA, Na-CHA, and K-CHA with bulk 290 moduli of 116(2), 114(9), and 93(1) GPa, respectively. In these compounds, extraframework cations are only located in the largest CHA-cages (*i.e.*, no D6R or S8R).

- 3) All the high-*P* deformation mechanisms and penetration phenomena are reversible, as
 proved by the diffraction data collected at room conditions after decompression (Fig.
 1, Table 1).
- 295 Overall, it appears that:
- 296 1) PIH occurs in the natural and in all the cation-exchanged chabazites of this study, and it is reversible. This is true even in the case of Na-CHA, which does not experience 297 298 any *P*-induced phase transition but reacts, in response to the applied pressure, with a bulk modulus of 114(9) GPa, not realistic for a zeolite without any crystal-fluid 299 interaction (Gatta 2008, Gatta and Lee 2014). At this stage, it is unknown why the 300 ORI-CHA and Na-CHA do not experience the P-induced phase transition observed 301 for the other cation-exchanged forms of this study. Likely, the higher number of 302 303 independent extra-framework sites in these two chabazites (i.e., ORI-CHA: 4Ca + 3Na + 5OW; Na-CHA: 4Na + 7OW; Li-CHA: 4Li + 5OW; K-CHA: 3K + 5OW; Rb-304 CHA: 2Rb + 2OW; Cs-CHA: 2Cs + 2OW; Ag-CHA: 2Ag + 2OW; Kong et al. 2016) 305 makes their structures more "flexible", with higher degrees of freedom 306 accommodating the P-induced deformation effects. 307
- 308 2) The degree of PIH is someway controlled by the distribution of the extra-framework cations (which, in turn, reflects their ionic radius and charge) and how these can 309 310 coordinate extra H₂O molecules. Li, for example, is a small ion and its coordination polyhedra leaves room in the cavities for additional H₂O molecules, which can be 311 further coordinated by Li or can be H-bonded to the framework oxygens. However, 312 the different number (and location inside the cavities) of independent cation sites and 313 H₂O molecules in the cation-exchanged chabazites of this study does not allow to 314 315 define a universal and unambiguous model to explain the behavior of all the cation-316 exchanged chabazites.
- 317

318 We can draw geological implications of our experimental findings as follows. Our results demonstrate that small molecules (in kinetic diameters), like H₂O, CO₂, CH₄ or H₂S, 319 can potentially penetrate into the CHA-type zeolites in response to the applied pressure. Such 320 321 a penetration phenomenon is likely to be active even at very low pressures (kilobar level or even lower). Geological fluids can, therefore, interact efficiently with this zeolite with a 322 significant fluid-to-crystal mass transfer. In other words, the ability of zeolites, as 323 324 microporous materials, to act as geochemical traps of small molecules can be drastically enhanced at moderate pressures even at room temperature; it is highly likely that the 325 326 combined effect of pressure and temperature would improve the magnitude of the PIH and 327 PII, as previously observed in other zeolites (Gatta and Lee 2014 and references therein).

The technological implications of our results are even more relevant. Our 328 experimental findings demonstrate that it is possible to modulate the elastic behavior of a 329 given zeolite simply by cation-exchange and using a penetrating P-transmitting fluid. A 330 combined $[A^+-CHA + H_2O]$ system (with $A^+ = Li$, Na, Ag, K, Rb, Cs) can behave like a low-331 compressibility "spring": the bulk modulus of the Li-CHA in H₂O (*i.e.*, 202(2) GPa) is higher, 332 333 in certain P-range, than those of garnets (~190 GPa, Hazen et al. 1994), mullites (~ 170 GPa, Gatta et al. 2010, 2013) or topaz (~160 GPa, Gatta et al. 2006, 2014). With different cations, 334 335 it is possible to generate hybrid softer systems with modulated bulk moduli targeting certain solids such as olivines (~ 120-130 GPa, Smyth et al. 2000), pyroxenes (~ 90-130 GPa, 336 McCarthy et al. 2008) or feldspars (~ 50-80 GPa, Angel 2004). This is surprising if we 337 338 consider that zeolites are microporous materials and intuitively considered as soft compounds. PIH observed in this study for the natural and for all the cation-exchanged chabazites, is a 339 340 reversible phenomenon and cannot be used to generate super-hydrated zeolites which remain 341 metastable at room conditions after decompression. However, it would be different for other small molecules and/or mixed cation chabazites. In this light, further studies are in progress 342 343 in order to expand the number of small molecules able to penetrate the CHA-cavities at high 344 pressure.

345 Acknowledgments

- 346 This work was supported by the Global Research Laboratory (NRF-2009-00408) and
- 347 National Research Laboratory (NRF-2015R1A2A1A01007227) programs of the Korean
- 348 Ministry of Science, ICT and Planning (MSIP). We also thank the supports by NRF-
- 349 2016K1A4A3914691 and NRF-2016K1A3A7A09005244 grants. Experiments using X-ray
- 350 synchrotron radiation were supported by the Collaborative Access Program of SSRL.

351 **References**

Alberti, A. and Martucci, A. (2005) Phase transformations and structural modifications induced by heating in microporous materials. Studies in surface science and catalysis, 155, 19-43.

Angel, R.J. (2004) Equations of state of plagioclase feldspars. Contributions to Mineralogy and Petrology, 146, 506–512.

Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit-7c and a fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229, 405-419.

Barrer, R.M., Davies, J.A., and Rees, L.V.C. (1969) Thermodynamics and thermochemistry of cation exchange in chabazite. Journal of Nuclide Chemistry, 31, 219-232.

Bish, D.L. and Carey, J.W. (2001) Thermal behavior of natural zeolites. Reviews in
Mineralogy and Geochemistry, 45, 403–452.

Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809-824.

Breck, D.W. (1974) Zeolite molecular sieves: Structure, chemistry and use. Wiley and Sons, New York (original edition); reprinted R.E. Kriegger, F.L. Malabar, 1984 (new edition).

368 Calligaris, M., Nardin, G., and Randaccio, L. (1982) Cation-site location in a natural
369 chabazite. Acta Crystallographica, B38, 602-605.

370 Cruciani, G. (2006) Zeolites upon heating: Factors governing their thermal stability
371 and structural changes. Journal of Physics and Chemistry of Solids, 67, 1913-2240.

