Dolomite dissociation indicates ultra-deep (>150 km) subduction of a garnet-bearing dunite block (the Sulu UHP terrane)

Bin Su¹,³, Yi Chen¹,²*, Shun Guo¹,², Jing-Bo Liu¹

¹State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
²CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
³University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author. Tel: +86 010 82998534; fax: +86 010 62010846.
E-mail address: chenyi@mail.iggcas.ac.cn (Y. Chen), subin@mail.iggcas.ac.cn (B. Su)

Running Title: Ultra-deep subduction of the Sulu dunite block
ABSTRACT

The dissociation of dolomite into magnesite and aragonite has been regarded as a useful indicator for ultrahigh-pressure (UHP) metamorphism. In this study we investigate an unusual texture involving magnesite and calcite intergrowths with dolomite relics in a garnet-bearing dunite block from the Sulu UHP terrane, eastern China. The carbonate intergrowths typically occur as interstitial grains with low dihedral angles against surrounding olivines and have a dolomitic precursor composition. Our observations indicate that the carbonate intergrowths were initially inherited from the well-documented magnesite and aragonite assemblage after dolomite dissociation. The initial dolomite grains were likely to crystallize during the dolomitic melt metasomatism within the shallow lithospheric mantle. A series of experimental studies have well determined the equilibrium boundary of dolomite = magnesite + aragonite greater than 5 GPa along a wide temperature range, which provides direct evidence that the dunite block has ever subducted to depths greater than 150 km during the Triassic continental subduction. The preservation of magnesite and aragonite (now calcite) intergrowths without dolomite synthesis reaction during exhumation is probably due to the lack of fluid and rapid decompression from the peak stage to the calcite stability field. In this study, we suggest that dunite blocks from high-pressure and UHP terranes could have subducted to UHP conditions similar to garnet lherzolite and pyroxenite and were then entrained into slab slices rapidly en route to the surface.

Keywords: dunite, dolomite dissociation, ultra-deep subduction, Sulu belt
INTRODUCTION

Orogenic peridotite bodies of various sizes are minor but significant components within high-pressure (HP) and ultrahigh-pressure (UHP) terranes in orogenic belts. They originated mainly from the mantle wedge above subducting crust and later were tectonically emplaced into subduction channel to various depths (50–200 km) before exhumation (Brueckner and Medaris 2000; Zhang et al. 2000; Scambelluri et al. 2008). Therefore, orogenic peridotites act as a natural laboratory to disclose the mass transfer from the downgoing slab into the overlying mantle wedge (Scambelluri et al. 2006; Malaspina et al. 2009; Chen et al. 2017), as well as the geodynamics of ultra-deep subduction (van Roermund et al. 2002; Ye et al. 2009).

Compared with garnet lherzolites, which record important aspects of crust–mantle interactions and multistage metamorphic events in subduction zones (Zanetti et al. 1999; Sapienza et al. 2009), orogenic dunites lack the petrological and mineralogical imprints of these processes (Beyer et al. 2006; Chen et al. 2009). In this regard, orogenic dunites, despite their wide distribution in HP and UHP terranes, have not attracted enough attention in previous investigations of orogenic peridotites.

However, orogenic dunites, with their upper mantle nature largely intact, are the best lithology among orogenic peridotites for tracing the provenances and initial compositions and can also shed light on the mantle wedge evolution prior to the onset of subduction (Kubo 2002; Beyer et al. 2004; Chen et al. 2015; Su et al. 2016a). They commonly exhibit different chemical and physical properties (e.g., density, wave velocity, viscosity and magnetic conductivity) from garnet lherzolites.
Understanding the distribution ranges (or depths) of these dunites in subduction zones may thus expand our knowledge of geochemical/geophysical heterogeneity in the mantle wedge. In general, orogenic dunites occur as minor components within larger bodies of lherzolite and harzburgite (Beyer et al. 2006; Zhang et al. 2008; Song et al. 2009), but there are also several blocks dominated by dunite, such as Otrøy in the Western Gneiss Region (Spengler et al. 2006) and Ganyu and Lijiatun in the Sulu region (Chen et al. 2009; Su et al. 2016a). These dunite blocks mostly represent fragments of subcontinental lithospheric mantle (SCLM) characterized by highly depleted compositions (see review in Su et al. 2016b).

Although orogenic dunites have a great advantage over garnet lherzolites in addressing the early histories of orogenic peridotites, their geodynamic processes related to the slab subduction and exhumation are still poorly defined due to their simple mineral assemblages. Given the wide occurrence of spinel and lack of garnet in orogenic dunites, previous work suggested that dunite blocks have not undergone UHP metamorphism, but were derived from fore-arc depths (P <2 GPa) (e.g., Zheng et al. 2008; Xie et al. 2013; Li et al. 2016). However, the stability field of spinel can extend to much higher pressures in Al-poor ultramafic rocks (Klemme 2004; Ziberna et al. 2013). This raises an important question of how to evaluate whether dunite blocks have subducted to UHP conditions. Identification of UHP indicators for orogenic dunites will give further important constraints on the processes of continental subduction channel.
In this paper we present a study of a garnet-bearing dunite block near the village of Lijiatun in the northern Sulu UHP terrane of eastern China (Fig. 1). Its origin and metasomatic histories have been assessed in our recent work (Su et al. 2016a). Here, we focus on the magnesite–calcite–dolomite intergrowth resulting from dolomite dissociation to reveal the ultra-deep subduction and exhumation processes of the dunite block. Our new data suggest that the Lijiatun dunite block had ever subducted to depths greater than 150 km and then probably experienced a rapid ascent to shallow depths (<60 km). Mineral abbreviations used in the text, figures and tables all follow Whitney and Evans (2010).

