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ABSTRACT 18 

The dissociation of dolomite into magnesite and aragonite has been regarded as 19 

a useful indicator for ultrahigh-pressure (UHP) metamorphism. In this study we 20 

investigate an unusual texture involving magnesite and calcite intergrowths with 21 

dolomite relicts in a garnet-bearing dunite block from the Sulu UHP terrane, eastern 22 

China. The carbonate intergrowths typically occur as interstitial grains with low 23 

dihedral angles against surrounding olivines and have a dolomitic precursor 24 

composition. Our observations indicate that the carbonate intergrowths were initially 25 

inherited from the well-documented magnesite and aragonite assemblage after 26 

dolomite dissociation. The initial dolomite grains were likely to crystallize during 27 

the dolomitic melt metasomatism within the shallow lithospheric mantle. A series of 28 

experimental studies have well determined the equilibrium boundary of dolomite = 29 

magnesite + aragonite greater than 5 GPa along a wide temperature range, which 30 

provides direct evidence that the dunite block has ever subducted to depths greater 31 

than 150 km during the Triassic continental subduction. The preservation of 32 

magnesite and aragonite (now calcite) intergrowths without dolomite synthesis 33 

reaction during exhumation is probably due to the lack of fluid and rapid 34 

decompression from the peak stage to the calcite stability field. In this study, we 35 

suggest that dunite blocks from high-pressure and UHP terranes could have 36 

subducted to UHP conditions similar to garnet lherzolite and pyroxenite and were 37 

then entrained into slab slices rapidly en route to the surface. 38 

Keywords: dunite, dolomite dissociation, ultra-deep subduction, Sulu belt 39 
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INTRODUCTION 40 

Orogenic peridotite bodies of various sizes are minor but significant 41 

components within high-pressure (HP) and ultrahigh-pressure (UHP) terranes in 42 

orogenic belts. They originated mainly from the mantle wedge above subducting 43 

crust and later were tectonically emplaced into subduction channel to various depths 44 

(50–200 km) before exhumation (Brueckner and Medaris 2000; Zhang et al. 2000; 45 

Scambelluri et al. 2008). Therefore, orogenic peridotites act as a natural laboratory to 46 

disclose the mass transfer from the downgoing slab into the overlying mantle wedge 47 

(Scambelluri et al. 2006; Malaspina et al. 2009; Chen et al. 2017), as well as the 48 

geodynamics of ultra-deep subduction (van Roermund et al. 2002; Ye et al. 2009). 49 

Compared with garnet lherzolites, which record important aspects of crust–mantle 50 

interactions and multistage metamorphic events in subduction zones (Zanetti et al. 51 

1999; Sapienza et al. 2009), orogenic dunites lack the petrological and mineralogical 52 

imprints of these processes (Beyer et al. 2006; Chen et al. 2009). In this regard, 53 

orogenic dunites, despite their wide distribution in HP and UHP terranes, have not 54 

attracted enough attention in previous investigations of orogenic peridotites. 55 

However, orogenic dunites, with their upper mantle nature largely intact, are the 56 

best lithology among orogenic peridotites for tracing the provenances and initial 57 

compositions and can also shed light on the mantle wedge evolution prior to the 58 

onset of subduction (Kubo 2002; Beyer et al. 2004; Chen et al. 2015; Su et al. 59 

2016a). They commonly exhibit different chemical and physical properties (e.g., 60 

density, wave velocity, viscosity and magnetic conductivity) from garnet lherzolites 61 
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(e.g., Lee 2003; Griffin et al. 2009). Understanding the distribution ranges (or depths) 62 

of these dunites in subduction zones may thus expand our knowledge of 63 

geochemical/geophysical heterogeneity in the mantle wedge. In general, orogenic 64 

dunites occur as minor components within larger bodies of lherzolite and harzburgite 65 

(Beyer et al. 2006; Zhang et al. 2008; Song et al. 2009), but there are also several 66 

blocks dominated by dunite, such as Otrøy in the Western Gneiss Region (Spengler 67 

et al. 2006) and Ganyu and Lijiatun in the Sulu region (Chen et al. 2009; Su et al. 68 

2016a). These dunite blocks mostly represent fragments of subcontinental 69 

lithospheric mantle (SCLM) characterized by highly depleted compositions (see 70 

review in Su et al. 2016b).  71 

Although orogenic dunites have a great advantage over garnet lherzolites in 72 

addressing the early histories of orogenic peridotites, their geodynamic processes 73 

related to the slab subduction and exhumation are still poorly defined due to their 74 

simple mineral assemblages. Given the wide occurrence of spinel and lack of garnet 75 

in orogenic dunites, previous work suggested that dunite blocks have not undergone 76 

UHP metamorphism, but were derived from fore-arc depths (P <2 GPa) (e.g., Zheng 77 

et al. 2008; Xie et al. 2013; Li et al. 2016). However, the stability field of spinel can 78 

extend to much higher pressures in Al-poor ultramafic rocks (Klemme 2004; Ziberna 79 

et al. 2013). This raises an important question of how to evaluate whether dunite 80 

blocks have subducted to UHP conditions. Identification of UHP indicators for 81 

orogenic dunites will give further important constraints on the processes of 82 

continental subduction channel. 83 
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In this paper we present a study of a garnet-bearing dunite block near the 84 

village of Lijiatun in the northern Sulu UHP terrane of eastern China (Fig. 1). Its 85 

origin and metasomatic histories have been assessed in our recent work (Su et al. 86 

