REVISION 1

The solubility of CePO$_4$ monazite and YPO$_4$ xenotime in KCl-H$_2$O fluids at 800°C and 1.0 GPa:

Implications for REE transport in high-grade crustal fluids

Philipp Mair 1, Peter Tropper 1, Daniel E. Harlov 2,3, Craig E. Manning 4,

1Institute of Mineralogy and Petrography, Faculty of Geo- and Atmospheric Sciences, University of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria

2Helmholtz Zentrum Potsdam, Deutsches GeoForschungsZentrum, Telegrafenberg, D-14473 Potsdam, Germany

3Department of Geology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa

4Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA

Abstract

Monazite (CePO$_4$) and xenotime (YPO$_4$) are important hosts for REE, and thus can be used to monitor REE mass transfer in a variety of settings. In this investigation, the solubilities of synthetic monazite and xenotime were measured in KCl-H$_2$O fluids at 800°C and 1.0 GPa, using the piston-cylinder apparatus. The experimental results indicate an increase in monazite and xenotime solubility in aqueous fluids with moderate KCl mole fractions (X_{KCl}) in agreement with previous investigations of the solubility of these phases in NaCl-H$_2$O. Under all conditions, monazite and xenotime dissolve congruently. The solubility of synthetic monazite increases from 8 ppm in pure H$_2$O to 335 ppm at $X_{KCl} = 0.506$. The solubility of synthetic xenotime rises from 46 ppm in pure H$_2$O to 126 ppm at $X_{KCl} = 0.348$, above which it is constant or declines slightly. Monazite and xenotime solubilities are considerably lower in KCl-H$_2$O than in NaCl-H$_2$O at the same salt concentration. Best fit equations for the solubilities of the two phases are:

\[c_{\text{mz}} = -464 \: X_{\text{KCl}} + 891 \: X_{\text{KCl}} + 8 \]
\[c_{xt} = -563 X_{KCl}^2 + 432 X_{KCl} + 46 \]

where \(m_z \) and \(x_t \) stand for monazite and xenotime, and \(X_{KCl} = n_{KCl} / (n_{KCl} + n_{H2O}) \) where \(n \) is moles. The change in solubilities with KCl implies that Ce dissolves as an anhydrous chloride complex (\(\text{CeCl}_3 \)), whereas Y forms a mixed Cl-OH solute (\(\text{YCl(OH)}_2 \)). The data also imply that \(\text{H}_2\text{O-NaCl} \) fluids and \(\text{H}_2\text{O-KCl} \) fluids close to neutral pH can transport substantial amounts of REE and Y, thus obviating the need to invoke low pH solutions in high-grade environments where they are highly unlikely to occur.

Keywords: Monazite, Xenotime, Solubility, Experimental petrology, REE mobility, Metamorphic fluids, Brines

Introduction

Aqueous fluids are responsible for substantial mass transfer in high pressure (P) and temperature (T) environments. Understanding the scale and magnitude of fluid-mediated compositional change is central to many studies of magmatic and metamorphic systems and ore deposits such as REE-enriched iron oxide-apatite deposits (cf. Harlov et al., 2016) or REE-enriched carbonatites (e.g., Yang et al., 2003). For example, lithologies transported to deep-crustal conditions along Barrovian P-T paths show evidence for significant compositional modification by metamorphic fluids (e.g., Ague, 1994a,b). Similarly, in subduction zones, slab devolatilization generates a fluid phase that is capable of major metasomatic activity (e.g., Manning, 2004). High-pressure (P) and temperature (T) environments (e.g., Barrovian and granulite metamorphism, and subduction zones) often record evidence of mobilization of elements that show very low solubility in \(\text{H}_2\text{O} \), such as Al, Ti, and rare-earth elements (REE). Explanations may involve extremes in pH or complexing with halogens, alkalis, or both or polymerization with alkalis, Al and Si (e.g., Manning, 2004; Newton and Manning, 2010; Tropper et al., 2011; Tropper et al., 2013). A number of observations point to the participation of brines in high-grade metamorphic processes. These include not only findings of alkali and alkaline-earth halides as daughter crystals in fluid inclusions, but also...
appreciable concentrations of Cl measured in minerals from high-grade rocks such as amphiboles, biotite, scapolite and apatite, and direct observations on high-temperature halides present in the intergranular space in high-grade rocks (e.g. Aranovich et al., 2014). Saline fluids may also be important in subduction-zone metasomatism (Barnes et al., 2017; Keppler, 2017).

Accessory minerals are minor in abundance, but can contain elements as major components (for example Ce in monazite and Y in xenotime), which with respect to the whole rock would be considered trace elements. If these minerals are part of the solid assemblage, their solubility will govern the abundance of key trace elements in co-existing fluids, including Ti, Nb, Ta, Zr, Hf, and REE. Therefore knowledge of rare earth element (Y+REE) redistribution during high-grade metamorphism is of fundamental importance in determining the origin of typical light (L)REE-enrichment of calc-alkaline magmas, commonly ascribed to the metasomatic effects of a subducting slab on the overlying mantle wedge (e.g., Ionov and Hofmann, 1995; Rubatto and Hermann, 2003; Gao et al., 2007). It is therefore essential to understand the behavior of (Y+REE) carriers such as monazite and xenotime during that metasomatic processes that attend high-grade metamorphism and subduction.

