1	REVISION 1
2 3 4	Leesite, $K(H_2O)_2[(UO_2)_4O_2(OH)_5] \cdot 3H_2O$, a new K-bearing schoepite-family mineral from the Jomac mine, San Juan County, Utah, USA.
5 6 7	Travis A. Olds ^{1*} , Jakub Plášil ² , Anthony R. Kampf ³ , Tyler Spano ¹ , Patrick Haynes ⁴ , Shawn M. Carlson ⁵ , Peter C. Burns ^{1,6} , Antonio Simonetti ¹ , Owen P. Mills ⁷
8 9 10 11 12 13 14 15 16 17 18 19 20	 ¹ Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA ² Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic ³ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA ⁴ 901 Sean Street, Socorro, NM 87801, USA ⁵ 245 Jule Lake Road, Crystal Falls, MI 49920, USA ⁶ Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA ⁷ Applied Chemical and Morphological Analysis Laboratory, Michigan Technological University, Houghton, MI 49931, USA
21 22	*E-mail: <u>tolds@nd.edu</u>
23 24	ABSTRACT Leesite (IMA2016-064), K(H ₂ O) ₂ [(UO ₂) ₄ O ₂ (OH) ₅]·3H ₂ O, is a new uranyl-oxide
25	hydroxyl-hydrate found underground in the Jomac mine, Brown's Rim, White Canyon
26	mining district, San Juan County, Utah. The new mineral occurs as aggregates of vitreous
27	orange yellow tablets stacked on {100}, individually reaching up to 1 mm in diameter.
28	Leesite is non-fluorescent under both LW and SW UV, is translucent with a light yellow
29	streak, has approximate hardness of 2 (Mohs), and has brittle tenacity with uneven fracture.
30	Crystals have perfect cleavage along $\{100\}$, and exhibit the forms $\{100\}$. Optically, leesite
31	is biaxial (-), with $\alpha = 1.745(2)$, $\beta = 1.761(2)$, $\gamma = 1.765(2)$ (white light); 2V (meas.) =
32	50(2)°, 2V (calc.) = 52.7°; dispersion is $r > v$, strong. Pleochroism: X nearly colorless, Y
33	and <i>Z</i> orange yellow; $X < Y \approx Z$. Laser Ablation Inductively Coupled Plasma Mass
34	Spectrometry (LA-ICP-MS) analyses provided the empirical formula
35	K _{0.67} Na _{0.004} Ca _{0.012} U ₄ O ₂₀ H _{15.31} , based on 4 U and 20 O <i>apfu</i> . Leesite is orthorhombic, <i>Pbca</i> ,
36	a = 14.866(7), b = 14.1267), c = 16.772(8) Å, $V = 3522(3)$ Å ³ and $Z = 8$. The crystal

37	structure ($R_1 = 0.062$) for 1778 reflections with $I_{obs} > 4\sigma I$), consists of sheets of edge-
38	sharing uranyl pentagonal bipyramids linked together through an interlayer populated by
39	$K^{\!\!\!+} and (H_2O)$ molecules. Sheets in leesite adopt the fourmarierite anion topology, and so
40	belong to the schoepite family of related structures that differ in the interlayer composition
41	and arrangement, and charge of the sheet. Leesite may form as one of the principal
42	components of "gummite" mixtures formed during the alteration of uraninite, and the unit
43	cell of leesite resembles the previously described, but poorly understood mineral,
44	paraschoepite. Uptake of dangerous radionuclides (⁹⁰ Sr, ¹³⁵ Cs, ¹³⁷ Cs, ²³⁷ Np, ²³⁸ Pu) into the
45	structure of leesite and other members of the family has important implications for the safe
46	disposal of nuclear waste.
47	
48	Running title: Leesite, a new mineral from Utah, USA
49	Keywords: Leesite, sheet anion topology, schoepite, uranium, uraninite, crystal structure
50	
51	INTRODUCTION
52	Uranium dioxide nuclear fuel and uraninite, UO_{2+x} , readily alter in the presence of
53	water and oxygen leading to the formation of uranyl-oxide hydroxyl-hydrate minerals
54	(UOH) (Finch and Ewing, 1992; Wronkiewicz et al., 1992). UOH minerals are among the
55	first phases to form during the oxidation-hydration weathering of UO_2 (Finch et al., 1996a;
56	Plášil, 2014), and studies detailing their structure, solubility, and stability are numerous
57	due to their importance for nuclear waste disposal and the environmental chemistry of
58	uranium in general (Amonette et al., 1994; Finch and Murakami, 1999; Klingensmith et
59	al., 2007; Kubatko et al., 2006). Schoepite, $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$, the most hydrous
60	UOH, was described by Walker (1923) nearly ninety-five years ago, yet the crystal-

61	chemical details of phases produced during its dehydration are still uncertain. Different
62	minerals form depending on the rate of dehydration, and the presence of cations can impart
63	variable (OH ⁻) content in the sheets that build UOH minerals (Table 1). The structures of
64	several of these minerals are built from the same sheet topology found in schoepite (Finch
65	et al., 1996b), and the so-named schoepite family includes schoepite, metaschoepite,
66	[(UO ₂) ₄ O(OH) ₆](H ₂ O) ₅ , (Weller et al., 2000), fourmarierite, Pb[(UO ₂) ₄ O ₃ (OH) ₄](H ₂ O) ₄ ,
67	(Li and Burns, 2000), paraschoepite, UO ₃ ·1.9H ₂ O, (Schoep and Stradiot, 1947),
68	paulscherrerite, UO ₂ (OH) ₂ , (previously "dehydrated-schoepite") (Brugger et al., 2011), and
69	heisenbergite, UO ₂ (OH) ₂ (H ₂ O), (Walenta and Theye, 2012). Describing the
70	crystallography of these minerals has been challenging due to the lack of suitably pure
71	material, in sufficiently large crystals. Leesite is a new member of the schoepite family
72	containing monovalent cations in the interlayer and marks the 22 nd addition to the family
73	of uranyl-oxide hydroxyl-hydrate minerals. Plášil et al. (2016) give an updated listing of
74	the members of this family. Herein, we provide a description of the crystal structure of
75	leesite and observations regarding substitutional variability between other members of the
76	family, including Na-rich metaschoepite, and K-rich fourmarierite from Jáchymov, Czech
77	Republic.
78	The name leesite honors American mineral dealer and collector Bryan K. Lees

(born 1957). Mr. Lees received his B.S. in Geological Engineering from the Colorado
School of Mines in 1985. In the same year, he founded Collector's Edge Minerals, through
which he has developed innovative specimen extraction techniques and created what is
probably the world's most advanced collector-specimen preparation laboratory. In the
1990's, Lees spearheaded the mining of rhodochrosite at Colorado's Sweet Home mine.
The rhodochrosite samples produced by this venture are widely considered to be some of