2016a). Here, we focus on the magnesite–calcite–dolomite intergrowth resulting 87 

from dolomite dissociation to reveal the ultra-deep subduction and exhumation 88 

processes of the dunite block. Our new data suggest that the Lijiatun dunite block 89 

had ever subducted to depths greater than 150 km and then probably experienced a 90 

rapid ascent to shallow depths (<60 km). Mineral abbreviations used in the text, 91 

figures and tables all follow Whitney and Evans (2010). 92 

 93 

GEOLOGICAL BACKGROUND 94 

The Sulu UHP terrane is located in the eastern part of the Dabie–Sulu orogenic 95 

belt created by the subduction of the Yangtze block below the North China craton 96 

during the Triassic (Li et al. 1993; Zhang et al. 2009). The occurrences of coesite, 97 

diamond and mineral exsolution microstructures in the crustal metamorphic rocks 98 

indicate that the Yangtze block had been subducted to exceptional depths of 200 km 99 

and then exhumed to the surface (Xu et al. 1992; Ye et al. 2000a, b; Liu et al. 2001). 100 

In addition to bodies of eclogite, marble and quartzite within the country UHP 101 

gneisses, peridotite blocks consisting mainly of garnet lherzolite with minor 102 

harzburgite, dunite and pyroxenite occur sporadically throughout the Sulu terrane. 103 

These peridotites are generally divided into two groups: mantle-derived peridotites 104 

(Type A) and crust-hosted peridotites (Type B) [see Zhang et al. (2000) for further 105 
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details]. Except for dunite (e.g., Lijiatun), most Sulu garnet peridotites are 106 

recognized to have undergone in situ subduction-zone UHP metamorphism with 107 

peak pressures of 3.5–7.0 GPa (e.g., Yang and Jahn 2000; Zhang et al. 2008; Ye et al. 108 

2009) and to have simultaneously experienced multiple metasomatic events 109 

associated with slab-derived liquids at various depths (Malaspina et al. 2009; Chen 110 

et al. 2013b). In contrast, the metamorphic histories of dunites related to the 111 

continental subduction are still poorly constrained to date. 112 

The Lijiatun block (~200×400 m2 in size) is surrounded by gneisses and is 113 

exposed in the northern Sulu terrane (Fig. 1). It is dominated by dunite in the interior 114 

and serpentinite (after dunite) at the margin (Fig. 2a). A recent study by Su et al. 115 

(2016a) suggests that the Lijiatun dunites originated from the SCLM beneath the 116 

North China craton (NCC). They were the residues after high degrees of partial 117 

melting in the early Proterozoic, and then underwent dolomitic melt metasomatism 118 

in the shallow lithospheric mantle prior to their incorporation into the subduction 119 

channel. During the Triassic continental subduction, they experienced weak 120 

metasomatism by slab-derived fluids at shallow mantle depths (Su et al. 2016a). 121 

However, the subduction depth and geodynamic processes during the continental 122 

subduction are still enigmatic. Although Ren et al. (2007) calculated a peak pressure 123 

of 3.0–4.1 GPa using the Grt–Opx geobarometer (Brey and Köhler 1990), the peak 124 

mineral compositions were modified during exhumation, as discussed in the 125 

following section. 126 

 127 
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PETROGRAPHY 128 

The petrography of the Lijiatun dunites has been presented in detail by Su et al. 129 

(2016a). The dunite samples mainly consist of olivine (~65 vol.%) and serpentine 130 

(~24 vol.%), with minor orthopyroxene (~8 vol.%), Cr-spinel/chromite (~1 vol.%), 131 

amphibole (~2 vol.%), clinopyroxene, garnet, carbonate phases, chlorite and talc. 132 

Serpentine commonly cuts the matrix olivine into several fragments (Fig. 2), 133 

indicating that serpentine was mostly derived from olivine metasomatized by 134 

silica-rich aqueous fluids in the late stage. Some secondary olivine and 135 

clinopyroxene occur as olivine-rich veins crosscutting orthopyroxene (Fig. S1 in the 136 

supplemental materials), following the reaction orthopyroxene + dolomite (melt) = 137 

olivine + clinopyroxene + CO2 (Su et al. 2016a). This study focuses on the carbonate 138 

phases. 139 

The carbonate phases are divided into two types: calcite veinlets and isolated 140 

grains. The former cut through original minerals and can extend along an entire thin 141 

section (Fig. 2b); hence, they formed during the final stage and are thus ignored in 142 

the following section. The latter are anhedral and interstitial grains (0.1–0.5 mm in 143 

diameter) among matrix olivines (or serpentine after olivine) and are far from 144 

pyroxenes and secondary hydrous minerals (Fig. 2c). The boundaries of the 145 

carbonate grains are well defined, and they typically have low dihedral angles 146 

against the surrounding olivines (Figs. 2d–2f), pointing to inheritance from an initial 147 

melt-filled pore. In Figs. 2g–2i, these carbonate grains comprise an intimate 148 

intergrowth of magnesite and calcite (Raman spectra at 1086, 714, 281 and 156 cm-1), 149 
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which show a symplectite-like texture (Figs. 3a and 3b). The volumetric proportions 150 

of magnesite and calcite are estimated to be 40–43% and 57–60%, respectively, 151 

based on backscatter electron (BSE) images using Adobe® Photoshop and the 152 

ImageJ software (W. S. Rasband, http://rsb.info.nih.gov/ij/). In the high-resolution 153 

transmission electron microscope (TEM) image, a prominent boundary is present 154 

between magnesite and calcite, and no other phases (e.g., dolomite) occur at the 155 

interface (Fig. 4). Small dolomite grains (<3 μm) are locally preserved as relicts in 156 

calcite (Figs. 3c–3f). 157 

Trace interstitial garnets with small grain sizes (10–80 μm in diameter) occur as 158 

round grains in the matrix (Figs. 5a–5c), but several irregular and elongated grains 159 

are also present (Fig. 5d). A few circular olivines are included in garnet. All garnets 160 

are fresh without any retrograde rims. No pyroxene or spinel is in direct contact with 161 

these garnets. 162 

Hydrous minerals (amphibole, chlorite and talc) occur in the matrix, with minor 163 

chlorite and serpentine found as inclusions in spinel. Amphibole grains after 164 

pyroxene or in the matrix with minor orthopyroxene relict inclusions generally 165 

appear as anhedral grains (Figs. 5e and 5f), and a few amphibole-rich veins with 166 

millimeter to centimeter widths are observed in hand specimens (Fig. 5g). Trace 167 

chlorite and talc occur in association with amphibole (Figs. 5e and 5f), and no 168 

replacement relationships are present between these hydrous minerals, indicating 169 

that they formed during the same stage. 170 

 171 

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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ANALYTICAL METHODS 172 