Danisi, R.M., Armbruster, T., Arletti, R., Gatta, G.D., Vezzalini, G., Quartieri, S., and Dmitriev, V. (2015) Elastic behavior and pressure-induced structural modifications of the microporous Ca(VO)Si₄O₁₀·4H₂O dimorphs cavansite and pentagonite. Microporous and

375	Mesoporous	Materials,	204,	257-268.
0.0	111000000000000000000000000000000000000	1.10000110010,	_~ · ,	

376	Dent, L.S. and Smith, J.V. (1958) Crystal structure of chabazite, a molecular sie	ve.
377	Nature, 181, 1794-1796.	

- Fei, Y. and Wang, Y. (2000) High-pressure and high-temperature powder diffraction.
 Reviews in Mineralogy and Geochemistry, 41, 521-557.
- 380 Fialips, C.I., Carey, J.W., and Bish, D.L. (2005) Hydration-dehydration behavior and
- thermodynamics of chabazite. Geochimica et Cosmochimica Acta, 69, 2293-2308.
- 382 Gatta, G.D. (2005) A comparative study of fibrous zeolites under pressure. European
 383 Journal of Mineralogy, 17, 411-421.
- Gatta, G.D. (2008) Does porous mean soft? On the elastic behavior and structural evolution of zeolites under pressure. Zeitschrift für Kristallographie, 223, 160-170.
- Gatta, G.D. (2010) Extreme deformation mechanisms in open-framework silicates at
 high-pressure: Evidence of anomalous inter-tetrahedral angles. Microporous and Mesoporous
 Materials, 128, 78–84.
- Gatta, G.D. and Lee, Y. (2014) Zeolites at high pressure: A review. Mineralogical
 Magazine, 78, 267-291.
- Gatta, G.D., Boffa Ballaran, T., Comodi, P., and Zanazzi, P.F. (2004) Comparative
 compressibility and equation of state of orthorhombic and tetragonal edingtonite. Physics and
 Chemistry of Minerals, 31, 288-298.
- Gatta, G.D., Nestola, F., and Boffa Ballaran, T. (2006) Elastic behaviour and
 structural evolution of topaz at high pressure. Physics and Chemistry of Minerals, 33, 235242.
- 397 Gatta, G.D., Rotiroti, N., Fisch, M., and Armbruster, T. (2010) Stability at high 398 pressure, elastic behavior and pressure-induced structural evolution of "Al₅BO₉", a mullite-

type ceramic material. Physics and Chemistry of Minerals, 37, 227-236.

- Gatta, G.D., Lotti, P., Merlini, M., Liermann, H.-P., and Fisch, M. (2013) Highpressure behavior and phase stability of Al₅BO₉, a mullite-type ceramic material. Journal of
 the American Ceramic Society, 96, 2583–2592.
- Gatta, G.D., Morgenroth, W., Dera, P., Petitgirard, S., and Liermann, H-P. (2014)
 Elastic behavior and pressure-induced structure evolution of topaz up to 45 GPa. Physics and
 Chemistry of Minerals, 41, 569-577.
- Gatta, G.D., Lotti, P., and Tabacchi, G. (2017) The effect of pressure on openframework silicates: elastic behaviour and crystal–fluid interaction. Physics and Chemistry of
 Minerals (in press, DOI: 10.1007/s00269-017-0916-z).

Hazen, R.M., Downs, R.T., Conrad, P.G., Finger, L.W., and Gasparik, T. (1994)
Comparative compressibilities of majorite-type garnets. Physics and Chemistry of Minerals,
21, 344–349.

- Im, J., Seoung, D., Lee, S.Y., Blom, D.A., Vogt, T., Kao, C.-C., and Lee, Y. (2015)
 Pressure-Induced Metathesis Reaction To Sequester Cs. Environmental Science and
 Technology, 49, 513-519.
- Kong, M., Liu, Z., Vogt, T., and Lee, Y. (2016) Chabazite structures with Li⁺, Na⁺,
 Ag⁺, K⁺, NH₄⁺, Rb⁺ and Cs⁺ as extra-framework cations. Microporous and Mesoporous
 Materials, 221, 253-263.
- 418 Larson, A.C. and Von Dreele, R.B. (2004) General structure analysis system (GSAS),
 419 Los Alamos National Laboratory Report LAUR 86–748.
- Leardini, L., Quartieri, S., and Vezzalini, G. (2010) Compressibility of microporous materials with CHA topology: 1. Natural chabazite and SAPO-34. Microporous and Mesoporous Materials, 127, 219-227.

423	Leardini, L., Quartieri, S., Martucci, A., Vezzalini, M.G., Dmitriev, V. (2012)
424	Compressibility of microporous materials with CHA topology: 2. ALPO-34. Zeitschrift fuer
425	Kristallographie, 227, 514-521.
426	Leardini, L., Quartieri, S., Vezzalini, G., Martucci, A., and Dmitriev, V. (2013)
427	Elastic behavior and high pressure-induced phase transition in chabazite: New data from a
428	natural sample from Nova Scotia. Microporous and Mesoporous Materials, 170, 52-61.
429	Le Bail, A., Duroy, H., and Fourquet, J.L. (1988) Ab-initio structure determination of
430	LiSbWO ₆ by X-ray powder diffraction. Materials Research Bulletin, 23, 447–452.
431	Lee, Y., Liu, D., Seoung, D., Liu, Z., Kao, CC., and Vogt, T. (2011) Pressure- and
432	Heat-Induced Insertion of CO ₂ into an Auxetic Small-Pore Zeolite. Journal of the American
433	Chemical Society, 133, 1674-1677.
434	Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to
435	800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673-
436	4676.
437	McCarthy, A.C., Downs, R.T., and Thompson, R.M. (2008) Compressibility trends of
438	the clinopyroxenes, and in-situ high-pressure single-crystal X-ray diffraction study of jadeite.
439	American Mineralogist, 93, 198–209.
440	Seoung, D., Lee, Y., Kao, CC., Vogt, T., and Lee, Y. (2013) Super-Hydrated Zeolites:
441	Pressure-Induced Hydration in Natrolites. Chemistry - A European Journal, 19, 10876–10883.
442	Seoung, D., Lee, Y., Cynn, H., Park, C., Choi, KY., Blom, D.A., Evans, W.J., Kao,
443	CC., Vogt, T., and Lee, Y. (2014) Irreversible Xenon Insertion into a Small Pore Zeolite at
444	Moderate Pressures and Temperatures. Nature Chemistry, 6, 835-839.
445	Seoung, D., Lee, Y. Kao, CC., Vogt, T., and Lee, Y. (2015) Two-Step Pressure-
446	Induced Superhydration in Small Pore Natrolite with Divalent Extra-Framework Cations.
447	Chemistry of Materials, 27, 3874-3880.