85	the most valuable non-gem mineral specimens ever found, and many were personally
86	collected with his advanced extraction techniques. Lees has conducted 40 specimen-
87	mining projects on five continents and his samples are displayed in the collections of
88	museums and individuals around the world. For his accomplishments, he has received the
89	Friends of Mineralogy Author of the Year Award (1998), Carnegie Mineralogical Award
90	(1998), the Colorado School of Mines Medal (2003), and the American Mineral Heritage
91	Award (2014).
92	The Commission on New Minerals, Nomenclature, and Classification of the
93	International Mineralogical Association approved the new mineral and name (IMA2016-
94	064). The description is based upon two cotype specimens from the Jomac mine, deposited
95	in the Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los
96	Angeles, California 90007, U.S.A., with catalogue numbers 66285 and 66286.
07	
97	
97 98	OCCURRENCE
97 98 99	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon
97 98 99 100	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon mining district, San Juan County, Utah (37°51'43"N 110°19'10"W), about 5.5 km SE of
97 98 99 100 101	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon mining district, San Juan County, Utah (37°51'43"N 110°19'10"W), about 5.5 km SE of Hite Crossing. Material containing the new mineral was collected in 1989 by one of the
 97 98 99 100 101 102 	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon mining district, San Juan County, Utah (37°51'43"N 110°19'10"W), about 5.5 km SE of Hite Crossing. Material containing the new mineral was collected in 1989 by one of the authors (P.H.). The Jomac mine consisted of three adits that are now closed and reclaimed.
 97 98 99 100 101 102 103 	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon mining district, San Juan County, Utah (37°51'43"N 110°19'10"W), about 5.5 km SE of Hite Crossing. Material containing the new mineral was collected in 1989 by one of the authors (P.H.). The Jomac mine consisted of three adits that are now closed and reclaimed. Collecting has been prohibited since 1992 when the area was incorporated into the Glen
 97 98 99 100 101 102 103 104 	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon mining district, San Juan County, Utah (37°51'43"N 110°19'10"W), about 5.5 km SE of Hite Crossing. Material containing the new mineral was collected in 1989 by one of the authors (P.H.). The Jomac mine consisted of three adits that are now closed and reclaimed. Collecting has been prohibited since 1992 when the area was incorporated into the Glen Canyon National Recreation Area. Leesite was found in a seam of gypsum, closely
 97 98 99 100 101 102 103 104 105 	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon mining district, San Juan County, Utah (37°51'43"N 110°19'10"W), about 5.5 km SE of Hite Crossing. Material containing the new mineral was collected in 1989 by one of the authors (P.H.). The Jomac mine consisted of three adits that are now closed and reclaimed. Collecting has been prohibited since 1992 when the area was incorporated into the Glen Canyon National Recreation Area. Leesite was found in a seam of gypsum, closely associated with compreignacite, K ₂ [(UO ₂) ₆ O ₄ (OH) ₆](H ₂ O) ₇ , and a later generation of
 97 98 99 100 101 102 103 104 105 106 	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon mining district, San Juan County, Utah (37°51'43"N 110°19'10"W), about 5.5 km SE of Hite Crossing. Material containing the new mineral was collected in 1989 by one of the authors (P.H.). The Jomac mine consisted of three adits that are now closed and reclaimed. Collecting has been prohibited since 1992 when the area was incorporated into the Glen Canyon National Recreation Area. Leesite was found in a seam of gypsum, closely associated with compreignacite, K ₂ [(UO ₂) ₆ O ₄ (OH) ₆](H ₂ O) ₇ , and a later generation of blatonite, UO ₂ CO ₃ ·H ₂ O, (Vochten and Deliens, 1998) and owsaldpeetersite,
 97 98 99 100 101 102 103 104 105 106 107 	OCCURRENCE Leesite is found underground in the Jomac mine, Brown's Rim, White Canyon mining district, San Juan County, Utah (37°51'43"N 110°19'10"W), about 5.5 km SE of Hite Crossing. Material containing the new mineral was collected in 1989 by one of the authors (P.H.). The Jomac mine consisted of three adits that are now closed and reclaimed. Collecting has been prohibited since 1992 when the area was incorporated into the Glen Canyon National Recreation Area. Leesite was found in a seam of gypsum, closely associated with compreignacite, K ₂ [(UO ₂) ₆ O ₄ (OH) ₆](H ₂ O) ₇ , and a later generation of blatonite, UO ₂ CO ₃ ·H ₂ O, (Vochten and Deliens, 1998) and owsaldpeetersite, (UO ₂) ₂ CO ₃ (OH) ₂ ·4H ₂ O (Vochten et al., 2001), two minerals for which the Jomac mine is

109	mbobomkulite or nickelalumite, sklodowskite, and boltwoodite. The deposit of uranium
110	exploited by the Jomac mine lies in the Shinarump conglomerate member of the Triassic
111	Chinle Formation. An account of the geology and history of the mine is given by Trites
112	and Hadd (1958). Haynes (2000) summarizes this paper, and includes the descriptions of
113	minerals identified up to that time, including two then unknown U minerals (designated
114	"Unknown number 1" and "Unknown number 2"). Unknown number 2 has since been
115	described as oswaldpeetersite and Unknown number 1 is described herein as the new
116	mineral leesite.
117	
118	PHYSICAL AND OPTICAL PROPERTIES
119	Leesite forms as aggregates of orange-yellow tablets up to 1 mm in diameter (Fig.
120	1). Tablets are flattened and stacked on $\{100\}$, the only well-developed crystal form (Fig.
121	2). Leesite also occurs as powdery masses in the interstices of gypsum crystals. Crystals
122	are brittle with perfect cleavage on {100} and uneven fracture. No twinning was observed.
123	Crystals are translucent with a vitreous luster, give a light yellow streak, and are non-
124	fluorescent under LW and SW UV. The Mohs hardness is approximately 2, estimated by
125	the behavior of crystals when broken. The density was not measured due to the limited
126	availability of material. The calculated density is 3.256 g cm^{-3} based on the empirical
127	formula. Leesite is readily soluble in dilute HCl and HNO ₃ , with no effervescence.
128	Leesite is optically biaxial (-), with $\alpha = 1.745(2)$, $\beta = 1.761(2)$, $\gamma = 1.765(2)$,
129	(measured in white light). The $2V$ is $50(2)^{\circ}$, measured directly by conoscopic observation
130	on a spindle stage; the calculated 2V is 52.7°. Dispersion is strong, $r > v$. The mineral is
131	pleochroic with <i>X</i> nearly colourless, <i>Y</i> and <i>Z</i> orange yellow; $X < Y \approx Z$. The optical
132	orientation is $X = \mathbf{a}$, $Y = \mathbf{c}$, $Z = \mathbf{b}$. The Gladstone-Dale compatibility, $1 - (K_p/K_c)$, is 0.037

133	(excellent) for the ideal formula, and 0.028 (excellent) for the empirical formula
134	(Mandarino, 2007).
135	
136	
137	SPECTROSCOPY
138	Raman
139	The Raman spectrum of leesite was recorded using a Bruker Instruments Sentinel-
140	785 laser head mounted on a Nikon Optiphot-2 microscope with Peltier-cooled CCD
141	detector and integrated 785 nm diode laser, operated at 200 mW, with a spot size of 100
142	μ m and ~5 cm ⁻¹ resolution (Fig. 3). The spectrum was acquired using a 10x objective, from
143	80 to 3200 cm ⁻¹ using five 3 s exposures, with five repeated acquisitions to improve the
144	signal-to-noise ratio. The spectrometer was calibrated with software-controlled procedures
145	(Opus software) using neon emission lines (wavelength calibration), and Tylenol® Raman
146	bands (frequency calibration). A background correction was applied using the Opus
147	software. In the Raman spectrum of leesite the $v_1 (UO_2)^{2+}$ symmetric stretching vibration is
148	present as a strong, complex band centered at 823 cm ⁻¹ . Splitting of $v_1 (UO_2)^{2+}$ is
149	concomitant with four unique U sites observed in the X-ray structure. Fitting reveals it is
150	composed of four major bands, with centers at 840, 827, 818, and 802 cm ⁻¹ . Bartlett and
151	Cooney (1989) provide an empirical relationship to derive the approximate U-O _{yl} bond
152	lengths from the band positions assigned to the $(UO_2)^{2+}$ stretching vibrations, which gives
153	1.77 Å (840 cm ⁻¹), 1.78 Å (827 cm ⁻¹), 1.79 Å (818 cm ⁻¹), and 1.81 Å (802 cm ⁻¹). These
154	values are in accordance with U– O_{yl} bond lengths given by Burns et al. (1997a) for the
155	uranyl cation in pentagonal bipyramidal coordination, and from the X-ray data, however
156	coincidence of $v_1 (UO_2)^{2+}$ and δ -UOH (in-plane) bending modes is also possible in this

