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ABSTRACT

This study investigates the effect of tetrahedral B ([4]B) in synthetic tourmaline on the B isotope
fractionation between tourmaline and fluid. This is important for the correct interpretation of B-
isotope variations in natural tourmalines containing "excess" B (greater than 3 atoms per formula
unit), which substitutes for Si at tetrahedral sites. Such tourmalines commonly occur in Li, Al-
rich pegmatites and have been reported from glaucophane schists that formed at high pressures
during subduction.

Tourmaline synthesis experiments were performed in a piston-cylinder apparatus in the system
Si0,-Al;03-B203-NaCl-Hz0 at 4 GPa and 700°C using different run durations, starting from
quartz-y-Al,O3-H3;BO; solid mixtures and NaCl-solutions. We were able to produce "olenitic"
tourmaline with excess B between 1.2 and 2.5 "B per formula unit, The B isotope compositions
of the olenitic tourmaline and coexisting fluids were determined by secondary ion mass
spectrometry and multi-collector plasma source mass spectrometry to derive isotope fractionation
coefficients. The results indicate that for every 10 mol % of total B in tourmaline in tetrahedral
coordination, the value of A'' By, nuiq is shifted to more negative values by about 1 %o at 700°C.
This is in good agreement with published ab initio calculations and corresponds to an
intracrystalline fractionation of B-isotopes between the trigonal B and tetrahedral T sites of

tourmaline on the order of 8 £ 5 %o, whereby '°B partitions to the T site.
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INTRODUCTION

The use of boron isotope studies as an indicator of fluid source(s) and a tracer of fluid-rock
interaction is well established. Depending on the mineralogical, chemical and isotopic
composition of the B source, fluid-rock ratios, prevailing P-T and closed versus open system
conditions, the B isotope ratios of natural fluids vary significantly {e.g., van Hinsberg et al. 2011).
Because in sifu sampling of (paleo) fluids is impossible in most cases, the isotopic composition
must be determined indirectly through the analysis of hydrothermal minerals containing boron.
Tourmaline is by far the most commonly used mineral for this purpose because it is stable over a
wide range of P-T conditions (up to 7 GPa, 900°C, Krosse 1995), it occurs in a large variety of
magmatic, metamorphic and sedimentary rocks and it is chemically and physically robust (e.g.,
Henry and Dutrow 1996).

The use of tourmaline as a fluid monitor requires knowledge about the equilibrium B
isotope fractionation between tounnaliqe and fluid (A“er.ﬂujd). Experimental studies of
tourmaline-fluid fractionation have so far addressed common tourmaline compositions where
boron is exclusively in trigonal coordination (Meyer et al. 2008; Palmer et al. 1992). These
results are applicable to most natural tourmalines but there are other cases where boron also
occupies tetrahedral T-sites (e.g., Ertl et al. 1997; 2005; 2006; 2007; Hughes et al. 2000; 2004;
Kalt et al. 2001; Schreyer et al. 2002; Tagg et al. 1999). In those tourmalines, B is incorporated
in exchange for Si (Kutzschbach et al. 2016; Schreyer et al. 2000) and this seems to be favored in
very Al-rich tourmaline with a large olenite component {NaAl3AlsSic013(B03)303(OH)] and at
high pressures and low temperatures (Ertl et al. 2008). Examples are known from granitic
pegmatites with up to 0.83 ¥IB pfu (Ertl et al. 2008) and from blueschist facies glaucophane-

schists with up to 0.26 1B pfu (Marschall et al. 2004).
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The driving force for B-isotope fractionation is the bonding environment, with the light