High-resolution BSE imaging and semi-quantitative energy dispersive 173 

spectroscopy (EDS) analyses of carbonate and silicate minerals were conducted 174 

using a field emission scanning electron microscope (FEI Nova NanoSEM 450) at 175 

the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). 176 

The measurement was performed at a 10 kV acceleration voltage and a 0.5 nA 177 

current, with a working distance of approximately 6 mm. The polymorphs of CaCO3 178 

were examined by micro-Raman spectroscopy using a HORIBA Jobin–Yvon 179 

LabRAM HR 800 at the IGGCAS. 180 

A thin slice with an area of 7.5 μm × 4.5 μm was cut across the interface 181 

between magnesite and calcite and polished to ~100 nm in thickness using a focused 182 

ion beam (FIB) system on a Zeiss Auriga Compact instrument at the IGGCAS. A 183 

JEOL JEM-2100HR TEM was used to investigate the FIB-cut carbonate section. The 184 

TEM instrument was operated with an accelerating voltage of 200 kV and a beam 185 

current of 100 μA for standard bright-field TEM observations and energy-dispersive 186 

X-ray spectrometry analyses. 187 

Major element compositions of minerals were determined using a Cameca 188 

SXFive electron probe microanalyzer (EPMA) at the IGGCAS. The analytical 189 

conditions were a 15 kV accelerating voltage and a 10 nA beam current with a 190 

focused beam for carbonate minerals and 15 kV, 20 nA and a defocused beam of 1 191 

μm in diameter for silicate minerals. In addition, broad beam analyses using a 192 

defocused beam of 20 μm in diameter were performed to obtain the integrated 193 
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composition of the carbonate intergrowth. The counting times were 20 s on peak and 194 

10 s on each background position. Natural and synthetic silicates (+oxides) and 195 

carbonates were used as standards for silicate and carbonate analyses, and the 196 

analytical uncertainties for most major elements were less than 1.5%. The Fe3+ 197 

abundance in garnet was determined by charge balance (Droop 1987). The 198 

end-members of garnet discussed in this study include: almandine (Alm), pyrope 199 

(Prp), grossular (Grs), andradite (Adr) and knorringite (Knor). The formulas used to 200 

calculate the proportions of these end-members in garnet are given in the footnote of 201 

Table 2. 202 

 203 

MINERAL CHEMISTRY 204 

Detailed major element compositions of several minerals (olivine, 205 

orthopyroxene, spinel, clinopyroxene and amphibole) are shown in Su et al. (2016a) 206 

and are briefly summarized as follows: olivine Mg# values [atomic Mg/(Mg+Fe2+)207 

×100] range from 92.0 to 92.6; orthopyroxene porphyroblast (Opx-P) cores before 208 

exsolution have high CaO (1.08–1.49 wt%) and Al2O3 (1.70–1.93 wt%) contents, 209 

and the recrystallized rims have low CaO (0.06–0.14 wt%) and Al2O3 (0.32–1.16 210 

wt%) contents; clinopyroxene is close to the diopside end-member, with high Mg# 211 

values (95.9–96.7); spinel is chromium-rich, with Cr/(Cr+Al) (atomic ratio) values 212 

from 0.50 to 0.73 and Mg# from 38.5 to 55.1; amphibole after orthopyroxene is 213 

pargasitic with a high Tschermak component and low K2O content (<0.62 wt%), 214 

whereas minor amphibole after clinopyroxene has a tremolitic component. 215 
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Representative mineral compositions are given in Table 1 and 2. Magnesite 216 

from the symplectite-like intergrowth is relatively magnesian at Mgs89.0–91.5Sd8.0–217 

10.4Cal0–0.2. Calcite ranges from nearly pure CaCO3 to Cal97.4 Mgs2.3Sd0.3. Because 218 

neither Mg nor Fe was detected in calcite using TEM-EDS (Fig. 4d), the few Mg and 219 

Fe contents in calcite may be due to beam overlap with surrounding magnesite 220 

during electron probe analyses. A series of TEM-EDS analyses show that diffusion 221 

of Ca in magnesite and Mg in calcite across the interface is very limited (<20 nm) 222 

(Figs. 4d–4h), in consistent with previous studies (e.g., Fisler and Cygan 1999). The 223 

composition of dolomite relicts in calcite cannot be directly measured owing to their 224 

small grain sizes. The EDS analyses show that the dolomite contains an extremely 225 

low siderite component (Fig. S2 in supplemental materials). The precursor 226 

composition of the carbonate intergrowth, roughly measured by EPMA with a broad 227 

beam (20 μm), shows a dolomite component (Cal49Mgs47Sd4), which was also 228 

obtained by broad-beam EDS analyses (Fig. S2 in the supplemental materials) and 229 

reintegration of the disaggregated products (Figs. 3a and 3b). As 1 mole of calcite 230 

occupies 32% more volume than 1 mole of magnesite (Holland and Powell 2011), 231 

mole ratios of Ca/Mg from the intergrowth are approximately equal to one (1.01–232 

1.12), based on the volumetric proportions of calcite and magnesite. All these 233 

carbonate phases contain extremely low BaO, SrO, Na2O and K2O contents. 234 

Garnet exhibits a small compositional variation, with 4.14–5.65 wt% CaO, 235 

0.74–1.46 wt% Cr2O3 and Mg# values of 78.3–79.8, similar to the values in garnet 236 

lherzolite from the Sulu terrane (Zhang et al. 2008; Ye et al. 2009). In general, the 237 
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inner portions are homogeneous, with a relatively high grossular component (10.0–238 

