Revision 2

Marcella Yant1*, Kelsey E. Young2, A. Deanne Rogers1, Amy C. McAdam2, Jacob E. Bleacher2, Janice L. Bishop3, and Stanley A. Mertzman4.

1Department of Geosciences, Stony Brook University, Stony Brook, New York, USA.
2NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
3SETI Institute, Mountain View, California, USA.
4Franklin & Marshall College, Earth & Environmental Department, Lancaster, Pennsylvania, USA.

*Marcella.Yant@stonybrook.edu

Abstract:

The December 1974 flow in the SW rift zone at Kilauea Volcano, Hawaii, has been established as a Mars analog due to its physical, chemical, and morphological properties, as well as its interaction with the outgassing plume from the primary Kilauea caldera. We focus on a solfatara site that consists of hydrothermally-altered basalt and alteration products deposited in and around a passively degassing volcanic vent situated directly adjacent to the December 1974 flow on its northwest side. Reflectance spectra are acquired in the visible/near-infrared (VNIR) region and emission spectra in the mid-infrared (MIR) range in order to better understand the spectral properties of hydrothermally altered materials. The VNIR signatures are consistent with silica, Fe-oxides, and sulfates (Ca, Fe). Primarily silica-dominated spectral signatures are observed in the MIR and changes in spectral features between samples appear to be driven by grain size effects in
this wavelength range. The nature of the sample coating and the thermal emission signatures exhibit variations that may be correlated with distance from the vent. Chemical analyses indicate that most surfaces are characterized by silica-rich material, Fe-oxides, and sulfates (Ca, Fe). The silica and Fe-oxide-dominated MIR/VNIR spectral signatures exhibited by the hydrothermally-altered material in this study are distinct from the sulfate-dominated spectral signatures exhibited by previously studied low-temperature aqueous acid-sulfate weathered basaltic glass. This likely reflects a difference in open vs. closed system weathering, where mobile cations are removed from the altered surfaces in the fumarolic setting. This work provides a unique infrared spectral library that includes Martian analog materials that were altered in an active terrestrial solfatara (hydrothermal) setting. Hydrothermal environments are of particular interest as they potentially indicate habitable conditions. Key constraints on the habitability and astrobiological potential of ancient aqueous environments are provided through detection and interpretation of secondary mineral assemblages; thus, spectral detection of fumarolic alteration assemblages observed from this study on Mars would suggest a region that could have hosted a habitable environment.

1. Introduction:

The Martian surface has a complex history that includes volcanic activity and widespread aqueous alteration (e.g., Bell et al., 2008), likely including hydrothermal environments. Hydrothermal environments are of particular interest as they potentially indicate habitable conditions, due to their ability to provide microbial communities with water and energy in an otherwise cold/arid environment (e.g., Costello et al., 2009). On Earth, fumarolic activity can support microbial life including mat-like photoautotrophic communities (e.g., mosses and liverworts) (Costello et al., 2009), autotrophic communities (e.g., mosses, liverworts, algae, fungi, lichens) (Halloy, 1991), and halophilic Archaea (single-celled microorganisms) (Ellis et
Thus, detection of fumarolic environments on Mars would suggest a region that could have hosted a habitable environment.

Key constraints on the habitability and astrobiological potential of ancient aqueous environments are provided through detection and interpretation of secondary mineral assemblages, which vary with alteration conditions (e.g., temperature, pH, fluid-to-rock ratio). Alteration assemblages that were potentially derived from hydrothermal systems have been detected in situ on Mars at Gusev Crater and Meridiani Planum (e.g., Squyres et al., 2007; McCollom and Hynek, 2005; Schmidt et al., 2008; Yen et al., 2008; Squyres et al., 2012; Arvidson et al., 2014). The search for hydrothermal systems on Mars has been extended to other locations using orbital measurements of reflectance and emission spectra, which are sensitive to mineral species and abundance. For example, detections of silica from orbit have been used to identify potential fumarolic or near-surface hydrothermal activity (e.g., Bishop et al., 2008; Milliken et al., 2008; Ehlmann et al., 2009; Skok et al., 2010; Marzo et al., 2010; Wray et al., 2011; Smith and Bandfield, 2012). However, orbital spectral interpretations benefit from comparable spectral studies of analog surfaces as demonstrated in Table 1 and of samples altered under controlled conditions in the laboratory (e.g., Yant et al., 2016) because infrared spectra are also sensitive to other factors, such as particle size, host rock mineral assemblage, and other physical properties. Alteration products often form as a thin coating/fracture fill, or are fine-grained and poorly consolidated, which can lead to challenges in comparing data from different techniques due to non-linear spectral mixing from coating and rind geometry and differences in how the measurements are performed (e.g., Kraft et al., 2003; Michalski et al., 2006; Kraft et al., 2007; Hamilton et al., 2008; Rampe et al., 2009).

Altered ash and tephra sites from the Kilauea region on the big island of Hawaii have been established as Mars analogs due to the physical, chemical, and morphological properties of the
Kilauea eruptive products and a range of potentially Mars-relevant environments (e.g., studies in Table 1). For example, chemically altered Kilauea basaltic materials contain secondary minerals and mineraloids (e.g., hematite, Mg/Fe-sulfates, silica) that have been observed on Mars (e.g., Morris et al., 2000a; Morris et al., 2005). Here, we focus on a hydrothermal solfatara site situated on the Kilauea caldera, directly adjacent to the December 1974 flow on its northwest side, and just above the ash outcrop investigated previously (Bishop et al., 2005a). This area provides samples of hydrothermally-altered basalt and alteration products deposited in and around a passively degassing volcanic vent. These samples provide potential spectral analogs to hydrothermally altered regions on Mars.

Earlier studies have characterized the alteration minerals, pathways of high and low temperature weathering, and hydrothermal activity associated with Hawaiian materials (e.g., Crisp et al., 1990; Morris et al., 2000a; Morris et al., 2000b; Schiffman et al., 2000; Schiffman et al., 2006; Bishop et al., 2007; Minitti et al., 2007; Hamilton et al., 2008; Chemtob et al., 2010; Seelos et al., 2010; McCanta et al., 2014; Chemtob and Rossman, 2014) as summarized in Table 1. Some of these previous studies have also provided spectral analyses of naturally altered volcanic materials (e.g., Crisp et al., 1990; Morris et al., 2000b; Schiffman et al., 2006; Bishop et al., 2007; Minitti et al., 2007; Hamilton et al., 2008; Seelos et al., 2010) (Table 1). The MIR and/or VNIR spectral properties of in situ altered Hawaiian basaltic materials were obtained from widespread locations on samples that included lava flows, tephra, ash, and basalt coatings. Silica was observed in all of these studies, as amorphous silica (Crisp et al., 1990; Schiffman et al., 2006; Bishop et al., 2007; Seelos et al., 2010), nanophase silica (Morris et al., 2000b), or hydrated silica (Minitti et al., 2007). Hamilton et al. (2008) detected silica as a mineral phase, cristobalite. Another common phase among these studies is Fe-oxides, which were identified by all of these works, excluding...
Morris et al. (2000b). Sulfates (Na-Al, Ca, Fe) were also observed in majority of these previous studies. Phyllosilicates were only exhibited in two of the sample groups (Bishop et al., 2007; Hamilton et al., 2008).

A previous study by Seelos et al. (2010) included samples and remote measurements from the same fumarole studied here, thus we describe their results in more detail. This particular fumarole is of interest because it is young and well-preserved, and large enough to be analyzed from aerial and orbital observations. Reflectance data of basalts in the Ka’u desert of Hawaii were collected using an Airborne Visible Near Infrared Imaging Spectrometer in order to identify the mineralogic components of relatively young basaltic material. Most of the studied area had spectral signatures consistent with the presence of ferrous and ferric iron in such minerals as pyroxene, olivine, hematite, goethite, and poorly crystalline iron oxides or glass. However, ash duricrusts, coatings on the youngest lava flows, and surfaces downwind of the solfatara vents, exhibited a spectral feature near 2.25μm, associated with opaline silica. The hydrothermally altered solfatara material was spectrally dominated by sulfur and hydrated silica (Seelos et al., 2010).