Monazite and xenotime are important accessory phases in metamorphic and igneous rocks (e.g., Spear and Pyle, 2002). Occurring over a range of metamorphic lithologies, settings, and P-T conditions, these phosphates have great utility as prograde index minerals that can be used for geochronology (e.g., Harrison et al., 2002) and geothermometry (e.g., Gratz and Heinrich, 1997; Janots et al., 2008). They represent important reservoirs for light (LREE) and heavy (Y+HREE) rare earth elements. The exchange of (Y+REE) between orthophosphates and silicates, such as garnet, provides information concerning the P-T history of metamorphic terranes (e.g., Spear and Pyle, 2002). Y+REE orthophosphates also play an important role in controlling the distribution of (Y+REE), U, and Th during granitoid crystallization (e.g., Montel, 1993). Their high durability and resistance to metamictization make the (Y+REE) phosphates potential hosts for nuclear waste disposal (e.g., Ewing, 2001). The mobility of REE in crustal and mantle fluids are especially important because of their role in REE ore-deposit formation (e.g., Williams-Jones et
al., 2012; Harlov et al., 2016) as well as their contribution in tracing magmatic (e.g., Markl and Piazolo, 1998; Agangi et al., 2010) and metamorphic (e.g., Yardley, 1985; Brennan, 1993) petrogenetic processes. Potassium metasomatism has been recognized by field workers in high-grade metamorphic terranes for over a century (e.g. Billings, 1938). Alkali exchange in natural feldspars (K-feldspathization) gives rise to “replacement antiperthite”, a common texture in high-grade gneisses (Todd and Evans, 1994; Hansen et al., 1995). Potassium species are also important constituents of high-grade metamorphic fluids (e.g., Aranovich and Newton, 1997; Newton et al., 1998; Harlov and Förster, 2002a; Harlov, 2012) and potassium metasomatism has been recognized in high-grade metamorphic terranes (e.g., Hansen et al., 1995; Newton et al., 1998; Harlov et al., 1998; Harlov and Förster, 2002a; Harlov, 2012). KCl brines or K-rich also act as metasomatic fluids in xenoliths from the lower crust and upper mantle (Harlow and Davies, 2004), Kimberlites (Kamenetsky et al., 2004), as well as brine-rich inclusions in diamonds (Tomlinson et al., 2004). Sylvite (KCl) has been identified as a daughter mineral in some of the concentrated brine inclusions which have been described with increasing frequency in many petrogenetic settings, including granites (Dunbar et al., 1996), gabbros (Pasteris et al., 1995), high-grade gneisses (Touret, 1985), carbonatites (Sampson et al., 1995), eclogites (Philippot and Selverstone, 1991), and the super-high-pressure coesite-bearing metasediments (Philippot et al., 1995). KCl is thought to have been a major solute of the complex saline fluids which produced regional metasomatism and metal ore segregation in Cloncurry, Queensland (DeJong and Williams, 1995) and the Melones Fault Zone of California (Albino, 1995). The role of KCl-NaCl-H₂O-rich fluids has also been investigated in a number of experimental studies on the relationship between activity and concentration (Aranovich and Newton, 1997), the stability of phlogopite (Aranovich and Newton, 1998), fluid-induced dehydration of tonalites (Harlov, 2004; Harlov et al., 2006) and biotite-amphibole gneiss (Safonov et al., 2012), monazite/apatite dissolution-reprecipitation (Harlov and Förster, 2003; Harlov et al., 2005), quartz solubility (Shmulovich et al., 2005), and brine-assisted anataxis (Aranovich et al., 2014).

Despite their importance as minerals whose occurrence as prograde index minerals can be coupled with
geochronology (e.g. Janots et al., 2009) and their economic importance (Williams-Jones et al., 2012; Harlov et al., 2016), little is known about the solubility systematics of two of the most important orthophosphate REE-bearing minerals, monazite (CePO$_4$) and xenotime (YPO$_4$) in aqueous fluids of various compositions at high P (> 0.5 GPa) and T (> 300 °C). It is therefore essential to understand their solubility behavior with respect to P-T-X$_i$ conditions and complexation during metasomatic processes that attend high-grade crustal metamorphism and crustal/mantle/rock-fluid interactions occurring during subduction.

Experimental methods

Solubility experiments involving solutions with varying concentrations of KCl were conducted on synthetic crystals of monazite (CePO$_4$) and xenotime (YPO$_4$), and natural monazite from a beach sand in Cleveland Co., North Carolina (UCLA mineral collection #MS 1762), which contains 59.96 wt% LREE (29.41 wt% Ce$_2$O$_3$, 13.44 wt% La$_2$O$_3$, 11.15 wt% Nd$_2$O$_3$, 3.08 wt% Pr$_2$O$_3$, 1.87 wt% Sm$_2$O$_3$ and 1.01 wt% Gd$_2$O$_3$) and 0.76 wt% HREE (with 0.55 wt% Y$_2$O$_3$, 0.08 wt% Dy$_2$O$_3$, 0.07 wt% Tb$_2$O$_3$, 0.02 wt% Ho$_2$O$_3$, 0.02 wt% Er$_2$O$_3$ and 0.02 wt% Yb$_2$O$_3$) (Tropper et al., 2011).

Synthetic crystals of monazite (CePO$_4$) or xenotime (YPO$_4$) were synthesized by mixing stoichiometric amounts of REE(NO$_3$)*6H$_2$O and (NH$_4$)$_2$HPO$_4$ in solution. The resulting precipitate was allowed to settle and the excess fluid poured off. The precipitate was then dried and ground. Twenty grams of Pb-free flux (Na$_2$CO$_3$:MoO$_3$ = 1:3) mixed with 0.8 g precipitate was packed in a Pt crucible with a loose cover and heated to 1280 °C. The molten flux was allowed to equilibrate at 1280 °C for 15 h, and then cooled to 870 °C at 3 °C per hour (Cherniak et al., 2004; Tropper et al., 2011). The resulting transparent, light brownish yellow, euhedral to semi-euhedral monazite and xenotime crystals range from 0.1 mm to 2 mm in diameter. The smaller crystals are inclusion-free, but some of the larger crystals (> 1 mm) contain scattered melt inclusions.
Single crystals, optically free of flux melt inclusions, were selected for use in the solubility studies. Each crystal was first ground into spherical shapes with a diameter of ~ 1 – 2 mm using 400-grit emery paper to remove sharp edges, and then rolled in 800-grit emery paper until they acquired a polish. The polished crystals were cleaned in ethanol in an ultrasonic bath, and then dried at 120 °C for 15 min. This procedure generated single crystals that ranged in weight from 0.7 to 3.0 mg (Table 1). Each experiment consisted of an outer Pt capsule (outer diameter: 3.0 mm, thickness: 0.2 mm) and an inner Pt capsule (outer diameter: 2.0 mm, thickness: 0.1 mm) in which the monazite or xenotime single crystal was placed. Thick-walled Pt (0.2 mm) was used for the outer capsule to minimize puncturing by the thermocouple. The use of an inner capsule protected the crystal and minimized thermal gradients in the capsule (Tropper and Manning, 2005). After inserting the crystal, the inner capsule was lightly crimped to facilitate H$_2$O penetration while ensuring crystal containment during the experiments. The inner Pt capsule, plus precisely weighed quantities of KCl and H$_2$O (Table 1), were then placed in the outer Pt capsule. The outer Pt capsule was sealed by arc-welding and then placed in a 120 °C oven for 30 min to check for leakage.