1°g isotope preferring the higher coordination number or more precisely longer bonds (Kowalski
et al. 2013, Kowalski and Wunder 2017, MacGregor et al. 2013). Thus it is expected that the
presence of tetrahedral boron in tourmaline will affect the tourmaline-fluid fractionation. The
magnitude of this effect was predicted by ab initio calculations (Kowalski et al. 2013), which
suggest that for every 10 mol% By, the A"'B.auia value is shifted by 0.9 %o towards more
negative values (for olenitic compositions at 700°C). However, the effect has so far not been
experimentally studied, mainly due to the difficulfy in synthesizing {4]B-beari11g tourmaline large
enough for ir sity B isotope analysis. Kutzschbach et al. (2016; 2017) were able to produce
crystals up to 30 x100 pm of olenitic tourmaline containing up to 45 mol% IB,,. Based on these
ﬁaterials, we set out to evaluate the isotopic effect of B in tourmaline on isotopic fractionation

with aqueous fluid.
SAMPLE MATERIAL AND ANALYTICAL METHODS

Tourmaline synthesis experiments

Tourmaline analysed in this study was taken from Kutzschbach et al. (2016), who synthesized
B bearing olenites in a piston cylinder apparatus at 4 GPa/700°C from a homogenous mixture
of quartz, y-Al,Q3, T13B0O; and a 5.4 mol/l NaCl solution. After 216 h run duration, tourmaline
occurs in two habits, i.e. columnar crystals (80 vol%) and slightly smaller radial acicular
aggregates (20 vol%). Besides their habit, the crystal populations are distinguishable by their
amount of “'B. Whereas the columnar crystals are homogenous and low in Mg (29 mol% [4]B.o.)

the acicular crystal are more B-rich and also zoned with respect to B content (cores: 45 mol%

"B (mol%) = "B (pfu)/[ B (pfu)+ B (pfu)]
pfu = atoms per formula unit
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18 oi; rims: 32 mol% By.). Trace amounts of coesite and the hydroxyl-analogue of jeremejevite
[Als(BO3)s(OH)s] have been detected with the latter forming inclusions in tourmaline, In the
following the hydroxyl-analogue of jeremejevite is simply referred to as jeremejevite.
By performing two experiments using the same initial bulk composition and P-T conditions but
shorter run durations of 0.5 and 2.5 h, Kutzschbach et al. (2017) noticed a distinct crystallization
sequence. Within the first 0.5 h, all of the solid y-Al;04 in the starting material reacts with the B-
rich starting fluid to form jeremejevite. The latter serves as a precursor for tourmaline
mineralization, which begins with the heterogeneous nucleation? of the acicular olenite crystals.
With increasing experimental run duration, jeremejevite successively dissolves and more olenite
forms, either by growth of the early acicular crystals or by later homogeneous nucleation® and
growth of the columnar crystals (Kutzschbach et al. 2017).

It has been noticed that jeremejevite preferentially fractionates '°B, which leads to an
increase in 8''B from -5.9(1) %o in the starting fluid to -3.2(2) %o in the fluid after 0.5 h
(Kutzschbach et al. 2017, Table 1). Due to the later dissolution of jeremejevite, the 8''B of the
fluid decreases by about 2 %o from -3.2(2) %o in the fluid after 0.5 h to -5.2(2) %o in the fluid after

216 h (Kutzschbach et al. 2017, Table 1).

Secondary ion mass spectrometry (SIMS)

Boron isotope analyses were performed with the Cameca 1280-HR SIMS instrument at the GIFZ-
Potsdam from flat and polished 1-inch epoxy mount of the samples. Prior to analysis, the samples
wete cleaned with ethanol in an ultrasonic bath, then sputter coated in a vacuum with 35 nm of

high-purity gold. Results were obtained in two measurement sessions (S1: July, 2015 and S2:

? Heterogeneous nucleation is the formation of nucleation sites on surfaces whereas
homogeneous nucleation occurs in the interior of a homogenous substance.
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June, 2016). Differences in analytical parameters between the two sessions are indicated in
square brackets. The analyses were done with a norninal 13 kV, 5 nA 160 primary beam [S2: 3
nAl], focused to a 5 um [S2: 4 um] spot on the sample surface (spot sizes were determined after
measurement). Each analysis was preceded by a 90 s pre-bum on a 10 pm x 10 um raster to
remove the gold coating and establish stable sputtering conditions. Positive secondary ions were
extracted using a +10 kV potential applied to the sample holder. A 400 pm diameter contrast
aperture, a 3000 um field aperture [S2: 4000um] and a 50 V energy window were used without

application of a voltage offset. The instrument was operated at a mass resolving power of M/ AM

= 2400, which is sufficient to separate the ''B* from the '°B'H" mass station (AM = 900) and '°B*

from the *Be'H" mass stations (AM = 1400). Faraday cup multi-collection was applied for
simultaneous measurement of ‘°B and ''B. The typical count rate for "B under these conditions
was 1.61 x 107 ions per second for "'B and 0.41 x 107 fons per second for '°B [S2: 1.43 x 10 for
''B and 0.36 x 107 for '°B]. Each analysis comprised 20 mass scans (4 blocks of 5
measurements), resulting in a total analysis time of about 3 minutes.