13.0 mol%) and a low andradite component (<2.0 mol%). Towards the rims, the 239 

grossular and andradite components decrease (down to 6.1 mol%) and increase, 240 

respectively. In some garnet grains, the grossular component displays a symmetrical 241 

zoning pattern that smoothly decreases from core to rim, whereas knorringite, 242 

almandine and pyrope do not show significant changes (Fig. 6). 243 

 244 

DISCUSSION 245 

Dissociation reaction of dolomite = magnesite + aragonite 246 

The observed magnesite and calcite intergrowths show low dihedral angles and 247 

occur as interstitial grains among matrix olivines (Figs. 2c–2f), indicating that they 248 

were initially derived from an infiltrating carbonate melt (Ionov et al. 1993; Kogarko 249 

et al. 2001). The precursor composition of the carbonate melt has a dolomite 250 

stoichiometry, as measured by several methods (Table 1 and Fig. S2). Three possible 251 

stages for this melt infiltration are proposed to account for the carbonate 252 

intergrowths. 253 

First, dolomitic melt might be incorporated into the dunite during exhumation. 254 

Experimental studies have demonstrated that pressure has a significant effect on the 255 

crystallized product in the CaCO3–MgCO3 melt system (Irving and Wyllite 1975; 256 

Byrnes and Wyllite 1981; Buob et al. 2006). At pressures <~5 GPa, the final 257 

products, in turn, are Arg/Cal, Arg/Cal+Dol, Dol, Dol+Mgs and Mgs from the Ca 258 

side to Mg side at subsolidus temperatures. The intergrowth of Mgs+Cal/Arg cannot 259 
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be observed in the products generated at pressures less than ~5 GPa (e.g., Irving and 260 

Wyllite 1975; Byrnes and Wyllite 1981; Buob et al. 2006), indicating that this 261 

assumption is impossible. 262 

Second, if dolomitic melt infiltration occurred during subduction to 263 

pressures >~5 GPa, a dolomite solid solution phase (Dolss) would first crystallize 264 

from carbonate melts with a wide Ca/Mg range during cooling (~1400 °C) and 265 

finally break down into a Mgs+Arg intergrowth at 800–1000 °C (Buob et al. 2006). 266 

Experimental studies suggest that the magnesite and calcite (or aragonite) 267 

intergrowth was unlikely to directly quench from a dolomitic melt along a wide 268 

pressure range but could form from solid dolomite dissociation under UHP 269 

conditions (>5 GPa) (Shirasaka et al. 2002; Buob et al. 2006). However, the solidi of 270 

carbonated eclogite, carbonated pelite and marble (~1000–1400 °C), which are the 271 

potential sources for carbonate melts in subduction zones (Irving and Wyllite 1975; 272 

Hammouda 2003; Dasgupta et al. 2004; Buob et al. 2006; Grassi and Schmidt 2011), 273 

are much hotter than the typical peak temperatures of exhumed UHP rocks (e.g., 274 

Zhang et al. 2009; Proyer et al. 2013; Guo et al. 2015). Therefore, it is unlikely that 275 

dolomitic melts were derived from subducted crust at depths <200 km. Furthermore, 276 

carbonate melts from subducted crust are typically rich in Ca and Fe with a low Mg# 277 

values (Hammouda 2003; Dasgupta et al. 2004; Thomsen and Schmidt 2008). Such 278 

compositions are markedly different from that of the carbonate intergrowths in this 279 

study (Fe-poor dolomite without any alkalis), which further rules out the possibility 280 

of dolomitic melt infiltration in subduction zones. 281 
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Third, the dolomitic melt infiltration is more likely to have occurred prior to 282 

subduction. Our former paper indicates that the Lijiatun dunites underwent dolomitic 283 

melt metasomatism within the shallow lithospheric mantle (Su et al. 2016a). This 284 

metasomatism is characterized by the formation of olivine + clinopyroxene veins 285 

crosscutting orthopyroxene porphyroblasts (Opx+Dol=Ol+Cpx+CO2), as shown in 286 

the supplemental materials (Fig. S1). During the metasomatic reaction, dolomitic 287 

melt reacted out in Opx-rich domains, but dolomite could crystallize during this melt 288 

infiltration in Opx-absent domains. This relationship is supported by the observed 289 

textures: the dolomite (carbonate intergrowth) only occurs in olivine domains and is 290 

not in contact with orthopyroxene (Figs. 2c–2f). The occurrence of carbonate 291 

minerals after carbonate metasomatism has widely been reported in mantle 292 

peridotites (e.g., Ionov et al. 1993; Kogarko et al. 2001; Morishita et al. 2003; 293 

Naemura et al. 2009). 294 

Therefore, the magnesite and calcite (or aragonite) intergrowths cannot directly 295 

quench from a dolomitic melt and is better explained by solid dolomite dissociation. 296 

This finding is further supported by occurrence of dolomite relicts in the 297 

intergrowths (Figs. 3c–3f). Experimental studies indicate that the initial products of 298 

dolomite dissociation are magnesite and aragonite (Martinez et al. 1996; Luth 2001). 299 

Although no aragonite relic can be found in calcite, the fact that magnesite cannot 300 

coexist with calcite anywhere in P–T space (e.g., Proyer et al. 2013) implies that at 301 

least one of them has been replaced by a secondary phase. As the intergrowths can 302 

be only observed interstitially along olivine boundaries, the “pressure vessel” is not 303 
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present for these interstitial aragonites. A similar process has been observed for the 304 

fast transition of interstitial coesite to quartz (Schertl et al. 1991; O’Brien and 305 

Ziemann 2008). Phase transition from aragonite to calcite is even faster than that of 306 

coesite-to-quartz (Carlson and Rosenfeld 1981; Korsakov et al. 2009; Lü et al. 2014), 307 

indicating that interstitial aragonite would be immediately replaced by calcite under 308 

low-pressure conditions. The magnesite may be well preserved because 309 

clinopyroxene is so rare in the matrix that the reaction of magnesite + clinopyroxene 310 