All experiments were performed at 800 °C and 1000 MPa in a non end-loaded piston-cylinder apparatus, using 22 mm diameter NaCl assemblies with a cylindrical graphite oven and sealed by pyrophyllite rings. Each double capsule assembly was placed horizontally at the center of the NaCl assembly surrounded by the graphite-furnace and packed in NaCl. It was covered with a small, thin pyrophyllite sheet to help prevent puncture by the thermocouple which is in direct contact with the Pt capsule. Pressure and temperature was monitored using a pressure gauge and a NiCr-Ni thermocouple, respectively. Pressure was maintained to within 200 bar gauge pressure and the accuracy of the reported temperature is estimated to be ± 2 °C. Each experiment was initially brought to 0.2 GPa and 100 °C and held for 15 min, then brought to 800 °C and 1.0 GPa following a temperature and pressure ramp of 20 °C/min and 0.02 GPa/min. After 12 h, the experiments were quenched to T < 150 °C and P < 0.6 GPa within several seconds by shutting off the power to the graphite oven. Run times of 12 h for each experiment at 800 °C and 1.0 GPa were assumed sufficient to ensure significant reaction and equilibration of the monazite or
xenotime starting crystals with the solution. Attainment of constant solubility within 12 h is consistent with equilibration rates in other solubility measurements at high T and P, based on previous studies (e.g., Caciagli and Manning, 2003; Tropper and Manning, 2005; Tropper et al., 2011).

After each experiment, the outer capsule was pierced with a needle, and the pH of the quench fluid was checked with a pH-indicator paper with an accuracy of < 0.5 pH units (Table 1). After drying for 30 min at 120 °C, the monazite or xenotime crystal was then extracted from the inner capsule, treated ultrasonically in ethanol to remove adhering quench precipitate, dried at 120 °C, and weighed with a Mettler Toledo XP2U ultra-microbalance (1σ = 0.1 µg) (Table 1). All monazite and xenotime grains were then examined optically with a binocular microscope. Single crystals from selected experiments were mounted onto double-sided carbon tape and characterized by a JEOL JSM-6010LV scanning electron microscope (SEM) equipped with a Quantax EDS (Bruker).

The solubility of monazite and xenotime is reported in parts/million by weight (ppm), and is calculated via the formulas (\(\Delta m_{mz} / H_2O + KCl + \Delta m_{mz}\)) * 10^6 and (\(\Delta m_{xt} / H_2O + KCl + \Delta m_{xt}\)) * 10^6, where mz and xt stand for monazite and xenotime. Reported mole fractions of KCl (\(X_{KCl}\)) were calculated from the starting ratio \(n_{KCl} / n_{KCl} + n_{H2O}\) in the experiment. KCl and H_2O masses were determined on a Mettler Toledo AX205 DeltaRange microbalance (1σ = 0.03 mg) (Table 1). For further speciation calculations the monazite and xenotime mass loss (\(\Delta m_{mz}\) and \(\Delta m_{xt}\)) and the measured pH were used to calculate ionic species utilizing the concept of the limiting reactant (Table 2a, Table 2b).

Results

Textures and equilibrium

The experimental results are given in Table 1. Run products included partly dissolved starting monazite- (Fig. 1a) and xenotime crystals (Fig. 1c), recrystallized CePO_4 grains on the surface of monazite starting crystals (Fig. 1b), yttrium chloride crystals on the surface of xenotime starting crystals (Fig. 1d), newly formed secondary monazite- (Fig. 2a, Fig. 2b), xenotime- (Fig. 2c, Fig. 2d), and yttrium chloride crystals.
(Fig. 2c) in the outer capsules of some experiments, and a sub-micron sized white powder consisting of KCl (Fig. 2). The chemical identification of the yttrium chloride crystals was done semi-quantitatively using EDS analysis on the scanning electron microscope (SEM). Despite the small grain size and their adherence to the crystal faces of the starting crystals EDS analysis showed distinct Y and Cl peaks only and based on the approximate ratio between Y and Cl of 1:1, we infer the stoichiometry of this compound to be YCl(OH)$_2$. This quench phase most likely formed from the strongly hygroscopic phase YCl$_3$, which reacts directly with H$_2$O to YCl(OH)$_2$ and HCl based on the following chemical reaction: 1 YCl$_3$ + 2 H$_2$O = 1 YCl(OH)$_2$ + 2 HCl (Klevtsova & Klevtsov, 1965; Haschke, 1975; Zhuravleva et al., 2013). Tropper et al. (2011) postulated for the system xenotime-H$_2$O-NaCl that a similar simple equilibrium could account for this relationship namely: YPO$_4$ + NaCl + 2H$_2$O= YCl(OH)$_2$ + NaH$_2$PO$_4$. The residual monazite- and xenotime crystals displayed solution-rounded edges (Fig. 1a, Fig. 1c) and in some cases, significant dissolution grooves (Fig. 1a). The recrystallized CePO$_4$ grains on the surface of the monazite starting crystals occur as idiomorphic, prismatic, tabular – granular aggregates (Fig. 1b) and quench crystals occur as tiny, round precipitates, which were distributed randomly on the surface of the xenotime starting crystals (Fig. 1d). The newly formed euhedral secondary monazite and xenotime crystals occur as hollow, prismatic needles (Fig. 2), which are randomly distributed throughout the inner and outer capsules. The abundance of secondary monazite and xenotime needles increased with increasing X_{KCl}, accompanied by an increase in monazite or xenotime solubility (Table 1). The size of the secondary monazite crystals was up to ~ 15 µm along the c-axis (Fig. 2a, Fig. 2b), the size of the secondary xenotime crystals was up to ~ 5 µm along the c-axis (Fig. 2c, Fig. 2d). Both secondary monazite and xenotime crystals vary from sparse and separate crystallites to fibrous aggregates which were mostly embedded in KCl aggregates (Fig. 2). Two generations of secondary monazite quench crystals with different size and morphology (Fig. 2b) were found in the system monazite-H$_2$O-KCl at a mole fraction of $X_{KCl} = 0.1$. The first generation of monazites (sec mz I) can be recognized by its characteristic prismatic crystals (Fig. 2a, Fig. 2b). The second generation of monazites (sec mz II) occurs as stellate clusters of thin needles, which are
significantly smaller than the monazite crystals of the first generation. In addition to the secondary
monazite and xenotime crystals, < 2 µm tabular – prismatic grains of YCl(OH)_2 crystals were observed in
the system xenotime-H_2O-KCl at a mole fraction of X_{KCl} = 0.1, embedded in KCl aggregates (Fig. 2c).
Based on the textural observations, it can be assumed that the newly formed secondary monazite,
xenotime, and yttrium chloride crystals nucleated and grew during quenching to room temperature from
the experimental T, whereas the KCl aggregates precipitated during drying after initial puncturing of the
outer capsule. The attribution of these secondary phases as quench material is in accordance with previous
observations from similar experiments (e.g., Tropper and Manning, 2005, 2007a,b; Antignano and
Manning, 2008, Tropper et al., 2011). No evidence for vapor-transport of monazite or xenotime was
observed, unlike in some mineral-fluid systems such as calcite, rutile, and corundum (Caciagli and
Manning, 2003; Tropper and Manning, 2005, 2007b) or fluorapatite in the system NaCl + H_2O (Antignano
and Manning, 2008).