The naturally-altered fumarolic materials analyzed here are compared in this study with assemblages formed on laboratory-altered synthetic Martian materials from Yant et al. (2016). These previously studied synthetic basaltic glasses represent one type of environment predicted to be common on Mars, acid sulfate weathering under low fluid-to-rock ratios and nearly isochemical conditions (Burns and Fisher, 1990; Bigham and Nordstrom, 2000; Madden et al., 2004; Golden et al., 2005; Ming et al., 2006). Results from Hurowitz and Fischer (2014) indicate that the chemistry of soils at Gusev crater and Meridiani Planum and rinds at Gusev crater suggest a water limited environment with chemical alteration dominated by sulfur-rich fluids; this resulted in the formation of secondary phases without physical separation from the primary substrate, also
referred to as “cation-conservative” (Niles and Michalski, 2009) conditions. The cation-
conservative chemical weathering characteristics displayed by the undisturbed soils from Gusev
crater and Meridiani Planum indicate similar weathering processes for the alteration rinds on rocks
and the regolith on Mars (Hurowitz and Fischer, 2014). Here we investigate how the chemical and
spectral properties of naturally-altered Hawaiian fumarolic deposits compare with those of
alteration assemblages formed in other Mars-relevant environments.

In this study, we extend the earlier work through VNIR and MIR spectral characterization
of the altered glassy basalt surrounding a fumarole vent adjacent to the December 1974 Kilauea
flow. This spectral characterization will enhance the understanding of the spectral properties of
alteration products found in hydrothermal systems. In addition, analytical measurements including
X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are
coordinated with spectral measurements in order to bridge the gap between alteration assemblages
and infrared signals. Specifically, we address the following questions: 1) What are the VNIR and
MIR spectral characteristics of fumarolic alteration from basaltic starting materials? 2) How do
the infrared spectral signatures relate to chemical and physical variations among samples? 3) How
do MIR spectral signatures compare with VNIR signatures? 4) How do the spectral properties of
fumarolic deposits compare with those of alteration assemblages formed in other Mars-relevant
environments?

2. Methods:

2.1 Sample Collection:

We collected samples in June 2015 from an active solfatara site, situated directly adjacent
to the December 1974 flow at Kilauea caldera (19.362403° N, -155.311090° W), on its northwest
side (Figure 1). This site consisted of hydrothermally altered basalt and alteration products
deposited in and around a passively degassing fumarole vent. For the samples with “HI_15_MHY”
designations, material was collected within 19.5m of the main volcanic vent with the lowest
sample number corresponding with the furthest location. The samples with “HI_15_Solf”
designations were collected from the top and sides of the ridge. The "HI_15" portion of the samples
names are not included for labels on figures to cut down on length. The collected material (Figure
1, Table 2) consisted of altered basaltic rocks with variously colored coatings (blue, yellow,
white), coatings on friable, wet reddish ash, as well as one lag deposit sample with centimeter sized
white and yellow grains. Samples were chosen to reflect the wide variety of different coatings
found at this site. Samples were carefully removed from their locations and best efforts were made
to preserve the samples in their original form.

2.2 Analytical Techniques:

The samples were spectrally characterized using VNIR and MIR spectroscopy; analyses
were performed on the sample surfaces as collected (e.g., as solid surfaces instead of powdered
samples). VNIR (350-2500nm) bidirectional reflectance spectra were acquired using an ASD
FieldSpec3 Max spectrometer at Stony Brook University under ambient laboratory conditions. The
samples were purged overnight to remove H₂O and CO₂ from the air and measurements were taken
under purged conditions. This was done to remove the spectral effects from adsorbed water on the
sample surfaces (e.g., Anderson and Wickersheim, 1964). The purged spectra were compared with
previously collected measurements that were performed without an overnight purge. Distinct
differences were observed between the two data sets, with adsorbed water broadening the
absorption features near 1.4 and 1.9μm. The purged spectra provided more diagnostic signatures
and these spectra are provided in Figure 2. The measurements were collected with incidence and
emergence angles of 30° and 0°, respectively. The measurements were performed relative to
Spectralon and then corrected for the reflectance properties of Spectralon. VNIR spectra were compared with library spectra of well-characterized samples available from RELAB (http://www.planetary.brown.edu/relab/).

MIR emissivity spectra were acquired between 225-2000 cm\(^{-1}\) on Stony Brook University’s Nicolet 6700 FTIR spectrometer equipped with a CsI beamsplitter and deuterated triglycine sulfate cesium iodide (DTGS CsI) detector. The atmosphere was purged of H\(_2\)O and CO\(_2\). Each sample was put into an aluminum sample cup painted with Krylon Ultra Flat Black paint in order to minimize spectral contributions from the sample cups. Measurement of thermal emission spectra requires that the samples be at a different temperature than the detector; typically, samples are heated above ambient temperature to achieve this requirement (e.g. Ruff and Christensen, 1997). However, because our samples were expected to contain sulfate minerals, which could dehydrate upon heating, emission measurements of altered samples were performed by cooling the samples well below the detector temperature (Baldridge and Christensen, 2009). A thermo-electric cooling apparatus was used to actively cool the samples during spectral measurement. The samples were cooled to approximately -15°C within the chamber and maintained at that temperature for the duration of 256 scans (~9 minute integration).

MIR spectra of altered samples were analyzed using linear least squares analysis (e.g., Ramsey and Christensen, 1998; Rogers and Aharonson, 2008) with a library of sulfate, silica, Fe-oxide, clay, and sulfur spectra, over the spectral range of 400-1400 cm\(^{-1}\). Most of the library spectra and samples used in this study are described in Christensen et al. (2000); Wyatt et al. (2001), Glotch et al. (2004), Lane et al. (2007), Glotch and Kraft (2008), Baldridge (2008), Ruff et al. (2011), Lane et al. (2015), and Sklute (2015) (Supplementary Table 1). A quasi-linear slope spectrum was also included to account for slopes present in the altered samples, due to spatial
and/or temporal non-isothermalities within the sample or sample collection process from temperature fluctuations. Although linear spectral mixing cannot be assumed for some of these mixtures, the models allow us to characterize the spectrally dominant phases for descriptive purposes (e.g., sulfate- or silica-dominated assemblages), and provides a comparison to what would be observed in models of spectra acquired from Mars.

Chemical and morphological analyses of secondary phases were obtained using a LEO 1550 SFEG scanning electron microscope (SEM) equipped with an EDAX energy dispersive X-ray spectrometer (EDS). SEM analyses were only acquired for the HI_15_MHY samples. Analyses were performed using an accelerating voltage of 20kV. The EDS system is capable of quantitative elemental analysis, but only for relatively flat surfaces. All of the EDS analyses discussed here are semi-quantitative because the analyses were performed on samples with variable surface angles. The EDS analyses do not allow for exact element ratios, but they do provide the elemental composition of the material. With the ratios provided by EDS, a comparison between elements present in the spectra can be done. Combining the elemental makeup and the morphology of a grain can allow for mineral identification. The other analytical techniques (XRF, XRD) can also be utilized to properly identify phases.

X-ray diffraction patterns were determined for a suite of samples using a PANalytical X’Pert PRO X-ray diffractometer equipped with a 15-position sample changer and a ceramic Cu X-ray tube at Franklin and Marshall College. Small aliquots of each sample were hand ground using a ceramic mortar and pestle. Each finely powdered sample was mounted on zero background plates and analyzed sequentially on the same day at 45 kV and 40 mA with the sample holder rotating at 4 revolutions per second while being analyzed to insure sample homogeneity. Scans from 6° to 70° 2θ were made for each sample. Routine identification of crystalline materials is made using
PANalytical, Inc. Highscore software, which is compatible with the International Center for
Diffraction Data (ICDD) Database. Readily visible on each diffractogram is a hump in the
background intensity located between approximately 15° and 35° 2θ that varies in intensity and is
related to the amount of amorphous material present in each sample.

Though initially developed for use in industry and mining, the handheld X-ray fluorescence
(hXRF) has now been established as a viable and valuable technology for in situ geochemical
analysis (Young et al., 2015). Though laboratory XRF instruments will remain the gold standard
for detailed chemical analyses, the hXRF permits in situ analyses, which are advantageous in this
case as they can analyze thin coatings on samples that can be hard to isolate from their underlying
bulk rock. As this study seeks to examine thin coatings and veneers in the solfatara region, hXRF
technology provides a valuable way to analyze coatings in a large number of locations throughout
the study area. Due to the heterogeneous nature of the samples in this study, we focus on measuring
the coating materials. Young et al. (2011, 2012) demonstrated that the hXRF can provide
reasonable constraints on the chemistry of basaltic rocks, and we therefore use this technology in
this study. The samples were analyzed using an Olympus Innov-X DELTA Premium Handheld
XRF Analyzer. The hXRF calibrations were done using standards (Samples CP-5, HWHL100,
BPNTX1, WIME101, and TMGNV5) and the errors on these measurements range from a couple
of wt. % to ~10 wt. % depending on the element. All of the calibration curves and methodologies
are outlined in Young et al. (2016). The XRF data was separated into groups based on chemical
similarities determined using a minimum distance clustering algorithm. The chemical abundances
for each sample are treated as 8-dimensional vectors. Similarities between vectors were determined
by calculating the euclidean distances between pairs of vectors. Two samples separated by
small distances are chemically similar, whereas samples separated by large distances are
dissimilar. The euclidean distances between all samples were plotted and natural breaks between distance values were used to define the three chemical groups shown in Figure 6.