GEOLOGICAL BACKGROUND

The Sulu UHP terrane is located in the eastern part of the Dabie–Sulu orogenic belt created by the subduction of the Yangtze block below the North China craton during the Triassic (Li et al. 1993; Zhang et al. 2009). The occurrences of coesite, diamond and mineral exsolution microstructures in the crustal metamorphic rocks indicate that the Yangtze block had been subducted to exceptional depths of 200 km and then exhumed to the surface (Xu et al. 1992; Ye et al. 2000a, b; Liu et al. 2001). In addition to bodies of eclogite, marble and quartzite within the country UHP gneisses, peridotite blocks consisting mainly of garnet lherzolite with minor harzburgite, dunite and pyroxenite occur sporadically throughout the Sulu terrane. These peridotites are generally divided into two groups: mantle-derived peridotites (Type A) and crust-hosted peridotites (Type B) [see Zhang et al. (2000) for further
details]. Except for dunite (e.g., Lijiatun), most Sulu garnet peridotites are recognized to have undergone *in situ* subduction-zone UHP metamorphism with peak pressures of 3.5–7.0 GPa (e.g., Yang and Jahn 2000; Zhang et al. 2008; Ye et al. 2009) and to have simultaneously experienced multiple metasomatic events associated with slab-derived liquids at various depths (Malaspina et al. 2009; Chen et al. 2013b). In contrast, the metamorphic histories of dunites related to the continental subduction are still poorly constrained to date.

The Lijiatun block (~200×400 m2 in size) is surrounded by gneisses and is exposed in the northern Sulu terrane (Fig. 1). It is dominated by dunite in the interior and serpentinite (after dunite) at the margin (Fig. 2a). A recent study by Su et al. (2016a) suggests that the Lijiatun dunites originated from the SCLM beneath the North China craton (NCC). They were the residues after high degrees of partial melting in the early Proterozoic, and then underwent dolomitic melt metasomatism in the shallow lithospheric mantle prior to their incorporation into the subduction channel. During the Triassic continental subduction, they experienced weak metasomatism by slab-derived fluids at shallow mantle depths (Su et al. 2016a). However, the subduction depth and geodynamic processes during the continental subduction are still enigmatic. Although Ren et al. (2007) calculated a peak pressure of 3.0–4.1 GPa using the Grt–Opx geobarometer (Brey and Köhler 1990), the peak mineral compositions were modified during exhumation, as discussed in the following section.
PETROGRAPHY

The petrography of the Lijiatun dunites has been presented in detail by Su et al. (2016a). The dunite samples mainly consist of olivine (~65 vol.%), serpentine (~24 vol.%), with minor orthopyroxene (~8 vol.%), Cr-spinel/chromite (~1 vol.%), amphibole (~2 vol.%), clinopyroxene, garnet, carbonate phases, chlorite and talc. Serpentine commonly cuts the matrix olivine into several fragments (Fig. 2), indicating that serpentine was mostly derived from olivine metasomatized by silica-rich aqueous fluids in the late stage. Some secondary olivine and clinopyroxene occur as olivine-rich veins crosscutting orthopyroxene (Fig. S1 in the supplemental materials), following the reaction orthopyroxene + dolomite (melt) = olivine + clinopyroxene + CO$_2$ (Su et al. 2016a). This study focuses on the carbonate phases.

The carbonate phases are divided into two types: calcite veinlets and isolated grains. The former cut through original minerals and can extend along an entire thin section (Fig. 2b); hence, they formed during the final stage and are thus ignored in the following section. The latter are anhedral and interstitial grains (0.1–0.5 mm in diameter) among matrix olivines (or serpentine after olivine) and are far from pyroxenes and secondary hydrous minerals (Fig. 2c). The boundaries of the carbonate grains are well defined, and they typically have low dihedral angles against the surrounding olivines (Figs. 2d–2f), pointing to inheritance from an initial melt-filled pore. In Figs. 2g–2i, these carbonate grains comprise an intimate intergrowth of magnesite and calcite (Raman spectra at 1086, 714, 281 and 156 cm$^{-1}$).
which show a symplectite-like texture (Figs. 3a and 3b). The volumetric proportions of magnesite and calcite are estimated to be 40–43% and 57–60%, respectively, based on backscatter electron (BSE) images using Adobe® Photoshop and the ImageJ software (W. S. Rasband, http://rsb.info.nih.gov/ij/). In the high-resolution transmission electron microscope (TEM) image, a prominent boundary is present between magnesite and calcite, and no other phases (e.g., dolomite) occur at the interface (Fig. 4). Small dolomite grains (<3 μm) are locally preserved as relicts in calcite (Figs. 3c–3f).

Trace interstitial garnets with small grain sizes (10–80 μm in diameter) occur as round grains in the matrix (Figs. 5a–5c), but several irregular and elongated grains are also present (Fig. 5d). A few circular olivines are included in garnet. All garnets are fresh without any retrograde rims. No pyroxene or spinel is in direct contact with these garnets.

Hydrous minerals (amphibole, chlorite and talc) occur in the matrix, with minor chlorite and serpentine found as inclusions in spinel. Amphibole grains after pyroxene or in the matrix with minor orthopyroxene relict inclusions generally appear as anhedral grains (Figs. 5e and 5f), and a few amphibole-rich veins with millimeter to centimeter widths are observed in hand specimens (Fig. 5g). Trace chlorite and talc occur in association with amphibole (Figs. 5e and 5f), and no replacement relationships are present between these hydrous minerals, indicating that they formed during the same stage.
ANALYTICAL METHODS

High-resolution BSE imaging and semi-quantitative energy dispersive spectroscopy (EDS) analyses of carbonate and silicate minerals were conducted using a field emission scanning electron microscope (FEI Nova NanoSEM 450) at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). The measurement was performed at a 10 kV acceleration voltage and a 0.5 nA current, with a working distance of approximately 6 mm. The polymorphs of CaCO$_3$ were examined by micro-Raman spectroscopy using a HORIBA Jobin–Yvon LabRAM HR 800 at the IGGCAS.