157	region. No bands were observed above 840 cm ⁻¹ , nor was there any evidence for v_3
158	$(UO_2)^{2+}$ activated by symmetry distortion. A series of weak bands found in the 560-100
159	cm ⁻¹ region are attributed to various v (U–O _{ligand}) stretches following the assignments
160	made by Dothée and Camelot (1982), Dothée et al. (1982), and Frost el al. (2007). Weak
161	bands at 557, 455, 435, and a very weak band at 398 cm ⁻¹ are assigned to v_3 (U ₃ O) bridge
162	elongation modes. A weak band at 336 cm ⁻¹ is assigned to γ U ₃ O (out-of-plane bending),
163	and a weak band at 200 cm ⁻¹ to γ (U ₃ (OH) ₃) out-of-plane bending vibrations. The
164	remaining bands near 160 and 120 cm ⁻¹ are assigned to $(UO_2)^{2+}$ translations and rotations.
165	
166	Infrared
167	Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectra were
168	obtained using a SENSIR Technologies IlluminatIR with a liquid N_2 cooled MCT detector
169	mounted to an Olympus BX51 microscope. An ATR objective was pressed into crystals of
170	leesite and the spectrum was measured from 4000 to 650 cm ⁻¹ (Fig. 4). The following band
171	assignments are based on those outlined by Čejka (1999). A broad, multicomponent
172	infrared band spanning from ~3500 to ~2400 cm ⁻¹ is related to the v O–H stretching
173	vibrations of water molecules and hydroxyl groups (Fig. 5). The largest fitted band at 3000
174	\mbox{cm}^{-1} is attributed to the v O–H stretching vibrations of hydrogen-bonded water molecules,
175	with a shoulder at 3450 cm ⁻¹ assigned to stretching vibrations of hydroxyl groups.
176	Comparison of the FWHM and area of these band suggest that the number of hydrogen-
177	bonding environments of hydroxyl groups is much less than the number of hydrogen-
178	bonding environments of the water molecules. Other fitted bands in this region are found at
179	3280, 2688, and 2522 cm ⁻¹ . Approximate O-H···O hydrogen bond-lengths calculated from
180	the observed stretching frequencies lie within the range ~2.9 to 2.6 Å using the correlation

181	function given by Libowitzky (1999). Several broad, low intensity bands between 2200-
182	2000 cm ⁻¹ correspond to combination bands (δ H ₂ O and L H ₂ O). A weak band found at
183	1592 cm ^{-1} is assigned as the v ₂ (δ)-bending vibration of hydrogen-bonded water. A very
184	weak band appearing in the spectrum at 1420 cm ⁻¹ may be assigned to (SiO ₃ OH) modes
185	from minor boltwoodite contamination, or to N-H bending vibrations of NH_4^+ molecules.
186	The strong antisymmetric stretch $v_3 (UO_2)^{2+}$ occurs at 920 cm ⁻¹ . The uranyl bond length
187	inferred from the IR spectrum of leesite using the empirical relation given by Bartlett and
188	Cooney (1989) is 1.77 Å. The $v_3 (UO_2)^{2+}$ band is composed of a broad tail to higher
189	wavenumber, and is formed by several overlapping δ -UOH (in-plane) bending modes with
190	fitted centers at 1017, 995, 974, and 950 cm ⁻¹ (Fig. 4). No evidence of the (normally
191	forbidden) $v_1 (UO_2)^{2+}$ symmetric stretch was found. A remaining weak band centered at
192	764 cm ⁻¹ is attributed to γ UOH (out-of-plane bending) or H ₂ O libration modes.
193	
194	CHEMICAL COMPOSITION
195	Electron microprobe analyses were deemed to be unreliable due to instability and
196	decomposition of crystals under the electron beam. Instead, six chemical analyses were
197	performed using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-
198	MS). Six crystal aggregates were embedded in epoxy and polished to provide a flat surface
199	(~50 x 50 μ m). The ion signals for U, K, Pb, Na and Ca were measured using an Element 2
200	sector field high resolution inductively coupled plasma mass spectrometer (Thermo Fisher
201	Scientific) in medium mass resolution mode coupled with a UP-213 (New Wave Research)
202	Nd:YAG deep UV (213 nm) laser ablation system. Prior to the lasering of samples, the
203	Element 2 was tuned using a multi-element solution containing 1 ng g ⁻¹ of each Li, In, and
204	U to obtain maximum ion sensitivity. Laser ablation analyses involved acquiring

205	background ion signals for 60 seconds with the laser on and shuttered, and this was
206	followed by 60 seconds of data acquisition. Laser operating conditions involved using an 8
207	μm spot size, repetition rate of 5 Hz, 100% power out, which corresponded to a fluence of
208	\sim 8.4 J*cm ⁻² . Six areas on six crystals were examined using a raster scan, or single spot
209	analyses depending on the size of the crystals. Leesite contains appreciable U, K, Ca, some
210	Na, and negligible Pb, and the data are given in Table 2. No other elements were detected.
211	The ion signals (cps- counts per second) obtained for K, Ca, and Na are reported as a ratio
212	relative to that recorded for U, as absolute abundances could not be determined due to a
213	lack of an appropriate matrix matched external standard. The H ₂ O content was calculated
214	according to the structure on the basis of 20 O apfu with charge balance considerations.
215	The empirical formula, $K_{0.67}Na_{0.004}Ca_{0.012}U_4O_{20}H_{15.31}$, is calculated on the basis of 4 U and
216	20 O <i>apfu</i> . The ideal formula is $K(H_2O)_2[(UO_2)_4O_2(OH)_5] \cdot 3(H_2O)$, which requires: K_2O
217	3.55, UO ₃ 86.27, H ₂ O 10.18, total 100 wt%.
218	
219	POWDER X-RAY DIFFRACTION
220	Powder diffraction data (Table 3) were obtained using a Rigaku R-Axis Rapid II
221	curved imaging plate microdiffractometer with monochromatized MoK α radiation. A
222	Gandolfi-like motion on the ϕ and ω axes was used to randomize diffraction from the
223	sample. Observed <i>d</i> -values and intensities were derived by full profile fitting (Fig. S1,
224	Supplementary Information) using JADE 2010 software (Materials Data, Inc.). The unit-
225	cell parameters refined from the powder data using whole pattern fitting are $a =$
226	14.9163(16) Å, $b = 14.1830(14)$ Å, $c = 16.7336(18)$ Å, and V = 3540.1(6) Å ³ .
227	

228 SINGLE CRYSTAL X-RAY DIFFRACTION AND REFINEMENT

229 A homogenous plate fragment with sharp optical extinction in cross-polarized light 230 was chosen for single-crystal X-ray diffraction study. Data were collected using MoK α X-231 rays from a microfocus source and an Apex II CCD-based detector mounted to a Bruker 232 Apex II Quazar three-circle diffractometer. Reflections were integrated and corrected for 233 Lorentz, polarization, and background effects using the Bruker program SAINT. A multi-234 scan semi-empirical absorption correction was applied using equivalent reflections in 235 SADABS-2012. An initial structure model was obtained by the intrinsic phasing method 236 using SHELXT (Sheldrick, 2015) in space group Pbca with most atoms located, except 237 some O atoms of water molecules. The SHELXL 2013 software package was used to refine the structure of leesite on the basis of F^2 for unique reflections, and the remaining O 238 239 atoms of water were located in difference Fourier maps. Hydrogen atom positions were not 240 determined, due to the weak X-ray scattering factor of hydrogen, and the dominance of U 241 in the difference Fourier density maps. Furthermore, the diffraction pattern suffered from a 242 split crystal contribution, with the heaviest contribution to low angle data. An attempt to 243 deconvolute this contribution was made but did not improve the results. The split crystal, 244 in combination with weak diffraction led to some difficulties during refinement of 245 anisotropic displacement parameters for several oxygen atoms, and rigid bond restraints 246 (RIGU) were applied to assists in their refinement. Details regarding the data collection 247 and refinement results are given in the supplementary information and can also be found 248 within the CIF, and bond-valence analysis is given in Table 4. 249