Monazite solubility in H_2O-KCl

The experimental results in the system monazite-H_2O-KCl are given in Table 1 and shown in Fig. 3a. At
800 °C and 1.0 GPa, the solubility of the synthetic monazite in pure H_2O is 8 ppm (Table 1) (Tropper et
al., 2011). The solubilities of synthetic monazite in H_2O-KCl fluids indicate an increase in the dissolved
monazite concentration with rising X_{KCl} from 78 ± 4 ppm (X_{KCl} = 0.101) to 335 ± 3 ppm (X_{KCl} = 0.506
(Table 1). The data on the variation in synthetic monazite solubility with X_{KCl} at 1.0 GPa and 800 °C (Fig.
3a) can be fit to a second-degree polynomial function using least squares regression:

\[c_{mz} = -464 X_{KCl}^2 + 891 X_{KCl} + 8 \]

where \(c_{mz} \) is the solubility of the synthetic monazite in ppm (\(R^2 = 0.986 \)) and \(X_{KCl} \) is the mole fraction of
KCl. It can be also seen from Figure 3a that at \(X_{KCl} = 0.262 \), the solubility of natural monazite (186 ± 3
ppm) (Table 1) fits well to the data of synthetic monazite solubility. In contrast to the H_2O-KCl system,
monazite solubilities are considerably higher in the H_2O-NaCl system as shown by Tropper et al. (2011).
Their results also indicate an increase in the dissolved monazite concentration with rising \(X_{NaCl} \) to near halite saturation from 152 ppm (\(X_{NaCl} = 0.092 \)) to 442 ppm (\(X_{NaCl} = 0.498 \)) (Fig. 3a). The increase in the CePO\(_4\) solubility with increasing NaCl concentration is similar to that seen for apatite, fluorite, calcite, anhydrite (Antignano and Manning, 2008; Tropper and Manning, 2007a; Newton and Manning, 2002; Newton and Manning, 2005) and monazite in the system H\(_2\)O-KCl. In addition, the quench pH of the aqueous solutions in the monazite-H\(_2\)O-KCl experiments was 7.0 – 7.5 (Table 1).

Figure 4 and Figure 5 show the relationship between the molality of monazite vs. the mole fraction of KCl (\(X_{KCl} \)) and the activity of H\(_2\)O at 800°C and 1.0 GPa. The molality of the monazite is reported in mol/kg, and is calculated from the amount of substance (\(n_{mz} \)) divided by the mass of H\(_2\)O + KCl. The H\(_2\)O and KCl activities were calculated using the Aranovich and Newton (1996, 1997) NaCl-KCl a-X formulation. Aranovich and Newton (1997) found that the KCl component lowers a\(_{H_{2}O}\) even more than NaCl at a given T, P, and X\(_{H_{2}O}\), and that the KCl activity is lower for a given salt concentration than the NaCl activity (Aranovich and Newton, 1996). At 1.0 GPa, the solutions closely approach an ideal fused salt mixture, where the activities of H\(_2\)O and KCl correspond to an ideal activity formulation. The low H\(_2\)O activity at high pressures in concentrated KCl solutions indicates that such solutions should be feasible as chemically active fluids capable of coexisting with solid rocks in many deep crustal and upper mantle metamorphic and metasomatic processes (Aranovich and Newton, 1996).

Xenotime solubility in H\(_2\)O-KCl

The experimental results for the system xenotime-H\(_2\)O-KCl are given in Table 1 and shown in Fig. 3b. In pure H\(_2\)O at 800°C and 1.0 GPa, the solubility of synthetic xenotime is 46 ppm (Table 1) and is thus ~6 times higher than for synthetic monazite (8 ppm) (Table 1; Tropper et al., 2011). The solubilities of synthetic xenotime in H\(_2\)O-KCl fluids show an increase in the dissolved xenotime concentration with \(X_{KCl} \) increasing from 67 ± 5 ppm (\(X_{KCl} = 0.099 \)) to 126 ± 4 ppm (\(X_{KCl} = 0.348 \)) (Table 1) (Fig. 3b). At \(X_{KCl} > 0.348 \) the solubility of xenotime decreases to 122 ± 5 ppm (\(X_{KCl} = 0.493 \)) (Fig. 3b). The data can be fit...
using a second-degree polynomial function to describe the synthetic xenotime solubility as a function of
X\textsubscript{KCl} at 800°C and 1.0 GPa (Fig. 3b):

\[c_{xt} = -563 \times X^{2}_{KCl} + 432 \times X_{KCl} + 46 \]

(2)

where \(c_{xt} \) is the solubility of synthetic xenotime in ppm (\(R^2 = 0.921 \)) and \(X_{KCl} \) is the mole fraction of KCl.