448	Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K.M., Bastow, T.J., Medhekar, N.,
449	Doherty, C.M., Hill, A.J., Liu, J.Z., and Webley, P.A. (2012) Discriminative Separation of
450	Gases by a "Molecular Trapdoor" Mechanism in Chabazite Zeolites. Journal of the American
451	Chemical Society, 134, 19246-19253.
452	Smith, L.J., Eckert, H., and Cheetham, A.K. (2001) Potassium cation effects on site
453	preferences in the mixed cation zeolite Li, Na-chabazite. Chemistry of Materials, 13, 385-391.
45.4	
454	Smyth, J.K., Jacobsen, S.D., and Hazen, R.M. (2000) Comparative crystal chemistry
455	of orthosilicate minerals. Reviews in Mineralogy and Geochemistry, 41, 187-209.
456	Thompson, P., Cox, D.E., and Hastings, J.B. (1987) Rietveld refinement of Debye-
457	Scherrer synchrotron X-ray data from Al ₂ O ₃ . Journal of Applied Crystallography, 20, 79-83.
458	Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied
459	Crystallography, 34, 210-213.
160	Rietveld HM (1960) A profile refinement method for nuclear and magnetic
460	Retverd, 11.1vi. (1909) A prome remember method for nuclear and magnetic
460 461	structures. Journal of Applied Crystallography, 2, 65–71.
460 461 462	structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology
460 461 462 463	structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds.,
460 461 462 463 464	 Kletveld, H.M. (1909) A profile refilement method for indefear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds., Properties of Earth and Planetary Materials at High Pressure and Temperature. Geophysical
460 461 462 463 464 465	 Kletveld, H.M. (1909) A profile refilement method for fidereal and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds., Properties of Earth and Planetary Materials at High Pressure and Temperature. Geophysical Monograph. American Geophysical Union, Washington, DC, p. 473–480.
460 461 462 463 464 465 466	 Kietveid, H.M. (1909) A prome remining method for indical and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds., Properties of Earth and Planetary Materials at High Pressure and Temperature. Geophysical Monograph. American Geophysical Union, Washington, DC, p. 473–480. Yamanaka, T., Nagai, T., and Tsuchiya, T. (1997) Mechanism of pressure-induced
460 461 462 463 464 465 466 467	 Kletveld, H.M. (1969) A prome remember termember include for indecar and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds., Properties of Earth and Planetary Materials at High Pressure and Temperature. Geophysical Monograph. American Geophysical Union, Washington, DC, p. 473–480. Yamanaka, T., Nagai, T., and Tsuchiya, T. (1997) Mechanism of pressure-induced amorphization. Zeitschrift für Kristallographie, 212, 401-410.
 460 461 462 463 464 465 466 467 468 	 Kletveld, H.M. (1909) A prome reminister method for indecar and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds., Properties of Earth and Planetary Materials at High Pressure and Temperature. Geophysical Monograph. American Geophysical Union, Washington, DC, p. 473–480. Yamanaka, T., Nagai, T., and Tsuchiya, T. (1997) Mechanism of pressure-induced amorphization. Zeitschrift für Kristallographie, 212, 401-410. Zema, M., Tarantino, S.C., and Montagna, G. (2008) Hydration/Dehydration and
 460 461 462 463 464 465 466 467 468 469 	 Kletveld, H.M. (1969) A profile refinement include for indecal and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds., Properties of Earth and Planetary Materials at High Pressure and Temperature. Geophysical Monograph. American Geophysical Union, Washington, DC, p. 473–480. Yamanaka, T., Nagai, T., and Tsuchiya, T. (1997) Mechanism of pressure-induced amorphization. Zeitschrift für Kristallographie, 212, 401-410. Zema, M., Tarantino, S.C., and Montagna, G. (2008) Hydration/Dehydration and cation migration processes at high temperature in zeolite chabazite. Chemistry of Materials
460 461 462 463 464 465 466 467 468 469 470	 Kietveid, H.M. (1969) A profile refinement include for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds., Properties of Earth and Planetary Materials at High Pressure and Temperature. Geophysical Monograph. American Geophysical Union, Washington, DC, p. 473–480. Yamanaka, T., Nagai, T., and Tsuchiya, T. (1997) Mechanism of pressure-induced amorphization. Zeitschrift für Kristallographie, 212, 401-410. Zema, M., Tarantino, S.C., and Montagna, G. (2008) Hydration/Dehydration and cation migration processes at high temperature in zeolite chabazite. Chemistry of Materials, 20, 5876, 5887
460 461 462 463 464 465 466 467 468 469 470	 Kletveld, H.M. (1969) A prome termenent method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Weidner, D.J., Wang, Y.B., Chen, G., Ando, J., and Vaughan, M.T. (1998) Rheology measurements at high pressure and temperature. In M.H. Manghnani and T. Yagi, Eds., Properties of Earth and Planetary Materials at High Pressure and Temperature. Geophysical Monograph. American Geophysical Union, Washington, DC, p. 473–480. Yamanaka, T., Nagai, T., and Tsuchiya, T. (1997) Mechanism of pressure-induced amorphization. Zeitschrift für Kristallographie, 212, 401-410. Zema, M., Tarantino, S.C., and Montagna, G. (2008) Hydration/Dehydration and cation migration processes at high temperature in zeolite chabazite. Chemistry of Materials, 20, 5876-5887.

Figure captions

474	Figure 1. Synchrotron X-ray powder diffraction patterns as a function of hydrostatic
475	pressure mediated by pure water as <i>P</i> -transmitting medium for (a) ORI-CHA, (b) Li-CHA, (c)
476	Na-CHA, (d) Ag-CHA, (e) K-CHA, (f) Rb-CHA, and (g) Cs-CHA. Some of the new peak
477	positions due to symmetry lowering are indicated with Miller indices.
478	
479	Figure 2. Evolution of the unit-cell edges lengths (Å) and volume (Å ³) with P , using pure
480	water as P-transmitting medium, for (a) ORI-CHA, (b) Li-CHA, (c) Na-CHA, (d) Ag-CHA,
481	(e) K-CHA, (f) Rb-CHA, and (g) Cs-CHA. The errors associated with the cell parameters are
482	smaller than the symbols. The dashed lines represent only a guide for eyes. For the unit-cell
483	volume, the red symbols indicate the triclinic high-P polymorphs.
484	
485	Figure 3. Changes in the (a) unit-cell volume, (b) <i>c</i> -edge length, and (c) onset pressure of
486	the rhombohedral-to-triclinic transition as a function of the ionic radius of the extra-
487	framework cation in the alkali-metal-exchanged chabazites.
488	
489	Figure 4. (a) Site distribution and (b) occupancy of the extra-framework cations, and (c)
490	initial H ₂ O molecular contents per formula unit in the alkali-metal-exchanged chabazites at
491	ambient conditions. (d) "Observed" bulk moduli plotted as a function of cation radius.
492	

499 Figure 1.

503 Figure 2.

533

531

532

565 566

564

594 Figure 4.

595

Table 1. Changes in the unit-cell edge lengths and volume of the cation-exchanged chabazites with *P* compressed in pure water as pore penetrating pressure transmitting medium 596 59 m.

97	with P ,	compressed	l in pure wa	ter as pore-	penetrating	pressure	transmitting i	mediu
----	------------	------------	--------------	--------------	-------------	----------	----------------	-------