3. Results:

3.1: Infrared Spectroscopy

An overview of the alteration material observed for each sample is shown in Table 2. The thermal emission spectra were first separated into groups based on variations in spectral properties (Figure 2a-d). Most of the thermal infrared spectra of our samples appear to be dominated by silica (Figure 2a), exhibiting features consistent with silica sinter, microporous silica, and/or amorphous silica (Ruff et al., 2011). Within the silica dominated group (Group 1), there are 4 sub-groups. The first sub-group (1-1) exhibits deep silica features near 1240, 1100, and 470 cm\(^{-1}\). The second sub-group (1-2) displays a shallowing of these three features, whereas in the third sub-group (1-3) the feature near 1240 cm\(^{-1}\) is severely shallowed. The fourth sub-group (1-4) exhibits silica features that are shifted when compared to the previous groups, from 1240 and 1100 cm\(^{-1}\) to 1260 and 1115 cm\(^{-1}\), respectively. The remaining 3 groups each only have one associated signature. Group 2 exhibits features near 1145, 675, and 600 cm\(^{-1}\) suggesting a Ca-sulfate (gypsum)-dominated (Bishop et al., 2014) assemblage (Figure 2b). The next group is most consistent with Fe\(^{3+}\)-sulfate (coquimbite) with absorptions near 1170, 1095, 525, and 470 cm\(^{-1}\) (Lane et al., 2015), but as will be described below, is also consistent with a fine-grained mixture of silica, Ca-sulfate, and Al-sulfate (Figure 2c). Silica and Fe-oxide (hematite) influence the spectra for the last group with features near 1250, 1105, 655, and 470 cm\(^{-1}\) (Figure 2d).

The reflectance spectra are divided based on the previous groups established for the MIR emission spectra (Figure 2e-h). Features consistent with silica (SiO\(_2\)·\(n\)H\(_2\)O) are observed for all of the samples in the VNIR (near 0.98, 1.19, 1.45, 1.93 and/or 2.25 μm (Goryniuk et al., 2004; Rice

11
et al., 2013)), but some samples exhibit additional features influenced by Fe-oxides (features 0.6<
μm (e.g. Morris et al., 1985; Bishop and Murad, 1996)) and/or sulfates (1.4-1.5, 1.75-1.85, 1.9-
2.0, ~2.2 and/or ~2.4 μm (Bishop et al., 2005b; Lichtenberg et al., 2010; Lane et al., 2015; Cloutis
et al., 2006) (Table 2). Opal-CT and silicic acid are referred to here as hydrated silica as they both
represent SiO_2·nH_2O and SiOH species (Rice et al., 2013). Opal-CT is identified by characteristic
features near 1.4-1.41 and 1.91 μm, along with a broader band centered at 2.21 μm with a shoulder
extending towards 2.25μm (e.g. Anderson and Wickersheim, 1964; Milliken et al., 2008; McKeown
et al., 2011). Additionally, silicic acid (synthetic silicon dioxide, a white solid powder formed by
the acidification of silicate salts (e.g., sodium silicate) in aqueous solution) was used to identify
hydrated silica with spectral features near 0.98, 1.19, 1.45, 1.93μm (Rice et al., 2013). These
features are characteristic of H_2O in several minerals, however, based on the shape of the features
near 0.98, 1.19, 1.4, and 1.9μm, these spectral bands may indicate the presence of hydrated silica
in our samples.

In general, the features present in the reflectance spectra are similar within the groups of
samples, however there are some variations. In Group 1-1, the spectra exhibited deep silica features
in the MIR. Although influence from silica is observed for all five samples in the VNIR, a broad
absorption in the 0.92-1.06μm range is also exhibited, consistent with Fe^{2+}-sulfate (melanterite)
and/or Fe-oxide (akaganéite), or perhaps an iron impurity within the silica phase or mineral mixing
(Figure 2e). The shoulder near 0.53μm observed for HI_15_MHY_001 and Solf_002_1 may also
indicate influence from Fe-oxides. Overall, MHY_001, Solf_001_1, and Solf_002_1 display
shallow features consistent with basaltic glass along with some influence from opal-CT near 1.91
and 2.25μm; whereas MHY_002a and MHY_002b exhibit deeper features primarily consistent
with opal-CT. Additionally, MHY_001 and Solf_002_1 exhibit negative spectral slopes and a
concave nature, possibly due to thin coatings and/or fine grain size (e.g., Fischer and Pieters, 1993; Brown et al., 2014) or due to acidic leaching of glass (Horgan and Bell, 2012). Group 1-2 exhibited shallowed silica features in the MIR. Again all of the VNIR spectra in this group are consistent with the presence of silica, however all of these samples also exhibit influence from Fe-oxide (akaganéite) and/or trace iron impurity, near 0.44, 0.53 and/or 0.98μm (Figure 2e). The feature near 0.44 could also be due to the presence of Fe$^{2+}$-sulfate (melanterite) and/or Fe$^{3+}$-sulfate (copiapite or jarosite). The features observed near 1.45, 1.91, and 2.25μm for the samples in this group are consistent with opal-CT.

The MIR signatures for Group 1-3 were silica-dominated, but with severe shallowing of the 1240 cm$^{-1}$ feature. The VNIR signatures for both samples in this group are influenced by silica, exhibiting features consistent with opal-CT (1.45, 1.91, 2.25μm) (Figure 2e). Both samples included in this group also display features that may be due to the presence of Fe-oxide (akaganéite), near 0.53 and 0.98μm. The shifted silica features observed for Group 1-4 in the MIR correspond with a VNIR signature dominated by silica and Ca-sulfate (Figure 2e). The shape of the feature near 1.45μm is most consistent with Ca-sulfate (gypsum) along with the absorption near 1.76μm. The feature near 2.25μm is most consistent with opal-CT. Group 2 is Ca-sulfate-dominated in the MIR, and exhibits features dominated by Ca sulfate (gypsum, near 1.45, 1.76, 1.94μm) with some influence from silica near 2.25μm and silicic acid near 0.98 and 1.19μm (Figure 2f). The reflectance features of the Group 3 spectrum are consistent with Ca-sulfate (gypsum or bassanite, near 1.45, 1.93μm) in the VNIR with opal likely as well due to the broadness of these bands, lack of a 1.76μm feature, and the presence of a feature near 2.25μm (Figure 2g).

The last group exhibits influence from silica and Fe-oxide in the MIR. The reflectance signature for Group 4 is also consistent with adsorbed water bands observed for hydrated silica (1.16, 1.45,
1.76, 1.93μm) and Fe-oxide (near 0.96μm). Akaganéite provided the best match from the Fe-oxide library spectra used in this study, as it contains characteristic Fe$^{3+}$ absorptions near 0.44, 0.59 (shoulder), and 0.92μm (Bishop et al., 2015); however, we did not observe the expected H$_2$O band near 1.95-2.0μm or OH band near 2.46μm, so akaganéite cannot be a dominant component. This sample also may display influence from Fe$^{2+}$-sulfate (melanterite) and/or Fe$^{3+}$-sulfate (copiapite, jarosite) near 0.44 μm (Figure 2h).