Again xenotime solubilities are considerably higher in the system H\textsubscript{2}O-NaCl as shown by Tropper et al. (2011) where the dissolved xenotime concentration increases with rising \(X_{NaCl} \) from 173 ppm (\(X_{NaCl} = 0.096 \)) to 265 ppm (\(X_{NaCl} = 0.286 \)) (Fig. 3b). At \(X_{NaCl} > 0.286 \) the solubility decreases to 212 ppm (\(X_{NaCl} = 0.399 \)) and 191 ppm (\(X_{NaCl} = 0.496 \)) (Fig. 3b). YPO\textsubscript{4} solubility in the system H\textsubscript{2}O-NaCl by Tropper et al. (2011) increases in a manner similar to that of corundum and wollastonite (Newton and Manning, 2006), and shows a different trend than the solubility of YPO\textsubscript{4} in the system H\textsubscript{2}O-KCl (Fig. 3b). Similar to the monazite-H\textsubscript{2}O-KCl experiments, the xenotime-H\textsubscript{2}O-KCl experiments have neutral quench pH values of 7 – 7.5 over the investigated \(X_{KCl} \) range (Table 1).

Figure 4 and Figure 5 show the relationship between the molality of xenotime vs. the mole fraction of KCl (\(X_{KCl} \)) and the activity of H\textsubscript{2}O at 800°C and 1.0 GPa.

Discussion

Monazite and xenotime solubility as a function of \(X_{salt} \) at 800°C and 1.0 GPa

The low solubility of monazite and xenotime in pure H\textsubscript{2}O experimentally obtained by Tropper et al. (2011) makes it difficult to explain the natural association of these minerals with metasomatic features in igneous and metamorphic rocks, such as hydrothermal alteration assemblages, veins, and skarns (e.g., Gieré, 1996). The fluid flux must be high enough to mobilize relatively insoluble REE, in which the solubility of (Y+REE) orthophosphates is low in near-neutral pH aqueous fluids and increases in acidic fluids (e.g. Tropper et al., 2013). An alternative mechanism for the dissolution and transportation of orthophosphate components is a high NaCl and/or KCl concentration in the fluid phase. Tropper et al. (2011) found that YPO\textsubscript{4} solubility in pure H\textsubscript{2}O at 800°C and 1 GPa is greater (46 ppm) than that of CePO\textsubscript{4}.
This is in nominal disagreement with the general observation that monazite is more common than xenotime in hydrothermal veins and other metasomatic features, which implies greater solubility of LREE relative to HREE and Y (e.g., Schmidt et al., 2007), and suggests that LREE are more abundant than HREE in such systems. However, REE and Y dissolution in natural fluids are controlled by ligands other than H\(_2\)O or phosphate, such as chloride, fluoride, and sulfate, all of which can be expected to occur in varying proportions (e.g., Williams-Jones et al., 2012). Consequently, experimental results obtained using pure H\(_2\)O only represent an end-member scenario unlikely to occur in nature.

To obtain information on the interaction of monazite and xenotime with pure H\(_2\)O and KCl + H\(_2\)O solutions, the following generalized dissolution reactions may be written (Newton and Manning, 2006, 2010; Tropper and Manning, 2011):

\[
\begin{align*}
n\text{CePO}_4 + a\text{KCl} + b\text{H}_2\text{O} &= k\text{ solute species} \quad (3a) \\
on \text{YPO}_4 + a\text{KCl} + b\text{H}_2\text{O} &= k\text{ solute species} \quad (4a)
\end{align*}
\]

where \(n\) are the number of moles of monazite or xenotime, and \(a\) and \(b\) are the number of moles of KCl and H\(_2\)O consumed to produce \(k\) moles of solutes per mole of orthophosphate dissolved. The \(k\) moles of solutes per mole of orthophosphate were calculated assuming complete dissociation. The dissociation is represented by the following equations (Aranovich and Newton, 1996; Newton and Manning, 2006):

\[
\begin{align*}
n\text{Ce}^{3+} + n\text{PO}_4^{3-} + a\text{K}^+ + a\text{Cl}^- + b\text{H}^+ + b\text{OH}^- &= k \quad (3b) \\
n\text{Y}^{3+} + n\text{PO}_4^{3-} + a\text{K}^+ + a\text{Cl}^- + b\text{H}^+ + b\text{OH}^- &= k \quad (4b)
\end{align*}
\]

The relative molar proportions of KCl and H\(_2\)O in Eqs. (3a) and (4a) were evaluated using the technique outlined in Newton and Manning (2006, 2010). In case that the solubility of monazite or xenotime decreases with \(X_{\text{KCl}}\), then Ce\(^{3+}\) or Y\(^{3+}\) solutes would likely be hydrous species, and there would be no interaction with K\(^+\) and/or Cl\(^-\). Similarly, monotonic increase with \(X_{\text{KCl}}\) would imply no interaction with...
H\(^+\) and/or OH\(^-\). If monazite and xenotime solubility increases to a plateau-like maximum and then declines this would imply that their solutes include both hydrates and K- and/or Cl complexes. Figure 6a and Figure 6b shows the variations in the relative solubility enhancements of synthetic monazite and xenotime, expressed as a solute mole fraction for a given \(X_{KCl}\) relative to that in pure H\(_2\)O. The effect of KCl on monazite and xenotime solubility can be assessed from the log-ratios \(X_{mz} / X_{mz}^o\) and \(X_{xt} / X_{xt}^o\), where \(X_{mz}^o\) and \(X_{xt}^o\) are the mole fractions of monazite and xenotime in pure H\(_2\)O. The ratio log \(X / X^o\) thus represents the magnitude of solubility enhancement by a given KCl mole fraction.

Values of log \(X / X^o\), especially for synthetic monazite in KCl solutions, increase with increasing \(X_{KCl}\) over the investigated range and this implies that the activity of H\(_2\)O does not significantly influence monazite solubility (\(b = 0\) in Eqn. 3a). This and the positive dependence of solubility on the square of \(X_{KCl}\) (Eqn. 1) suggests that 3 moles of KCl per mole of CePO\(_4\) form anhydrous solute species upon dissolution (\(a = 3\)). A simple chemical equilibrium that could account for this relationship is:

\[
1 \text{CePO}_4 + 3 \text{KCl} = 1 \text{CeCl}_3 + 1 \text{K}_3\text{PO}_4
\]

(5)

The observed dissolution products in the KCl-bearing fluids are newly formed secondary monazite (Fig. 2a, Fig. 2b), CeCl\(_3\), and K\(_3\)PO\(_4\) (Eqn.5). Tropper et al. (2011) postulated that for the system monazite-H\(_2\)O-NaCl a similar simple equilibrium could account for this relationship namely: CePO\(_4\) + 2NaCl = CeCl\(_2^+\) + Na\(_2\)PO\(_4^-\). Table 2a represents a chemical reaction model of the system monazite-H\(_2\)O-KCl, in which the quantified reaction products of CeCl\(_3\) and K\(_3\)PO\(_4\) are listed.