Determination of instrumental mass fractionation (IMF) and monitor of analytical quality
requires analysis of a matrix-matched reference material (RM). For tourmaline, we used the
established RMs Harvard 112566 (schorl), Harvard 108796 (dravite) and Harvard 98114
(clbaite). Several authors noted a compositonal matrix effect in the SIMS analysis of B-isotopes
in tourmaline (e.g. MacGregor et al. 2013; Chaussidon and Albaréde 1992). This aspect was
carefully considered in our study, particularly since the effect of tetrahedral B on the B isotope
fractionation is expected to be subtle (Kowalski et al. 2013). Because none of the Harvard
tourmaline RMs match the Fe- and Mg- free, Al-rich composition of the synthetic olenite (Fig. 1),
we also prepared an in-house RM from a natural olenite crystal from a pegmatite near the
Stofthiitte, Koralpe, Austria kindly provided by Andreas Ertl (Ertl et al. 1997). Electron
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microprobe and SIMS verified homogeneity of both, major element and B isotope composition.
The 8''B value of the olenite RM was determined independently by multi-collector plasma source
mass spectrometry (MC-ICP-MS). Details on the characterization of the olenite RM are presented
in the Appendix.

The internal precision of each analysis, expressed as the relative standard deviation from
the mean of 20 cycles is better than (.4 %o (2 RSDpean, Table 2). The repeatability, obtained from
multiple daily measurements of a particular RM (Table 2) was generally better than 1 %o, (2
RSD). There is a significant difference of 'B/!°B ratios for dravite between S1 and S2 (Table 2),
presumably due to different tuning, hence IMF correction was performed on a daily basis. In S2,
a systematic drift of the IMF values occurred over the measurement period of 5 hours, which was
accounted for using a linear regression based on multiple measurement of the olenite RM.
Multiple 'B/'°B ratios were calculated according to the RMs used for IMF correction. After
correction for IMF, the 5''B values were calculated relative to NIST SRM 951 using the ''B/'’B
ratio of 4.04362 from Catanzaro et al. (1970) and the relationship [6"'B (%o) =

(1" B/B)sampte/( B/ *B)nist srvos1] —13 #1000].

REsULTS

B isotope ratios of the synthetic tourmalines

Because the 3''B value of the fluid changes as a function of experimental run duration (Table 1),
the B isotope ratios of olenite will also change and bulk analysis of tourmaline crystals is not an
appropriate method. Therefore, B isotope ratios of the synthetic tourmalines were analyzed using
SIMS. Three groups of crystals were analyzed (Fig. 2): columnar crystals (n =4 in S1 and n=3 in
S2); columnar crystals with inclusions of jeremejevite (n =3 in S1); and cores of the acicular

crystals (n = 6 in 52). All grains were measured in orientations perpendicular to the
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crystallographic c-axis for reliable distinction between the crystal groups based on their habit.
Imaging of the samples in BSE mode prior to SIMS analyses allowed for the detection of
inclusion or cracks in the crystals (Fig. 2). For SIMS analyses only grains free of cracks were
used. About half of the data points had to be rejected because of the small size of the crystals. For
the same reason, no successful analysis of the acicular crystals rims was obtained.

By inspection of the 8'!B values using a particular RM, a relative shift of 0.8 %, towards more
positive values is noted for the cores of the acicular crystals compared to the columnar crystals
(Fig. 3, Table 3). In contrast, a shift of about 0.6 %o to more negative values (relative to the
columnar crystals) is detected for the columnar crystals with jeremejevite inclusions. By
performing an unpaired two-tailed t-test, the difference between the mean 8''B of each crystal
population is considered significant (p-value << 0.01). The same statistical test showed no
significant change between the 8''B values of columnar crystals obtained in the two sessions S1
and S2 (p-value ~0.53).