Linear least squares analysis was used to model the averaged thermal emission spectra for each group. A full table of the modeling results is available in the Supplementary Material (SI 1). The phases listed as minor are below the detection limits of this method and may not be present. The MIR Group 1-1 also had a silica-dominated modeled assemblage, but lower amounts of sulfate and minor Fe-oxide were used by the model to improve the fit (Figure 3a). The shallowed silica features exhibited by MIR Group 1-2 also resulted in a silica-dominated modeled assemblage, but with influence from sulfate, clay (montmorillonite, Fe/Al-smectite), and minor sulfur (Figure 3b). The relatively poor fits for Groups 1-3 and 1-4 indicate non-linear mixing likely due to small particle sizes, discussed further in Section 4.1, and poorly crystalline components. An Fe$^{3+}$-sulfate-Al-sulfate-dominated modeled assemblage (Figure 3c) was observed for Group 1-3, contrasting the silica-dominated grouping. The shifted silica features observed for MIR Group 1-4 still produced a silica-dominated modeled assemblage, but with influence from Fe-oxide and sulfur (Figure 3D). The modeled spectrum for MIR Group 2 resulted in a Ca-sulfate-dominated assemblage with influence from silica (Figure 3e). The Fe$^{3+}$-sulfate-dominated model fit for MIR Group 3 is relatively poor, as with Groups 1-3 and 1-4 and is likely influenced by particle size effects (Figure 3f). Last, the modeled assemblage for the MIR Group 4 is dominated by silica and
Fe-oxide with influence from sulfate (Figure 3g), consistent with the silica/Fe-oxide-dominated grouping.

3.2 Chemical and Mineralogical Analyses

SEM analyses were only acquired for the HI_15_MHY samples and thus only these samples are discussed (no data was collected for Group 1-3 or Group 3) using secondary electron images. The Group 1-1 samples all exhibit similar silica-dominated surfaces (Figure 4a-c). The surface of HI_15_MHY_001 is characterized by a Si-rich leached coating, overlying a glass with considerable Al, Ca, Mg, and Fe (Figure 4a). HI_15_MHY_002a is also dominated by a Si-rich coating (Figure 4b), with some Fe-sulfates and Ca-sulfates observed sparsely. A Si-Ti-Fe-rich surface coating is also observed, but is not as pervasive as the Si-rich surface. A Si-rich surface is also observed for HI_15_MHY_002b, overlying a glass similar to that observed for HI_15_MHY_001 (Figure 4c). The samples from Group 1-2 also exhibit a Si-rich coating, but are consistent with other materials (Figure 4d-e). HI_15_MHY_003 has a Si-rich surface, with Ca-sulfate present in some areas (Figure 4d). HI_15_MHY_005 has a Si-rich surface with Fe-Ti-oxides and Ca-sulfate deposited on top (Figure 4e). The surface of the only sample from Group 1-4, HI_15_MHY_007a, is characterized by Si-rich material and Ca-sulfate (Figure 4f). With Group 2, the surfaces are less dominated by silica compared to Group 1. HI_15_MHY_007b exhibits centimeter sized clasts of Si-rich material (Figure 4g) and Ca-sulfates (Figure 4h). For Group 4, the surface of HI_15_MHY_006 is characterized by Si-rich material overlain considerably by Fe-Ti-oxides (Figure 4i).

The results from the XRD analyses are listed in Table 2. Generally, amorphous material +/- crystalline silica was observed for all of these samples. The amorphous material could indicate glass, silica, allophane, imogolite, or other amorphous materials which result in a characteristic
hump in the XRD pattern. Crystalline silica is referring to crystalline polymorphs of SiO$_2$ (e. g.,
tridymite, cristobalite) which have distinct XRD peaks. Small amounts of additional phases were
observed for Group 1-2 (blixite, Fe-oxides, zeolites, K-sulfate), Group 1-3 (Fe-oxides), and Group
2 (Ca-sulfate, sulfur). The XRD patterns for all of these samples exhibited broad features
consistent with an amorphous material such as amorphous silica, allophane and/or basaltic glass.
For three samples, the broad diffraction hump had a width of \sim16 °2θ and the center was shifted
to lower °2θ values (\sim23 °2θ), indicating material that is more Si rich than pure basaltic glass
(Figure 5). No halite was observed in these samples.

The XRF data has been separated into 3 groups based on chemical similarities determined
using a minimum distance clustering algorithm on handheld XRF chemical data for each sample
(Figure 6A). This independent XRF-based grouping was done in order to compare how/if element-
based compositional variability corresponds with spectrally-determined variability. Chemical
variations are most strongly driven by abundances of Si, Fe, and less so by Al and Ca. The
abundance of Si is negatively correlated with Fe, Al, and Ca. The XRF Group 1 consists of
samples HI_15_Solf_002_3 (MIR Group 1-3) and HI_15_Solf_003_2 (MIR Group 1-2) and
displays relatively higher enrichment in Si and lower enrichment in Ca and Fe compared to the
other groups. XRF Group 2 exhibits medium enrichment in Si, Fe, Al, and Ca and includes
samples from MIR Group 1-1 (HI_15_MHY_001, HI_15_MHY_002a), Group 1-2
(HI_15_MHY_003, HI_15_MHY_005, HI_15_Solf_003_3), Group 1-4 (HI_15_MHY_007a),
and Group 4 (HI_15_MHY_006). The XRF Group 3 includes samples from MIR Group 1-1
(HI_15_Solf_001_1, HI_15_Solf_002_1), Group 1-3 (HI_15_Solf_001_2), and Group 3
(HI_15_Solf_002_2) which display relatively low enrichment in Si, and high enrichment in Al,
Ca, and Fe. The Al vs. Si and Fe vs. Si plots (Figure 6B-C) display the negative correlations that
were observed by the minimum distance clustering. These plots also indicate that the XRF compositional groupings of samples are not the same as the previous MIR groups, although there are some similarities.

4. Discussion

4.1 Spectral Detectability

Overall, the surfaces of the hydrothermally altered samples analyzed here are characterized by silica-rich material +/- Fe-oxides and Ca-sulfate, based on chemical and mineralogical analyses (Table 2). Several XRD patterns exhibited amorphous humps centered near 24 2θ; this position is consistent with an amorphous material that is more Si rich than basaltic glass (Figure 5). Silica-rich materials generally have a narrower hump centered at lower positions near 25 2θ, whereas basaltic glass generally has a broader hump centered at higher positions, near 31 2θ, (Morris et al., 2015). This is consistent with MIR/VNIR data that showed amorphous silica contributed to the spectral shape for all samples. Although both the MIR/VNIR and handheld XRF data are detecting strong enrichments in Si or Si-bearing phases, compositional groupings of samples using each technique are not well correlated. This could be due to the sensitivity of the handheld XRF to chemical changes versus MIR/VNIR spectroscopy which are sensitive to mineral species and abundance. Likewise, minor alteration phases observed on sample surfaces in SEM images are often not exhibited in the XRD data due to the small contribution of the surface material to the bulk sample.

In general, the dominant surface phases are clearly identified in the VNIR and MIR spectral signatures; however, for some samples, the spectral models include large abundances of phases that are absent in SEM data. For example, the surfaces of samples HI_15_MHY_001 and HI_15_MHY_002b (Group 1-1) are both characterized by a silica coating based on SEM analysis.
However, in the MIR additional phases (sulfates and Fe-oxides) are needed in order to provide the best fit to the sample spectra (Figure 3a). In addition, phyllosilicates (montmorillonite, Fe/Al-smectite) are included in the modeled assemblage for Group 1-2 (Figure 3b) when none was observed on any of the sample surfaces. This phenomenon, as well as the poor fits to some of the modeled spectra (e.g., MIR Group 3), are likely due to the fine-grained nature of the weathered surfaces. Volume scattering and transmission through small grains or thin coatings can give rise to spectral features that are not well modeled by library spectra of pure, coarse-grained phases.

Differences in grain size also appear to be a major factor in the spectral differences between the samples in the MIR silica-dominated group (Group 1). SEM data was only collected for the HI_15_MHY samples and thus only these samples are discussed. The samples with the deepest features (Group 1-1; HI_15_MHY_001, 002a, and 002b) all have continuous silica coatings with little to no fine-grained surface material (Figure 4a-c). However, the samples with shallow silica features (Group 1-2, 1-4; HI_15_MHY_003, 005, 007a) have finer-grained surfaces (Figure 4d-f), and HI_15_MHY_005 and HI_15_MHY_007a also have numerous cavities. Additionally, the shallow silica features could be due to a relatively low abundance of silica-rich material due the presence of oxides and sulfates.