A thin slice with an area of 7.5 μm × 4.5 μm was cut across the interface between magnesite and calcite and polished to ~100 nm in thickness using a focused ion beam (FIB) system on a Zeiss Auriga Compact instrument at the IGGCAS. A JEOL JEM-2100HR TEM was used to investigate the FIB-cut carbonate section. The TEM instrument was operated with an accelerating voltage of 200 kV and a beam current of 100 μA for standard bright-field TEM observations and energy-dispersive X-ray spectrometry analyses.

Major element compositions of minerals were determined using a Cameca SXFive electron probe microanalyzer (EPMA) at the IGGCAS. The analytical conditions were a 15 kV accelerating voltage and a 10 nA beam current with a focused beam for carbonate minerals and 15 kV, 20 nA and a defocused beam of 1 μm in diameter for silicate minerals. In addition, broad beam analyses using a defocused beam of 20 μm in diameter were performed to obtain the integrated
composition of the carbonate intergrowth. The counting times were 20 s on peak and 10 s on each background position. Natural and synthetic silicates (+oxides) and carbonates were used as standards for silicate and carbonate analyses, and the analytical uncertainties for most major elements were less than 1.5%. The Fe^{3+} abundance in garnet was determined by charge balance (Droop 1987). The end-members of garnet discussed in this study include: almandine (Alm), pyrope (Prp), grossular (Grs), andradite (Adr) and knorringite (Knor). The formulas used to calculate the proportions of these end-members in garnet are given in the footnote of Table 2.

MINERAL CHEMISTRY

Detailed major element compositions of several minerals (olivine, orthopyroxene, spinel, clinopyroxene and amphibole) are shown in Su et al. (2016a) and are briefly summarized as follows: olivine Mg# values [atomic Mg/(Mg+Fe$^{2+}$) $\times 100$] range from 92.0 to 92.6; orthopyroxene porphyroblast (Opx-P) cores before exsolution have high CaO (1.08–1.49 wt%) and Al$_2$O$_3$ (1.70–1.93 wt%) contents, and the recrystallized rims have low CaO (0.06–0.14 wt%) and Al$_2$O$_3$ (0.32–1.16 wt%) contents; clinopyroxene is close to the diopside end-member, with high Mg# values (95.9–96.7); spinel is chromium-rich, with Cr/(Cr+Al) (atomic ratio) values from 0.50 to 0.73 and Mg# from 38.5 to 55.1; amphibole after orthopyroxene is pargasitic with a high Tschermak component and low K$_2$O content (<0.62 wt%), whereas minor amphibole after clinopyroxene has a tremolitic component.
Representative mineral compositions are given in Table 1 and 2. **Magnesite** from the symplectite-like intergrowth is relatively magnesian at Mgs\textsubscript{89.0–91.5}Sd\textsubscript{8.0–10.4}Ca\textsubscript{0–0.2}. **Calcite** ranges from nearly pure CaCO\textsubscript{3} to Cal\textsubscript{97.4}Mgs\textsubscript{2.3}Sd\textsubscript{0.3}. Because neither Mg nor Fe was detected in calcite using TEM-EDS (Fig. 4d), the few Mg and Fe contents in calcite may be due to beam overlap with surrounding magnesite during electron probe analyses. A series of TEM-EDS analyses show that diffusion of Ca in magnesite and Mg in calcite across the interface is very limited (<20 nm) (Figs. 4d–4h), in consistent with previous studies (e.g., Fisler and Cygan 1999). The composition of **dolomite** relicts in calcite cannot be directly measured owing to their small grain sizes. The EDS analyses show that the dolomite contains an extremely low siderite component (Fig. S2 in supplemental materials). The precursor composition of the carbonate intergrowth, roughly measured by EPMA with a broad beam (20 μm), shows a dolomite component (Cal\textsubscript{40}Mgs\textsubscript{47}Sd\textsubscript{4}), which was also obtained by broad-beam EDS analyses (Fig. S2 in the supplemental materials) and reintegration of the disaggregated products (Figs. 3a and 3b). As 1 mole of calcite occupies 32% more volume than 1 mole of magnesite (Holland and Powell 2011), mole ratios of Ca/Mg from the intergrowth are approximately equal to one (1.01–1.12), based on the volumetric proportions of calcite and magnesite. All these carbonate phases contain extremely low BaO, SrO, Na\textsubscript{2}O and K\textsubscript{2}O contents.

Garnet exhibits a small compositional variation, with 4.14–5.65 wt% CaO, 0.74–1.46 wt% Cr\textsubscript{2}O\textsubscript{3} and Mg\# values of 78.3–79.8, similar to the values in garnet lherzolite from the Sulu terrane (Zhang et al. 2008; Ye et al. 2009). In general, the
inner portions are homogeneous, with a relatively high grossular component (10.0–13.0 mol%) and a low andradite component (<2.0 mol%). Towards the rims, the grossular and andradite components decrease (down to 6.1 mol%) and increase, respectively. In some garnet grains, the grossular component displays a symmetrical zoning pattern that smoothly decreases from core to rim, whereas knorringite, almandine and pyrope do not show significant changes (Fig. 6).

DISCUSSION

Dissociation reaction of dolomite = magnesite + aragonite

The observed magnesite and calcite intergrowths show low dihedral angles and occur as interstitial grains among matrix olivines (Figs. 2c–2f), indicating that they were initially derived from an infiltrating carbonate melt (Ionov et al. 1993; Kogarko et al. 2001). The precursor composition of the carbonate melt has a dolomite stoichiometry, as measured by several methods (Table 1 and Fig. S2). Three possible stages for this melt infiltration are proposed to account for the carbonate intergrowths.