Depending on the RM, the absolute 5''B values of a particular crystal population
systematically deviate from each other (Fig. 3). Relative to the dravite RM, the mean 8''B values
are shifted by 2.7 %o and 3.3 %o, towards more positive values using olenite or elbaite RMs,
respectively (Table 3). For the schorl RM, a shift of 1.4 %. towards more negative values has

been noticed relative to dravite.

DISCUSSION

Fractionation factor from Rayleigh fractionation modeling of fluids
Although experiments were performed with an excess of 300 mol% boron relative to the ideal

olenite stoichiometry, the fluid shows a small but significant increase in 8''B from -5.9(1) %o in
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the starting fluid (8" Biuid ini) t0 -5.2(2) %o in the fluid after 216 h (8" Bgyid fin); Table 1. Despite
the non-classical crystallization sequence with formation of jeremejevite (Kutzschbach et al.
2017), the net change of the fluid composition is interpreted to derive from closed system
crystallization of fourmaline only, as it is considered the only B bearing phase remaining in the
216 h experiment (neglecting trace amounts of jeremejevite inclusions preserved in tourmaline).
Following the procedure in Marschall et al. (2009), we are able to calculate an average A'Buur.quid
by knowing the 8"'B of the initial (6" Buid ini) and final fluid (8" Byia fin). Thus 8" Bauid fin= (1000
+ 8" Bauidin)* F" -1000 and A" Byy-uia= 8''Byur - 8! 'Bpuia = 1000 In(o™"), where F is the fraction
of B remaining in the fluid. Mass balance calculations show that no insoluble B-bearing quench

phases have formed in the 216 h experiment (Kutzschbach et al. 2017). Thus, for the 216 h

.experiment F = Baid fin (Mmg)/ Baida ini (mg) = 0.69 mg/1.16 mg = 0.60 (Table 1). This results in a

fractionation factor o =1.0014 % 0.0006 and a A" By~ -1.4 + 0.6 %o (Fig. 4). The uncertainty
is estimated by propagating the uncertainty of 5! lBﬂuid i and SllBﬂuid fin, Whereas the uncertainty
contribution of F is negligible. Based on the proportions of columnar crystals (80 vol%) and
acicular crystal (20 vol%) and their average composition, an average tetrahedral B content of 33
mol% By is estimated for the whole tourmaline fraction.

The result indicates that tourmaline fractionates the light '°B. Thus, the fluid is expected
to become successively enriched in "B with experimental run duration and correspondingly, first
tourmalines should have more negative §''B values then tourmalines that form later, This is in
contrast to the results of the SIMS measurements, which show that the first tourmalines, i.e. the
cores of the acicular crystals, have 8''B values about 0.8 %o higher compared to the columnar
crystals, which grow later (Table 3, Fig. 3). This inverse Rayleigh fractionation trend is due to the
decrease of 8"'Byiq with experimental run duration (Table 1) and is related to the progressive

dissolution of metastable jeremejevite, which initially fractionates the '°B. The affinity of
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jeremejevite for '°B is confirmed by the B isotope ratios obtained for columnar olenites with
jeremejevite inclusions as these are shifted by about 0.6%. to more negative §''B compared to the

inclusion free columnar crystals (Fig. 3).

Fractionation factor from combined SIMS and MC-ICP-MS analysis

The fractionation coefficient calculated from the amount of Rayleigh fractionation only
represents an average value for the stable B isotope fractionation between bulk fluid and bulk
tourmaline. As the tourmalines are zoned with respect to !B, the fractionation coefficient is
unlikely to be constant during the experiment. Based on the prediction of Kowalski et al. (2013),
a shift of the A" B.fuia to more negative values with increasing 1B, is expected (Fig. 4). In
order to calculate how the A'By-fvid changes with the amount of MIB in tourmaline in our
experiment, we need to know (i) the B isotope ratios of high and low IR tourmaline, i.e. the
cores of acicular crystals and the columnar crystals and (ii) the B isotope ratios of the fluids in
equilibrium with each of the two crystal populations.