= dolomite + orthopyroxene would not occur during exhumation. Therefore, the 311 

most likely process was that the observed magnesite and calcite intergrowth was 312 

inherited from magnesite + aragonite symplectite, which originally formed from 313 

dolomite dissociation. The symplectitic intergrowth texture of magnesite + aragonite 314 

is common in dolomite dissociation experiments (e.g., Shirasaka et al. 2002; Buob et 315 

al. 2006). 316 

 317 

Ultra-deep (>150 km) subduction 318 

The P–T conditions of dolomite dissociation reaction have been determined by 319 

many experimental studies with different starting materials, experimental methods 320 

and/or run durations (Martinez et al. 1996; Luth 2001; Sato and Katsura 2001; 321 

Shirasaka et al. 2002; Buob et al. 2006; Hermann et al. 2016). All studies 322 

consistently indicate that dolomite breakdown occurs at pressures higher than 5 GPa 323 

between 500 and 1200 °C (Fig. 7). Therefore, the equilibrium magnesite + aragonite 324 

assemblage after dolomite can be regarded as the third index reaction for UHP 325 
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metamorphism after the quartz/coesite and graphite/diamond transitions (e.g., Sato 326 

and Katsura 2001; Zhang et al. 2003). In recent decades, coexisting dolomite, 327 

magnesite and aragonite (or pseudomorphs after them) have been identified in 328 

marbles, eclogites and metapelites from several UHP terranes (Zhang and Liou 1996; 329 

Zhang et al. 2003; Dobrzhinetskaya et al. 2006; Proyer et al. 2013) but rarely in 330 

orogenic peridotites. 331 

As shown in Fig. 7, after extensive melt extraction, the Lijiatun dunites 332 

experienced dolomitic melt metasomatism within the shallow lithospheric mantle, 333 

which resulted in partial orthopyroxene dissolution and secondary olivine and 334 

clinopyroxene precipitation (Su et al. 2016a). Meanwhile, some dolomites 335 

interstitially crystallized from the dolomitic melt in Opx-absent domains (Figs. 2c–336 

2f). During the Triassic continental subduction, the dunites were incorporated into 337 

the subduction channel, and dolomite potentially acted as a pressure indicator. Given 338 

that the interstitial dolomite only occurs in olivine domains and is far from 339 

orthopyroxene in the Lijiatun dunites, the reaction of dolomite + orthopyroxene = 340 

magnesite + clinopyroxene would not take place during dunite subduction and 341 

dolomite could be stable until its dissociation. Likewise, orthopyroxene would not be 342 

exhausted on such a reaction with increasing pressure. As stated in the above section, 343 

the magnesite and calcite intergrowths represent the products of dolomite 344 

dissociation, pointing to the UHP (>5 GPa) metamorphism of the Lijiatun dunites 345 

(Fig. 7). Therefore, the carbonate intergrowth indicates that the dunite block have 346 

ever subducted to depths greater than 150 km, similar to the widespread garnet 347 
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lherzolites from the Dabie–Sulu terrane (Yang and Jahn 2000; Zhang et al. 2008; Ye 348 

et al. 2009). It is worth noting that the reaction curve shifts toward lower pressure 349 

with the addition of Fe to the dolomite (Franzolin et al. 2012), but this addition has 350 

little effect on the results of this study due to the high Mg# values (> 90). 351 

In previous investigations, conventional thermobarometers, including Grt–Opx 352 

geobarometers (Harley 1984; Nickel and Green 1985; Brey and Köhler 1990) and 353 

Grt–Cpx geothermometers (Ai 1994; Ravna 2000), have been widely used to yield 354 

the P–T conditions of peridotites. With respect to the Lijiatun dunites, as they 355 

experienced high-degree (~30%) melting at low pressure (<4 GPa; Su et al. 2016a), 356 

initial garnets (if present) were inevitably exhausted (Walter 1998). The tiny 357 

interstitial garnets were thus formed during the deep subduction (Figs. 5a–5d). Their 358 

growths could be approached by the continuous reaction Mg (Al, Cr)2O4 (Spl) + 359 

2Mg2Si2O6 (Opx) = Mg3(Al, Cr)2Si3O12 (Grt) + Mg2SiO4 (Ol) (Brey et al. 1999; 360 

Girnis et al. 2003; Klemme 2004), and the chemical zoning in garnet corresponds to 361 

a prograde growth process (Fig. 6). Therefore, it is possible to constrain the peak P–362 

T conditions from the compositions of garnet rim and pyroxene using the above 363 

thermobarometers. However, the peak compositions of pyroxenes have been 364 

modified during the exhumation stage, which makes the results inferred from 365 

conventional thermobarometers less reliable. Specifically, as the low-Al2O3 Opx-P 366 

rims have been resorbed by amphibole to different extents during the late fluid 367 

metasomatism stage (Fig. 2f in Su et al. 2016a), their compositions would have 368 

re-equilibrated at relatively lower pressures and, hence, the calculated peak pressures 369 
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(2.7–4.3 GPa) using the Grt–Opx geobarometer are underestimated. Due to the small 370 

size of clinopyroxene and its very minor presence in terms of modal composition, 371 

Mg–Fe exchange between clinopyroxene and surrounding minerals during cooling 372 

would easily reset its composition. Thus, the calculated temperatures (520–620 °C) 373 

by the Grt–Cpx thermometers are invalid for the peak conditions. In contrast, the 374 

garnet was free from retrograde modification (Figs. 5a–5d) and the approximately 375 

constant Mg# values in garnet from core to rim (Table. 2) can yield a nearly 376 

isothermal compressional P–T path for the Lijiatun dunite (thermodynamic modeling 377 

result, not shown) (Fig. 7). Similar prograde P–T paths have been reported in many 378 

mantle wedge-derived orogenic peridotites (e.g., Scambelluri et al. 2008; Ye et al. 379 