СНА		Ambient	0.55(1) GPa	1.05(1) GPa	1.45(1) GPa	2.10(1) GPa	2.63(1) GPa	3.04(1) GPa	3.56(1) GPa	4.31(1) GPa	5.47(1) GPa	Released
cimi	S.G.	$R\overline{3}m$	$R\overline{3}m$	R3m	$R\overline{3}m$	$R\overline{3}m$	$R\overline{3}m$	$R\overline{3}m$	$R\overline{3}m$	$R\overline{3}m$	$R\overline{3}m$	R3m
	R _{wp} (%)	1.56	1.80	1.52	1.71	2.1	1.92	1.58	1.63	1.42	1.53	1.78
	γ^2	0.12	0.14	0.10	0.13	0.15	0.14	0.10	0.11	0.10	0.10	0.14
	$\tilde{a}(A)$	9.405(5)	9.398(8)	9.386(6)	9.375(5)	9.353(3)	9.337(7)	9.332(2)	9.289(9)	9.269(1)	9.228(1)	9.406(6)
	α (°)	94.22(2)	94.13(3)	94.02(2)	93.93(3)	93.85(5)	93.83(3)	93.83(3)	93.88(1)	93.73(1)	93.76(2)	94.21(1)
	V(Å)	824.9(9)	823.3(3)	820.5(5)	817.8(8)	812.3(3)	808.4(4)	804.4(1)	795.7(1)	791.0(4)	780.6(3)	825.1(1)
Na- CHA		Ambient	0.51(1) GPa	1.01(1) GPa	1.55(1) GPa	2.12(1) GPa	2.52(1) GPa	3.06(1) GPa		4.06(1) GPa	5.27(1) GPa	Released
	S.G.	R3m	R∃m	R3m	R3m	R3m	R3m	R3m		R3m	R3m	R3m
	$R_{wp}(\%)$	1.84	1.30	1.56	1.35	2.00	1.8	1.79		1.33	1.25	1.40
	χ^2	0.16	0.10	0.10	0.10	0.15	0.12	0.12		0.10	0.10	0.10
	<i>a</i> (Å)	9.405(5)	9.409(1)	9.392(1)	9.385(5)	9.367(1)	9.356(1)	9.338(1)		9.298(8)	9.213(2)	9.412(2)
	α (°)	94.21(1)	94.14(1)	94.09(1)	94.17(1)	94.19(1)	94.22(1)	94.25(1)		94.32(1)	94.28(4)	94.32(1)
	$V(\mathbf{A})$	824.9(9)	826.1(1)	821.8(1)	819.7(1)	814.9(1)	812.1(1)	807.2(1)		796.6(1)	775.2(4)	826.2(1)
Ag- CHA		Ambient	0.55(1) GPa	1.03(1) GPa	1.68(1) GPa	1.99(1) GPa	2.63(1) GPa	2.99(1) GPa	3.45(1) GPa	4.85(1) GPa	5.74(1) GPa	Released
	S.G.	R3m	R3m	R3m	R3m	R3m	R3m	R3m	R3m	R3m	<i>P</i> 1	R3m
	$R_{wp}(\%)$	4.11	2.03	2.27	1.75	1.97	2.38	1.74	1.69	1.52	1.06	2.05
	χ	1.61	0.36	0.45	0.26	0.32	0.47	0.25	0.24	0.19	0.10	0.35
	a(A)	9.421(1)	9.417(7)	9.402(2)	9.385(5)	9.38(8)	9.36(6)	9.349(9)	9.342(2)	9.332(1)	9.382(4) 0.112(2)	9.412(2)
	c(A)										8.598(2)	
	α (°)	94.17(7)	94.21(1)	94.25(5)	94.39(9)	94.4(4)	94.4(4)	94.43(3)	94.45(5)	94.51(1)	86.29(3)	94.31(1)
	β(°)										93.00(2)	
	γ (°) 3	000 0(0)	020 1(1)	000 0(1)	010 1(1)	017 ((())	010 2(1)	000 2(1)	007 4(1)	004 ((2)	97.77(2)	00(1(1)
	V (A)	829.2(2)	828.1(1)	823.9(1)	819.1(1)	817.6(6)	812.3(1)	809.3(1)	807.4(1)	804.6(3)	726.0(3)	826.4(1)
Li-CHA	۱ <u> </u>	Ambient	0.61(1) GPa	0.98(1) GPa	1.47(1) GPa	2.26(1) GPa		3.06(1) GPa		4.16(1) GPa	5.48(1) GPa	Released
	S.G.	$R\overline{3}m$	$P\overline{2}m$		75	$R\overline{3}m$		$P\overline{1}$		$P\overline{1}$	Pī	מק
			1.5m	R3m	R3m					11	11	кзт
	$R_{wp}(\%)$	3.11	2.92	R3m 2.84	2.35	3.53		3.41		3.27	2.03	3.49
	$R_{wp}^{2}(\%)$	3.11 0.47	2.92 0.38	R3m 2.84 0.36	R3m 2.35 0.24	3.53 0.55		3.41 0.46		3.27 0.43	2.03 0.19	3.49 0.55
	$R_{wp}(\%)$ χ $a(Å)$	3.11 0.47 9.396(6)	2.92 0.38 9.389(9)	R3m 2.84 0.36 9.38(8)	R3m 2.35 0.24 9.374(4)	3.53 0.55 9.359(9)		3.41 0.46 9.317(1)		3.27 0.43 9.307(3)	2.03 0.19 9.242(2)	R3m 3.49 0.55 9.399(2)
	$ \begin{array}{c} R_{\rm wp}(\%) \\ \chi \\ a(Å) \\ b(Å) \\ \chi(\&) \end{array} $	3.11 0.47 9.396(6)	2.92 0.38 9.389(9)	R3m 2.84 0.36 9.38(8)	R3m 2.35 0.24 9.374(4)	3.53 0.55 9.359(9)		3.41 0.46 9.317(1) 9.299(2) 0.067(2)		3.27 0.43 9.307(3) 9.273(2)	2.03 0.19 9.242(2) 9.319(3)	3.49 0.55 9.399(2)
	$R_{wp}(\%)$ ² ² ² ² ^a (Å) ^b (Å) ^c (Å) ^a (°)	3.11 0.47 9.396(6) 94 88(8)	2.92 0.38 9.389(9) 94 86(6)	R3m 2.84 0.36 9.38(8) 94 86(6)	R3m 2.35 0.24 9.374(4) 94 75(5)	3.53 0.55 9.359(9) 94.89(9)		3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3)		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3)	2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4)	 <i>R</i>3<i>m</i> 3.49 0.55 9.399(2) 94.8(8)
	$R_{wp}(\%)$ χ $a (Å)$ $b (Å)$ $c (Å)$ $a (°)$ $\beta (°)$	3.11 0.47 9.396(6) 94.88(8)	2.92 0.38 9.389(9) 94.86(6)	R3m 2.84 0.36 9.38(8) 94.86(6)	R3m 2.35 0.24 9.374(4) 94.75(5)	3.53 0.55 9.359(9) 94.89(9)		3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1)		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4)	2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4) 92.46(5)	R3m 3.49 0.55 9.399(2) 94.8(8)
	$R_{wp}(\%)$ 2 χ a (Å) b (Å) c (Å) a (°) β (°) γ (°)	3.11 0.47 9.396(6) 94.88(8)	2.92 0.38 9.389(9) 94.86(6)	R3m 2.84 0.36 9.38(8) 94.86(6)	R3m 2.35 0.24 9.374(4) 94.75(5)	3.53 0.55 9.359(9) 94.89(9)		3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2)		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4) 96.53(2)	2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4) 92.46(5) 96.61(3)	3.49 0.55 9.399(2) 94.8(8)