As the acicular crystal grew first, it is reasonable to assume that the cores of the acicular
crystals were most likely in equilibrium with the fluid extracted from the 0.5 h experiments,
whereas the later columnar crystals were most likely in equilibrium with the fluid from the 216 h
experiment. Based on the 8''Bg,q values measured by MC-ICP MS (Table 1) and the §'' By, values
measured by SIMS (Table 3), A" Byy.quia values are calculated with 3''Bey, - 8''Bgyia. Using the
olenite RM, which provides the best matrix match, A"Burguia = -0.2 £ 0.4 %o for the columnar
crystals and -1.4 + 0.4 %o for the cores of the acicular crystals (Table 4). This corresponds to a
relative shift of 1.2 + 0.8 %o towards more negative A''Bur.quia Values for the cores of the acicular
crystals [45(3) mol% “!B.o] compared to the columnar crystals [29(3) mol% “Biy]; Fig. 4. This

equals a shift of 0.8 £ 0.5 %o for each 10 mol% !B, which is used to calculate the
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intracrystalline fractionation of B isotopes (A“Bﬂlnm-l‘“nm )using:
1 _ Al _All
(1) A B”]BMJ”BM =A B[]]Bmuﬂuid A B["]er—ﬂuid

Given that 10 mol% "By cause a shift of 0.8 £ 0.5 %o to more negative A" Bur.quig, additionally

the following equations are valid:

3} 11
(2) ' A Blugis =4 B[J]Bm—ﬂuid
3 A"B, . —0.8+0.5%0 = 0.9-A”Bl,]Bm_ﬂuid +0.1- A“B[‘,]er_ﬂuicl
By rearranging equations (2) and (3), it is calculated that A“B,]lB g = 8+5%o.

Comparison to ab initic calculations
The B isotope fractionation between “'B-free dravite and fluid from Meyer et al. (2008) is in
agreement with the ab initio predictions of Kowalski et al. (2013, Fig. 4). Similarly, the results of
the latter coincide with the fractionation factor obtained from Rayleigh fractionation modeling in
our study (Fig. 4). Our SIMS data show a clear matrix effect in the comparison of IMF
corrections using different tourmaline RMs (Fig. 3). Although we minimized this effect by using
an in-house olenite RM, there might be a remnant bias due to matrix mismatch between the
olenite RM and the synthetic olenite (Fig. 1). This might be a reason for the systematic offset of
about 1 %o towards more positive A“Btur_ﬂuid values (Fig. 4) compared to the predictions of
Kowalski et al. (2013).

It might also stem from the fact that the fractionation coefficients of Kowalski et al.
(2013) were calculated for a pressure of 0.1 MPa, whereas the synthesis experiments were
performed at much higher pressure of 4.0 GPa. The high-pressure experiments yielded less

extensive fractionation, which would be in agreement with results of Palmer et al. (1992), who
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noticed less extensive B isotope fractionation at higher pressures within the pressure range of
0.05 — 0.2 GPa. In contrast, Meyer et al. (2008) did not observe an influence of pressure on
A“er_ﬂuid between 0.2 and 0.5 GPa.

Another reason for the deviation between our fractionation data and the data of Kowalski
et al. (2013) might be presence of (H4BO4) species in the experimental fluids. If 15 mol % of
additional (HsBQ4) species in the fluid are considered in the calculations of Kowalski et al.
(2013), the predicted AV Biyr-fiuia values are shifted by about 1 %e to more positive values, which
leads to a better agreement with our data (Fig. 4). However, for near neutral to acidic pH at which
the synthesis experiments have been performed, Schmidt et al. (2005) argued for negligible ‘B
species in aqueous fluids at least in the pressure range 0.1MPa — 2 GPa.