In contrast to monazite, the values of log \(X / X^o\) for the synthetic xenotime are not sufficiently precise to define a maximum as in the NaCl system by Tropper et al. (2011). Nevertheless, the data rise with increasing \(X_{KCl}\) over the investigated range to a maximum at \(X_{KCl}\) between 0.35 and 0.45 (Fig. 6b). This implies that the activities of KCl and H\(_2\)O significantly influence xenotime solubility. Following the approach of Newton and Manning (2006), the KCl mole fraction, at which the maximum solubility occurs, defines the ratio of a to b in Eqn. 6 via:
and implies that a (for KCl) is 3 and b (for H$_2$O) varies between 5.5 ($X_{KCl} = 0.35$) and 3.6 ($X_{KCl} = 0.45$) (Fig. 6b). A simple chemical equilibrium that could account for this relationship at $X_{KCl} = 0.43$ is:

$$1 \text{YPO}_4 + 4 \text{H}_2\text{O} + 3 \text{KCl} = 1 \text{YCl(OH)}_2 + 1 \text{KH}_2\text{PO}_4 + 2 \text{KOH} + 2 \text{HCl} \quad (7)$$

where $a = 3$ and $b = 4$. The reaction products in the KCl-bearing fluids are YCl(OH)$_2$ (Fig. 1d, Fig. 2c), KH$_2$PO$_4$, KOH and HCl (Eqn. 7). The reverse reaction is defined as a neutralization reaction and occurs during the quenching process, in which the acid (HCl) and the base (KOH) react to form H$_2$O and KCl and the H$^+$ combines with OH$^-$ to generate H$_2$O. This results in a quench pH equal to 7.

The dissolution products proposed in Eqs. (5) and (7) suggest that, in NaCl- and also KCl-bearing fluids with neutral pH, the degree of Cl coordination for Y is lower than for Ce (Tropper et al., 2011). Assuming similar geochemical behavior for Y and REE, this is consistent with the steric hindrance of chloride complexation with HREE relative to LREE proposed by Mayanovic et al. (2009). The common occurrence of NaCl- and KCl-rich fluids in crustal and mantle settings (e.g., Newton et al., 1998; Yardley and Graham, 2002; Newton and Manning, 2010) could offer a simple mechanism to explain numerous cases of LREE mobility. Table 2b represents a chemical reaction model for the system xenotime-H$_2$O-KCl, in which the quantified reaction products of YCl(OH)$_2$ and KH$_2$PO$_4$ are listed.

Geological implications

Field studies of high-grade rocks show that the mobility of REE and Y in granulite-facies terranes is greatly enhanced in the presence of brines (e.g., Newton et al., 1998; Harlov, 2011; Aranovich et al., 2014) since brine-bearing fluid inclusions have been observed in granulites (e.g., Markl et al., 1998). It has therefore been proposed that REE (and by extension, Y) mobility may be enhanced by dissolved halogens in some cases as highly concentrated brines (e.g., Pan and Fleet, 1996; Schmidt et al., 2007; Antignano and Manning, 2008; Newton and Manning, 2010; Tropper et al., 2011, 2013). KCl brines or K-
rich fluids in the lower crust and upper mantle are, because of their high mechanical mobility and alkali-exchanging potential feasible metasomatic fluids for a variety of high grade rocks (Hansen et al., 1995; Newton et al., 1998; Harlov et al., 1998; Harlov and Förster, 2002a). Field observations (e.g., Touret and Nijland, 2013) and experimental investigations (Harlov, 2004) have demonstrated that a typical metasomatic feature associated with the presence of a high-salinity low-H\textsubscript{2}O activity fluid is the presence of K-feldspar veining along the grain boundaries of minerals such as quartz, biotite, and plagioclase.

Tropper et al. (2011) experimentally determined the solubility of CePO\textsubscript{4} monazite and YPO\textsubscript{4} xenotime in H\textsubscript{2}O–NaCl solutions at 800 °C and 10 kbar. Their results indicate that the solubility of both Ce and Y increase with rising X\textsubscript{NaCl}. Moreover, it has been shown that the most saline solutions exhibit a strong preference for LREE over HREE (Reed et al., 2000) and additional experiments in the system NaF-H\textsubscript{2}O by Tropper et al. (2013) found that NaF solutions yielded an even stronger increase in Ce/Y concentration with rising salt concentrations. The present experiments in the system KCl-H\textsubscript{2}O strongly corroborate the NaCl-H\textsubscript{2}O experiments although the extent of solubility is lower. These experimental results help to explain key features of REE geochemistry in high-grade metamorphic processes since brine-induced anatexis will result in a noticeable depletion in the bulk REE concentration compared to parental rocks without the presence of brines as well as a decrease in the LREE/HREE ratio in the residual rock from which the melt was extracted.

Another important aspect is large-scale metasomatism involving brines. Metasomatic alteration is conjectured to involve infiltrating NaCl- and KCl-bearing brines during peak metamorphism as well as post peak and possibly more H\textsubscript{2}O-rich fluids during uplift and cooling. Alkali-halide brines play an important role in mass transport (e.g. K-metasomatism) and mineral-fluid-melt phase equilibria in the lower crust (e.g., Newton et al., 1998; Yardley and Graham, 2002; Harlov and Förster, 2002a; Newton and Manning, 2010). With respect to the formation of large-scale ore deposits the experimental results by Harlov et al. (2002a), Taghipour et al. (2015) and Harlov et al. (2016) also support the extensive metasomatic alteration and remobilization of REE-enriched iron-oxide-apatite (IOA) deposits due to the
presence of brine-rich fluids. This fact is corroborated by a number of experiments, which have shown
that the formation of monazite and xenotime associated with apatite is a metasomatically induced process
that results from the interaction of brine-rich fluids that are reactive with the (Y + REE)-baring apatite
(Harlov et al., 2002b; 2005; Harlov and Förster, 2003; Harlov, 2015; Harlov et al., 2016). These examples
clearly show that further experimental investigations are still needed to understand the behavior of
(Y+REE) carriers such as monazite and xenotime in the presence of brine-rich fluids, which frequently
accompany high-grade metamorphism and metasomatic processes.