	$R_{wp}^{P}(\%) = \frac{R_{wp}}{2} (\%)$ $\chi = a (Å)$ $b (Å)$ $c (Å)$ $a (°)$ $\beta (°)$ $\gamma (°)$ $V (Å^{3})$	3.11 0.47 9.396(6) 94.88(8) 819.9(9)	2.92 0.38 9.389(9) 94.86(6) 818.3(1)	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1)	R3m 2.35 0.24 9.374(4) 94.75(5) 814.6(6)	3.53 0.55 9.359(9) 94.89(9) 810.2(1)		3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3)		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4) 96.53(2) 764.4(2)	2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4) 92.46(5) 96.61(3) 758.5(5)	x3m 3.49 0.55 9.399(2) 94.8(8) 821.1(1)
K-CHA	$ \frac{R_{wp}(\%)}{2} \frac{2}{\chi} \frac{a (\text{\AA})}{b (\text{\AA})} \frac{b (\text{\AA})}{c (\text{\AA})} \frac{a (^{\circ})}{\beta (^{\circ})} \frac{\beta (^{\circ})}{\gamma (^{\circ})} \frac{\gamma (^{\circ})}{V (\text{\AA}^{3})} $	3.11 0.47 9.396(6) 94.88(8) 819.9(9) Ambient	2.92 0.38 9.389(9) 94.86(6) <u>818.3(1)</u> 0.49(1) GPa	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa	R3m 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa	3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa	2.62(1) GPa	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4) 96.53(2) 764.4(2) 4.01(1) GPa	2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4) 92.46(5) 96.61(3) 758.5(5) 5.12(1) GPa	R3m 3.49 0.55 9.399(2) 94.8(8) 821.1(1) Released
K-CHA	$ \begin{array}{c} R_{wp}(\%) \\ 2 \\ \chi \\ a (Å) \\ b (Å) \\ c (Å) \\ a (°) \\ \beta (°) \\ \gamma (°) \\ V (Å^{3}) \\ \end{array} $ S.G.	3.11 0.47 9.396(6) 94.88(8) 819.9(9) Ambient <i>R</i> 3 <i>m</i>	2.92 0.38 9.389(9) 94.86(6) 818.3(1) 0.49(1) GPa <i>R</i> 3 <i>m</i>	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa R3m	R3m 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa R3m	3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa $R\bar{3}m$	2.62(1) GPa <i>R</i> 3 <i>m</i>	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa $R\bar{3}m$		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4) 96.53(2) 764.4(2) 4.01(1) GPa <i>R</i> 3 <i>m</i>	$\begin{array}{c} 2.03 \\ 0.19 \\ 9.242(2) \\ 9.319(3) \\ 8.881(6) \\ 91.79(4) \\ 92.46(5) \\ 96.61(3) \\ 758.5(5) \\ 5.12(1) \\ \text{GPa} \\ \hline P\bar{1} \end{array}$	R3m 3.49 0.55 9.399(2) 94.8(8) 821.1(1) Released <i>R</i> 3m
K-CHA	$ \begin{array}{c} R_{wp}(\%) \\ 2 \\ \chi \\ a (Å) \\ b (Å) \\ c (Å) \\ a (°) \\ \beta (°) \\ \gamma (°) \\ V (Å^{3}) \end{array} $	3.11 0.47 9.396(6) 94.88(8) <u>819.9(9)</u> Ambient <i>R</i> 3 <i>m</i> 2.63	2.92 0.38 9.389(9) 94.86(6) 818.3(1) 0.49(1) GPa <i>R</i> 3 <i>m</i> 3.52	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa R3m 3.76	R3m 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa R3m 4.01	3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa <i>R</i> 3 <i>m</i> 3.32	2.62(1) GPa <i>R</i> 3 <i>m</i> 3.40	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa <i>R</i> 3 <i>m</i> 3.41		$\begin{array}{c} 3.27 \\ 0.43 \\ 9.307(3) \\ 9.273(2) \\ 8.924(2) \\ 90.60(3) \\ 92.47(4) \\ 96.53(2) \\ 764.4(2) \\ 4.01(1) \\ \text{GPa} \\ \hline R\bar{3}m \\ 2.81 \end{array}$	$\begin{array}{c} 2.03 \\ 0.19 \\ 9.242(2) \\ 9.319(3) \\ 8.881(6) \\ 91.79(4) \\ 92.46(5) \\ 96.61(3) \\ 758.5(5) \\ \hline 5.12(1) \\ \text{GPa} \\ \hline P\overline{1} \\ 2.44 \end{array}$	R3m 3.49 0.55 9.399(2) 94.8(8) 821.1(1) Released R3m 3.91
K-CHA	$ \frac{R_{wp}(\%)}{2} \frac{2}{2} \frac{\chi}{a (Å)} \frac{A}{b (Å)} \frac{A}{c (Å)} \frac{A}{\gamma (°)} \frac{\beta (°)}{\gamma (°)} \frac{\gamma (°)}{V (Å)} \frac{V (Å)}{S.G.} \frac{R_{wp}(\%)}{\gamma} \frac{2}{\gamma} $	3.11 0.47 9.396(6) 94.88(8) 819.9(9) Ambient <i>R</i> 3 <i>m</i> 2.63 0.36	R3m 2.92 0.38 9.389(9) 94.86(6) 818.3(1) 0.49(1) GPa R3m 3.52 0.62	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa R3m 3.76 0.73	R3m 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa R3m 4.01 0.81	3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa <i>R</i> 3 <i>m</i> 3.32 0.51	2.62(1) GPa <i>R</i> 3 <i>m</i> 3.40 0.55	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa <i>R</i> 3 <i>m</i> 3.41 0.57		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4) 96.53(2) 764.4(2) 4.01(1) GPa <i>R</i> 3 <i>m</i> 2.81 0.37	$\begin{array}{c} 2.03 \\ 0.19 \\ 9.242(2) \\ 9.319(3) \\ 8.881(6) \\ 91.79(4) \\ 92.46(5) \\ 96.61(3) \\ 758.5(5) \\ 5.12(1) \\ \text{GPa} \\ \hline P\overline{1} \\ 2.44 \\ 0.27 \end{array}$	$ \begin{array}{r} R3m \\ 3.49 \\ 0.55 \\ 9.399(2) \\ 94.8(8) \\ 821.1(1) \\ Released \\ R\overline{3}m \\ 3.91 \\ 0.73 \\ \end{array} $
