1	
2	Revision 3 to American Mineralogist
3	
4	Mengxianminite, ideally Ca ₂ Sn ₂ Mg ₃ Al ₈ [(BO ₃)(BeO ₄)O ₆] ₂ , a new borate
5	mineral from Xianghualing skarn, Hunan Province, China
6	
7	
8	
9	
10	CAN RAO ^{1,2,*} , Frédéric Hatert ² , Fabrice Dal BO ² , Rucheng Wang ³ ,
11	XIANGPING GU^4 and Maxime Baijot ²
12	
13 14	
14	
16	
17	¹ School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
18	² Laboratoire de Minéralogie, B18, Université de Liège, B–4000 Liège, Belgium
19	³ State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing
20	University, Nanjing, 210046, China
21	⁴ School of Earth Sciences and Info-physics, Central South University, Changsha, 410083, China
22	
23	
24 25	
25 26	
20 27	
28	
29	
30	
31	*E-mail: canrao@zju.edu.cn
32	

33 34 ABSTRACT Mengxianminite, ideally Ca₂Sn₂Mg₃Al₈[(BO₃)(BeO₄)O₆]₂, is a new borate mineral from 35 36 Xianghualing skarn, Hunan Province, southern China. It occurs in the hsianghualite vein of Xianghualing skarn, associated with fluorite, phlogopite, hsianghualite, magnetite, dravite, 37 magnesiotaaffeite-2N'2S and calcite. Mengxianminite forms subhedral to euhedral green 38 crystals from 20 to 200 µm long, translucent to transparent, with a vitreous luster. The 39 crystals show perfect cleavage on $\{100\}$ and good cleavage on $\{010\}$, and do not fluoresce in 40 41 long- or short-wave ultraviolet light. The estimated Mohs hardness is 8, and the tenacity is brittle with irregular fracture. The calculated density is 4.170 g/cm³. Optically, 42 mengxianminite is biaxial (-), with $\alpha = 1.80(2)$, $\beta = 1.83(2)$, $\gamma = 1.84(2)$ (589 nm). The mean 43 chemical composition of mengxianminite (Be and B were measured by secondary ion mass 44 45 spectrometry, average of 6 electron microprobe analyse points and in wt%) is Al_2O_3 40.00, SnO₂ 25.96, MgO 6.57, CaO 8.56, FeO 4.83, B₂O₃ 6.53, BeO 4.37, ZnO 1.81, MnO 1.23, 46 Na₂O 1.13, TiO₂ 0.10, SiO₂ 0.04, sum 101.12 with a corresponding empirical formula 47 calculated the basis of 26 0 of 48 on atoms $(Ca_{1.64}, Na_{0.39})_{\Sigma 2.03}(Sn_{1.85}, Zn_{0.24})_{\Sigma 2.09}(Mg_{1.75}, Fe_{0.72}, Al_{0.42}, Mn_{0.19}, Ti_{0.01})_{\Sigma 3.09}Al_8[(B_{1.01}O_3)(Be_{0.94}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}$ 49 $_{4}O_{6}$ The strongest 8 lines of the powder XRD pattern [d in Å (I)(hkl)] are: 3.000(35)(16.2) 50 0); 2.931(100)(17 1 1); 2.475(29)(022); 2.430(30)(13 3 1); 2.375(100)(14 0 2/640); 2.028(52) 51 (21 3 1); 1.807(35)(913); 1.530(98)(14 6 0/15 3 3). Mengxianminite is orthorhombic, space 52 group Fdd2; unit-cell parameters refined from single-crystal X-ray diffraction data are: a =53 60.699 (4), b = 9.914 (1), c = 5.745 (1) Å, V = 3457.4 (4) Å³, Z = 8. The structure of 54 mengxianminite is characterized by the alternating O-T1-O-T2-O'-T2 layers stacked along 55