The variations observed between the subgroups of the silica-dominated thermal emission spectra appear to be correlated with distance from the volcanic vent. The distance was only measured for the HI_15_MHY samples and thus only these are discussed. The purest silica features were exhibited by the material farthest from the vent (Group 1-1, 19.0 – 18.0m) with shallowing of silica features in the intermediate material (Group 1-2, 11.5m – 4.7m), and shifting of features in the material closer to the vent (Group 1-4, 4.5m). The material collected closest to the vent
exhibited sulfate-dominated features (Group 2, 4.5m and Group 3, 4.0m). Unfortunately, no fluid or gas measurements were available, and interpretation of the influence of changing gas composition cannot be determined at this time. The presence of sulfates could be due to a greater supply of sulfur near the vent, contributing to the formation of sulfates in the material closest to the vent or due to easier removal of mobile cations farther from the vent. The nature of the sample coating also appears to change with distance from the vent. Materials that exhibit leached surfaces are observed farther away from the vent (Group 1-1, 19.5 – 18.0 m, Figure 1b-c) and may represent passive silica enrichment from removal of other elements during weathering (e.g., Morris et al., 2008; Yen et al., 2008). Generally, thicker silica encrustations are observed on samples located closer to the vent (Groups 1-2, 1-3, 1-4, 2, 3, and 4, 11.5 – 4.0 m, Figure 1d-i) and may partially result from silica precipitated during low water-to-rock aqueous alteration of the basalts by acidic aerosols supplied by the vent (e.g., Ruff et al., 2011). Furthermore, the shift of the silica feature from 1115cm⁻¹ to 1100cm⁻¹ observed in the Group 1-4 MIR spectra could be due to Al-substitution for Si. This could be expected in the samples observed here, as Al (along with Si and Fe³⁺) has increased solubility under acidic conditions (Hurowitz et al., 2006).

Many of the samples exhibited low abundances of Fe-oxides and sulfates in addition to silica in the chemical analyses (HI_15_MHY_002a, 003, 005, 006, 007a, 007b, HI_15_Solf_003_3, Table 2). Although these low-abundance materials were not easily identifiable in many of the MIR signatures (Figure 2) they were commonly distinguished in the VNIR range. The differences observed between the MIR and VNIR signatures are attributed to differences in mineral transparency between these two techniques and the nature of the alteration material. Some samples exhibit powdery surfaces that result in multiple surface scattering and reduced restrahlen features in the MIR (Hunt and Vincent, 1968; Salisbury and Wald, 1992;
Mustard and Hays, 1997), making it difficult to identify lower abundance phases. In addition, the fine grains and thin coatings that comprise the alteration material permit energy transmission through the grains/coatings (e.g., Hunt and Logan, 1972; Clark and Roush, 1984). This effect is enhanced in the VNIR due to the lower absorption coefficients in this range and increased importance of volume scattering (Salisbury and Wald, 1992). This allows small abundance phases to be more easily detected in the VNIR and these may dominate the spectral properties.

The alteration phases observed here provide similar results to the previous works in Table 1. Here we observed MIR signatures dominated by silica and VNIR signatures influenced by silica, sulfate(s), and Fe-oxide(s). The phyllosilicate phases detected by Golden et al. (1993), Morris et al. (2000a), Schiffman et al. (2000), Bishop et al. (2007), and Hamilton et al. (2008) were only observed using linear least squares modeling of the MIR data for Group 1-2 in abundances ≤ 10%. Our results agree with the environmental conditions suggested by Schiffman et al. (2000) which attribute the development of opaline crusts to acidic conditions (pH <6) and clay mineral formation to more neutral conditions (pH 6.5 – 7.8).

The global abundance and species of chemical alteration products on planetary surfaces are related to the starting composition of unaltered protolith, the style and duration of alteration processes, the fluid composition, the fluid-to-rock ratio (e.g., Tosca et al., 2004; Golden et al., 2005; Ming et al., 2006), and ultimately, to the preservation of those products in rocks and soils. Thus, detection and interpretation of alteration mineral assemblages is critical to deciphering the history of the Mars. However, amorphous material often forms as a product from the alteration of volcanic material and can cause difficulty in identifying additional alteration phases and obtaining quantitative abundances of alteration phases. Amorphous phases are an important component on Mars and have been observed in several occurrences by the Chemistry and Mineralogy Instrument.
(CheMin) onboard Curiosity (e.g., Bish et al., 2013). The presence of amorphous material was determined based on the appearance of a broad, diffuse peak rather than the narrow diagnostic peaks of well crystalline phases. This provides a challenge for identification because these phases lack long-range crystallographic order so analyses that depend on crystal structure (e.g., XRD) are non-unique. The fumarolic materials in this study may provide an analog for some of the amorphous phases on Mars, and the distinctive Si-rich features observed show that the addition of MIR/VNIR data helps to distinguish some of those materials.

4.2 Hydrothermal Alteration on Mars

MIR and VNIR spectral analyses of hydrothermally altered Hawaiian basalts are presented here in order to enhance the understanding of the infrared spectral properties of weathered materials. The spectral shapes of the signatures acquired in this study can be applied to VNIR and MIR spectral data obtained from Mars in order to better constrain variability of weathering on a global scale. Based on our results, silica detections across both wavelength ranges are common from fumarolic alteration. However, we note that silica deposits are not limited to high-temperature and/or fumarolic processes (e.g., McLennan, 2003; McAdam et al., 2008). For example, silica can form through acid fog weathering of basalt, with low water-to-rock ratios under near isochemical conditions (Tosca et al., 2004). Based on a number of chemical and mineralogical measurements made by landed missions (Clark et al., 1993; Haskin et al., 2005; Ming et al., 2006; Clark et al., 2005; Morris et al., 2006), an acid fog environment has been proposed as a common and persistent alteration setting on the Martian surface (Hurowitz and McLennan, 2007; Hurowitz and Fischer, 2014). Thus, it is useful to compare the spectral properties of silica-bearing samples from this fumarolic environment to those formed in a closed-system acid sulfate environment. Below, we compare the spectral characteristics of our samples to those from a previous study in which basaltic
glass was subjected to low-temperature, isochemical weathering under low water-to-rock ratios
(Yant et al., 2016).

In a previous study, sand-sized synthetic Martian glass particulates were submerged in sulfuric-
hydrochloric acidic solutions (pH 0-4) under low fluid-to-rock ratios (1:1) at ambient temperature
and pressure (Yant et al., 2016). This system simulates an acid-fog environment which is
considered closed due to the very low fluid-to-rock ratios. We use a laboratory environment
because of the difficulty in determining how long a natural environment has been closed. In
general, acid alteration on particles resulted in sulfate-dominated assemblages in the most acidic
solutions (pH≤1) that exhibited well-developed sulfate features, in the MIR, and strong 1.45, 1.95,
and 2.40μm features in the VNIR. Amorphous silica was present based on chemical analyses, but
not as detectable in the MIR/VNIR spectra. The results from Yant et al. (2016) contrast
significantly with the silica-dominated assemblages observed for the majority of the samples in
this study (Figure 7).

The likely reason for the observed differences relates to open vs. closed system weathering.
Sulfates, Fe-oxides, and silica are commonly identified as alteration products in Martian analog
studies (Table 1), and when present on the surface of substrates each contributes uniquely to the
visual appearance and MIR/VNIR spectral signatures observed for these materials. In closed
system weathering, as simulated by Yant et al. (2016), small volumes of acidic fluid react with the
surface of the material resulting in a fluid enriched in the most soluble elements . A leached
alteration rind, depleted in the most soluble elements, is left behind, and the fluid subsequently
undergoes evaporation and deposits alteration minerals. Si^{+4} is relatively insoluble in low pH
conditions (pH<2-3) and basaltic cations are relatively mobile (e.g., El-Shamy et al., 1972; Minitti
et al., 2007). This can result in basalt leaching or dissolution that could form a silica-enriched layer
beneath the fluid containing the mobile cations. When the fluid is evaporated, in a closed system, salts containing the more mobile cations can precipitate on top of the silica-enriched layer. The formation of the sulfates overlying the silica layer results in a larger spectral signal from the sulfates relative to the silica. In order to form a sulfate-dominated assemblage, the fluid-to-rock ratio needs to be small enough that the soluble elements are not mobilized and are allowed to precipitate on top of the leached surface in a closed system (Hurowitz et al., 2006). Additionally, sulfates that are precipitated over a diffuse area can be remobilized by dew and/or rain, whereas silica coatings are less soluble and less likely to be removed.