First, dolomitic melt might be incorporated into the dunite during exhumation. Experimental studies have demonstrated that pressure has a significant effect on the crystallized product in the CaCO_3–MgCO_3 melt system (Irving and Wyllie 1975; Byrnes and Wyllite 1981; Buob et al. 2006). At pressures <~5 GPa, the final products, in turn, are Arg/Cal, Arg/Cal+Dol, Dol, Dol+Mgs and Mgs from the Ca side to Mg side at subsolidus temperatures. The intergrowth of Mgs+Cal/Arg cannot
be observed in the products generated at pressures less than ~5 GPa (e.g., Irving and Wyllite 1975; Byrnes and Wyllite 1981; Buob et al. 2006), indicating that this assumption is impossible.

Second, if dolomitic melt infiltration occurred during subduction to pressures >~5 GPa, a dolomite solid solution phase (Dol\textsubscript{ss}) would first crystallize from carbonate melts with a wide Ca/Mg range during cooling (~1400 °C) and finally break down into a Mg\textsubscript{s+}Arg intergrowth at 800–1000 °C (Buob et al. 2006). Experimental studies suggest that the magnesite and calcite (or aragonite) intergrowth was unlikely to directly quench from a dolomitic melt along a wide pressure range but could form from solid dolomite dissociation under UHP conditions (>5 GPa) (Shirasaka et al. 2002; Buob et al. 2006). However, the solidi of carbonated eclogite, carbonated pelite and marble (~1000–1400 °C), which are the potential sources for carbonate melts in subduction zones (Irving and Wyllite 1975; Hammouda 2003; Dasgupta et al. 2004; Buob et al. 2006; Grassi and Schmidt 2011), are much hotter than the typical peak temperatures of exhumed UHP rocks (e.g., Zhang et al. 2009; Proyer et al. 2013; Guo et al. 2015). Therefore, it is unlikely that dolomitic melts were derived from subducted crust at depths <200 km. Furthermore, carbonate melts from subducted crust are typically rich in Ca and Fe with a low Mg\# values (Hammouda 2003; Dasgupta et al. 2004; Thomsen and Schmidt 2008). Such compositions are markedly different from that of the carbonate intergrowths in this study (Fe-poor dolomite without any alkalis), which further rules out the possibility of dolomitic melt infiltration in subduction zones.
Third, the dolomitic melt infiltration is more likely to have occurred prior to subduction. Our former paper indicates that the Lijiatun dunites underwent dolomitic melt metasomatism within the shallow lithospheric mantle (Su et al. 2016a). This metasomatism is characterized by the formation of olivine + clinopyroxene veins crosscutting orthopyroxene porphyroblasts (Opx+Dol=Ol+Cpx+CO$_2$), as shown in the supplemental materials (Fig. S1). During the metasomatic reaction, dolomitic melt reacted out in Opx-rich domains, but dolomite could crystallize during this melt infiltration in Opx-absent domains. This relationship is supported by the observed textures: the dolomite (carbonate intergrowth) only occurs in olivine domains and is not in contact with orthopyroxene (Figs. 2c–2f). The occurrence of carbonate minerals after carbonate metasomatism has widely been reported in mantle peridotites (e.g., Ionov et al. 1993; Kogarko et al. 2001; Morishita et al. 2003; Naemura et al. 2009).

Therefore, the magnesite and calcite (or aragonite) intergrowths cannot directly quench from a dolomitic melt and is better explained by solid dolomite dissociation. This finding is further supported by occurrence of dolomite relics in the intergrowths (Figs. 3c–3f). Experimental studies indicate that the initial products of dolomite dissociation are magnesite and aragonite (Martinez et al. 1996; Luth 2001). Although no aragonite relic can be found in calcite, the fact that magnesite cannot coexist with calcite anywhere in P–T space (e.g., Proyer et al. 2013) implies that at least one of them has been replaced by a secondary phase. As the intergrowths can be only observed interstitially along olivine boundaries, the “pressure vessel” is not
present for these interstitial aragonites. A similar process has been observed for the fast transition of interstitial coesite to quartz (Schertl et al. 1991; O’Brien and Ziemann 2008). Phase transition from aragonite to calcite is even faster than that of coesite-to-quartz (Carlson and Rosenfeld 1981; Korsakov et al. 2009; Lü et al. 2014), indicating that interstitial aragonite would be immediately replaced by calcite under low-pressure conditions. The magnesite may be well preserved because clinopyroxene is so rare in the matrix that the reaction of magnesite + clinopyroxene = dolomite + orthopyroxene would not occur during exhumation. Therefore, the most likely process was that the observed magnesite and calcite intergrowth was inherited from magnesite + aragonite symplectite, which originally formed from dolomite dissociation. The symplectitic intergrowth texture of magnesite + aragonite is common in dolomite dissociation experiments (e.g., Shirasaka et al. 2002; Buob et al. 2006).

Ultra-deep (>150 km) subduction

The P–T conditions of dolomite dissociation reaction have been determined by many experimental studies with different starting materials, experimental methods and/or run durations (Martinez et al. 1996; Luth 2001; Sato and Katsura 2001; Shirasaka et al. 2002; Buob et al. 2006; Hermann et al. 2016). All studies consistently indicate that dolomite breakdown occurs at pressures higher than 5 GPa between 500 and 1200 °C (Fig. 7). Therefore, the equilibrium magnesite + aragonite assemblage after dolomite can be regarded as the third index reaction for UHP
metamorphism after the quartz/coesite and graphite/diamond transitions (e.g., Sato and Katsura 2001; Zhang et al. 2003). In recent decades, coexisting dolomite, magnesite and aragonite (or pseudomorphs after them) have been identified in marbles, eclogites and metapelites from several UHP terranes (Zhang and Liou 1996; Zhang et al. 2003; Dobrzhinetskaya et al. 2006; Proyer et al. 2013) but rarely in orogenic peridotites.