250

CRYSTAL STRUCTURE DESCRIPTION

251 Cation Coordination

252	The structure of leesite (Fig. 6) contains four symmetrically distinct U sites. All
253	adopt [7]-fold pentagonal bipyramidal coordination, where the apices of each polyhedron
254	are comprised of multiply bonded oxygen, forming the approximately linear uranyl ion-
255	$\mathrm{UO_2}^{2+}$ (Burns et al., 1997a). Equatorially, each uranyl cation is five-coordinated by O or
256	OH, and the polyhedra are linked by sharing edges arranged into the so-called
257	fourmarierite anion sheet topology (Burns, 2005; Li and Burns, 2000; Lussier et al., 2016).
258	The sheets in schoepite and metaschoepite also adopt the fourmarierite topology, which
259	consists of sheets built from topological pentagons and triangles (Fig. 6). Pentagons are
260	populated by U atoms, and triangles, arranged in alternating bow-tie arrangements, are
261	vacant.
262	The interlayer of leesite is populated with K^+ cations and water molecules. Dimeric
263	clusters of K^+ and H_2O serve to connect sheets of U polyhedra stacked along <i>a</i> by
264	coordinating to their outstretched O_{yl} atoms (Fig. 7). Coordination about K^+ is [9]-fold and
265	each K^+ binds six O_{yl} atoms and three water (Ow) molecules, such that the clusters have
266	the composition $K_2O_{10}(H_2O)_4$. There is one symmetrically unique K site, and site-
267	scattering refinement reveals it is partially occupied (0.71), in agreement with the average
268	empirical chemistry (0.67 apfu). This is not unexpected, considering the analogous mineral
269	four marierite also displays variable Pb^{2+} content (0.86 to 1.02 <i>apfu</i>) in natural and
270	synthetic samples (Li and Burns, 2000). Atoms of Pb^{2+} in four marierite adopt a similar
271	dimeric arrangement in the interlayer—with composition $Pb_2O_{10}(H_2O)_4$ (Fig. 6).
272	
273	Relationship to other UOH minerals

The sheets of uranyl polyhedra in schoepite and metaschoepite are electroneutral, but can accommodate substitution of OH^{-} for O^{2-} within the sheet (Finch et al., 1996b).

276	This allows for variably charged sheets and the presence of interlayer cations. A synthetic
277	Na-analog of metaschoepite is known, with an interlayer containing partially occupied Na^+
278	sites (Klingensmith et al., 2007). The arrangement of OH ⁻ in leesite is identical to that
279	found in the synthetic Na-analog of metaschoepite, and similar to metaschoepite in most
280	regards except that a single OH ⁻ group in metaschoepite is deprotonated in leesite (atom
281	O9). Naturally occurring Na-rich metaschoepite is described by Sejkora et al. (2013) from
282	the Jan Evangelista vein, Svornost mine in Jáchymov, and was shown to contain
283	appreciable amounts of other elements (Na, 0.3 apfu; Cu, 0.13 apfu; Al, 0.13 apfu; Pb, 0.08
284	apfu). The Na-rich material is poorly crystalline and powdery, preventing its formal
285	description as a mineral. Sejkora et al. (2013) also describe K-rich fourmarierite (0.2 to
286	0.45 K apfu) from the Evangelista vein, and recently, the schoepite family mineral
287	kroupaite, $KPb_{0.5}[(UO_2)_8O_4(OH)_{10}](H_2O)_{10}$, has been described (Plášil et al., 2017).
288	Structurally, kroupaite is similar to leesite, except K^+ cations adopt slightly different
289	positions. Presumably, as Pb^{2+} content reaches ~50% in these phases, structural
290	transformation to the fourmarierite cell is prompted by interlayer rearrangement and
291	increased O ²⁻ content within the sheets, however more work is required to understand the
292	relationship between leesite, kroupaite, K-rich fourmarierite, and fourmarierite.
293	Foord et al. (1997) provide data for an unknown and incompletely characterized
294	phase designated "mineral A" by Frondel (1956) that forms within "gummite" alteration
295	rinds on uraninite from the Ruggles and Palermo granitic pegmatites in New Hampshire,
296	USA. Powder diffraction analyses by Foord et al. (1997) indicate it is a mixture of
297	schoepite-family minerals and other UOH phases. Composite chemical analyses by Foord
298	et al. (1997) indicate the material contains appreciable K, Pb, and Ca; avg. (in wt%) UO_3
299	83.5, PbO 4.85, BaO 0.68, CaO 0.167, K ₂ O 2.46, SrO 0.21, ThO ₂ 0.85, H ₂ O 6.9, Σ99.62.

- 300 Given the similarity in chemical analyses to leesite, it appears that the mixture of
- 301 schoepite-family minerals found in some "gummite" could contain leesite.
- 302

303 Bond valence analysis and role of interlayer H₂O

304 The symmetry of minerals in the schoepite family is sensitive to the water content, 305 and presence of cations. Some relations between the cation content and arrangement of 306 interlayer water are revealed by a bond-valence based approach, which examines 307 interactions between the structural unit and the role of interstitial species (Hawthorne, 308 1992; Hawthorne and Schindler, 2008; Schindler and Hawthorne, 2004; Schindler and 309 Hawthorne, 2008). The approach developed by these authors is a measure termed the 310 charge-deficiency per anion (CDA), and is defined as the average bond-valence per O atom 311 contributed by the interstitial species and adjacent structural units. Stable structures are 312 formed when the bonding availability of the structural unit matches that of the interstitial 313 complex (Hawthorne, 2012; Hawthorne, 2015). The quantity is useful for crystal-chemical 314 predictions, enabling comparison between minerals with related topologies but differing 315 interlayer constituents.

316 Bond valence analysis of the X-ray structure permits distinction of O atom types 317 within the structure of leesite, and the ideal structural formula assuming full K^+ occupancy 318 is $K(H_2O)_2[(UO_2)_4O_2(OH)_5] \cdot 3(H_2O)$. The CDA of the sheet in lessite is 0.133, identical to 319 the value for Na-metaschoepite. The value is intermediate to those of schoepite and 320 metaschoepite (0.08) and fourmarierite (0.19). The range in Lewis basicity of the structural 321 unit in leesite is 0.13-0.24 using the method of Schindler and Hawthorne (2008), and is 322 comparable to ranges calculated for other uranyl-oxide hydroxyl-hydrate minerals (e.g. 323 schoepite: 0.11-0.20).

324	When present in the interstitial complex, (H ₂ O) molecules act as transformers of
325	bond-valence from cations within the interlayer to atoms in the structural unit (Schindler
326	and Hawthorne 2008). The interlayer of leesite contains 5 unique (H_2O) molecules. The
327	atoms Ow1, Ow2, Ow3, and Ow4 are [5]-coordinated and transfer weak bond valence
328	from K^+ to uranyl ion oxygen atoms within the sheet through various interactions, and
329	according to the designation given by Schindler and Hawthorne (2008), are considered
330	inverse-transformer (H ₂ O) groups. Atom Ow1 forms two bonds to K^+ , two weak H-bonds
331	with uranyl ions of the sheet (~0.2 vu), and one H-bond with Ow2. Atoms Ow2, Ow3, and
332	Ow4 each link to two H atoms (2 x $0.8 vu$) of other (H ₂ O) molecules, and all form at least
333	one H-bond to uranyl ions of the sheet. They also each accept one H-bond (0.2 vu) from
334	(OH) groups of the sheet. The remaining (H ₂ O) group, Ow5, does not bond to a cation and
335	has coordination number [4]. Thus, Ow5 acts as a non-transformer group by propagating
336	weak bond valence from cations to anions that are too distant to bond directly to the cation
337	Details regarding the number of H-bonds donated and accepted, and their interatomic (O-
338	H···O) distances are given in Table 4 and Table S3 (Supplementary Information),
339	respectively.
340	It is difficult to establish if hydronium (H ₃ O ⁺) is present in schoepite family phases

with non-stoichiometric cation contents (Wilkins and Mateen, 1974), but this would be in accord with the observation that leesite and other members of the family are formed from acidic solutions. Site scattering refinement indicates slightly higher K⁺ occupancy (0.71) than obtained from LA-ICP-MS analyses (0.67 *apfu*), which suggests the presence of disordered O (H_3O^+) or N (NH_4^+) atoms at this site, instead of vacancies. However, the discrepancy in refined occupancy may be related to an inadequate absorption correction. It

347 is currently unclear if partial K^+ occupancy is accounted for by $OH^- \Leftrightarrow O^{2-}$ substitution in

the sheet, or through interlayer NH_4^+ or H_3O^+ substitution, but due to their similar sizes, 348 H_3O^+ and NH_4^+ could readily substitute for K⁺ in leesite. 349

- 350
- 351

Speciation of interlayer cations

352 With details of the range of bonding availability of the structural unit and interlayer 353 (H_2O) , we now have the necessary information to describe the species of cations that can 354 be expected to occur in the interlayer in schoepite family minerals as demonstrated by 355 Schindler and Hawthorne (2004) and Schindler and Hawthorne (2008). Figure 8 depicts 356 the variation in Lewis acidity for various cation coordination numbers and charges with 357 differing numbers of coordinating transformer (H₂O) groups. A stable structure is formed 358 where lines of variable Lewis acidity overlap the Lewis basicity range of the structural unit 359 (shown in blue). As revealed in Figure 8, cations with coordination number >[8] must bond 360 to at least one inverse-transformer (H₂O) group to produce a stable structure (Schindler and 361 Hawthorne, 2008). In the structure of leesite, potassium cations are coordinated by three 362 inverse-transformer (H₂O) groups (2 x Ow1, and Ow3), and this agrees with the predicted 363 coordination number of 0 transformer (H_2O) groups.