2009; Chen et al. 2013a). 380 

 381 

Potential mechanism for the preservation of carbonate intergrowth 382 

It is widely accepted that peridotite bodies can be passively transported from 383 

mantle depths to the surface by deeply subducted crust during buoyancy-driven 384 

exhumation (Brueckner 1998; Zhang et al. 2000; Scambelluri et al. 2006; Chen et al. 385 

2013a). During exhumation, magnesite and aragonite are expected to back-react to 386 

dolomite, leaving only isolated magnesite and aragonite in coarse-grained dolomite, 387 

as reported in the Tianshan metapelites (Zhang et al. 2003) and the Dabie marbles 388 

(Proyer et al. 2013). However, the TEM results indicate that the dolomitization 389 

reaction did not occur at the interface between magnesite and calcite (after aragonite) 390 

in the Lijiatun dunites (Fig. 4), which was possibly due to low temperatures, a lack 391 
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of fluid flow, and/or rapid decompression. Experimental studies suggest that the 392 

nucleation of a low-P dolomite from a high-P magnesite + aragonite assemblage may 393 

be hindered by a kinetic barrier at low temperatures (Martinez et al. 1996; Sato and 394 

Katsure 2001; Shirasaka et al. 2002), similar to the stishovite-to-coesite transition 395 

(Zhang et al. 1996). The fact that the metamorphic temperatures of the Lijiatun 396 

dunites (~800 °C) are higher than those of the Tianshan metapelites (~600 °C; Zhang 397 

et al. 2003) and the Dabie impure marbles (600–800 °C; Proyer et al. 2013) argues 398 

that sluggish reaction kinetics related to low temperature is not the major reason in 399 

this study. In general, fluids play an important role in triggering and promoting 400 

metamorphic reactions (Austrheim 1987; John and Schenk 2003). Unlike the above 401 

metapelites and marbles exhibiting dolomite-forming reactions, the Lijiatun dunites 402 

lacked fluids until their decompression to the calcite stability field, as minor hydrous 403 

mineral assemblage (amphibole with trace chlorite and talc) after pyroxene mainly 404 

formed at conditions of ~600–700 °C and <2 GPa (Naemura et al. 2009; Chen et al. 405 

2013a; Scambelluri et al. 2014). The lack of fluid in the aragonite stability field 406 

might have inhibited dolomite synthesis in this study, which has been used to explain 407 

the preservation of metastable assemblages in UHP rocks (Liou and Zhang 1996; 408 

Leech 2001). Moreover, the experiment of Shirasaka et al. (2002) shows that the 409 

dolomite synthesis reaction occurs at pressures much lower than those of the 410 

dissociation reaction, implying that the former is more sluggish than the latter. Thus, 411 

a rapid decompression process might provide another a chance to preserve the 412 

carbonate intergrowth during exhumation. Numerical modeling shows that mantle 413 
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wedge peridotite entrained in the subduction channel could be dragged to the surface 414 

over a very short time (Gerya et al. 2002), and several peridotite blocks have been 415 

shown to have experienced rapid exhumation after deep subduction (Gebauer 1996; 416 

Olker et al. 2003; Hermann et al. 2006). A recent study by Yamato and Brun (2017) 417 

suggests a catastrophic pressure drop for UHP rocks during the switch from burial to 418 

exhumation in subduction zones. In the same way, if the Lijiatun dunites suffered 419 

rapid decompression from the peak stage to the calcite stability field, aragonite 420 

would have transformed to calcite immediately (Carlson and Rosenfeld 1981; 421 

Korsakov et al. 2009). Because calcite could not react with magnesite to form 422 

dolomite, the intergrowth of magnesite and calcite could be well preserved. In 423 

summary, the preservation of magnesite and calcite intergrowth during the dunite 424 

exhumation is potentially caused by a fluid-absent, rapid decompression process. 425 

 426 

IMPLICATIONS 427 

The discovery of microdiamond and majoritic garnet in orogenic peridotites 428 

provides robust evidence that the peridotites were exhumed from depths of greater 429 

than ~120 km and ~200 km, respectively (e.g., van Roermund and Drury 1998; 430 

Brueckner et al. 2002; van Roermund et al. 2002; Song et al. 2004; Spengler et al. 431 

2006). The deep origin of these rocks provides us a rare opportunity to explore the 432 

processes active at great depths in subduction zones (Dobrzhinetskaya et al. 1996; 433 

Scambelluri et al. 2008). In addition to the above two UHP index minerals, this study 434 

shows that the dolomite dissociation reaction (Dol=Mgs+Arg) can also be used as a 435 
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reliable UHP indicator (>5 GPa) for orogenic peridotites. In this study, the 436 

well-preserved magnesite–calcite–dolomite intergrowth represents the final products 437 

of dolomite dissociation, suggesting that the dunite block had subducted to depths 438 

greater than 150 km before exhumation, similar to the widely distributed garnet 439 

lherzolites in the same terrane. 440 

Dolomite together with magnesite is frequently reported in orogenic peridotites 441 

(e.g., Zanetti et al. 1999; Zhang et al. 2007; Sapienza et al. 2009). Based on previous 442 

studies and this work, the fate and stability of these minerals in orogenic peridotites 443 

depend strongly on the bulk composition and peak pressures of the host peridotites 444 

(e.g., Kushiro 1975; Wyllie et al. 1983). In fertile peridotites with abundant 445 

orthopyroxene (e.g., garnet lherzolite), dolomite can be stable to depths of 446 

approximately 100 km until it reacts out via the prograde reaction Opx + Dol = Cpx 447 

+ Mgs (Fig. 7; Kushiro 1975; Scambelluri et al. 2008). If orthopyroxene is absent or 448 

rare (such as the Lijiatun dunite), dolomite can be stable up to much greater depths 449 