K-CHA	$ \begin{array}{c} R_{wp}(\%) \\ 2 \\ \chi \\ a (Å) \\ b (Å) \\ c (Å) \\ \alpha (°) \\ \beta (°) \\ \gamma (°) \\ V (Å) \end{array} $	3.11 0.47 9.396(6) 94.88(8) 819.9(9) Ambient <i>R</i> 3 <i>m</i> 2.63 0.36 9.43(3)	R3m 2.92 0.38 9.389(9) 94.86(6) 818.3(1) 0.49(1) GPa R3m 3.52 0.62 9.425(5)	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa R3m 3.76 0.73 9.405(5)	R3m 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa R3m 4.01 0.81 9.384(4)	$3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa R\bar{3}m3.320.519.363(3)$	2.62(1) GPa <i>R</i> 3 <i>m</i> 3.40 0.55 9.355(5)	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa <i>R</i> 3 <i>m</i> 3.41 0.57 9.34(4)		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4) 96.53(2) 764.4(2) 4.01(1) GPa <i>R</i> 3 <i>m</i> 2.81 0.37 9.307(1)	2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4) 92.46(5) 96.61(3) 758.5(5) 5.12(1) GPa $P\bar{1}$ 2.44 0.27 9.285(1)	R3m 3.49 0.55 9.399(2) 94.8(8) 821.1(1) Released R3m 3.91 0.73 9.427(7)
K-CHA	$R_{wp}(%)$ ² ² ² ² ² ² ³ ⁴ ⁶ ⁶ ⁶ ⁷ ⁷ ⁷ ⁶ ⁵ ⁵ ⁶ ⁷ ⁷ ⁶ ⁵ ²	3.11 0.47 9.396(6) 94.88(8) 819.9(9) Ambient <i>R</i> 3 <i>m</i> 2.63 0.36 9.43(3)	R3m 2.92 0.38 9.389(9) 94.86(6) 818.3(1) 0.49(1) GPa R3m 3.52 0.62 9.425(5)	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa R3m 3.76 0.73 9.405(5)	R3m 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa R3m 4.01 0.81 9.384(4)	3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa <i>R</i> 3 <i>m</i> 3.32 0.51 9.363(3)	2.62(1) GPa <i>R</i> 3 <i>m</i> 3.40 0.55 9.355(5)	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa <i>R</i> 3 <i>m</i> 3.41 0.57 9.34(4)		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4) 96.53(2) 764.4(2) 4.01(1) GPa <i>R</i> 3 <i>m</i> 2.81 0.37 9.307(1)	$\begin{array}{c} 2.03 \\ 0.19 \\ 9.242(2) \\ 9.319(3) \\ 8.881(6) \\ 91.79(4) \\ 92.46(5) \\ 96.61(3) \\ 758.5(5) \\ \hline 5.12(1) \\ \hline GPa \\ \hline P\overline{1} \\ 2.44 \\ 0.27 \\ 9.285(1) \\ 9.291(3) \\ 2.291(3) \end{array}$	R3m 3.49 0.55 9.399(2) 94.8(8) 821.1(1) Released R3m 3.91 0.73 9.427(7)
K-CHA	$R_{wp}(%) = \frac{R_{wp}(%)}{2}$ $\chi = \frac{1}{2}$ $a (Å) = b (Å)$ $c (Å) = \frac{1}{2}$ $K = \frac{V(Å^{3})}{V(Å^{3})}$ $K = \frac{1}{2}$ $K = $	3.11 0.47 9.396(6) 94.88(8) 819.9(9) Ambient <i>R</i> 3 <i>m</i> 2.63 0.36 9.43(3)	$\begin{array}{c} R3m \\ 2.92 \\ 0.38 \\ 9.389(9) \\ 94.86(6) \\ \hline 818.3(1) \\ 0.49(1) \\ GPa \\ R\overline{3}m \\ 3.52 \\ 0.62 \\ 9.425(5) \\ \hline 9.297(7) \\ \end{array}$	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa R3m 3.76 0.73 9.405(5)	R3m 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa R3m 4.01 0.81 9.384(4)	3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa <i>R</i> 3 <i>m</i> 3.32 0.51 9.363(3) 93.8(8)	$2.62(1) GPa R\bar{3}m 3.40 0.55 9.355(5) 93.74(4)$	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa <i>R</i> 3 <i>m</i> 3.41 0.57 9.34(4)		3.27 0.43 9.307(3) 9.273(2) 8.924(2) 90.60(3) 92.47(4) 96.53(2) 764.4(2) 4.01(1) GPa <i>R</i> 3 <i>m</i> 2.81 0.37 9.307(1)	2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4) 92.46(5) 96.61(3) 758.5(5) 5.12(1) GPa $P\overline{1}$ 2.44 0.27 9.285(1) 9.291(3) 8.816(2) 90.77(2)	$R3m$ 3.49 0.55 9.399(2) 94.8(8) 821.1(1) Released $R\overline{3}m$ 3.91 0.73 9.427(7) 94.3(3)
K-CHA	$R_{wp}(%) = \frac{R_{wp}(%)}{2}$ $\chi = \frac{1}{2}$ $a (Å) = b (Å)$ $c (Å) = \frac{1}{2}$ $V (Å^{3}) = \frac{1}{2}$ $\chi = \frac{1}{2}$	3.11 0.47 9.396(6) 94.88(8) 819.9(9) Ambient <i>R</i> 3 <i>m</i> 2.63 0.36 9.43(3) 94.39(9)	$R3m$ 2.920.389.389(9)94.86(6)818.3(1)0.49(1)GPa $R\bar{3}m$ 3.520.629.425(5)93.97(7)	R3m 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa R3m 3.76 0.73 94.405(5)	$R3m$ 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa $R\overline{3}m$ 4.01 0.81 9.384(4) 93.86(6)	$3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa R\overline{3}m3.320.519.363(3)93.8(8)$	2.62(1) GPa <i>R</i> 3 <i>m</i> 3.40 0.55 9.355(5) 93.74(4)	$3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa R\bar{3}m3.410.579.34(4)93.71(1)$		$\begin{array}{c} 3.27 \\ 0.43 \\ 9.307(3) \\ 9.273(2) \\ 8.924(2) \\ 90.60(3) \\ 92.47(4) \\ 96.53(2) \\ 764.4(2) \\ 4.01(1) \\ GPa \\ \hline R\bar{3}m \\ 2.81 \\ 0.37 \\ 9.307(1) \\ \hline 93.59(1) \\ \end{array}$	$P1$ 2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4) 92.46(5) 96.61(3) 758.5(5) 5.12(1) GPa $P\overline{1}$ 2.44 0.27 9.285(1) 9.291(3) 8.816(2) 90.77(3) 93.95(2)	$R3m$ 3.49 0.55 9.399(2) 94.8(8) 821.1(1) Released $R\overline{3}m$ 3.91 0.73 9.427(7) 94.3(3)