364 Monovalent cations with a wide range of coordination numbers can be incorporated into the interlayer of leesite, and may include H_3O^+ , NH_4^+ , Na^+ , or Cs^+ . Incorporation of 365 [8]-coordinate Ca^{2+} is possible; however, others have documented conversion of 366 metaschoepite to becquerelite in the presence of Ca²⁺ at elevated temperatures (Sandino 367 and Grambow, 1994; Sowder et al., 1996; Sowder et al., 1999). Although leesite occurs 368 intimately with gypsum, it contains relatively little Ca²⁺ (Table 1). Ca-rich metaschoepite 369 370 may be more likely to occur in carbonate-rich assemblages, such as those at the Markey 371 mine to the nearby southwest. Hydrolysis reactions with abundant uranyl carbonates found

there may lead to the formation of Na, or Ca-metaschoepite. Samples of Na-rich
metaschoepite from Jáchymov were shown to contain small amounts of Cu²⁺ and Al³⁺, and
we can expect these cations will occupy sites that maximize coordination by transformer
(H₂O) groups (Sejkora et al., 2013).

- 376
- 377

RENEWED INTEREST IN PARASCHOEPITE?

378 In a dry environment, schoepite slowly loses interlayer water (Kubatko et al., 2006; 379 O'Hare et al., 1988), leading to a decrease in the interplanar spacing between sheets as 380 water molecules rearrange and relocate, forming a new H-bonded array in metaschoepite 381 (Weller et al., 2000). Schoep and Stradiot (1947) noted an opaque lemon yellow 382 orthorhombic phase within altered crystals of schoepite, which was indistinguishable from 383 crystals of schoepite except upon determination of its optical properties. A combination of 384 optical and chemical analyses indicated the material is unique from other schoepite family 385 members, with the formula $UO_3 \cdot 1.9H_2O_3$ and was thus designated paraschoepite. Christ 386 and Clark (1960) report a large interplanar distance (c = 15.22 Å) for single crystals of 387 paraschoepite, and state "Because of the distinctive X-ray pattern given by the yellow 388 crystals and the excellent agreement of the optical measurements obtained in the present 389 study with those originally given by Schoep and Stradiot in 1947, there can be little doubt 390 as to the validity of paraschoepite." Subsequent descriptions have attributed paraschoepite 391 to a mixture of metaschoepite, dehydrated schoepite, and ianthinite (Brugger et al., 2011; 392 Finch et al., 1997; Finch et al., 1992); however, the similar large interplanar spacing (a =14.87 Å) and arrangements found in leesite may be in part related to paraschoepite. 393 394 Leesite contains a predominance of inverse-transformer (H_2O) groups, which maximize interactions with the sheet in the presence of bulky K⁺ cations. In paraschoepite, interlayer 395

396	water remaining after partial dehydration would likely rearrange in order to maximize
397	bonding interactions with the sheet. This is best achieved by the inclusion of more inverse-
398	transformer (H ₂ O) group interactions, which are capable of transferring bond strength at
399	longer distances. Finch et al. (1992) argue that paraschoepite represents a metastable
400	structure where localized expansion is associated with the collapse of layers as "dehydrated
401	schoepite" forms. Local expansion of layers may be related to reorganization of interlayer
402	(H ₂ O) groups from transformer to inverse-transformer roles, and future X-ray or neutron
403	studies exploring this metastable state may be supplemented by our observations of the
404	structure of leesite.
405	
406	IMPLICATIONS
407	With the description of leesite, we are better able to recognize the conditions and
408	crystal-chemical features that drive formation of specific minerals in the schoepite family.
409	Details of the cation arrangement, water content and H-bonding array can be compared for
410	this series of minerals, and predictions can be made towards possible compositions not yet
411	observed. Our observations of natural samples from several localities reveal that the
412	fourmarierite sheet anion topology is capable of accommodating an interlayer with a range
413	of heterovalent cations and unique configurations. Recognizing how and where large $\boldsymbol{K}^{\!\!\!\!+}$
414	cations incorporate into this family reveals how short-lived radionuclides like ¹³⁷ Cs or ⁹⁰ Sr
415	will behave during the initial alteration stages of irradiated nuclear fuel (Giammar and
416	Hering, 2004). Long-lived radionuclides, such as ¹³⁵ Cs or ²³⁷ Np, may also be incorporated,
417	albeit under different circumstances. Low-valence cations (Cs^+ and Sr^{2+}) will accumulate
418	within interlayer space during formation, or through cation exchange within the interlayer.
419	The incorporation mechanism for high-valence cations (e.g. Np ^{5+,6+} , Pu ^{5+,6+}) depends

420	heavily on the oxidation state, and whether the structure can support substitution of actinyl
421	ions $(An^{5+,6+}O_2)^{1+,2+}$ for uranyl ions $(UO_2)^{2+}$ within the sheet of polyhedra (Burns et al.,
422	1997b). Incorporation of $(Np^{5+}O_2)^+$ must be accompanied by an appropriate charge-
423	balancing mechanism; through protonation of the sheet, or inclusion of cations (Burns et
424	al., 2004; Klingensmith et al., 2007). Schoepite family phases formed during the initial
425	alteration stages will readily incorporate the elements listed above through these processes,
426	but may be subsequently altered, or undergo structural rearrangement. For example,
427	Sandino and Grambow (1994) observed the complete conversion of metaschoepite into
428	compreignacite in the presence of excess K^{+} at room temperature. Leesite from the Jomac
429	mine is intimately associated with compreignacite, and facile conversion to compreignacite
430	may explain the rarity of leesite. In this case, the crystal-chemical predictability afforded
431	by the bond-valence approach is very powerful due to the penchant for UOH minerals to
432	form, rearrange and redistribute U or cations (Finch et al., 1992).
433	
434	ACKNOWLEDGEMENTS
435	This research is funded by the Office of Basic Energy Sciences of the U.S.
436	Department of Energy as part of the Materials Science of Actinides Energy Frontier
437	Research Center (DE-SC0001089). The Element2 HR-ICP-MS instrument used for
438	chemical analyses is housed within the Midwest Isotope and Trace Element Research
439	Analytical Center (MITERAC) at the University of Notre Dame. Electron microscopy was
440	carried out in the Applied Chemical and Morphological Analysis Laboratory at Michigan
441	Technological University. The John Jago Trelawney Endowment to the Mineral Sciences
442	Department of the Natural History Museum of Los Angeles County funded a portion of