(>5 GPa) until it breaks down into magnesite + aragonite. Thus, carbonate minerals 450 

in dunites should be given more attention in the future study of orogenic peridotites. 451 
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FIGURE CAPTIONS 772 
 773 
FIGURE 1. Geological sketch map of the Sulu ultra-high pressure metamorphic 774 
terrane in eastern China (modified from Ye et al. 2000b). Abbreviations: YQW, 775 
Yantai–Qingdao–Wulian; JX, Jiashan–Xiangshui. 776 
 777 
FIGURE 2. (a) Field photograph of the Lijiatun dunite block. (b) BSE image of a 778 
calcite veinlet along the grain boundaries of matrix olivines. (c) Photomicrograph in 779 
plane-polarized light showing isolated carbonates as intergranular grains in the 780 
orthopyroxene-absent domain. (d–f) Photomicrographs of representative carbonate 781 
grains with low dihedral angles against surrounding olivines in plane-polarized light. 782 
(g–i) BSE images showing symplectite-like magnesite and calcite intergrowths in 783 
matrix; the bright and dark areas correspond to calcite and magnesite, respectively. 784 
 785 
FIGURE 3. Representative BSE images and X-ray intensity maps of carbonate 786 
phases in the Lijiatun dunites. (a–b) BSE images showing the microtexture and 787 
mineral modal percentages of magnesite and calcite in the carbonate intergrowths. 788 
The inset shows the Raman spectrum of calcite. (c–d) Dolomite relicts after their 789 
breakdown into magnesite and aragonite (transformed to calcite at low pressure). 790 
Dolomite Raman spectrum is given in the inset. (e–f) X-ray intensity maps of the 791 
carbonate intergrowths with dolomite relict inclusions, corresponding to the BSE 792 
image of (d). 793 
 794 
FIGURE 4. (a) BSE images showing the interstitial garnets with small grain sizes in 795 
the matrix olivine domain. (b–d) Detailed views of garnet grains without any 796 
retrograde rims. (c) The black line with an arrow shows the position of the profile for 797 
EPMA analysis of garnet major elements presented in Fig. 5(b). (e) BSE image of 798 
coexisting chlorite and amphibole after an orthopyroxene porphyroblast. (f) 799 
Photomicrograph taken with cross-polarized light showing anhedral talc and 800 
amphibole in matrix. (g) Photograph of an amphibole vein approximately one 801 
centimeter wide in the dunite block. 802 
 803 
FIGURE 5. Compositional profile of pyrope (Prp), almandine (Alm), grossular (Grs), 804 
knorringite (Knor) and andradite (Adr) in the representative garnet along the A–A’ in 805 
Figure 4(c). 806 
 807 
FIGURE 6. FIB cross-sectioning of the carbonate intergrowth and transmission 808 
electron microscope (TEM) results. (a) BSE image of the sampled area prior to the 809 
cross-sectioning. The dotted rectangle shows the position where the platinum layer is 810 
deposited; (b) Secondary electron image of the FIB-cut section after ion polish; (c) 811 
Bright field TEM image of the calcite and magnesite intergrowth. The inset shows the 812 
high-resolution TEM image across the interface between calcite and magnesite. The 813 
five yellow circles represent the analysis positions of TEM-EDS; (d–h) TEM-EDS 814 
spectra of carbonate phases corresponding to the five points shown in the inset of (c), 815 
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respectively. The inset of (d) shows selected-area electron diffraction (SAED) pattern 816 
for calcite. 817 
 818 
FIGURE 7. Integrated P–T path for the whole geodynamic history of the Lijiatun 819 
dunites. As stated by Su et al. (2016a) and this study, (1) these dunites originated from 820 
the SCLM beneath the NCC and suffered high-degree melting in the early Proterozoic. 821 
(2) They were metasomatized by dolomitic melt with formation of Ol-rich, 822 
Cpx-bearing veins crosscutting Opx in the shallow SCLM. Some Dol grains 823 
crystallized from such a melt infiltration in Opx-absent domains. (3) In the Triassic, 824 
these dunites were incorporated into the subduction channel and experienced 825 
ultra-deep subduction. Trace Grt was produced in matrix. (4) At the peak stage (P~5 826 
GPa), Dol broke down into Mgs and Arg. (5) Arg was replaced by Cal during 827 
exhumation to shallow depths. (6) At last, the dunites were infiltrated by slab-derived 828 
fluids and pyroxenes were partially replaced by Amp and minor Tlc and Chl. 829 
Abbreviations: JP71 = Johannes and Puhan (1971); KU75 = Kushiro et al. (1975); 830 
MA96 = Martinez et al. (1996); HZ00 = Herzberg et al. (2000); LU01 = Luth (2001); 831 
SK01 = Sato and Katsura (2001); SH02 = Shirasaka et al. (2002); BU06 = Buob et al. 832 
(2006); JH16=Hermann et al. (2016). 833 



TABLE 1. Representative major element compositions of carbonate minerals. 
Mineral Cal (after Arg)   Mgs   Cal-Mgs intergrowth 
An. no. 23 24 29 30 31 52   37 38 62 63   broad beam (Ave. n=12) 
SiO2 0.09 0.09 0.09 0.08 0.10 0.02  0.36 0.14 0.28 0.38  0.19 
FeO 0.20 0.18 0.22 0.16 0.20 0.24  8.48 8.86 6.79 7.14  3.47 
MnO 0.08 0.02 0.01 0.07 0.04 0.03  0.53 0.36 0.37 0.38  0.12 
MgO 0.11 0.11 0.48 0.90 0.50 0.13  42.81 42.54 43.52 42.60  20.93 
CaO 55.25 55.92 53.16 53.08 57.75 55.44  0.11 0.09 0.03 0.05  30.62 
SrO bdl bdl bdl bdl bdl bdl  bdl 0.02 0.01 0.03  bdl 
BaO bdl 0.03 bdl 0.01 0.01 0.01  0.02 bdl bdl bdl  0.01 
Total 55.72 56.35 53.96 54.29 58.59 55.86  52.31 52.01 51.00 50.58  55.33 
CO2 (100-tot.) 44.28 43.65 46.04 45.71 41.41 44.14  47.69 47.99 49.01 49.42  44.67 