As shown in Fig. 7, after extensive melt extraction, the Lijiatun dunites experienced dolomitic melt metasomatism within the shallow lithospheric mantle, which resulted in partial orthopyroxene dissolution and secondary olivine and clinopyroxene precipitation (Su et al. 2016a). Meanwhile, some dolomites interstitially crystallized from the dolomitic melt in Opx-absent domains (Figs. 2c–2f). During the Triassic continental subduction, the dunites were incorporated into the subduction channel, and dolomite potentially acted as a pressure indicator. Given that the interstitial dolomite only occurs in olivine domains and is far from orthopyroxene in the Lijiatun dunites, the reaction of dolomite + orthopyroxene = magnesite + clinopyroxene would not take place during dunite subduction and dolomite could be stable until its dissociation. Likewise, orthopyroxene would not be exhausted on such a reaction with increasing pressure. As stated in the above section, the magnesite and calcite intergrowths represent the products of dolomite dissociation, pointing to the UHP (>5 GPa) metamorphism of the Lijiatun dunites (Fig. 7). Therefore, the carbonate intergrowth indicates that the dunite block have ever subducted to depths greater than 150 km, similar to the widespread garnet
lherzolites from the Dabie–Sulu terrane (Yang and Jahn 2000; Zhang et al. 2008; Ye et al. 2009). It is worth noting that the reaction curve shifts toward lower pressure with the addition of Fe to the dolomite (Franzolin et al. 2012), but this addition has little effect on the results of this study due to the high Mg# values (> 90).

In previous investigations, conventional thermobarometers, including Grt–Opx geobarometers (Harley 1984; Nickel and Green 1985; Brey and Köhler 1990) and Grt–Cpx geothermometers (Ai 1994; Ravna 2000), have been widely used to yield the P–T conditions of peridotites. With respect to the Lijiatun dunites, as they experienced high-degree (~30%) melting at low pressure (<4 GPa; Su et al. 2016a), initial garnets (if present) were inevitably exhausted (Walter 1998). The tiny interstitial garnets were thus formed during the deep subduction (Figs. 5a–5d). Their growths could be approached by the continuous reaction $\text{Mg}_2\text{Al}_2\text{Si}_4\text{O}_{10} \rightarrow 3\text{Mg}_2\text{Si}_2\text{O}_6 + 2\text{Mg}_2\text{Si}_3\text{O}_12 + \text{Mg}_2\text{SiO}_4$ (Brey et al. 1999; Girnis et al. 2003; Klemme 2004), and the chemical zoning in garnet corresponds to a prograde growth process (Fig. 6). Therefore, it is possible to constrain the peak P–T conditions from the compositions of garnet rim and pyroxene using the above thermobarometers. However, the peak compositions of pyroxenes have been modified during the exhumation stage, which makes the results inferred from conventional thermobarometers less reliable. Specifically, as the low-Al_2O_3 Opx-P rims have been resorbed by amphibole to different extents during the late fluid metasomatism stage (Fig. 2f in Su et al. 2016a), their compositions would have re-equilibrated at relatively lower pressures and, hence, the calculated peak pressures
(2.7–4.3 GPa) using the Grt–Opx geobarometer are underestimated. Due to the small size of clinopyroxene and its very minor presence in terms of modal composition, Mg–Fe exchange between clinopyroxene and surrounding minerals during cooling would easily reset its composition. Thus, the calculated temperatures (520–620 °C) by the Grt–Cpx thermometers are invalid for the peak conditions. In contrast, the garnet was free from retrograde modification (Figs. 5a–5d) and the approximately constant Mg# values in garnet from core to rim (Table. 2) can yield a nearly isothermal compressional P–T path for the Lijiatun dunite (thermodynamic modeling result, not shown) (Fig. 7). Similar prograde P–T paths have been reported in many mantle wedge-derived orogenic peridotites (e.g., Scambelluri et al. 2008; Ye et al. 2009; Chen et al. 2013a).

Potential mechanism for the preservation of carbonate intergrowth

It is widely accepted that peridotite bodies can be passively transported from mantle depths to the surface by deeply subducted crust during buoyancy-driven exhumation (Brueckner 1998; Zhang et al. 2000; Scambelluri et al. 2006; Chen et al. 2013a). During exhumation, magnesite and aragonite are expected to back-react to dolomite, leaving only isolated magnesite and aragonite in coarse-grained dolomite, as reported in the Tianshan metapelites (Zhang et al. 2003) and the Dabie marbles (Proyer et al. 2013). However, the TEM results indicate that the dolomitization reaction did not occur at the interface between magnesite and calcite (after aragonite) in the Lijiatun dunites (Fig. 4), which was possibly due to low temperatures, a lack
of fluid flow, and/or rapid decompression. Experimental studies suggest that the
nucleation of a low-P dolomite from a high-P magnesite + aragonite assemblage may
be hindered by a kinetic barrier at low temperatures (Martinez et al. 1996; Sato and
Katsure 2001; Shirasaka et al. 2002), similar to the stishovite-to-coesite transition
(Zhang et al. 1996). The fact that the metamorphic temperatures of the Lijiatun
dunites (~800 °C) are higher than those of the Tianshan metapelites (~600 °C; Zhang
et al. 2003) and the Dabie impure marbles (600–800 °C; Proyer et al. 2013) argues
that sluggish reaction kinetics related to low temperature is not the major reason in
this study. In general, fluids play an important role in triggering and promoting
metamorphic reactions (Austrheim 1987; John and Schenk 2003). Unlike the above
metapelites and marbles exhibiting dolomite-forming reactions, the Lijiatun dunites
lacked fluids until their decompression to the calcite stability field, as minor hydrous
mineral assemblage (amphibole with trace chlorite and talc) after pyroxene mainly
formed at conditions of ~600–700 °C and <2 GPa (Naemura et al. 2009; Chen et al.
2013a; Scambelluri et al. 2014). The lack of fluid in the aragonite stability field
might have inhibited dolomite synthesis in this study, which has been used to explain
the preservation of metastable assemblages in UHP rocks (Liou and Zhang 1996;
Leech 2001). Moreover, the experiment of Shirasaka et al. (2002) shows that the
dolomite synthesis reaction occurs at pressures much lower than those of the
dissociation reaction, implying that the former is more sluggish than the latter. Thus,
a rapid decompression process might provide another a chance to preserve the
carbonate intergrowth during exhumation. Numerical modeling shows that mantle
wedge peridotite entrained in the subduction channel could be dragged to the surface over a very short time (Gerya et al. 2002), and several peridotite blocks have been shown to have experienced rapid exhumation after deep subduction (Gebauer 1996; Olker et al. 2003; Hermann et al. 2006). A recent study by Yamato and Brun (2017) suggests a catastrophic pressure drop for UHP rocks during the switch from burial to exhumation in subduction zones. In the same way, if the Lijiatun dunites suffered rapid decompression from the peak stage to the calcite stability field, aragonite would have transformed to calcite immediately (Carlson and Rosenfeld 1981; Korsakov et al. 2009). Because calcite could not react with magnesite to form dolomite, the intergrowth of magnesite and calcite could be well preserved. In summary, the preservation of magnesite and calcite intergrowth during the dunite exhumation is potentially caused by a fluid-absent, rapid decompression process.