56	the a axis, which are equal to two alternating modules: the module A (O-T1-O) corresponding
57	to the spinel module with an additional O layer (AlO ₆ octahedra layer), and the module B
58	(T2-O'-T2) showing the simplified formula CaSnAl(BeO ₄)(BO ₃), where SnO ₆ octahedra are
59	isolated in the T2 layers, connected via BeO4 and CaO11 groups, and AlO6 edge-sharing
60	octahedra in the O' layer form chains running along the $\{011\}$ or $\{0\overline{1}1\}$ direction, connected
61	in the c direction by the BO ₃ triangular groups. Mengxianminite is the first borate mineral
62	with both Sn and Be, likely crystallized under F-rich conditions at late stages of the
63	Xianghualing skarn.
64	Key words: mengxianminite, new mineral, Xianghualing skarn, Hunan province, China.
65	
66	
67	INTRODUCTION
68	A new mineral species, mengxianminite, ideally Ca ₂ Sn ₂ Mg ₃ Al ₈ [(BO ₃)(BeO ₄)O ₆] ₂ , has
69	been found in the Xianghualing sharn, Linwu County, Hunan Province (southern China). We
70	should point out that mengxianminite was firstly reported as a Sn-bearing oxide from the
71	hsianghualite vein of the Xianghualing skarn, Hunan Province, southern China by Huang et
72	al. (1986, 1988). However, it was not properly characterized by these authors. Moreover, it
73	was not listed either as a valid or an invalid unnamed mineral (Smith and Nickel 2007). Since
74	the "mengxianminite" reported by Huang et al. (1986, 1988) is from the same locality and has
75	a similar chemical composition and crystal-structure, we have retained the name
76	"mengxianminite" for the Be-B-Sn mineral described here.

77	Optical microscopy, electron probe microanalysis, secondary-ion mass spectrometry
78	(SIMS), X-ray diffraction, Raman and infrared spectroscopy were used to determine its
79	petrographic features, chemical composition and crystal structure. The new mineral is named
80	after "Meng Xianmin" (1900-1969), a famous geologist in China, who devoted himself to
81	work on mineral identification and theory of mineralization in deposits of non-ferrous metals,
82	and made significant contributions to the research of ore deposits in China. The species and
83	the name have been approved by the International Mineralogical Association, Commission on
84	New Minerals, Nomenclature and Classification (CNMNC) (IMA 2015-70) (Rao et al. 2016).
85	The type sample of mengxianminite, used to collect the electron-microprobe data, is stored in
86	the Geological Museum of China, No. 16, Yangrou Hutong, Xisi, Beijing 100031, People's
87	Republic of China. Catalogue number of material is M13293. The co-type sample used for
88	the single-crystal structure and optical measurements is stored at the Laboratory of
89	Mineralogy, University of Liège, Belgium (catalog number 20395). This paper describes the
90	physical and chemical properties of mengxianminite and its crystal structure determined from
91	the single-crystal X-ray diffraction data, and discusses the origin and implications.
92	
93	OCCURRENCE

Mengxianminite was found in the Xianghualing skarn, Hunan Province, southern China, which is located at longitude E 112°34', latitude northeast of 25°26', about 20 km northeastern of Linwu County. In this area, the principal unit is the Laiziling granite, which intrudes sandstone and sandy shale of Tiaomajian Formation, and limestone and dolomitic limestone of Qiziqiao Formation. A vertical zonation is well developed from the deeper level

99	upwards to the top of the Laiziling mountain peak: protolithionite granite zone, leucogranite
100	zone, albite granite zone, greisen zone, massive quartz zone and pegmatoid stockscheider
101	zone. The U-Pb dating of zircon of the protolithionite granite gave 155 Ma (Zhu et al. 2011).
102	The Xianghualing skarn was typically distributed around the Laiziling granite, and/or along
103	the related tectonic faults, formed a tin-polymetallic (Sn-W-Be-Li) deposit, which is the type
104	locality of hsianghualite Ca ₃ Li ₂ Be ₃ (SiO ₄) ₃ F ₂ (Huang et al. 1958), liberite Li ₂ Be(SiO ₄) (Chao
105	1964) and ferrotaaffeite-2N'2S BeFe ₃ Al ₈ O ₁₆ (Yang et al. 2012). The Laiziling granite with
106	high levels of Li, Be, Sn, W, Rb, Nb, and Ta, was generally regarded as the main source of
107	the Xianghualing orebodies. The average concentrations of Be and Sn in the Laiziling granite
108	are 16 ppm and 65 ppm, respectively (Zhong 2014).
109	Mengxianminite occurs in the hsianghualite vein of the Xianghualing skarn, which is
110	located in the exocontact zone of the Laiziling granite and in the Middle-Upper Devonian
111	carbonate rocks of the Qiziqiao Formation. It forms subhedral to euhedral crystals ranging

116

112

113

114

115

magnesiotaaffeite-2N'2S and calcite.