Acknowledgments

The financial support from the Institute of Mineralogy and Petrography, University of Innsbruck is greatly
acknowledged. Martina Tribus is thanked for her help with the SEM and Hannes Witting for his help in
the high-pressure laboratory. Craig E. Manning was supported by US National Science Foundation grant
#EAR 1347987. The manuscript was significantly improved by reviews by Anselm Loges, and an
anonymous reviewer. Don Baker is gratefully acknowledged for the editorial handling of the manuscript.
References cited

and the relationship between granites and granulites. Precambrian Research, 253, 26-37.

Harlov, D., Tropper, P., Seifert, W., Nijland, T., and Förster, H.-J. (2006) Formation of Al-rich titanite (CaTiSiO₄-CaAlSiO₄OH) reaction rims on ilmenite in metamorphic rocks as a function of $f_{\text{H}_2\text{O}}$ and f_{O_2}. Lithos, 88, 72-84.

crust by hydration reactions in partially retrogressed granulites from the Lofoten Islands, Norway. American Journal of Science, 298, 705-57.

Tropper, P., and Manning, C.E. (2005) Very low solubility of rutile in H₂O at high pressure and
temperature, and its implications for Ti-mobility in subduction zones. American
Mineralogist, 90, 502-505.

Tropper, P., and Manning, C.E. (2007a) The solubility of fluorite in H₂O and H₂O-NaCl at high

Tropper, P., and Manning, C.E. (2007b) The solubility of corundum in H₂O at high pressure and
temperature and its implications for Al mobility in the deep crust and upper mantle.
Chemical Geology, 240, 54-60.

xenotime in H₂O and H₂O-NaCl at 800°C and 1 GPa: implications for REE and Y

xenotime in H₂O-NaF at 800°C and 1 GPa. Geofluids, 13, 372-380.

the REE – a tale of ceria and yttria. Elements, 8, 355-360.

carbonatite dyke at Bayan Obo, Inner Mongolia, North China. Mineralogy and Petrology,
78, 93-110.

Yardley, B.W.D. (1985) Apatite composition and the fugacities of HF and HCl in metamorphic

Geofluids, 2, 249-256.

evaluation of halide scintillators. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE.
Figure captions

Figure 1. SEM images of run products from selected experiments. (a) CePO$_4$ crystal after dissolution at $X_{KCl} = 0.101$ (Mnz_003). (b) Surface of the CePO$_4$ crystal dissolved in $X_{KCl} = 0.101$, displaying dissolution grooves and recrystallization. (c) YPO$_4$ crystal after dissolution at $X_{KCl} = 0.348$ (Xnt_028). (d) YPO$_4$ crystal after dissolution in $X_{KCl} = 0.099$ (Xnt_023) fluid, with tiny quench crystals (YCl(OH)$_2$) adhering to the surface.

Figure 2. SEM images of the quench material from selected experiments. (a,b) Two generations of secondary monazite crystals, that occur as prismatic needles (sec mz I) and stellate clusters (sec mz II), which nucleated in the outer casule upon quench and embedded in KCl aggregates. (c,d) Tabular – prismatic crystal of YCl(OH)$_2$ and secondary xenotime crystals (sec xt), which embedded in KCl aggregates.

Figure 3a. Monazite solubility versus the mole fraction of KCl and NaCl (X_i) at 800°C and 1.0 GPa. The error bars are 2σ and are calculated based on the weighing uncertainties. The solid line in the system monazite-KCl-H$_2$O represents the fitted solubilities from Eqn. (1). Results of Tropper et al. (2011) from monazite-NaCl-H$_2$O at 800°C and 1.0 GPa shown for comparison. Halite- and sylvite saturation estimated from Aranovich and Newton (1996, 1997).

Figure 3b. Xenotime solubility versus the mole fraction of KCl and NaCl (X_i) at 800°C and 1.0 GPa. The error bars are 2σ and are calculated based on the weighing uncertainties. The solid line in the system xenotime-KCl-H$_2$O represents the fitted solubilities from Eqn. (2). Results of Tropper et al. (2011) from xenotime-NaCl-H$_2$O at 800°C and 1.0 GPa shown for comparison. Halite- and sylvite saturation estimated from Aranovich and Newton (1996, 1997).
Figure 4. The relation between the molality of monazite and xenotime vs. the mole fraction of KCl and NaCl \((X_i) \) at 800°C and 1.0 GPa. Results of Tropper et al. (2011) from monazite and xenotime in the system NaCl-H\(_2\)O at 800°C and 1.0 GPa are shown for comparison. Halite- and sylvite saturation estimated from Aranovich and Newton (1996, 1997).

Figure 5. The relation between the molality of monazite and xenotime in the system H\(_2\)O-KCl vs. the activity of H\(_2\)O at 800°C and 1.0 GPa.

Figure 6a. Logarithm of the solubility enhancement of monazite, \(X_{\text{mz}}/X_{\text{mz}}^\circ \), versus \(X_{\text{KCl}} \) at 800°C and 1.0 GPa. Values of \(\log X_{\text{mz}}/X_{\text{mz}}^\circ \) increase continuously with increasing \(X_{\text{KCl}} \) over the investigated range and this implies that the activity of H\(_2\)O does not significantly influence monazite solubility \((b=0) \). This suggests that 3 moles of KCl per mole of CePO\(_4\) form anhydrous solute species upon dissolution \((a=3) \).