444	
445	
446	RFERENCES CITED
447	
448	Amonette, J.E., Holdren, G.R., Jr., Krupa, K.M., and Lindenmeier, C.W. (1994) Assessing
449	the Environmental Availability of Uranium in Soils and Sediments. NUREG/CR-
450	6232 PNL-9570, Pacific Northwest Laboratory, Richland, WA.
451	URL:http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/25/069/2506
452	9667.pdf?r=1. Accessed: 2017-08-13. (Archived by WebCite [®] at
453	http://www.webcitation.org/6shXVIKZO)
454	Bartlett, J.R., and Cooney, R.P. (1989) On the determination of uranium-oxygen bond
455	lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of
456	Molecular Structure, 193, 295-300.
457	Brugger, J., Meisser, N., Etschmann, B., Ansermet, S., and Pring, A. (2011)
458	Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern
459	Flinders Ranges, South Australia: "Dehydrated schoepite" is a mineral after all.
460	American Mineralogist, 96(2-3), 229-240.
461	Burns, P.C. (2005) U ^{o+} minerals and inorganic compounds: Insights into an expanded
462	structural hierarchy of crystal structures. The Canadian Mineralogist, 43(6), 1839-
463	
464	Burns, P.C., Deely, K.M., and Skanthakumar, S. (2004) Neptunium incorporation into
465	uranyl compounds that form as alteration products of spent nuclear fuel:
466	Implications for geologic repository performance. Radiochimica Acta, 92(3), 151-
40/	139. During $\mathbf{P}_{\mathbf{C}}$ and Hauthema $\mathbf{E}_{\mathbf{C}}$ (1007a) The existed characteristic of
408	Burns, P.C., Ewing, R.C., and Hawthorne, F.C. (1997a) The crystal chemistry of
409	nexavalent utanium, polyneuron geometries, bond-valence parameters, and polymorization of polyhedro. The Consider Minerologist 25(6), 1551, 1570
470	Pures P.C. Ewing P.C. and Miller M.L. (1007b) Incorporation mechanisms of actinida
471	elements into the structures of L ⁶⁺ phases formed during the oxidation of spent
473	nuclear fuel Journal of Nuclear Materials 245(1) 1-9
474	\check{C} eika I (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals In P C
475	Burns and R C Ewing Eds Uranium: Mineralogy Geochemistry and the
476	Environment 38 p 521-622 Mineralogical Society of America
477	Christ, C.L., and Clark, J.R. (1960) Crystal chemical studies of some uranyl oxide
478	hydrates. American Mineralogist. 45(9-10), 1026-1061.
479	Dothée, D.G., and Camelot, M.M. (1982) Vibrational Spectroscopy of potassium
480	hexauranate hydrate. I. Frequencies assignable to oxygen-atoms motions -
481	hypothesis on the structure of the anionic layer. Bulletin de la Société chimique de
482	France, (3-4), 97-102.
483	Dothée, D.G., Fahys, B.R., and Camelot, M.M. (1982) Vibrational spectroscopy of
484	potassium hexauranate hydrate. II. Motions of hygrogen atoms - hypothesis on the
485	water-structure in the uranate. Bulletin de la Société chimique de France, (3-4),
486	103-108.
487	Finch, K.J., Suksi, J., Rasilainen, K., and Ewing, R.C. (1996a) Uranium-series ages of
488	secondary uranium minerals with applications to the long-term evolution of spent
489	nuclear fuel. In W.M. Murphy, and D.A. Knecht, Eds. Scientific Basis for Nuclear
490	Waste Management Xix, 412, p. 823-830. Materials Research Society, Pittsburgh.

491	Finch, R.J., Cooper, M.A., Hawthorne, F.C., and Ewing, R.C. (1996b) The crystal structure
492	of schoepite, $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$. The Canadian Mineralogist, 34, 1071-
493	
494	Finch, R.J., and Ewing, R.C. (1992) The corrosion of uraninite under oxidizing conditions.
495	Journal of Nuclear Materials, 190, 133-156.
496	Finch, R.J., Hawthorne, F.C., Miller, M.L., and Ewing, R.C. (1997) Distinguishing among
49/	schoepite, $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$, and related minerals by X-ray powder
498	diffraction. Powder Diffraction, 12(4), 230-238.
499 500	Finch, K.J., Miller, M.L., and Ewing, K.C. (1992) weathering of natural uranyl oxide
500	hydrates - schoepite polytypes and denydration effects. Radiochimica Acta, 58-9,
502	455-445. Final P. L. and Murakami T. (1000) Systematics and paraganasis of uranium minorals. In
502	Princip, K.J., and Murakanni, T. (1999) Systematics and paragenesis of uranium innerals. In D.C. Purns, and P.C. Ewing, Eds. Uranium: Minaralogy, Gooshamistry and the
505	F.C. Durins, and K.C. Ewing, Eds. Oranium. Mineralogy, Geochemistry and the Environment 32 n 01 170 Mineralogical Society of America
504	Environment, 56, p. 91-179. Winelalogical Society of America.
505	mixed uranyl oxide hydroxide hydrate alteration products of uraninite from the
507	Palermo and Ruggles granitic negretites. Grafton County, New Hampshire. The
508	Canadian Mineralogist 35, 145-151
509	Frondel C (1956) Mineral composition of summite American Mineralogist 41(7-8) 539-
510	568
511	Frost, R. L., Čejka, J., & Wejer, M. L. (2007). Raman spectroscopic study of the uranyl
512	oxyhydroxide hydrates: becquerelite, billietite, curite, schoepite and
513	vandendriesscheite. Journal of Raman Spectroscopy, 38, 460-466.
514	Giammar, D.E., and Hering, J.G. (2004) Influence of dissolved sodium and cesium on
515	uranyl oxide hydrate solubility. Environmental Science & Technology, 38(1), 171-
516	179.
517	Hawthorne, F.C. (1992) The role of OH and H ₂ O in oxide and oxysalt minerals. Zeitschrift
518	für Kristallographie, 201(3-4), 183-206.
519	(2012) A bond-topological approach to theoretical mineralogy: crystal structure,
520	chemical composition and chemical reactions. Physics and Chemistry of Minerals,
521	39(10), 841-874.
522	(2015) Toward theoretical mineralogy: A bond-topological approach. American
523	Mineralogist, 100(4), 696-713.
524	Hawthorne, F.C., and Schindler, M. (2008) Understanding the weakly bonded constituents
525	in oxysalt minerals. Zeitschrift für Kristallographie - Crystalline Materials, 223, p.
526	41.
527	Haynes, P.E. (2000) Mineralogy of the Jomac Mine, San Juan county, Utah. Rocks and
528	Minerals, $(5(4), 240-248$.
529	Klingensmith, A.L., Deely, K.M., Kinman, W.S., Kelly, V., and Burns, P.C. (2007)
530	Neptunium incorporation in sodium-substituted metaschoepite. American
527	Willetalogist, 92(4), 002-009. Kubatka K A Halaan K Nauratsky A and Durns D C (2006) Thormadynamics of
532 532	uranyl minorale: Enthelpice of formation of uranyl avide hydrates. A mariaan
535	Minoralogist 01(4), 652 666
534	Li V and Burns P.C. (2000) Investigations of crystal chemical variability in load uranyl
536	oxide hydrates. II. Fourmarierite. The Canadian Mineralogist. 38(3), 737-740
537	Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen
538	bond lengths in minerals Monatshefte Für Chemie 130(8) 1047-1059
220	cond tonguis in minoraus. Monausiero i ar chemie, 150(0), 1017 1059.