Last but not least, small deviations might be caused by subtle differences in B-O bond
lengths. A single crystal X-Ray structure refinement of one of the columnar olenites from the 216
h experiment (Kutzschbach et al. 2016, their Table 4) reveals somewhat shorter BIB-0O bond
lengths compared to the olenite used in the calculations of Kowalski et al. 2013 (1.365 A vs.
1.378 A). Since shorter B-O bonds increase the affinity for the heavy ''B (Kowalski and Wunder
2017, MacGregor et al. 2013), one would expect higher A''Bue.quia values in our study as

compared to the results of Kowalski et al. (2013), which matches our observations (Fig. 4).

Influence of temperature on intracrystalline B isotope fractionation in tourmaline.

The results of our study confirm the ab initio calculation of Kowalski et al. (2013) predicting that
tetrahedral B shifts the A“er_ﬂuid to more negative values. This implies an intracrystalline
fractionation in tourmaline, with '°B being preferentially incorporated at the T site relative to the
B site. Since the isotope fractionation is temperature-dependent, it is reasonable to assume a

temperature dependent effect of tetrahedral B on the value of ABiy-mig. The influence of
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temperature has not been investigated m this study but a first indication is provided by the results
of Kowalski et al. (2013). Based on the f§ factors presented therein, we deduced partial B isotope
fractionation between B in tourmaline and fluid (A" B4puwr.nuid) such as between °'B and fluid
(A”B[Q,]B[ur.ﬂuid), assuming only H3;BOs in the fluid, for temperatures between 350-700°C, With
these values the temperature-dependent intracrystalline B isotope fractionation for dravite and
olenite is calculated using equation (1).

The results suggest that the intracrystalline fractionation in olenite more than doubles from ~9%.
at 700°C to ~19%. at 350°C (Fig. 5). For dravite the intracrystalline fractionation similarly
increases from ~7%e at 700°C to ~16%o at 350°C (Fig. 5). This is of particular importance,
because the incorporation of B at the T site is facilitated at lower teinperatures (Ertl et al. 2008)

and hence the effect of B on A“B[ur_ﬂuid is further enhanced.
IMPLICATIONS

It is shown that conventional A" By,r.au4 fractionation factors are not applicable to tourmalines
that incorporate excess B at the T site, which has consequences for the reconstruction of B
isotope signatures of coexisting aqueous fluids. If for example a tourmaline is considered that
crystallized at 700°C and has 22 mol% mBmt, which is the maximum ainount observed in nature
(Ertl et al. 2008), the calculated ' Bpyiq would be 6.7-2.9 %o more positive compared to the value
for B-free dravites using the fractionation factors of Meyer et al. (2008). Natural B isotope
variations in tourmaline from a given setting may commonly exceed this coordination-related
shift, but taking it into account reduces the overall uncertainty of using tourmaline isotope
signatures for geochemical modeling and fluid provenance studies {e.g. Bebout and Nakamura

2003; Berryman et al. 2017).
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Since both the results of our study and those of Meyer et al. (2008) are in good agreement with
ab initio calculations of Kowalski et al. (2013), it is reasonable to assume that the latter are
accurate. This implies that for olenite with I8 contents <10 mol% B, the absolute value of
A" Bue.miuidy is positive (Fig. 4) as opposed to negative for dravite, which is likely caused by the
shorter *'B-O bond length in olenite compared to dravite (Kowalski et al. 2013). This can be
important for the interpretation of B isotope patterns in natural tourmalines with compositions
close to olenite. Considering tourmaline growth in a closed system and at a small [B]syia/[B]wur
ratio’, A“B(mr.ﬂuid) > 0 would produce decreasing 8''By, values in a core to rim profile, whereas
A”B([ur_ﬂuid) < 0 would produce increasing 8''By, values.
This study also shows the importance of matrix-matched reference materials (RMs) for SIMS B
isotope analyses, which has implications for the analysis of tourmalines, which are strongly
compositionally zoned. If such tourmalines are measured from core to rim by SIMS using a
single RM, the 8''B trends may be enhanced or depressed due to inappropriately matched RMs. It
must be said that many SIMS studies address the matrix effect by measuring multiple RMs and it
has commonly been considered to be negligible (e.g., Biittner and Kasemann 2007; Marschall et
al. 2006; Nakano and Nakamura, 2001). Our experience in the Potsdam SIMS laboratory shows
that the size of matrix effects can depend on the particular setup and instrument tuning and
cannot be ignored a priori.