If the system is open and the fluid can migrate, a silica or Fe-oxide-dominated assemblage can be formed (Dorn, 2012; Chemtob and Rossman, 2014). Chemtob and Rossman (2014) describe the formation of silica coatings on glassy basalts from Hawaii through reaction of acidic fluids in an open system using the following model. Fresh rock surfaces are wetted by rainwater or condensed water vapor. The fluid becomes acidified by volcanically derived liquids and reaction with this low pH fluid results in dissolution of the basalt. The basaltic cations are more soluble than the silica and the cations remain dissolved at low pH and the silica is precipitated in place. The fluid is mobilized carrying away the more soluble cations, leaving behind Ti and Fe$^{3+}$, which have lower mobility and are deposited as Fe-Ti-oxides, in addition to the silica. Chemtob and Rossman (2014) suggest that this mobilization is facilitated by liquid water, possibly sourced from rainwater and condensed water vapor from nearby plumes. Silica can also be transported to the surface by fluids that penetrate to the interior of the basalt. As alteration continues over a period of years, episodes of dissolution-reprecipitation can result in the thickening of the silica layer and the remobilization of Fe and Ti to the surface, producing silica or Fe-oxide-dominated spectral signatures like those observed here. Additionally, Al behaves in a manner similar to Fe$^{3+}$ and...
exhibits increased solubility in acidic conditions (Hurowitz et al., 2006) and could be expected to precipitate under the conditions shown here. Negative correlations were observed between Fe vs. Si and Al vs. Si in the XRF data (Figure 6) supporting the interpretation that Fe and Al are both precipitating on top of the silica layers. The results shown here for the natural Hawaiian samples are in agreement with the model proposed by Chemtob and Rossman (2014).

Surfaces showing silica signatures in the VNIR and MIR provide the best candidates for potential fumarolic deposits. For example, hydrated silica has been identified in several locations through VNIR detections from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at Western Hellas (Bandfield, 2008), plains near Melas Chasma and Juventae Chasma (Milliken et al., 2008), Isidis Basin (Ehlmann et al., 2009), Northern Syrtis Major (Ehlmann et al., 2009; Smith and Bandfield, 2012), Toro Crater (Marzo et al., 2010), Nili Patera (e.g. Skok et al., 2010), Terra Sirenum (Wray et al., 2011), and Noctis Labyrinthus (Weitz et al., 2011). Hydrated silica has also been identified in MIR data from the Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) at Western Hellas Basin (Bandfield, 2008) and along the dichotomy boundary (Bandfield and Amador, 2016). Hydrothermal processes have been inferred for most of these regions; however, it is difficult to rule out other origins from orbital data alone. Nevertheless, this work provides strong support for those interpretations.

5. Implications:

This work provides a unique infrared spectral library that includes Martian analog materials that were altered in an active terrestrial solfatara (hydrothermal) setting. Hydrothermal environments are of particular interest as they potentially indicate habitable conditions. Among the techniques to detect potential hydrothermal/habitable conditions on Mars, visible and infrared spectroscopic remote sensing provides the greatest coverage at the highest spatial resolution,
allowing for assessment of spatial and/or temporal variability in surface conditions. Key constraints on the habitability and astrobiological potential of ancient aqueous environments are provided through detection and interpretation of secondary mineral assemblages; thus, spectral detection of fumarolic alteration assemblages observed from this study on Mars would suggest a region that could have hosted a habitable environment. Alteration assemblages that were potentially derived from hydrothermal systems have been detected in situ on Mars at Gusev Crater and Meridiani Planum. Kraft et al. (2003) suggest that secondary amorphous silica may account for the spectral signatures observed for ST2, exhibiting the potential widespread nature of this type of alteration. Using the spectral library provided here, the search for hydrothermal systems on Mars can be extended to other locations using orbital measurements of reflectance and emission spectra, which are sensitive to mineral species and abundance.

6. Acknowledgements

All field work reported here that was conducted within Hawai‘i Volcanoes National Park (HVNP) was conducted under National Park Service (NPS) Scientific Research and Collection Permit # HAVO-2012-SCI-0025 as part of NPS Study # HAVO-00420. This work was supported by the RIS4E node of NASA's Solar System Exploration Virtual Institute. A. D. R. also acknowledges support from the Mars Fundamental Research Program NNX13AG82G. The authors would like to thank Steve Ruff for contributing silica reference spectra. NSF-EAR 0923224 awarded to Franklin and Marshall College facilitated a substantial upgrade of both XRD and XRF instrumentation. We also would like to thank Joseph Michalski and Rebecca Greenberger for their insightful reviews. Lastly, Mertzman thanks Karen R. Mertzman for her ongoing meticulous work in the X-ray lab without which there would be much less high quality data in the world.
References:

Golombek, J. P. Grotzinger, E. A. Guinness, K. E. Herkenhoff, B. L. Jolliff, A. H.

Knoll, R. Li, S. M. McLennan, D. W. Ming, D. W. Mittlefehldt, J. M. Moore, R. V.

Bandfield, J. L. and E. S. Amador (2016), Extensive aqueous deposits at the base of the dichotomy boundary in Nilosyrtis Mensae, Mars, Icarus, 275, 29–44.

Goryniuk, M.C., B.A. Rivard, and B. Jones (2004), The reflectance spectra of opal-A (0.5-25 μm) from the Taupo Volcanic Zone: Spectra that may identify hydrothermal systems on planetary surfaces. Geophys. Res. Lett. 31, n/a-n/a. doi:10.1029/2004GL021481

Kraft M.D., J.R. Michalski, and T.G. Sharp (2003), Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy, GRL 30, 2288.

Lane, M.D. (2007), Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, pp. 1–18.

Minitti, M. E., C. M. Weitz, M. D. Lane, and J. L. Bishop (2007), Morphology, chemistry, and
spectral properties of Hawaiian rock coatings and implications for Mars, Journal of

Stewart (1985), Spectral and other physicochemical properties of submicron powders of
hematite (α-Fe₂O₃), maghemite (γ-Fe₂O₃), magnetite (Fe₃O₄), goethite (α-FeOOH), and

Souza Jr., I. Fleischer, T. Wdowiak, R. Gellert, B. Bernhardt, E. N. Evlanov, B. Zubkov,
(2006), Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's
journey through weakly altered olivine basalt on the plains and pervasively altered basalt

Mineralogy, composition and alteration of Mars Pathfinder rocks and soils: Evidence
from multispectral, elemental and magnetic data on terrestrial analogue, SNC meteorite

Morris, R.V., T. Graff, M.D. Lane, D.C. Golden, C.S. Schwandt, D.W. Ming, T.D. Shelfer,
S.A. Mertzman, J. F. Bell, J. Crisp, and P.R. Christensen (2000b), Acid sulfate alteration
products of a tholeiitic basalt: Implications for interpretation of Martian thermal emission

Mustard, J. F., and J. E. Hayes (1997), Effects of hyperfine particles on reflectance spectra from 0.3 to 25 μm, Icarus, 125, 145–163.

silica-rich materials: Sensitivity to environment and implications for detections on Mars,

Rogers, A.D., and Aharonson, O. (2008), Mineralogical composition of sands in Meridiani
Planum determined from MER data and comparison to orbital measurements. Journal of

Ruff, S. W., J.D. Farmer, W.M. Calvin, K.E. Herkenhoff, J.R. Johnson, R.V. Morris, M.S. Rice,
R.E. Arvidson, J.F. Bell III, P.R. Christensen, and S.W. Squyres (2011), Characteristics,
distribution, origin, and significance of opaline silica observed by the Spirit rover in

Salisbury, J. W., and A. Wald (1992), The role of volume scattering in reducing spectral contrast
of Restrahlen bands in spectra of powdered minerals, Icarus, 96, 121-128.

palagonitization versus pedogenic weathering of basaltic tephra: Evidence from the
consolidation and geochemistry of the Keanakako’i Ash Member, Kilauea Volcano.
Geochemistry, Geophysics, Geosystems, 1, 1040.

Schiffman, P., Zierenberg, R., Marks, N., Bishop, J.L., and Dyar, M.D. (2006), Acid-fog
deposition at Kilauea volcano: A possible mechanism for the formation of siliceous-
sulfate rock coatings on Mars. Geology 34, 921-924.

origin of halogens at Home Plate, Gusev Crater. Journal of Geophysical Research, 113,
E06S12.

Figure Captions:

Figure 1: a) Image of the volcanic vent from which the samples were collected, b-i) close-up images of the samples in situ, j-p) laboratory images of the HI_15_MHY samples, and q-w) laboratory images of the HI_15_Solf samples. See text for a description of the sample labels.