539	Lussier, A.J., Burns, P.C., and King-Lopez, R. (2016) A revised and expanded structure
540	hierarchy of natural and synthetic hexavalent uranium compounds. The Canadian
541	Mineralogist, 54(1), 177-283.
542	Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in
543	selecting mineral species for further study. The Canadian Mineralogist, 45, 1307-
544	1324.
545	O'Hare, P.A.G., Lewis, B.M., and Nguyen, S.N. (1988) Thermochemistry of uranium
546	compounds XVII. Standard molar enthalpy of formation at 198.15 K of dehydrated
547	schoepite $UO_3 \cdot 0.9 H_2O$. Thermodynamics of (schoepite + dehydrated schoepite +
548	water). Journal of Chemical Thermodynamics, 20(11), 1287-1296.
549	Plášil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-
550	knowledge. Journal of Geosciences, 59(2), 99-114.
551	Plášil, J., Škoda, R., Čejka, J., Bourgoin, V., and Boulliard, JC. (2016) Crystal structure
552	of the uranyl-oxide mineral rameauite. European Journal of Mineralogy, 28, 959-
553	967.
554	Plášil, J., Kampf, A.R., Olds, T.A., Sejkora, J., Škoda, R., Burns, P.C., and Čejka, J. (2017)
555	Kroupaite, IMA 2017-031. CNMNC Newsletter No. 38, Aug 2016; Mineralogical
556	Magazine, 81(4) , 1033-1038.
557	Sandino, M.C.A., and Grambow, B. (1994) Solubility equilibria in the U(VI)-Ca-K-Cl-
558	H ₂ O system: transformation of schoepite into becquerelite and compreignacite.
559	Radiochimica Acta, 66-7, 37-43.
560	Schindler, M., and Hawthorne, F.C. (2004) A bond-valence approach to the uranyl-oxide
561	hydroxy-hydrate minerals: Chemical composition and occurrence. The Canadian
562	Mineralogist, 42(6), 1601-1627.
563	(2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-
564	oxysalt minerals. The Canadian Mineralogist, 46(2), 467-501.
565	Schoep, A., and Stradiot, S. (1947) Paraschoepite and epiianthinite, two new uranium
566	minerals from Shinkolobwe (Belgian Congo). American Mineralogist, 32(5-6),
567	344-350.
568	Sejkora, J., Plášil, J., and Bureš, B. (2013) Unusual assocation of supergene uranium
569	minerals from the Jan Evangelista vein, Jáchymov (Czech Republic). Bulletin
570	mineralogicko-petrologického oddělení Národního Muzea (Praha), 21, 143-156.
571	Sheldrick, G.M. (2015) SHELXT - Integrated space-group and crystal-structure
572	determination. Acta Crystallographica A-Foundation and Advances, 71, 3-8.
573	Sowder, A.G., Clark, S.B., and Fjeld, R.A. (1996) The effect of silica and phosphate on the
574	transformation of schoepite to becquerelite and other uranyl phases. Radiochimica
575	Acta, 74, 45-49.
576	Sowder, A.G., Clark, S.B., and Field, R.A. (1999) The transformation of uranyl oxide
577	hydrates: The effect of dehydration on synthetic metaschoepite and its alteration to
578	becquerelite. Environmental Science & Technology, 33(20), 3552-3557.
579	Taylor, J.C., and Hurst, H.J. (1971) The hydrogen-atom locations in the [alpha] and [beta]
580	forms of uranyl hydroxide. Acta Crystallographica Section B, 27(10), 2018-2022.
581	Trites, A.F., Jr., and Hadd, G.A. (1958) Geology of the Jomac Mine, White canyon area,
582	San Juan county, Utah. U.S. Geological Survey Bulletin, 1046-H.
583	Vochten, R., and Deliens, M. (1998) Blatonite, UO ₂ CO ₃ ·H ₂ O, a new uranyl carbonate
584	monohydrate from San Juan County, Utah. The Canadian Mineralogist, 36, 1077-
585	1081.

586 587 588 589	Vochten, R., Deliens, M., and Medenbach, O. (2001) Oswaldpeetersite, (UO ₂) ₂ CO ₃ (OH) ₂ (H ₂ O) ₄ , a new basic uranyl carbonate mineral from the Jomac uranium mine, San Juan County, Utah, USA. The Canadian Mineralogist, 39, 1685- 1689.
590 591 592	Walenta, K., and Theye, T. (2012) Heisenbergite, a new uranium mineral from the uranium deposit of Menzenschwand in the Southern Black Forest, Germany. Neues
592 593	Walker, T.L. (1923) Schoepite, a new uranium mineral from Kasolo, Belgian Congo.
594 595	American Mineralogist, 8(4), 67-69. Weller, M.T., Light, M.E., and Gelbrich, T. (2000) Structure of uranium(VI) oxide
596 597	dihydrate, UO ₃ ·2H ₂ O; synthetic meta-schoepite (UO ₂) ₄ O(OH) ₆ ·5H ₂ O. Acta Crystallographica Section B-Structural Science, 56, 577-583.
598 500	Wilkins, R.W.T., and Mateen, A. (1974) The spectroscopic study of oxonium ions in minerals. American Mineralogist 50, 811, 810
600	Wood, R.M., and Palenik, G.J. (1999) Bond valence sums in coordination chemistry using
601 602	new R_0 values. Potassium-oxygen complexes. Inorganic Chemistry, 38(5), 1031- 1034.
603 604	Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E., and Tani, B.S. (1992) Uranium release and secondary phase formation during unsaturated testing of LIO ₂ at 90°C
605	Journal of Nuclear Materials, 190, 107-127.
606 607	
608 609	FIGURE CAPTIONS
610 611 612 613	Figure 1. Orange-yellow aggregates of leesite rim the edges of blocky orange compreignacite, with pale yellow sklodowskite. The whole assemblage sits atop colorless gypsum, with probable white nickelalumite or mbobomkulite. Horizontal field of view is 2 mm.
614 615 616 617	Figure 2. Secondary electron image of tabular leesite stacked along (100). Photo by Shawn M. Carlson and Owen P. Mills.
618 619 620	Figure 3. Raman spectrum of leesite in the 1600 to 100 cm ⁻¹ range, taken with a 785 nm laser. (Inset) Fitted bands for $v_1 (UO_2)^{2^+}$, in the region from 870 to 780 cm ⁻¹ .
621 622 623	Figure 4. Infrared spectrum (ATR) of leesite from 4000 to 600 cm ⁻¹ . (Inset) Fitted bands for $v_3 (UO_2)^{2+}$ in the 1040 to 880 cm ⁻¹ region.
624 625	Figure 5. Fitted bands for v O-H in the 4000 to 2200 cm ⁻¹ infrared region.
625 626 627 628 629 630	Figure 6. A comparative view of the anion sheet topologies, $(OH)^-$ distributions, and cation positions for analogous uranyl-oxide hydroxy-hydrates. Black circles highlight vertices containing $(OH)^-$, and bare vertices represent O^{2-} . The distribution of $(OH)^-$ in leesite is identical to that of the synthetic Na-analog of metaschoepite. Potassium (blue), lead (orange), sodium (yellow).
631	

632 Figure 7. A polyhedral representation of the uranyl oxide hydroxide sheet (yellow) in

- leesite, with ball-and-stick interlayer containing water oxygen (red) and potassium (blue).
- 635 Figure 8. The variation in Lewis acidity for particular cation coordination numbers and

636 charges of a general interstitial complex with differing numbers of transformer (H₂O)

637 groups. The range in Lewis basicity of the structural unit of leesite is shown in blue. A

638 stable structure is formed where the lines of variable Lewis acidity overlap the Lewis

- 639 basicity of the structural unit. Figure adapted in part from Schindler and Hawthorne
- 640 (2004).

Figure 2

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Table 1. Unit-cell parameters for analogous uranyi-oxide hydroxide hydroxide nases.											
Phase	Occurrence	a [Å]	<i>b</i> [Å]	<i>c</i> [Å]	$V[Å^3]$	<i>S.G</i> .	Σ_M s.o.f.				
Neutral sheets											
schoepite ^a	Shaba, DRC	14.337(3)	16.813(5)	14.731	3426(7)	$P2_1ca$	0				
metaschoepite ^b	Shaba, DRC	14.680(2)	14.029(2)	16.720(1)	3443	Pbcn	0				
metaschoepite ^c	synthetic	14.6861(4)	13.9799(3)	16.7063(5)	3439	Pbcn	0				
paraschoepite ^d	Shinkolobwe, DRC	14.12	16.83	15.22	3617	Pbca	0				
heisenbergite ^e	Menzenschwand, DE	13.10(1)	13.76(1)	14.50(1)	2613.7(2)	$P2_12_12_1; Pna2_1$	0				
paulscherreritef	Radium Ridge, AU	4.288(2)	10.270(6)	6.885(5)	303.2(2)	<i>P2;P2₁;P2</i> ₁ /m	0				
α -UO ₂ (OH) ₂ ^g	synthetic	4.242(1)	10.302(1)	6.868(1)	300.1(1)	Cmca or C2cb	0				
Charged sheets											
leesite ^h	Utah, USA	14.866(7)	14.126(7)	16.772(8)	3522(3)	Pbca	0.71				
Na-rich metaschoepite ¹	synthetic	14.7050(6)	14.0565(5)	16.7051(6)	3453	Pbcn	0.545				
Na-rich metaschoepite ^j	Jáchymov, CZ	14.64(2)	14.03(1)	16.69(2)	3426(7)	Pbcn	0.91				
K-rich fourmarierite ^j	Jáchymov, CZ	14.025(2)	16.469(4)	14.623(2)	3378(2)	$Bb2_1m$	0.96				
K-rich fourmarierite ^j	Jáchymov, CZ	13.442(5)	16.611(6)	14.447(2)	3226(1)	$Bb2_1m$	1.03				
fourmarierite ^k	Shinkolobwe, DRC	14.010(1)	16.401(1)	14.317(1)	3290	$Bb2_1m$	1.022				
fourmarierite ^k	Shinkolobwe, DRC	14.018(1)	16.468(1)	14.368(1)	3317	$Bb2_1m$	0.863				
fourmarierite ^k	synthetic	13.938(2)	16.638(3)	14.672(2)	3402	$Bb2_1m$	0.497				
kroupaite ¹	Jáchymov, CZ	14.8201(8)	14.0958(8)	16.765(1)	3502.3(3)	Pbca	0.69				

Table 1. Unit-cell parameters for analogous uranyl-oxide hydroxide hydrate phases.