Finally, intracrystalline B isotope fractionation in tourmaline potentially provides a
powerful tool to derive the pro- and retrograde temperature evolution using only a single
tourmaline crystal. This requires that tB/'%B ratios at the T and B sites in tourmaline are
measured separately, which is theoretically possible by calibrating the isotopic shift of vibrational

modes associated with *IB/“IB based on vibrational spectroscopy. Hence the effect of

? [B] denotes the B concentration
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temperature on the B isotope fractionation between */B-bearing tourmaline and fluid needs to be

explored in greater detail and also as a function of tourmaline composition.
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FIGURE CAPTIONS

Figure 1. Compositions of tourmaline reference materials in FeO-MgO-Al,O5 ternary space.
Mean composition for dravite, schorl and elbaite from Dyar et al. (2001). Mean composition of
B4 (fragment 3) is reported in Tonarini et al. (2003). The composition of the olenite RM is
presented in this study (Table Al) and the data for synthetic olenites (red dot) is taken from

Kutzschbach et al. (2016, 2017). The symbol size includes the uncertainty (1 SD).

Figure 2. Representative examples of synthetic olenites from the 216 h experiment used for in
sity B isotope analysis by SIMS. BSE images were acquired after SIMS analysis. a) columnar
olenite with jeremejevite and coesite inclusions b) inclusion-free columnar olenite ¢) acicular
olenite. All crystals are cut in orientation + parallel to the c-axis. The white circle marks the
analysis spot. Analysis of the rim of the acicular crystal has been neglected as the SIMS spot hit a

crack. White particles are remnants of the gold coating.

Figure 3. B isotope ratios of synthetic olenites from the 216 h experiment determined by SIMS.
8''B values are obtained in session S1 and S2 by IMF correction using a particular tourmaline
reference material. Additionally, 5''B values of the initial fluid and quenched fluids extracted
after 0.5 h and 216 h run as reported in Kutzschbach et al. (2017) are presented (grey bars). Note
that the difference in B isotope ratios for a given RM is significant between any two crystal
populations. Similarly a significant difference in B isotope ratios is observed for a given crystal

population using different RM.
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Figure 4. Variation of B isotope fractionation between tourmaline and fluid (A" Buur-mia) with
MR, in tourmaline. Colored squares illustrate A"Biyrsuig obtained in this study by calculating
8''B-8''Bpuia using synthetic olenitic tourmaline and various tourmaline reference materials for
IMF correction (Table 3). The white square indicates the results obtained from Rayleigh
fractionation modeling of the B isotope evolution of the fluid (see text). Solid lines indicate the
AYBuyr-nuia for olenite (black) and dravite (grey) at 0.1MPa based on ab initio calculations by
Kowalski et al. (2013) assuming only trigonal [3BO; in the fluid. The dashed line shows A''By.
muia for olenite assuming 15 mol% (H4BO4) in the fluid. Uncertainty on the prediction of
Kowalski et al. (2013) is indicated by the grey shaded area and are similar for all datasets. A star
indicates A" By puiaat 0.2 GPa experimentally determined for dravite by Meyer et al. (2008). All

data for T = 700°C,

Figure 5. Intracrystalline fractionation between trigonal B ([3]B) and tetrahedral B ([4]B) in
dravite and olenite based on B factors presented in Kowalski et al. (2013). The dotted lines are

guide to the eye.

Figure Al. Backscattered electron image of the olenite reference material used for SIMS and
EMP analyses. Tourmaline (tur) shows slight patchy zonation with BSE light and BSE dark areas

and is intimately intergrown with quartz (qtz), albite (ab), and muscovite (ms).
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Table 1. B isotope ratios and B concentration of quenched experimental fluids

run duration 0.5h 216 h
8" Biuid fin [%0] -3.2(2) -5.2(2)
Biuia i’ [1g/g] 8.9 (5) 13.8 (8)
Biuia fin” [mg] 0.45 0.69
Biuiaini© [mg] 1.19 1.16

F 0.38 0.60

Errors are based on the external reproducibility and are indicated in brackets. Starting boric acid (8''Bpyiq ini) has
a value of -5.9(1) %o. Data taken from Kutzschbach et al. (2017).