117

PHYSICAL AND OPTICAL PROPERTIES

from 20 to 200 µm in size (Fig. 1). In some cases, mengxianminite was replaced by late

fluorite along cleavage planes, resulting in the local precipitation of small cassiterite crystals

(Fig. 1a). Other associated minerals include phlogopite, hsianghualite, magnetite, dravite,

Mengxianminite is green and shows well-developed or perfect cleavage on {100} and good cleavage on {010} (Fig. 1b). It does not show fluorescence in long- or short-wave ultraviolet light. The crystals are translucent to transparent with vitreous luster. The Mohs

121	hardness is about 8 by comparison with the hardness of magnesiotaaffeite-2N2S, the tenacity
122	is brittle with irregular fracture. Based on the empirical formula and single-crystal unit-cell
123	parameters, the calculated density is 4.170 g/cm ³ . Optically, mengxianminite is biaxial
124	negative, with $\alpha = 1.80(2)$, $\beta = 1.83(2)$, $\gamma = 1.84(2)$ (589 nm). The calculated 2 <i>V</i> is 60°, and
125	optical orientation: α , β and γ are parallel to crystallographic <i>a</i> , <i>b</i> and <i>c</i> , respectively. The
126	pleochroism is $X =$ light green, $Y =$ light green, and $Z =$ colorless. According to the calculated
127	density and the measured indexes of refraction, the compatibility index $[1 - (K_P/K_C)]$ is -0.036,
128	and corresponds to the "excellent" category (Mandarino 1981).

- 129
- 130

RAMAN AND INFRARED SPECTROSCOPIES

131 Raman spectra of mengxianminite were collected using a LabRAM HR evolution Laser Raman microprobe in the School of Earth Sciences at Zhejiang University. A 532 nm laser 132 with a power of 50 mW at the sample surface was used for exciting the radiation. Silicon (520 133 cm⁻¹ Raman shift) was used as a standard. Raman spectra were acquired from 100 to 4000 cm⁻¹ 134 and the accumulation time of each spectrum is 60 s. The Raman spectra were obtained on 135 single crystals of mengxianminite on polished thin section chips. It is characterized by the 136 strong sharp peak at 754 cm⁻¹, medium sharp peaks at 1009, 806, 722, 606, and 506 cm⁻¹, and 137 weak sharp peaks at 553 and 156 cm⁻¹ (Fig. 2). The Raman shifts at 722 and 533 cm⁻¹ show 138 the stretching and bending modes of (BO₃) groups in the structure, and the Raman shift at 139 754 cm⁻¹ is related to the stretching mode of (AlO₆) groups. The Be-O vibration modes are 140 probably at 1009 and 156 cm⁻¹, and the Raman shift at 606 cm⁻¹ probably corresponds to 141

Sn-O vibration. The Ca-O and Mg-O vibration modes are probably at 806 and 506 cm⁻¹,
respectively.

An infrared spectrum (400 to 5600 cm⁻¹) was obtained on a Nicolet iso50 FTIR 144 spectrometer coupled with a Continuum microscope installed in the School of Earth Sciences 145 at the Zhejiang University, using a KBr beam-splitter and a liquid-nitrogen cooled MCT-A 146 detector. All measurements were carried out using reflection technique. The representative 147 infrared spectrum of mengxianminite is given in Figure 3. The bands at 1426, 1328, 1155, 148 1050 and 918 cm⁻¹ correspond to the stretching vibrations of (BO₃) groups, the band at 711 149 cm^{-1} to the vibrations of (BeO₄) tetrahedra, and the band at 672 cm⁻¹ to the bending of (AlO₆) 150 octahedra. The infrared spectrum also gives no evidence for the presence of either H₂O or OH 151 in the structure of mengxianminite. 152