Figure 2: Thermal emission signatures of the collected samples grouped based on similarities of dominant spectral features into a) Group 1, silica-dominated, b) Group 2, Ca-sulfate-dominated, c) Group 3, Fe-sulfate-dominated, and d) Group 4 (silica/Fe-oxide-dominated). The reflectance spectra are separated into groups based on the MIR groups established in panels a-d, e) Group 1,
f) Group 2, g) Group 3, and h) Group 4. Vertical lines indicate features discussed in text. The spectra have been offset along the y-axis for clarity. Gp = gypsum, Ah = anhydrite, Ak = akaganéite, Ml = melanterite, Al = alunogen, Cq = coquimbite, Hm = hematite. The library spectra used here were not measured in this study and include silica sinter, microporous silica, amorphous silica (Ruff et al., 2011), gypsum (Lane et al., 2007), coquimbite (Lane et al., 2015) alunogen (Lane unpublished), and hematite (Christensen et al., 2000) for the MIR. In the VNIR, the library spectra include basaltic glass (Yant et al., 2016), silicic acid, opal-CT (Rice et al., 2013), gypsum (RELAB ID: C1JB557), akaganéite (RELAB ID: 397F212D), melanterite (RELAB ID: CASF44), copiapite (RELAB ID: C1JBA51), and anhydrite (RELAB ID: C1JB641A).

Figure 3: Linear least squares analysis models for the average thermal emission spectrum for each group, a) Group 1-1 b) Group 1-2, c) Group 1-3, d) Group 1-4, e) Group 2, f) Group 3, and g) Group 4. The y-axis has been offset for clarity.

Figure 4: Secondary electron images of HI_15_MHY samples: Group 1-1: a) HI_15_MHY_001 exhibiting a Si-rich coating (cross) overlying a Al, Ca, Mg, Fe-rich glass (square), b) HI_15_MHY_002a exhibiting a Si-rich surface (cross), and c) HI_15_MHY_002b exhibiting a Si-rich coating (cross); Group 1-2: d) HI_15_MHY_003 exhibiting Si-rich material (cross) and Ca-sulfate (square) and e) HI_15_MHY_005 exhibiting Si-rich surface (cross), Ca-sulfate (square), Fe-Ti-oxide (circle); Group 1-4: f) HI_15_MHY_007a exhibiting Si-rich material (cross) and Ca-sulfate (square); Group 2: HI_15_MHY_007b exhibiting g) Si-rich clast and h) Ca-sulfate rich clast; and Group 3: i) HI_15_MHY_006 exhibiting Si-rich material (cross) and Fe-Ti-oxide (square).
Figure 5: XRD patterns for the three samples that exhibited amorphous humps consistent with more Si-rich material than basaltic glass, a) HI_15_MHY_002b, b) HI_15_MHY_007b, and c) HI_15_Solf_002_2.

Figure 6: a) Handheld XRF data separated into groups determined using a minimum distance clustering algorithm on chemical data for each sample. Plots of b) Al vs. Si contents and c) Fe vs. Si contents for the natural fumarolic materials. The outlined boxes represent the XRF groupings and the color of the points represent the MIR groupings.

Figure 7: Comparison of the spectral signatures for the laboratory isochemically altered materials (sulfate-dominated) with the natural fumarolic altered materials (silica-dominated) in both the a) MIR and b) VNIR wavelength ranges. Red shaded areas correspond to sulfate-related features and blue shaded areas correspond to silica-related features.
Table 1. Previous studies of Hawaiian basalt and tephra in situ alteration from a planetary perspective.

<table>
<thead>
<tr>
<th>Hawaiian Material</th>
<th>Conditions</th>
<th>Analytical techniques(^a)</th>
<th>Secondary phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishop et al., 2005a</td>
<td>Solfataric alteration of ash under 1974 flow in Halemaumau crater</td>
<td>In situ, hydrothermal alteration</td>
<td>VNIR, MIR, SEM, EMP, XRD, MB</td>
</tr>
<tr>
<td>Crisp et al., 1990</td>
<td>Basalt lava flows, Mauna Loa and Kilauea Volcano</td>
<td>In situ, acid alteration</td>
<td>MIR, EMP</td>
</tr>
<tr>
<td>Golden et al., 1993</td>
<td>Palagonitized basaltic tephra, Summit of Mauna Kea</td>
<td>In situ, hydrothermal alteration</td>
<td>Diffuse reflectance, FIR, XRD, MB, EMP</td>
</tr>
<tr>
<td>Morris et al., 2000a</td>
<td>Unaltered, palagonitic, and sulfatetic tephra from Mauna Kea Volcano, steam vent material from Kilauea Volcano</td>
<td>In situ, hydrolytic and acid-sulfate alteration</td>
<td>Diffuse reflectance, XRD, MB, XRF</td>
</tr>
<tr>
<td>Morris et al., 2000b</td>
<td>Tholeiitic basalt from Sulfur Bank</td>
<td>In situ, acidic alteration (pH~4-5)</td>
<td>XRD, MIR</td>
</tr>
<tr>
<td>Schiffman et al., 2000</td>
<td>Keanaake’I Ash, Kilauea Volcano</td>
<td>In situ, acidic (pH<6) to neutral (pH6.5-7.8)</td>
<td>XRD, SEM</td>
</tr>
<tr>
<td>Schiffman et al., 2006</td>
<td>Siliceous-sulfate basalt coatings, Ka’u Desert</td>
<td>In situ, low pH alteration</td>
<td>XRD, SEM, VNIR, EMP, MB</td>
</tr>
<tr>
<td>Bishop et al., 2007</td>
<td>Basaltic tephra, Halekala, Maui</td>
<td>In situ, hydrothermal alteration</td>
<td>XRD, EMP, SEM, TEM, MB, VNIR, TrIR, MIR</td>
</tr>
<tr>
<td>Minitti et al., 2007</td>
<td>Glass-rich basalts</td>
<td>In situ, low pH alteration</td>
<td>EMP, VNIR, MIR</td>
</tr>
<tr>
<td>Hamilton et al., 2008</td>
<td>Basaltic tephra, Mauna Kea Volcano</td>
<td>In situ, low – neutral – high pH, ambient – high temperature</td>
<td>XRD, VNIR, MIR</td>
</tr>
<tr>
<td>Chemtob et al., 2010</td>
<td>Surface coatings in Ka’u Desert</td>
<td>In situ, low pH alteration</td>
<td>Raman, TrIR, EMP, NanoSIMS, SEM</td>
</tr>
<tr>
<td>Seelos et al., 2010</td>
<td>Lava, ash, and solfatara deposits, Ka’u Desert</td>
<td>In situ, low pH alteration</td>
<td>VNIR, Raman, EMP</td>
</tr>
<tr>
<td>McCanta et al., 2014</td>
<td>Solfatara deposits, Halemaumau crater</td>
<td>In situ, low pH (<~2) alteration</td>
<td>SEM, MB, XRD</td>
</tr>
<tr>
<td>Chemtob and Rossman, 2014</td>
<td>Surface coatings on basaltic, Kilauea Volcano</td>
<td>In situ, low pH alteration</td>
<td>SEM, EMP, Raman</td>
</tr>
</tbody>
</table>