*B concentration in the final fluid determined by MC-ICP-MS

b weight of B in the final fluid calculated from Bgyq in [11g/g], the volume of diluted fluid (50 ml) and p(H,0O) =1
g/ml

¢ weight of B in the initial fluid calculated from weight of H;BOj; in the starting material

4 F is the fraction of B remaining in the fluid. F =Bgyq fin [Mg)/ Bauiq ini [mg]



Table 2. Summary of SIMS B isotope analyses of tourmaline reference materials

analysis date n ("B/'B)meas 2 RSDpean [%0]* IMF® 3"'B [%o]°
schorl 112566: (" B/"°B) et = 3.993 and 6 "B = -12.5

07/28/2015 (S1) 3 3.896 0.20 0.9757 -11.7

2 RSD [%o]" 0.28 0.28

dravite 108796: ("' B/"’B) e = 4.017 and 6 "B = -6.6

07/28/2015 (S1) 3 3.913 0.34 0.9741 7.4
2 RSD [%o]° 0.62 0.62
06/06/2016 (S2) 5 3.930 0.22 0.9783 4.5
2 RSD [%o]" 0.36 0.36

elbaite 98114: (" B/"’B) s = 4.001 and 6 "B = -10.5

06/06/2016 (S2) 16 3.901 0.26 0.9750 -11.9
2 RSD [%o]° 0.62 0.62

olenite Koralpe: ("B/"’B),e; = 4.038 and 6 "B = -1.4
06/06/2016 (S2) 13 3.940 0.30 0.9757 2.0
2 RSD [%o]° 0.96 0.96

Note: (“B/ 10B)meas, internal precision, IMF and 5''B given as daily average of each
tourmaline RM
*internal precision for a single analysis consisting of 20 cycles
RSD nean (%0) = [(standard deviation/\/ZO)/mean]*1000.
® Instrumental mass fractionation; IMF = (”B/ 10B)mcas/ (”B/ 10B)ml
(' 'B/ 1OB)ml for schorl, dravite, elbaite from Dyar et al. (2001)
(”B/ 1OB)real for olenite see appendix in this study
¢ Corrected with daily average IMF of all reference tourmalines with 0.9749
(07/28/2015 = S1) and 0.9763 (06/06/2016 = S2) and calculated relative to
""B/'"B = 4.04362 of NBS SRM 951
4 repeatability based on multiple analyses of each tourmaline RM
RSD (%o0) = (standard deviation / mean) * 1000.



Table 3. 5''B,,, values of synthetic olenites from the 216 h experiment
8" Buur [%0]*
session n RM used for IMF correction
olenite elbaite dravite schorl

columnar

S1 4 / / -82(2)  -9.6(2)

S2 3 -5.4(2) -4.8(2) -8.1(2) /
columnar + jeremejevite inclusions

S2 3 / / -8.8(2) -10.2(2)
acicular

S2 6 -4.6(2) -4.0(2) -7.4(2) /

* Corrected with daily average IMF of a particular RM (see Table 2) and calculated relative to
"'B/!B = 4.04362 of NBS SRM 951
Numbers in brackets denote the standard deviation from the mean (2 SDyean).

SDpean = SD/ v n



Table 4. Stable B isotope fractionation between tourmaline and fluid at 4.0 GPa/700°C

A”B _fluid) [%0
B o [mol%] | (i) [ %] ,
in tourmaline Crysta RM used for IMF correction
olenite elbaite dravite schorl
29(3) columnar -02+04 04+04 -29+04 -44+04
45(3) acicular (core) -14+x04 -0.8+04 -4.1x04

AHB(tur_ﬂuid) calculated with SUer - SHBﬂuid. Uncertainty of AHB(mr_ﬂuid) is estimated by adding
the uncertainty of "B (Table 3) and the uncertainty of 8" Biuia (Table 1). 4B, of columnar
olenites and cores of the acicular olenites from Kutzschbach et al. (2016). For more
information see text.
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