IMPLICATIONS

The discovery of microdiamond and majoritic garnet in orogenic peridotites provides robust evidence that the peridotites were exhumed from depths of greater than ~120 km and ~200 km, respectively (e.g., van Roermund and Drury 1998; Brueckner et al. 2002; van Roermund et al. 2002; Song et al. 2004; Spengler et al. 2006). The deep origin of these rocks provides us a rare opportunity to explore the processes active at great depths in subduction zones (Dobrzhinetskaya et al. 1996; Scambelluri et al. 2008). In addition to the above two UHP index minerals, this study shows that the dolomite dissociation reaction (Dol=Mgs+Arg) can also be used as a
reliable UHP indicator (>5 GPa) for orogenic peridotites. In this study, the
well-preserved magnesite–calcite–dolomite intergrowth represents the final products
of dolomite dissociation, suggesting that the dunite block had subducted to depths
greater than 150 km before exhumation, similar to the widely distributed garnet
lherzolites in the same terrane.

Dolomite together with magnesite is frequently reported in orogenic peridotites
(e.g., Zanetti et al. 1999; Zhang et al. 2007; Sapienza et al. 2009). Based on previous
studies and this work, the fate and stability of these minerals in orogenic peridotites
depend strongly on the bulk composition and peak pressures of the host peridotites
(e.g., Kushiro 1975; Wyllie et al. 1983). In fertile peridotites with abundant
orthopyroxene (e.g., garnet lherzolite), dolomite can be stable to depths of
approximately 100 km until it reacts out via the prograde reaction Opx + Dol = Cpx
+ Mgs (Fig. 7; Kushiro 1975; Scambelluri et al. 2008). If orthopyroxene is absent or
rare (such as the Lijiatun dunite), dolomite can be stable up to much greater depths
(>5 GPa) until it breaks down into magnesite + aragonite. Thus, carbonate minerals
in dunites should be given more attention in the future study of orogenic peridotites.

ACKNOWLEDGMENTS

We thank Saihong Yang for help with the SEM analyses, Di Zhang and Qian
Mao for help with the EPMA analyses, Yijie Gao for help with the Raman analyses,
and Lixin Gu and Xu Tang for help with the TEM analyses. BS is grateful to
Xiaochun Li (The University of Hong Kong) for his helpful discussion. Critical
reviews by Jörg Hermann and an anonymous reviewer helped to improve the manuscript. We also thank Jennifer Kung for handling this manuscript. This work was funded by the National Basic Research Program of China (973 Program 2015CB856103), the National Science Foundation of China (Nos. 41372078, 41372080) and the National Postdoctoral Program for Innovative Talents (BX201700239).

REFERENCES CITED

eclogite from western Tianshan, NW China. European Journal of Mineralogy, 26, 245–256.

Contributions to Mineralogy and Petrology, 151, 372–394.

Chemical composition and ultrahigh-P metamorphism of garnet peridotites from the Sulu UHP terrane, China: investigation of major, trace elements and Hf isotopes of minerals. Chemical Geology, 255, 250–264.

FIGURE 2. (a) Field photograph of the Lijiatun dunite block. (b) BSE image of a calcite veinlet along the grain boundaries of matrix olivines. (c) Photomicrograph in plane-polarized light showing isolated carbonates as intergranular grains in the orthopyroxene-absent domain. (d–f) Photomicrographs of representative carbonate grains with low dihedral angles against surrounding olivines in plane-polarized light. (g–i) BSE images showing symplectite-like magnesite and calcite intergrowths in matrix; the bright and dark areas correspond to calcite and magnesite, respectively.

FIGURE 3. Representative BSE images and X-ray intensity maps of carbonate phases in the Lijiatun dunites. (a–b) BSE images showing the microtexture and mineral modal percentages of magnesite and calcite in the carbonate intergrowths. The inset shows the Raman spectrum of calcite. (c–d) Dolomite relics after their breakdown into magnesite and aragonite (transformed to calcite at low pressure). Dolomite Raman spectrum is given in the inset. (e–f) X-ray intensity maps of the carbonate intergrowths with dolomite relict inclusions, corresponding to the BSE image of (d).

FIGURE 4. (a) BSE images showing the interstitial garnets with small grain sizes in the matrix olivine domain. (b–d) Detailed views of garnet grains without any retrograde rims. (e) The black line with an arrow shows the position of the profile for EPMA analysis of garnet major elements presented in Fig. 5(b). (e) BSE image of coexisting chlorite and amphibole after an orthopyroxene porphyroblast. (f) Photomicrograph taken with cross-polarized light showing anhedral talc and amphibole in matrix. (g) Photograph of an amphibole vein approximately one centimeter wide in the dunite block.

FIGURE 5. Compositional profile of pyrope (Prp), almandine (Alm), grossular (Grs), knorringite (Knor) and andradite (Adr) in the representative garnet along the A–A’ in Figure 4(c).