- 153
- 154

CHEMICAL COMPOSITION

Quantitative elemental microanalyses of mengxianminite were conducted with a JEOL 155 JXA-8100M electron microprobe (WDS mode, 15 kV, 20 nA, beam diameter 1µm) at the 156 157 Second Institute of Oceanography, State Oceanic Administration (Hangzhou, China). Standards for the analysis were topaz (Al $K\alpha$ and Si $K\alpha$), cassiterite (Sn $L\alpha$), forsterite (Mg 158 $L\alpha$), fayalite (Fe K α), synthetic MnTiO₃ (Mn K α and Ti K α), synthetic ZnO (Zn K α), albite 159 (Na $K\alpha$), K-feldspar (K $K\alpha$) and synthetic CaSiO₃ (Ca $K\alpha$). The low analytical total is due to 160 161 the presence of large amounts of BeO and B₂O₃ contents. 162 The BeO and B_2O_3 contents were measured using secondary ion mass spectrometry with

a CAMECA NanoSIMS 50L at the Institute of Geology and Geophysics, China Academy of

164	Sciences. A relatively high beam current (500 pA) was used initially to pre-sputter 12 μm ×12
165	μm of the matrix area. The measurements were undertaken in raster imaging mode by
166	scanning a focused $Cs^{^+}$ primary ion beam (30 pA, 0.5 μm diameter) over 10 μm \times 10 μm
167	matrix area within the pre-sputtered regions. Negative secondary ions ⁹ Be ⁻ , ¹⁰ B ⁻ , ¹¹ B ⁻ , ¹⁶ OH ⁻ ,
168	¹⁸ O ⁻ were collected simultaneously, along with secondary electrons (SE). In order to be used
169	as a standard for Be and B, the structure and composition of hambergite from the
170	Xianghualing skarn was confirmed as the F-free end-member Be ₂ (BO ₃)(OH) by single crystal
171	XRD in the Laboratory Mineralogy, Liège University (Belgium). The calibration factors for
172	Be and B in the standard were obtained through the calculation of the experimental Be and B
173	ions yield, having chosen O as the inference element for the matrix. Thus we derived the
174	ratios (Be/O) and (B/O), defined as (Be ⁻ /O ⁻)/((Be(at.)/O(at.)) and (B ⁻ /O ⁻)/((B(at.)/O(at.)),
175	respectively, where Be^- , B^- and O^- are the current intensities detected at the electron
176	multiplier and (at.), are the elemental atomic concentration. The ratios (Be/O) and (B/O) were
177	then used to calculate the Be and B concentration in mengxianminite. Additionally, lithium
178	was confirmed to be absent from the mineral.
179	The chemical composition of mengxianminite is given in Table 1. The empirical formula,

180 calculated the basis of 26 0 atoms formula unit, on per is: $(Ca_{1.64}, Na_{0.39})_{\Sigma 2.03}(Sn_{1.85}, Zn_{0.24})_{\Sigma 2.09}(Mg_{1.75}, Fe_{0.72}, Al_{0.42}, Mn_{0.19}, Ti_{0.01})_{\Sigma 3.09}Al_8[(B_{1.01}O_3)(Be_{0.94}O_3)]_{\Sigma 2.03}(Be_{0.94}O_3)]_{\Sigma 2.03}(Sn_{1.85}, Zn_{0.24})_{\Sigma 2.09}(Mg_{1.75}, Fe_{0.72}, Al_{0.42}, Mn_{0.19}, Ti_{0.01})_{\Sigma 3.09}Al_8[(B_{1.01}O_3)(Be_{0.94}O_3)]_{\Sigma 2.03}(Sn_{1.85}, Zn_{0.24})_{\Sigma 2.09}(Mg_{1.75}, Fe_{0.72}, Al_{0.42}, Mn_{0.19}, Ti_{0.01})_{\Sigma 3.09}Al_8[(B_{1.01}O_3)(Be_{0.94}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1.01}O_3)]_{\Sigma 3.09}Al_8[(B_{1$ 181 ₄)O₆]₂, yielding the simplified formula of Ca₂Sn₂Mg₃Al₈[(BO₃)(BeO₄)O₆]₂. The ideal formula 182 183 requires Al2O3 38.41 wt%, SnO2 28.38 wt%, MgO 11.39 wt %, CaO 10.56 wt%, B2O3 6.56 wt% and BeO 4.71 wt%, total 100.00 wt%. 184