K-CHA	$R_{wp}(%) = \frac{R_{wp}(%)}{2}$ $\chi = (Å)$ $b (Å)$ $c (Å)$ $\alpha (°)$ $\beta (°)$ $\gamma (°)$ $V (Å^{3})$ $S.G.$ $R_{wp}(%) = \frac{2}{2}$ $\chi = (Å)$ $b (Å)$ $c (Å)$ $\alpha (°)$ $\beta (°)$ $\gamma (°)$	3.11 0.47 9.396(6) 94.88(8) <u>819.9(9)</u> Ambient <i>R</i> 3 <i>m</i> 2.63 0.36 9.43(3) 94.39(9)	$\begin{array}{c} R3m \\ 2.92 \\ 0.38 \\ 9.389(9) \\ 94.86(6) \\ \hline \\ 818.3(1) \\ 0.49(1) \\ \overline{\text{GPa}} \\ \hline \\ R\overline{3}m \\ 3.52 \\ 0.62 \\ 9.425(5) \\ \hline \\ 93.97(7) \\ \end{array}$	$R3m$ 2.84 0.36 9.38(8) 94.86(6) 815.9(1) 1.00(1) GPa $R\overline{3}m$ 3.76 0.73 9.405(5) 93.85(5)	$R3m$ 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa $R\overline{3}m$ 4.01 0.81 9.384(4) 93.86(6)	$3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa R\bar{3}m3.320.519.363(3)93.8(8)$	2.62(1) GPa <i>R</i> 3 <i>m</i> 3.40 0.55 9.355(5) 93.74(4)	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa <i>R</i> 3 <i>m</i> 3.41 0.57 9.34(4) 93.71(1)		$\begin{array}{c} 3.27 \\ 0.43 \\ 9.307(3) \\ 9.273(2) \\ 8.924(2) \\ 90.60(3) \\ 92.47(4) \\ 96.53(2) \\ 764.4(2) \\ 4.01(1) \\ GPa \\ \hline R\overline{3}m \\ 2.81 \\ 0.37 \\ 9.307(1) \\ 93.59(1) \\ \end{array}$	$\begin{array}{c} 2.03 \\ 0.19 \\ 9.242(2) \\ 9.319(3) \\ 8.881(6) \\ 91.79(4) \\ 92.46(5) \\ 96.61(3) \\ 758.5(5) \\ \hline 5.12(1) \\ \text{GPa} \\ \hline P\overline{1} \\ 2.44 \\ 0.27 \\ 9.285(1) \\ 9.291(3) \\ 8.816(2) \\ 90.77(3) \\ 93.95(2) \\ 93.47(2) \\ \end{array}$	$R3m$ 3.49 0.55 9.399(2) 94.8(8) 821.1(1) Released $R\overline{3}m$ 3.91 0.73 9.427(7) 94.3(3)
K-CHA	$R_{wp}(%) = \frac{R_{wp}(%)}{2}$ $a (Å) b (Å) c (Å) a (°) \beta (°)\gamma (°)V (Å^{3}) S.G. R_{wp}(%) = \frac{R_{wp}(%)}{2} a (Å) b (Å) c (Å) a (°) \beta (°)\gamma (°)V (Å^{3}) C (Å) = \frac{R_{wp}(%)}{2}$	3.11 0.47 9.396(6) 94.88(8) <u>819.9(9)</u> Ambient <i>R</i> 3 <i>m</i> 2.63 0.36 9.43(3) 94.39(9) 830.8(8)	R3m 2.92 0.38 9.389(9) 94.86(6) 818.3(1) 0.49(1) GPa R3m 3.52 0.62 9.425(5) 93.97(7) 830.8(8)	$R3m$ 2.84 0.36 $9.38(8)$ $94.86(6)$ $815.9(1)$ $1.00(1)$ GPa $R\overline{3}m$ 3.76 0.73 $9.405(5)$ $93.85(5)$ $826.1(1)$	$R3m$ 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa $R\overline{3}m$ 4.01 0.81 9.384(4) 93.86(6) 820.5(5)	3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa <i>R</i> 3 <i>m</i> 3.32 0.51 9.363(3) 93.8(8) 815.3(1)	2.62(1) GPa <i>R</i> 3 <i>m</i> 3.40 0.55 9.355(5) 93.74(4) 813.3(1)	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa <i>R</i> 3 <i>m</i> 3.41 0.57 9.34(4) 93.71(1) 809.4(1)		$\begin{array}{c} 3.27 \\ 0.43 \\ 9.307(3) \\ 9.273(2) \\ 8.924(2) \\ 90.60(3) \\ 92.47(4) \\ 96.53(2) \\ 764.4(2) \\ 4.01(1) \\ \text{GPa} \\ \hline R \overline{3}m \\ 2.81 \\ 0.37 \\ 9.307(1) \\ 93.59(1) \\ 801.4(2) \end{array}$	$\begin{array}{c} 2.03 \\ 0.19 \\ 9.242(2) \\ 9.319(3) \\ 8.881(6) \\ 91.79(4) \\ 92.46(5) \\ 96.61(3) \\ 758.5(5) \\ \hline 5.12(1) \\ \text{GPa} \\ \hline P\overline{1} \\ 2.44 \\ 0.27 \\ 9.285(1) \\ 9.291(3) \\ 8.816(2) \\ 90.77(3) \\ 93.95(2) \\ 93.47(2) \\ 757.3(2) \\ \end{array}$	$R3m$ 3.49 0.55 $9.399(2)$ $94.8(8)$ $821.1(1)$ Released $R\overline{3}m$ 3.91 0.73 $9.427(7)$ $94.3(3)$ $830.3(3)$
K-CHA Rb- CHA	$R_{wp}(%) = \frac{R_{wp}(%)}{2}$ $a (Å) b (Å) c (Å) a (°) \beta (°) \gamma (°) V (Å^3)$ S.G. $R_{wp}(%) = \frac{R_{wp}(%)}{2}$ $a (Å) b (Å) c (Å) a (°) \beta (°) \gamma (°) V (Å^3)$	3.11 0.47 9.396(6) 94.88(8) <u>819.9(9)</u> Ambient <i>R</i> 3 <i>m</i> 2.63 0.36 9.43(3) 94.39(9) <u>830.8(8)</u> Ambient	R3m 2.92 0.38 9.389(9) 94.86(6) 818.3(1) 0.49(1) GPa R3m 3.52 0.62 9.425(5) 93.97(7) 830.8(8) 0.51(1) GPa	$R3m$ 2.84 0.36 9.38(8) 94.86(6) $815.9(1)$ 1.00(1) GPa $R\overline{3}m$ 3.76 0.73 9.405(5) 93.85(5) 826.1(1) 0.92(1) GPa	$R3m$ 2.35 0.24 9.374(4) 94.75(5) 814.6(6) 1.49(1) GPa $R\overline{3}m$ 4.01 0.81 9.384(4) 93.86(6) 820.5(5) 1.73(1) GPa	3.53 0.55 9.359(9) 94.89(9) 810.2(1) 2.13(1) GPa <i>R</i> 3 <i>m</i> 3.32 0.51 9.363(3) 93.8(8) 815.3(1) 2.24(1) GPa	2.62(1) GPa <i>R</i> 3 <i>m</i> 3.40 0.55 9.355(5) 93.74(4) 813.3(1)	3.41 0.46 9.317(1) 9.299(2) 9.067(2) 91.00(3) 92.48(1) 95.72(2) 780.7(3) 3.00(1) GPa <i>R</i> 3 <i>m</i> 3.41 0.57 9.34(4) 93.71(1) 809.4(1) 3.20(1) GPa	3.96(1) GPa	$\begin{array}{c} 3.27\\ 0.43\\ 9.307(3)\\ 9.273(2)\\ 8.924(2)\\ 90.60(3)\\ 92.47(4)\\ 96.53(2)\\ 764.4(2)\\ 4.01(1)\\ \text{GPa}\\ \hline R\bar{3}m\\ 2.81\\ 0.37\\ 9.307(1)\\ \hline 93.59(1)\\ 801.4(2)\\ 4.87(1)\\ \text{GPa}\\ \end{array}$	2.03 0.19 9.242(2) 9.319(3) 8.881(6) 91.79(4) 92.46(5) 96.61(3) 758.5(5) 5.12(1) GPa $P\bar{1}$ 2.44 0.27 9.285(1) 9.291(3) 8.816(2) 90.77(3) 93.95(2) 93.47(2) 757.3(2) 6.04(1) GPa	$R3m$ 3.49 0.55 $9.399(2)$ $94.8(8)$ $821.1(1)$ Released $R\overline{3}m$ 3.91 0.73 $9.427(7)$ $94.3(3)$ $830.3(3)$ Released