FIGURE 6. FIB cross-sectioning of the carbonate intergrowth and transmission electron microscope (TEM) results. (a) BSE image of the sampled area prior to the cross-sectioning. The dotted rectangle shows the position where the platinum layer is deposited; (b) Secondary electron image of the FIB-cut section after ion polish; (c) Bright field TEM image of the calcite and magnesite intergrowth. The inset shows the high-resolution TEM image across the interface between calcite and magnesite. The five yellow circles represent the analysis positions of TEM-EDS; (d–h) TEM-EDS spectra of carbonate phases corresponding to the five points shown in the inset of (e).
respectively. The inset of (d) shows selected-area electron diffraction (SAED) pattern for calcite.

FIGURE 7. Integrated P–T path for the whole geodynamic history of the Lijiatun dunites. As stated by Su et al. (2016a) and this study, (1) these dunites originated from the SCLM beneath the NCC and suffered high-degree melting in the early Proterozoic. (2) They were metasomatized by dolomitic melt with formation of Ol-rich, Cpx-bearing veins crosscutting Opx in the shallow SCLM. Some Dol grains crystallized from such a melt infiltration in Opx-absent domains. (3) In the Triassic, these dunites were incorporated into the subduction channel and experienced ultra-deep subduction. Trace Grt was produced in matrix. (4) At the peak stage (P~5 GPa), Dol broke down into Mgs and Arg. (5) Arg was replaced by Cal during exhumation to shallow depths. (6) At last, the dunites were infiltrated by slab-derived fluids and pyroxenes were partially replaced by Amp and minor Tlc and Chl. Abbreviations: JP71 = Johannes and Puhan (1971); KU75 = Kushiro et al. (1975); MA96 = Martinez et al. (1996); HZ00 = Herzberg et al. (2000); LU01 = Luth (2001); SK01 = Sato and Katsura (2001); SH02 = Shirasaka et al. (2002); BU06 = Buob et al. (2006); JH16=Hermann et al. (2016).
TABLE 1. Representative major element compositions of carbonate minerals.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Cal (after Arg)</th>
<th>Mgs</th>
<th>Cal-Mgs intergrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23 24 29 30 31 52</td>
<td>37 38 62 63</td>
<td>broad beam (Ave. n=12)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.09 0.09 0.09 0.08 0.10 0.02</td>
<td>0.36 0.14 0.28 0.38</td>
<td>0.19</td>
</tr>
<tr>
<td>FeO</td>
<td>0.20 0.18 0.22 0.16 0.20 0.24</td>
<td>8.48 8.86 6.79 7.14</td>
<td>3.47</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08 0.02 0.01 0.07 0.04 0.03</td>
<td>0.53 0.36 0.37 0.38</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>0.11 0.11 0.48 0.90 0.50 0.13</td>
<td>42.81 42.54 43.52 42.60</td>
<td>20.93</td>
</tr>
<tr>
<td>CaO</td>
<td>55.25 55.92 53.16 53.08 57.75 55.44</td>
<td>0.11 0.09 0.03 0.05</td>
<td>30.62</td>
</tr>
<tr>
<td>SrO</td>
<td>bdl bdl bdl bdl bdl bdl</td>
<td>bdl 0.02 0.01 0.03</td>
<td>bdl</td>
</tr>
<tr>
<td>BaO</td>
<td>bdl 0.03 bdl 0.01 0.01 0.01</td>
<td>0.02 bdl bdl bdl</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>55.72 56.35 53.96 54.29 58.59 58.56</td>
<td>52.31 52.01 51.00 50.58</td>
<td>55.33</td>
</tr>
<tr>
<td>CO₂ (100-tot.)</td>
<td>44.28 43.65 46.04 45.71 41.41 44.14</td>
<td>47.69 47.99 49.01 49.42</td>
<td>44.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cations</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Σ Cations</th>
<th>CO₃²⁻</th>
<th>Ca/(Ca+Mg²⁺+Fe²⁺+Mn)</th>
<th>Mg/(Mg²⁺Fe²⁺)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.003 0.002 0.003 0.002 0.003 0.003</td>
<td>0.001 0.000 0.001 0.001 0.001 0.000</td>
<td>0.003 0.003 0.012 0.023 0.012 0.003</td>
<td>0.993 0.995 0.984 0.974 0.985 0.993</td>
<td>1.0 1.0 1.0 1.0 1.0 1.0</td>
<td>1.015 0.989 1.086 1.069 0.900 1.008</td>
<td>0.99 0.99 0.98 0.97 0.99 0.99</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>0.006 0.004 0.004 0.004 0.004 0.004</td>
<td>0.003 0.003 0.012 0.023 0.012 0.003</td>
<td>0.893 0.890 0.915 0.915 0.915 0.915</td>
<td>0.993 0.995 0.984 0.974 0.985 0.993</td>
<td>1.0 1.0 1.0 1.0 1.0 1.0</td>
<td>1.015 0.989 1.086 1.069 0.900 1.008</td>
<td>0.99 0.99 0.98 0.97 0.99 0.99</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Notes: Cal–Mgs intergrowth was analyzed using a broad beam (d=20 μm); bdl, Below detection limit.
TABLE 2. Representative major element compositions of garnet, orthopyroxene, clinopyroxene and amphibole.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Texture</th>
<th>Grt</th>
<th>Opx</th>
<th>Cpx</th>
<th>Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An. no.</td>
<td>core</td>
<td>core</td>
<td>core</td>
<td>rim</td>
</tr>
<tr>
<td>SiO₂</td>
<td>41.38</td>
<td>41.37</td>
<td>41.84</td>
<td>42.14</td>
<td>41.41</td>
</tr>
<tr>
<td>TiO₂</td>
<td>bdl</td>
<td>bdl</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>22.21</td>
<td>22.36</td>
<td>22.31</td>
<td>21.98</td>
<td>23.48</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>1.12</td>
<td>1.13</td>
<td>1.22</td>
<td>1.19</td>
<td>0.95</td>
</tr>
<tr>
<td>FeO</td>
<td>9.18</td>
<td>9.26</td>
<td>9.38</td>
<td>9.76</td>
<td>9.91</td>
</tr>
<tr>
<td>MnO</td>
<td>0.75</td>
<td>0.78</td>
<td>0.75</td>
<td>0.69</td>
<td>0.83</td>
</tr>
<tr>
<td>MgO</td>
<td>18.93</td>
<td>19.04</td>
<td>19.53</td>
<td>19.70</td>
<td>19.31</td>
</tr>
<tr>
<td>CaO</td>
<td>4.93</td>
<td>4.69</td>
<td>4.40</td>
<td>4.28</td>
<td>4.14</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>bdl</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>NiO</td>
<td>0.04</td>
<td>0.04</td>
<td>bdl</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>98.55</td>
<td>98.68</td>
<td>99.52</td>
<td>99.76</td>
<td>100.09</td>
</tr>
<tr>
<td>Si</td>
<td>3.002</td>
<td>2.997</td>
<td>3.004</td>
<td>3.018</td>
<td>2.956</td>
</tr>
<tr>
<td>Ti</td>
<td>0</td>
<td>0</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Al</td>
<td>1.900</td>
<td>1.909</td>
<td>1.888</td>
<td>1.855</td>
<td>1.975</td>
</tr>
<tr>
<td>Cr</td>
<td>0.064</td>
<td>0.065</td>
<td>0.069</td>
<td>0.067</td>
<td>0.054</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.024</td>
<td>0.027</td>
<td>0.026</td>
<td>0.038</td>
<td>0.051</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.533</td>
<td>0.535</td>
<td>0.537</td>
<td>0.546</td>
<td>0.540</td>
</tr>
<tr>
<td>Mn</td>
<td>0.046</td>
<td>0.048</td>
<td>0.046</td>
<td>0.042</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
<table>
<thead>
<tr>
<th></th>
<th>Cation</th>
<th>Mg#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>2.048</td>
<td>79.36</td>
</tr>
<tr>
<td>Ca</td>
<td>0.383</td>
<td>18.0</td>
</tr>
<tr>
<td>Na</td>
<td>0.002</td>
<td>11.7</td>
</tr>
<tr>
<td>K</td>
<td>0.001</td>
<td>1.2</td>
</tr>
<tr>
<td>Ni</td>
<td>0.002</td>
<td>3.2</td>
</tr>
<tr>
<td>Cation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg#</td>
<td>79.36</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- bdl, Below detection limit.
- Knor = knorringite Cr/(Cr+Al+Fe$^{3+}$), Adr = andradite Fe$^{3+}$/(Cr+Al+Fe$^{3+}$), Alm = almandine Fe$^{2+}$/(Cr+Al+Fe$^{3+}$), Knor×3+Ca–Adr×3+Al/(Cr+Al+Fe$^{3+}$), Prp = pyrope (Mg–Knor×3)/(Fe$^{2+}$+Mg–Knor×3+Ca–Adr×3)×Al/(Cr+Al+Fe$^{3+}$), Grs = grossular (Ca–Adr×3)/(Fe$^{2+}$+Mg–Knor×3+Ca–Adr×3)×Al/(Cr+Al+Fe$^{3+}$).
Figure 1
Figure 2