186

X-RAY POWDER DIFFRACTION

187	The powder XRD pattern of mengxianminite was collected from micro-diffraction data of
188	two crystals, on a RIGAKU D/max Rapid IIR micro-diffractometer (CuK α , λ = 1.54056 Å) at
189	the School of Earth Sciences and Info-physics, Central South University, China. The
190	micro-diffractometer was operated with a Gandolfi-like motion, under 48 kV and 25 mA,
191	using a 0.05 mm diameter collimator; total exposure time was 2 h. The structural model of
192	single crystals (see below) was used to index the powder XRD pattern of mengxianminite
193	(Table 2). Calculated intensities were obtained from the structural data with POWDER CELL
194	(Krauz and Nolze 1996). The stronger eight lines of the powder XRD pattern [d in Å (I)(hkl)]
195	are: 3.000(35)(16 2 0); 2.931(100)(17 1 1); 2.475(29)(022); 2.430(30)(13 3 1); 2.375(100)(14
196	0 2/640); 2.028(52)(21 3 1); 1.807(35)(913); 1.530(98)(14 6 0/15 3 3). Because of small size
197	of the crystals and large beam diameter (100 μ m), some peaks of mengxianminite overlap
198	with phlogopite and fluorite. Unit-cell parameters calculated from powder XRD data of
199	mengxianminite are: $a = 60.83(14)$, $b = 9.835(4)$, $c = 5.742(1)$ Å, $V = 3435(10)$ Å ³ , $Z = 8$, and
200	space group is <i>Fdd</i> 2.

201

202

CRYSTAL STRUCTURE DETERMINATION

Single-crystal X-ray diffraction data, aimed to perform a structure refinement of mengxianminite (CIF^1 available on deposit), were collected on an Agilent Technologies Xcalibur four-circle diffractometer, equipped with an EOS CCD area-detector (University of Liège, Belgium), on a crystal fragment measuring 0.139 x 0.108 x 0.088 mm. Some 420

¹ Deposit item AM-?, CIF

207	frames with a spatial resolution of 1° were collected by the ϕ/ω scan technique, with a
208	counting time of 90 s per frame, in the range $5.34^{\circ} < 2\theta < 53.31^{\circ}$. A total of 7315 reflections
209	were extracted from these frames, corresponding to 2063 unique reflections. Unit cell
210	parameters refined from these reflections are $a = 60.699$ (4), $b = 9.914$ (1), $c = 5.745$ (1) Å, α
211	= $\beta = \gamma = 90^{\circ}$, $V = 3457.4$ (4) Å ³ , Z = 8, space group <i>Fdd2</i> . Crystal data, data-collection
212	information, and refinement details for mengxianminite are provided in Table 3. Data were
213	corrected for Lorentz, polarisation and absorption effects, the last with an empirical method
214	using the SCALE3 ABSPACK scaling algorithm included in the CrysAlisRED package
215	(Oxford Diffraction 2007). Scattering curves for neutral atoms, together with anomalous
216	dispersion corrections, were taken from International Tables for X-ray Crystallography
217	(Wilson 1992). In the final refinement cycle, all atoms were refined anisotropically, leading to
218	the R_1 [$F_0 > 2s(F_0)$] value 0.0432. Final atomic coordinates, equivalent isotropic displacement
219	parameters and bond valence sums, as well as anisotropic displacement parameters, are given
220	in Tables 4 and 5, respectively. Selected bond distances and angles are listed in Table 6.
221	The structure of mengxianminite is based on a closed-packed oxygen framework, with
222	two different modules stacked along the a axis (Figs. 4 and 5). The first module (module A)
223	consists of two O layers and one T1 layer. The O layer was made up of the edge-sharing
224	octahedra, occupied by the cations of Al1, Al2, Al3 and Al4 (<al-o> = 1.907-1.925 Å), each</al-o>
225	O layer contains six AlO_6 octahedra per layer in the unit-cell. The T1 layer with Al3 in
226	octahedra and Mg/Fe in tetrahedra occurs between two O layers; it consists of two AlO ₆
227	octahedra (\langle Al-O \rangle = 1.907 Å) and four (Mg,Fe)O ₄ tetrahedra (\langle Mg-O \rangle = 1.943 Å) per layer
228	in the unit-cell, site population refinement shows that the tetrahedral site is occupied by 0.56