Figure 6b. Logarithm of the solubility enhancement of xenotime, \(X_{\text{xt}}/X_{\text{xt}}^\circ \), versus \(X_{\text{KCl}} \) at 800°C and 1.0 GPa. Values of \(X_{\text{xt}}/X_{\text{xt}}^\circ \) rise with increasing \(X_{\text{KCl}} \) over the investigated range to a maximum at \(X_{\text{KCl}} \) between 0.35 and 0.45. This implies that the activities of KCl and H\(_2\)O significantly influence xenotime solubility and that \(a \) (for KCl) is 3 and \(b \) (for H\(_2\)O) varies between 5.5 \((X_{\text{KCl}} = 0.35) \) and 3.6 \((X_{\text{KCl}} = 0.45) \).
Table 1: Experimental results in the system Monazite-H$_2$O-KCl and Xenotime-H$_2$O-KCl at 800°C and 1.0 GPa

<table>
<thead>
<tr>
<th>Run number</th>
<th>Time (h)</th>
<th>H$_2$O in (mg)</th>
<th>KCl in (mg)</th>
<th>X_{KCl}</th>
<th>Crystal in (mg)</th>
<th>Crystal out (mg)</th>
<th>Solubility (ppm)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic Monazite - H$_2$O - KCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mnz-18*</td>
<td>90</td>
<td>35.89</td>
<td>0.00</td>
<td>0.00</td>
<td>1.1635</td>
<td>1.1632</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Mnz_003</td>
<td>12</td>
<td>35.20</td>
<td>16.44</td>
<td>0.101</td>
<td>2.8190</td>
<td>2.8150</td>
<td>78 (4)</td>
<td>7.0</td>
</tr>
<tr>
<td>Mnz_005</td>
<td>12</td>
<td>31.01</td>
<td>23.11</td>
<td>0.153</td>
<td>2.6666</td>
<td>2.6603</td>
<td>116 (2)</td>
<td>7.0</td>
</tr>
<tr>
<td>Mnz_013</td>
<td>12</td>
<td>21.77</td>
<td>31.44</td>
<td>0.259</td>
<td>1.3995</td>
<td>1.3872</td>
<td>232 (6)</td>
<td>7.5</td>
</tr>
<tr>
<td>Mnz_012</td>
<td>12</td>
<td>14.08</td>
<td>38.07</td>
<td>0.395</td>
<td>1.6765</td>
<td>1.6615</td>
<td>288 (8)</td>
<td>7.0</td>
</tr>
<tr>
<td>Mnz_015</td>
<td>12</td>
<td>9.08</td>
<td>38.50</td>
<td>0.506</td>
<td>1.0983</td>
<td>1.0823</td>
<td>335 (3)</td>
<td>7.5</td>
</tr>
<tr>
<td>Natural Monazite - H$_2$O - KCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mnz_017</td>
<td>12</td>
<td>21.31</td>
<td>31.38</td>
<td>0.262</td>
<td>1.2343</td>
<td>1.2245</td>
<td>186 (3)</td>
<td>8.0</td>
</tr>
<tr>
<td>Synthetic Xenotime - H$_2$O - KCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xnt-4*</td>
<td>12</td>
<td>41.62</td>
<td>0.00</td>
<td>0.00</td>
<td>2.3541</td>
<td>2.3522</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Xnt_023</td>
<td>12</td>
<td>34.60</td>
<td>15.81</td>
<td>0.099</td>
<td>0.8727</td>
<td>0.8693</td>
<td>67 (5)</td>
<td>7.0</td>
</tr>
<tr>
<td>Xnt_024</td>
<td>12</td>
<td>25.59</td>
<td>27.31</td>
<td>0.205</td>
<td>0.9871</td>
<td>0.9805</td>
<td>124 (1)</td>
<td>7.5</td>
</tr>
<tr>
<td>Xnt_028</td>
<td>12</td>
<td>16.31</td>
<td>36.07</td>
<td>0.348</td>
<td>0.9329</td>
<td>0.9263</td>
<td>126 (4)</td>
<td>7.5</td>
</tr>
<tr>
<td>Xnt_027</td>
<td>12</td>
<td>10.47</td>
<td>42.17</td>
<td>0.493</td>
<td>0.7068</td>
<td>0.7004</td>
<td>122 (5)</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Explanation: “Crystal in” and “Crystal out” refer respectively to the weights before and after the experiment. Weights reported to two decimal places were determined on a Mettler Toledo AX205 DeltaRange microbalance (1σ = 0.03 mg); those to four places were determined on a Mettler Toledo XP2U ultra microbalance (1σ = 0.1 µg). The solubility is expressed with the 1σ uncertainty, based on propagation of weighing errors. Run numbers Mnz-18 and Xnt-4, which are marked with a star, are the experiments in pure H$_2$O at 800°C and 1.0 GPa from Tropper et al. (2011).
Table 2a: Chemical reaction model of the system monazite-H₂O-KCl. Based on the limiting reactant approach for monazite, the dissolution reaction 1 CePO₄ + 3 KCl = 1 CeCl₃ + 1 K₃PO₄ occurs over the investigated range of X_{KCl} (0.101 – 0.506) and implies no interaction with H₂O. The amount of water remains unchanged before and after the chemical reaction (m H₂O = m H₂O rest).

Table 2b: Chemical reaction model of the system xenotime-H₂O-KCl. Based on the limiting reactant approach for xenotime, the dissolution reaction 1 YPO₄ + 4 H₂O + 3 KCl = 1 YCl(OH)₂ + 1 KH₂PO₄ + 2 HCl + 2 KOH occurs over the investigated range of X_{KCl} (0.35 – 0.45) and implies an interaction with KCl and H₂O. The corresponding amounts of water and salt change accordingly after the chemical reaction (m H₂O > m H₂O rest and m KCl > m KCl rest).
Figures

Figure 1.
Figure 2.
Figure 3a.

800 °C
1.0 GPa

- synthetic Monazite _KCl-H_2O (CePO_4)
- natural Monazite _KCl-H_2O
- synthetic Monazite _NaCl-H_2O (Tropper et al., 2011)
Figure 3b.
Figure 4.
Figure 5.
Figure 6a.

Example:

n CePO₄ + a KCl + b H₂O = k solute species

1 CePO₄ + 3 KCl + 0 H₂O = 1 CeCl₃ + 1 K₂PO₄
Figure 6b.

800 °C
1.0 GPa

synthetic Xenotime, KCl-H₂O (YPO₄)

Example:

n YPO₄ + a KCl + b H₂O = k solute species

X⁺_{KCl} = a / (a+b)

1 YPO₄ + 3 KCl + 4 H₂O = 1 YCl(OH)$_₂$ + 1 KH₂PO₄ + 2 KOH + 2 HCl

X⁺_{KCI (max)} = 0.43