(a) Field photograph showing a rock outcrop.
(b) Micrograph of a cal vein with olivine (Ol) and sulferapatite (Srp).
(c) Close-up of olivine crystals within the rock.
(d) Detailed view of a smaller section, showing ~200μm scale.
(e) Enlarged view of the cal vein, showing ~100μm scale.
(f) Further close-up of the vein, showing ~50μm scale.

Figure 3d
Figure 3
Figure 4

(a) BSE image showing a thin layer of magnesite (Mgs) on top of calcite (Cal). The scale bar indicates 5 μm.

(b) SEM image with a Pt protective layer on the sample. The Pt layer helps to protect the sample from charging during imaging. The scale bar indicates 1 μm.

(c) EDS analysis showing the energy-dispersive spectra (EDS) for calcium (Ca), magnesium (Mg), and oxygen (O). The EDS analysis is used to determine the chemical composition of the sample.

(d) EDS spectrum for calcite (1). The mole ratio of CaO is 73.6%, MgO is 26.0%, and FeO is 0.4%.

(e) EDS spectrum for calcite (2). The mole ratio of CaO is 73.6%, MgO is 26.0%, and FeO is 0.4%.

(f) EDS spectrum for calcite (3). The mole ratio of CaO is 73.6%, MgO is 26.0%, and FeO is 0.4%.

(g) EDS spectrum for calcite (4). The mole ratio of CaO is 73.6%, MgO is 26.0%, and FeO is 0.4%.

(h) EDS spectrum for magnesite (5). The mole ratio of CaO is 73.6%, MgO is 26.0%, and FeO is 0.4%.
Figure 5
Figure 6

The figure shows a plot of mol% for different minerals (Prp, Alm, Grs, Knor, Adr) across the core-rim transition. The x-axis represents the core-rim direction, and the y-axis represents the mol% of each mineral. The minerals show a variation in abundance from the core to the rim.
Figure 7

1. High-degree melting
2. Carbonate metasomatism
3. Subduction: garnet growth
4. Peak stage: Dol=Mgs+Arg
5. Transition from Arg to Cal
6. Fluid metasomatism

- High-degree melting: Transition from olivine to diopside.
- Carbonate metasomatism: Infiltration of dolomitic melt.
- Subduction: Garnet growth.
- Peak stage: Dolomite plus magnesite and argillite.
- Transition from Argillite to Calcareous:
- Fluid metasomatism:

- En+dol: Enstatite-dolomite.
- Di+fo+C02: Diopside-feldspar plus CO2.
- Dolomitic melt infiltration:
- Solidus:

Temperature (°C)
Pressure (kbar)
Depth (km)