229	Mg, 0.36 Fe and 0.08 Zn (Table 4). The second module (module B) is more complex,
230	consists of two T2 layers and one O' layer. The T2 layer is composed of two SnO ₆ octahedra
231	(\langle Sn-O \rangle = 2.077 Å), two BeO ₄ tetrahedra (\langle BeO \rangle = 1.668 Å), and two CaO ₁₁ polyhedra
232	(<ca-o> = 2.71 Å), the Sn octahedral site was occupied by $0.92 \text{ Sn} + 0.08 \text{ Mn}$, and 0.81 Ca</ca-o>
233	+ 0.19 Na in the CaO ₁₁ polyhedral site (Table 4); the O' layer was made up of four AlO_6
234	octahedra ($\langle Al-O \rangle = 1.975$ Å) and four BO ₃ groups ($\langle B-O \rangle = 1.364$ Å), Al5 occurs in the
235	octahedral site, which was occupied by $0.69 \text{ Al} + 0.31 \text{ Mg}$. As shown in Figure 5, the SnO ₆
236	octahedra are isolated in the T2 layers; their connectivity is realized via BeO ₄ and CaO ₁₁
237	groups. In the O' layer, AlO ₆ edge-sharing octahedra form chains running along the $\{011\}$ or
238	$\{0\overline{1}1\}$ direction; these chains are connected in the c direction by the BO ₃ triangular groups
239	(Fig. 5). The cation-layer sequence in mengxianminite can be described as 4 \times
240	(O-T1-O-T2-O'-T2), the framework of mengxianminite is accordingly composed of four A
241	modules and four B modules.

- 242
- 243

ORIGIN

Mengxianminite, ideally $Ca_2Sn_2Mg_3Al_8[(BO_3)(BeO_4)O_6]_2$, is a new Sn-bearing borate with additional O anions and without water (Strunz 06. AB. 90., Dana 24.2.8.1), showing a novel structural type belonging to the *Fdd2* space group. To consider the origin of mengxianminite, we must first define the context offered by the Xianghualing skarn. This skarn is characterized by the presences of large amounts of Sn minerals (cassiterite, hulsite, ferronigerite-2*N*1*S*), Be minerals (hsianghualite, liberite, chrysoberyl, hambergite, bertrandite, ferrotaaffeite-2*N*'2*S*), and B minerals (fluoborite, hambergite, dravite, hulsite), reflecting

multiple Sn and Be mineralizations. Zhang and Wang (1986) indicated that the assemblages 251 252 of chondrodite-phlogopite-fluoborite-hulsite were formed by the replacement of forsterite, 253 spinel and and iron-poor augite ("fassaite"), together with cassiterite-magnetite mineralization during introduction of F- and B-rich solutions in the Xianghualing deposit, and that the Be 254 255 mineralization of the Xianghualing skarn was attributed to the metasomatism and reformation processes of magnesium skarn by F- and B-rich fluids in the exocontact skarn zone. 256 Mengxianminite occurs as subhedral to euhedral crystals in the hsianghualite vein of the 257 Xianghualing skarn (Fig. 1). The intimate intergrowths of mengxianminite with hsianghualite, 258 259 phlogopite and fluorite indicate that it crystallized under F-rich conditions during the late 260 stages of mineralization in the Xianghialing skarn. To our knowledge, mengxianminite (or 261 similar synthetic compounds) has not been synthesized. On the basis of fluid inclusions studies, Liu and Zeng (1998) suggested that his his formed from 270 to 290 \square and at 262 30-60 MPa in the Xianghualing skarn. Since mengxianminite occurs intergrown with 263 264 hianghualite, these values must also represent the physical condition of mengxianminite formation. The presence of Sn and Be in the hydrothermal fluids responsible for the 265 formation of mengxianminite is probably derived from the genetically related Laiziling 266 granite, while B came from the wall-rocks (Tiaomajian Formation) with 284 ppm B (Zhong 267 268 2014).