^a Finch et al. (1996b), ^b Klingensmith et al. (2007), ^c Weller et al. (2000), ^d Schoep and Stradiot (1947), ^e Walenta and Theye (2012), ^f Brugger et al. (2011), ^g Taylor and Hurst (1971), ^h This work, ⁱ Klingensmith et al. (2007), ^j Sejkora et al. (2013), ^k Li and Burns (2000), ¹ Plášil et al. (2017)

Table 2. LA-ICP-MS data (wt %) for leesite, average of 6 analyses.

Element	Mean Ratio (U/cation)	Range	SD	Mean <i>apfu</i>	Calculated wt% oxide
Na	0.001	0.0006-0.0014	0.0004	0.004	-
Ca	0.003	0-0.006	0.482	0.012	-
Κ	0.168	0.1632-0.1748	0.0042	0.670	2.4
U^{a}	1.000	-	-	4	87.09 (as UO ₃)
H_2O^b	-	-	-		10.51

Notes: The element ratios above are alternatively expressed in calculated wt% oxide in the last column, based on the mean *apfu* derived from the count ratios for each element. ^a Ratios normalized to 4 U *apfu*

^b Calculated according to the structure with charge balance considerations on the basis of 20 O *apfu*

Iobs	$d_{\rm obs}$	$d_{ m calc}$	$I_{\rm calc}$	hkl	I _{obs}	d _{obs}	$d_{\rm calc}$ I	calc	hkl	I _{ob}	$d_{\rm obs}$		$d_{\rm calc}$	$I_{\rm cal}$	hkl
		8.386	1	002			2.2690 1	1	027				1.743	1	181
92	7.45	7.433	100	200			2.2521 1	l	622	8	1.7214		1.717	3	280
		7.304	1	102			2.2340 1	l	406	7	1.6918	3	1.709	1	617
		6.509	2	021		1	2.2246 1	l	261	/		8	1.683	1	083
		5.402	1	022	5	2.216	2.1979 1	l	515			1.679	1	067	
		5.077	1	122		4	2.1918 1	l	046				1.676	1	735
		4.897	1	221		2.1701	2.1701 1	l	227				1.673	1	183
		4.504	3	311			2.1684 2	2	146			1	1.651	5	824
		4.370	2	222			2.1023 1	1	246	17	1.6507	1	1.644	3	840
		4.035	1	104	7	2.0955	2.0965 4	1	008			а	1.642	3	283
24	3.713	3.716	22	400			2.0838 2	2	711				1.638	2	267
		3.605	34	024			2.0529 9)	064				1.632	1	911
65	3.566	3.586	1	313	36	2.0431	2.0420 1	1	624				1.631	1	0210
	3	3.531	17	040	50	2.0431	2.0283 5	5	640	6	1.6177		1.622	5	448
		3.366	1	141			2.0178 6	5	208			1	1.600	2	608
100 3.2		3.344	1	331			2.0045 1	1	346	9	1.5909 1.5488	1.594	1	480	
	3.219	3.244	54	224		1	1.9917 1	l	128	-		1	1.593	2	2 2 10
		3.227	1	421	25	1.9817	1.9788 1	10	264				1.580	3	664
		3.189 2.122	24	240			1.9750 2	2	461	5		1.549	1	3 2 10	
		5.135	1	241			1.9660 1	l	713			4	1.54/	1	806
		3.001	1	422	5	1.9333	1.9366 1	l	427				1.533 $\overline{1.520}$	1	483
		$\hat{2}.023$	1	413			1.9232 1	[731			1.330 1.404	1	467	
		$\frac{2.965}{2.966}$	1	043			1.9111 1	l	165			1.494	1	4 2 10	
5	2 825	2.800	2	511			1.9067 1	l	643	2	1 45 4 4		1.400	1	1000
3	2.825	2.793 2.770	1	006			1.8879 1	l	446	3	1.4544		$\frac{1.437}{1.438}$	2	648
		2.770 2.747	3	243	5	1 9601	1.8625	l 、	328				1.430 1.433	1	680
		2.747	1	106	5	1.8001	1.8583 3	5	800				1.435 1 417	1	1022
		2.010	1	206			1.8542 1	1	606 722		1	1	1 401	1	840
		2.599	1 15	026			1.8293	1	/ 3 3	3	1 4026	Į.	1.101 1 392	1	837
28	2.578	$\hat{2},560$	15	424	18	1 8009	1.8200 4	+ 1	408	5	1.4020	1	1 390	1	005
		2.486	9	440	10	1.000	1.0020 4	+ 7	161			а	1.390	1	667
5	2.491	2.477	1	600			1.7970 7	/ I	080				1.383	1	2 10 1
		2.453	т 1	226		1	1.7050 1	1	822			1	î.377	1 2	864
		2.331	2	0.61	9	1.7602	1 7520 5	5	248	9	1.3765	Į.	1.374	2	1024
9	2.314	2.292	- 1	533		4	1 7498 1	Í	813	-		1	İ.371	1	0 2 12
		^	1	555			1./490 1	L	015			14	1.370	1	1040
														1	10 7 0

Table 3. Powder X-ray data (d in Å) for leesite.

	U1	U2	U3	Ū4	K1	Σ	O assignment	Expected H-bonds
01	1.71					1.70	yl O	(0.2 x 1)
02	1.72				0.15	1.87	yl O	(0.2 x 1)
03	0.49	0.40		0.42		1.32	ОН	(0.8 x 1)
O4	0.73		0.68	0.69		2.10	0	
05		1.71			0.10	1.81	yl O	(0.2 x 1)
O6		1.75			0.13	1.88	yl O	(0.2 x 1)
07	0.38	0.47	0.44			1.30	ОН	(0.8 x 1)
08	0.65	0.61				1.26	ОН	(0.8 x 1)
09		0.74	0.68	0.64		2.07	0	
O10		0.48	0.31	0.51		1.29	ОН	(0.8 x 1)
011			1.65			1.65	yl O	(0.2 x 2)
012			1.71		0.08, 0.08	1.86	yl O	(0.2 x 1)
013	0.48		0.49	0.38		1.35	ОН	(0.8 x 1)
O14				1.67	0.13	1.79	yl O	(0.2 x 1)
015				1.67		1.67	yl O	(0.2 x 2)
Ow1					0.23, 0.12	0.35	H ₂ O	(0.8 x 2)
Ow2						0.00	H ₂ O	(0.8 x 2) + (0.2 x 2)
Ow3					0.08	0.08	H ₂ O	(0.8 x 2) + (0.2 x 2)
Ow4						0.00	H ₂ O	(0.8 x 2) + (0.2 x 2)
Ow5						0.00	H ₂ O	(0.8 x 2) + (0.2 x 2)
Σ	617	617	5 96	5 99	1 10			

Table 4. Bond-valence analysis (valence units, *vu*) for leesite.

Notes: Bond-valence parameters for U^{6+} -O taken from Burns et al. (1997a), K⁺-O taken from Wood and Palenik (1999). All strengths are calculated assuming full site occupancy (K). Predicted hydrogen bond-valence contributions to each atom are included, with values for donor (D—H, ~0.8 vu) and acceptor (H—A, ~0.2 vu) bond strengths taken from Hawthorne and Schindler (2008).