	$R_{un}(\%)$	1.84	2.54	2.36	2.16	1.56	2.11	1.52	2.02	1.87	4.88
	γ^{2}	0.47	0.50	0.44	0.36	0.18	0.34	0.17	0.32	0.26	1.84
	$\tilde{a}(Å)$	9.416(6)	9.417(7)	9.406(6)	9.39(9)	9.379(9)	9.352(2)	9.35(5)	9.24(4)	9.218(2)	9.416(1)
	b (Å)								9.352(3)	9.342(4)	
	c (Å)								8.967(2)	8.933(5)	
	α (°)	94.69(9)	94.45(5)	94.42(2)	94.36(6)	94.36(6)	94.42(2)	94.56(1)	91.51(2)	91.9(9)	94.58(1)
	$\beta(\circ)$								92.72(2)	92.86(4)	
	$\gamma(2)$	00(0(1)	007.0(0)	924 2(2)	020 5(1)	017 5(5)	010 2(1)	000 2(2)	95.01(2)	95.3(3)	00(1(0)
	$V(\mathbf{A})$	826.0(1)	827.2(2)	824.3(3)	820.5(1)	817.5(5)	810.2(1)	809.2(3)	//0.2(2)	/64.5(4)	826.4(2)
Cs-		Ambient	0.45(1)	0.98(1)		2.15(1)	2.87(1)		4.09(1)	5.24(1)	Released
СНА			GPa	GPa		GPa	GPa		GPa	GPa	
	S.G.	R∃m	R3m	$R\overline{3}m$		R3m	R3m		$P\overline{1}$	$P\overline{1}$	R3m
	S.G. <i>R</i> _{wp} (%)	<i>R</i> 3 <i>m</i> 2.23	<i>R</i> 3 <i>m</i> 3.44	<i>R</i> 3 <i>m</i> 5.00		R3m 3.49	<i>R</i> 3 <i>m</i> 3.57		Р <u>1</u> 1.96	<i>P</i> 1 1.87	<i>R</i> 3 <i>m</i> 3.52
	S.G. $R_{wp}(\%)$ χ	<i>R</i> 3 <i>m</i> 2.23 0.25	<i>R</i> 3 <i>m</i> 3.44 0.58	<i>R</i> 3 <i>m</i> 5.00 1.23		<i>R</i> 3 <i>m</i> 3.49 0.57	<i>R</i> 3 <i>m</i> 3.57 0.57		<i>P</i> 1 1.96 0.17	<i>P</i> 1 1.87 0.16	<i>R</i> 3 <i>m</i> 3.52 0.58
	S.G. $R_{wp}(\%)$ 2 χ a (Å)	R3m 2.23 0.25 9.427(7)	R3m 3.44 0.58 9.429(9)	<i>R</i> 3 <i>m</i> 5.00 1.23 9.415(5)		<i>R</i> 3 <i>m</i> 3.49 0.57 9.383(3)	R3m 3.57 0.57 9.363(3)		P1 1.96 0.17 9.296(2)	 <i>P</i>1 1.87 0.16 9.269(1) 	<i>R</i> 3 <i>m</i> 3.52 0.58 9.427(1)
	S.G. $R_{wp}(\%)$ 2 χ a (Å) b (Å)	R3m 2.23 0.25 9.427(7)	<i>R</i> 3 <i>m</i> 3.44 0.58 9.429(9)	<i>R</i> 3 <i>m</i> 5.00 1.23 9.415(5)		R3m 3.49 0.57 9.383(3)	R3m 3.57 0.57 9.363(3)		<i>P</i> 1 1.96 0.17 9.296(2) 9.313(1)	<i>P</i> 1 1.87 0.16 9.269(1) 9.261(2)	<i>R</i> 3 <i>m</i> 3.52 0.58 9.427(1)
	S.G. $R_{wp}(\%)$ 2^{χ} a (Å) b (Å) c (Å)	<i>R</i> 3 <i>m</i> 2.23 0.25 9.427(7)	<i>R</i> 3 <i>m</i> 3.44 0.58 9.429(9)	<i>R</i> 3 <i>m</i> 5.00 1.23 9.415(5)		R3m 3.49 0.57 9.383(3)	R3m 3.57 0.57 9.363(3)		P1 1.96 0.17 9.296(2) 9.313(1) 9.324(1)	P1 1.87 0.16 9.269(1) 9.261(2) 9.328(1)	R3m 3.52 0.58 9.427(1)
	S.G. $R_{wp}(\%)$ ² ² ² ² ² ² ⁴ ⁶ ^(Å) ² ⁶ ^(Å) ² ^(Å) ² ^(°) ² ^(°) ² ^(°)	<i>R</i> 3 <i>m</i> 2.23 0.25 9.427(7) 94.25(5)	R3m 3.44 0.58 9.429(9) 94.26(6)	<i>R</i> 3 <i>m</i> 5.00 1.23 9.415(5) 94.26(6)		<i>R</i> 3 <i>m</i> 3.49 0.57 9.383(3) 94.21(1)	R3m 3.57 0.57 9.363(3) 94.22(2)		$P\bar{1}$ 1.96 0.17 9.296(2) 9.313(1) 9.324(1) 94.53(1)	P1 1.87 0.16 9.269(1) 9.261(2) 9.328(1) 94.78(1) 94.78(1)	<i>R</i> 3 <i>m</i> 3.52 0.58 9.427(1) 94.24(4)
	S.G. $R_{vp}(\%)$ 2 χ a (Å) b (Å) c (Å) a (°) β (°)	<i>R</i> 3 <i>m</i> 2.23 0.25 9.427(7) 94.25(5)	R3m 3.44 0.58 9.429(9) 94.26(6)	<i>R</i> 3 <i>m</i> 5.00 1.23 9.415(5) 94.26(6)		R3m 3.49 0.57 9.383(3) 94.21(1)	R3m 3.57 0.57 9.363(3) 94.22(2)		<i>P</i> 1 1.96 0.17 9.296(2) 9.313(1) 9.324(1) 94.53(1) 95.27(1) 92.5(5)	<i>P</i> 1 1.87 0.16 9.269(1) 9.261(2) 9.328(1) 94.78(1) 95.19(2) 92.9(2)	<i>R</i> 3 <i>m</i> 3.52 0.58 9.427(1) 94.24(4)
	S.G. $R_{vp}^{(\%)}(\%)$ 2 χ a (Å) b (Å) c (Å) a (°) β (°) γ (°)	<i>R</i> 3 <i>m</i> 2.23 0.25 9.427(7) 94.25(5)	R3m 3.44 0.58 9.429(9) 94.26(6)	<i>R</i> 3 <i>m</i> 5.00 1.23 9.415(5) 94.26(6)		R3m 3.49 0.57 9.383(3) 94.21(1)	R3m 3.57 0.57 9.363(3) 94.22(2)		$P\overline{1}$ 1.96 0.17 9.296(2) 9.313(1) 9.324(1) 94.53(1) 95.27(1) 93.5(5)	$P\overline{1}$ 1.87 0.16 9.269(1) 9.261(2) 9.328(1) 94.78(1) 95.19(2) 92.96(2)	R3m 3.52 0.58 9.427(1) 94.24(4)
	S.G. $R_{wp}(\%)$ 2^{2} a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å ³)	R3m 2.23 0.25 9.427(7) 94.25(5) 830.4(4)	R3m 3.44 0.58 9.429(9) 94.26(6) 831.0(1)	R3m 5.00 1.23 9.415(5) 94.26(6) 827.3(3)		<i>R</i> 3 <i>m</i> 3.49 0.57 9.383(3) 94.21(1) 819.1(1)	R3m 3.57 0.57 9.363(3) 94.22(2) 813.7(1)		$P\overline{1}$ 1.96 0.17 9.296(2) 9.313(1) 9.324(1) 94.53(1) 95.27(1) 93.5(5) 799.4(2)	$P\overline{1}$ 1.87 0.16 9.269(1) 9.261(2) 9.328(1) 94.78(1) 95.19(2) 92.96(2) 793.2(2)	R3m 3.52 0.58 9.427(1) 94.24(4) 830.5(1)