              
Fe 0.003 0.002 0.003 0.002 0.003 0.003  0.099 0.104 0.080 0.085  0.043 
Mn 0.001 0.000 0.000 0.001 0.001 0.000  0.006 0.004 0.004 0.005  0.001 
Mg 0.003 0.003 0.012 0.023 0.012 0.003  0.893 0.890 0.915 0.909  0.466 
Ca 0.993 0.995 0.984 0.974 0.985 0.993  0.002 0.001 0.000 0.001  0.490 
∑cations 1.0 1.0 1.0 1.0 1.0 1.0  1.0 1.0 1.0 1.0  1.0 
CO3

2- 1.015 0.989 1.086 1.069 0.900 1.008  0.911 0.920 0.944 0.966  0.910 

              
Ca/(Ca+Mg+Fe2++Mn) 0.99 0.99 0.98 0.97 0.99 0.99  0.00 0.00 0.00 0.00  0.49 
Mg/(Mg+Fe2+) 0.49 0.51 0.79 0.91 0.82 0.48   0.90 0.90 0.92 0.91   0.92 
Notes: Cal–Mgs intergrowth was analyzed using a broad beam (d=20 μm); bdl, Below detection limit. 



TABLE 2. Representative major element compositions of garnet, orthopyroxene, clinopyroxene and amphibole. 
Mineral Grt   Opx   Cpx   Amp 
Texture core core core rim rim rim  core rim  - -  - - 
An. no. 349 347 133 21 106 60   442 135   32 151   25 473 
SiO2 41.38 41.37 41.84 42.14 41.41 41.43  56.40 58.02  55.00 55.04  46.32 46.87 
TiO2 bdl bdl 0.02 0.02 0.03 0.03  0.03 0.01  bdl 0.01  0.39 0.42 
Al2O3 22.21 22.36 22.31 21.98 23.48 22.66  1.93 0.45  0.68 0.74  12.08 11.90 
Cr2O3 1.12 1.13 1.22 1.19 0.95 1.06  0.95 0.05  0.25 0.64  1.32 1.50 
FeO 9.18 9.26 9.38 9.76 9.91 10.56  5.18 5.43  1.16 1.23  3.02 2.84 
MnO 0.75 0.78 0.75 0.69 0.83 0.71  0.12 0.13  0.03 0.05  0.05 0.03 
MgO 18.93 19.04 19.53 19.70 19.31 19.29  33.82 36.06  18.07 17.90  18.82 18.60 
CaO 4.93 4.69 4.40 4.28 4.14 4.43  1.49 0.10  23.82 23.22  12.33 12.37 
Na2O 0.01 0.04 0.01 bdl 0.01 0.00  0.04 bdl  0.29 0.63  1.74 1.77 
K2O 0.01 0.01 0.01 0.01 0.01 0.01  0.01 0.01  bdl bdl  0.60 0.43 
NiO 0.04 bdl 0.04 bdl 0.02 0.03  0.07 0.06  0.02 bdl  0.10 0.11 
Total   98.55 98.68 99.52 99.76 100.09 100.20  100.05 100.34  99.31 99.46  96.77 96.84 

                
Si 3.002 2.997 3.004 3.018 2.956 2.961  1.944 1.981  2.000 1.996  6.535 6.603 
Ti 0 0 0.001 0.001 0.001 0.001  0.001 0  0 0  0.041 0.045 
Al 1.900 1.909 1.888 1.855 1.975 1.909  0.078 0.018  0.029 0.032  2.009 1.977 
Cr 0.064 0.065 0.069 0.067 0.054 0.060  0.026 0.001  0.007 0.018  0.147 0.167 
Fe3+ 0.024 0.027 0.026 0.038 0.051 0.102  0.009 0.019  0 0.001  0.193 0.167 
Fe2+ 0.533 0.535 0.537 0.546 0.540 0.529  0.141 0.136  0.035 0.036  0.164 0.168 
Mn 0.046 0.048 0.046 0.042 0.050 0.043  0.004 0.004  0.001 0.001  0.006 0.004 



Mg 2.048 2.056 2.091 2.104 2.055 2.055  1.738 1.835  0.979 0.967  3.957 3.905 
Ca 0.383 0.364 0.339 0.328 0.317 0.339  0.055 0.004  0.928 0.903  1.864 1.867 
Na 0.002 0.005 0.002 0 0.001 0  0.003 0  0.021 0.045  0.476 0.483 
K 0.001 0.001 0.001 0.001 0.001 0.001  0 0.001  0 0  0.107 0.077 
Ni 0.002 0 0.002 0 0.001 0.002  0.002 0.002  0.001 0  0.011 0.013 
Cation 8.0 8.0 8.0 8.0 8.0 8.0  4.0 4.0  4.0 4.0  15.5 15.5 
Mg# 79.36 79.36 79.57 79.38 79.19 79.52  92.50 93.10  96.54 96.42  96.02 95.87 
mol%                
Alm 18.0 18.1 18.1 18.4 18.6 18.1          
Prp 65.9 66.3 67.0 67.2 68.0 67.5          
Grs 11.7 11.0 10.1 9.1 8.3 6.6          
Adr 1.2 1.3 1.3 1.9 2.5 4.9          
Knor 3.2 3.2 3.5 3.4 2.6 2.9                   
Notes: bdl, Below detection limit. Knor = knorringite Cr/(Cr+Al+Fe3+), Adr = andradite Fe3+/(Cr+Al+Fe3+), Alm = almandine Fe2+/(Fe2++Mg–Knor×3+Ca–
Adr×3)×Al/(Cr+Al+Fe3+), Prp = pyrope (Mg–Knor×3)/(Fe2++Mg–Knor×3+Ca–Adr×3)×Al/(Cr+Al+Fe3+), Grs = grossular (Ca–Adr×3)/(Fe2++Mg–Knor×3+Ca–
Adr×3)×Al/(Cr+Al+Fe3+). 
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