\(^a\)XRD = X-ray diffraction, MB = Mossbauer, XRF = X-ray fluorescence, MIR = mid-infrared, SEM = scanning electron microscopy, VNIR = visible/near-infrared, EMP = electron microprobe, TrIR = transmission infrared, TEM = transmission electron microscopy, FIR = far-infrared, np-Ox = nanophase ferric oxides.
Table 2: Overview of alteration material observed for all of the samples analyzed in this study.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Vent distance</th>
<th>Sample description</th>
<th>MIR</th>
<th>VNIR(^A)</th>
<th>SEM(^B)</th>
<th>XRD(^C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI_15_MHY_001</td>
<td>19.5m</td>
<td>Blue surface coating on basalt</td>
<td>Group 1-1</td>
<td>silica-dominated</td>
<td>Si-Ti-rich coating</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica +/- Fe-oxides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_MHY_002a</td>
<td>18.0m</td>
<td>White alteration coating on basalt</td>
<td>Group 1-1</td>
<td>silica, Fe(^{2+/3+})-sulfate</td>
<td>Si-Fe-Ti-rich coating, Fe-, Ca-sulfates</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica-dominated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_MHY_002b</td>
<td>18.0m</td>
<td>Yellow alteration coating on basalt</td>
<td>Group 1-1</td>
<td>silica, Fe(^{2+/3+})-sulfate</td>
<td>Si-rich coating</td>
<td>Am, xtl silica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica-dominated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_Solf_001_1</td>
<td>n/a</td>
<td>Brown basalt</td>
<td>Group 1-1</td>
<td>silica, Fe-oxides</td>
<td>n/a</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica-dominated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_Solf_002_1</td>
<td>n/a</td>
<td>Reddish soil</td>
<td>Group 1-1</td>
<td>silica, Fe-oxides</td>
<td>n/a</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica-dominated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_MHY_003</td>
<td>11.5m</td>
<td>White alteration coating on basalt</td>
<td>Group 1-2</td>
<td>silica-dominated</td>
<td>Si-rich coating, Ca-sulfate</td>
<td>Am, Blix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica, Fe-oxides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_MHY_005</td>
<td>4.7m</td>
<td>White encrusted coating on soft red material</td>
<td>Group 1-2 silica-dominated</td>
<td>silica, Fe-oxides</td>
<td>Fe-Ti-oxides, Ca-sulfate, Si-rich coating</td>
<td>Am, Fe-ox</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_Solf_003_2</td>
<td>n/a</td>
<td>White coating on basalt</td>
<td>Group 1-2</td>
<td>silica, Fe-oxides</td>
<td>n/a</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica-dominated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_Solf_003_3</td>
<td>n/a</td>
<td>Reddish soil</td>
<td>Group 1-2</td>
<td>silica, Fe-oxides</td>
<td>n/a</td>
<td>Am, Fe-ox, Zeo, K-sulfate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica-dominated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_Solf_001_2</td>
<td>n/a</td>
<td>White encrusted material on soft red material</td>
<td>Group 1-3 silica-dominated</td>
<td>silica</td>
<td>n/a</td>
<td>Am, Fe-ox</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_Solf_002_3</td>
<td>n/a</td>
<td>Yellow globular crust</td>
<td>Group 1-3</td>
<td>silica-dominated</td>
<td>n/a</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica, Ca-sulfate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_MHY_007a</td>
<td>4.5m</td>
<td>Yellow/white coating on soft red material</td>
<td>Group 1-4 silica-dominated</td>
<td>silica, Ca-sulfate</td>
<td>Si-rich coating, Ca-sulfate</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_MHY_007b</td>
<td>4.5m</td>
<td>Mm-sized yellow and white grains</td>
<td>Group 2</td>
<td>Ca-sulfate-dominated</td>
<td>Si-rich coating, Ca-sulfate</td>
<td>Am, Ca-sulfate, sulfur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silica, Ca-sulfate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_Solf_002_2</td>
<td>n/a</td>
<td>White and yellow coating filling topographic lows</td>
<td>Group 3 Fe/Al-sulfate-dominated</td>
<td>silica, Ca-sulfate</td>
<td>n/a</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI_15_MHY_006</td>
<td>4.0m</td>
<td>Yellow/white encrusted coating on soft red material</td>
<td>Group 4 silica-Fe-oxide-dominated</td>
<td>silica, Fe-oxides</td>
<td>Fe-Ti-oxides, Si-rich coating</td>
<td>Am, xtl silica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^A\)Silica indicates opal-CT and/or silicic acid (SiO\(_2\)-nH\(_2\)O)
\(^B\)SEM analysis was only performed on the HI_15_MHY samples.
\(^C\)Amorphous material could indicate glass, silica, or other amorphous materials which result in a characteristic hump in the XRD pattern.
Xtl silica indicates a crystalline silica phase that produced distinct peaks in the XRD pattern. Am = amorphous material, Blix = blixite, Fe-ox = Fe-oxides, Zeo = zeolite. Fe-oxides could be primary or secondary material.
Figure 1
Figure 2

A. Sub-group 1-1
- MHY_001
- MHY_002a
- MHY_002b
- MHY_003
- MHY_005
- MHY_007a
- Solf_001_1
- Solf_002_1
- Solf_003_2
- Solf_003_3
- silica sinter
- microporous silica
- amorphous silica

B. Group 2 - Ca-sulfate-dominated
- MHY_007b
- Ca-sulfate (Gp)

C. Group 3 - Fe-sulfate-dominated
- Solf_002_2
- Fe+3-sulfate (Cp)
- Al-sulfate (Al)

D. Group 4 - silica/Fe-oxide-dominated
- MHY_006
- silica sinter
- Fe-oxide (Hm)

E. Sub-group 1-2
- MHY_001
- MHY_002a
- MHY_002b
- MHY_003
- MHY_005
- MHY_007a
- Solf_001_2
- Solf_002_3
- Solf_003_2
- Solf_003_3

F. Sub-group 1-3
- Fe-oxide (Hm)
- Ca-sulfate (Gp)

G. Sub-group 1-4
- Fe-oxide (Ak)

H. Sub-group 1-5
- Fe-sulfate (Cp)
- Fe-oxide (Ak)
- Ca-sulfate (Ah)

I. Sub-group 1-6
- Fe-oxide (Ml)
- Ca-sulfate (Gp)

J. Sub-group 1-7
- Fe-oxide (Ak)
- Ca-sulfate (Ah)
- Ca-sulfate (Gp)

K. Sub-group 1-8
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

L. Sub-group 1-9
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

M. Sub-group 1-10
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

N. Sub-group 1-11
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

O. Sub-group 1-12
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

P. Sub-group 1-13
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

Q. Sub-group 1-14
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

R. Sub-group 1-15
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

S. Sub-group 1-16
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

T. Sub-group 1-17
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

U. Sub-group 1-18
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

V. Sub-group 1-19
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

W. Sub-group 1-20
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

X. Sub-group 1-21
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

Y. Sub-group 1-22
- Fe-oxide (Ak)
- Ca-sulfate (Gp)

Z. Sub-group 1-23
- Fe-oxide (Ak)
- Ca-sulfate (Gp)
Figure 4
Figure 5

Counts

Position \([\circ 2\theta]\)

Gypsum; Sulphur; Albite, high; 2.215\([\AA]\)

Gypsum; Sulphur; Albite, high; 2.067\([\AA]\)

Serandite; 4.85\([\AA]\)

Tridymite; 3.00\([\AA]\)

Anorthite, Sodian; 3.22 \([\AA]\)

Anorthite, sodian; 2.518\([\AA]\)

Anorthite, sodian; Tridymite; 2.143\([\AA]\)

Anorthite, sodian; 1.753 \([\AA]\)

Anorthite, sodian; Tridymite; 1.627\([\AA]\)

Counts

Position \([\circ 2\theta]\)

Gypsum; 7.66\([\AA]\)

Gypsum; 4.29\([\AA]\)

Gypsum; Albite, high; 3.81\([\AA]\)

Gypsum; Sulphur; 3.06\([\AA]\)

Gypsum; Sulphur; Albite, high; 2.215\([\AA]\)

Gypsum; Sulphur; Albite, high; 2.06\([\AA]\)

Gypsum; Sulphur; Albite, high; 1.812\([\AA]\)

Anorthosite, sodian; Augite; 3.22\([\AA]\)

Anorthosite, sodian; Augite; 2.504\([\AA]\)

Anorthosite, sodian; Augite; 2.141\([\AA]\)

Anorthosite, sodian; 1.753\([\AA]\)

Anorthosite, sodian; 1.627\([\AA]\)
Figure 6

(a) Graph showing the abundance of various elements (Al, Si, P, K, Ca, Ti, Mn, Fe) for groups 1, 2, and 3.

(b) Graph showing the relationship between Al and Si for different groups.

(c) Graph showing the relationship between Fe and Si for different groups.

Table:

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>XRF Group</th>
<th>MIR Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI_15_Solf_002_3</td>
<td>1</td>
<td>1-3</td>
</tr>
<tr>
<td>HI_15_Solf_003_2</td>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>HI_15_MHY_001</td>
<td>2</td>
<td>1-1</td>
</tr>
<tr>
<td>HI_15_MHY_002b</td>
<td>2</td>
<td>1-2</td>
</tr>
<tr>
<td>HI_15_MHY_003</td>
<td>2</td>
<td>1-2</td>
</tr>
<tr>
<td>HI_15_MHY_005</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>HI_15_MHY_006</td>
<td>2</td>
<td>1-4</td>
</tr>
<tr>
<td>HI_15_MHY_007b</td>
<td>2</td>
<td>1-2</td>
</tr>
<tr>
<td>HI_15_Solf_003_3</td>
<td>2</td>
<td>1-2</td>
</tr>
<tr>
<td>HI_15_Solf_001_1</td>
<td>3</td>
<td>1-1</td>
</tr>
<tr>
<td>HI_15_Solf_001_2</td>
<td>3</td>
<td>1-3</td>
</tr>
<tr>
<td>HI_15_Solf_002_1</td>
<td>3</td>
<td>1-1</td>
</tr>
<tr>
<td>HI_15_Solf_002_2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>