- 269
- 270

IMPLICATIONS

271 Chemically, mengxianminite is close to minerals of nigerite group, but has lower 272 concentrations of Al_2O_3 . According to its chemical and structural features, it is also easy to 273 distinguish mengxianminite from other Sn- and Be-bearing minerals (sørensenite and

sverigeite) and Sn- and B-bearing phases (nordenskiöldine, tusionite, vistepite) found in
greisens and skarns, as well as in pegmatites and peralkaline rocks. Indeed, mengxianminite
is the first borate mineral which contains both Sn and Be.

The crystal structure of mengxianminite shown in the Figure 4, is a new modular 277 278 structure type with two different modules stacked along the a axis. The A module of mengxianminite consists of two O layers and one T1 layer, where one O layer and one T1 279 layer can be stoichiometrically identical to the spinel module of nigerite group minerals 280 (Arakcheeva et al. 1995; Grey and Gatehouse1979), as well as taaffeite group minerals 281 282 (Armbruster 2002). The A module of mengxianminite might be thus considered as the spinel module with an additional O layer. The intergrowths of mengxianminite with 283 magnesiotaaffeite-2N'2S found in the Xianghualing skarn suggests these minerals sharing the 284 same structural unit may crystallize under similar Be-, Al- and Mg- rich condition. The B 285 module of mengxianminite is a new module, composed of two T2 layers and one O' layer 286 (Fig. 5), showing the simplified formula $CaSnAl(BeO_4)(BO_3)$. The Ca atoms are located in a 287 11-coordinated polyhedron occurring between T2 layer and O' layer; the bond valence sum 288 289 for Ca is 1.62 (Table 4), slightly lower than 2, indicating some light element such as Na in the 11-coordinated polyhedron site. The similar bond distance of Mg and Al in the octahedra, 290 suggests the disordered distributions of Mg and Al in the octahedra of O' layer. However, 291 CaO_{11} polyhedron and BO_3 groups were never reported in the modules of minerals of nigerite 292 293 group, as well as taaffeite group minerals. The B module of CaSnAl(BeO₄)(BO₃) in crystal 294 structure of mengxianminite is thus a new module found in the nature.

295	It should be noted that the modular structure of mengxianminite can be compared to the
296	polysomatic structures of högbomite-24R (Hejny and Armbruster 2002), and the c unit-cell
297	parameter of mengxianminite is 5.740 Å, very similar to the <i>a</i> unit-cell parameter of phases
298	belonging to the nigerite, högbomite and taaffeite groups (Armbruster 2002; Hejny and
299	Armbruster 2002). Like nigerite group minerals, mengxianminite may be also one of
300	polysomatic minerals. The chemical feature (Table 1) and structural data show that Mg can be
301	replaced by Fe at the Mg sites, and minor Ti can enter the Sn sites. Therefore, it may be
302	imagined that the discovery of mengxianminite draws attention to a certain expectation that
303	Fe and Ti analogues of mengxianminite will be found in the future. In addition, similar
304	polysomatic minerals, made up of different ratios of mengxianminite modules, could also
305	exist.
306	
307	ACKNOWLEDGEMENTS
308	The authors thank E.S. Grew, Daniel Atencio, Fernando Colombo and an anonymous
309	reviewer for constructive criticism and suggestions that significantly improved the
310	manuscript. Financial support for the research was provided by NSF of China (Grant No.
311	41472036), China Scholarship council (SCS), and the Fundamental Research Funds for the
312	Central Universities.
313	
314	
315	
316	
317	
318	
319	
320	

322 323	
324	R EFERENCES CITED
325	Arakcheeva, A.V., Pushcharovskii, D.Y., Rastsvetaeva, R.K., Kashaev, A.A., and Nadezhina, T.N. (1995)
326	Crystal structure of nigerite-6H. Crystallography Reports, 40, 587–592.
327	Armbruster, T. (2002) Revised nomenclature of högbomite, nigerite, and taaffeite minerals. European
328	Journal of Mineralogy, 14, 389–395.
329	Chao, C.L. (1964) Liberite Li ₂ BeSiO ₄ , a new lithium-beryllium silicate mineral from the Nanling Ranges,
330	South China. Acta Mineralogica Sinica 44(3), 334-342 (in Chinese with English abstract)
331	American Mineralogist (1965), 50, 519 (abstract).
332	Grey, I.E., and Gatehouse, B.M. (1979) The crystal structure of nigerite-24R. American Mineralogist, 64,
333	1255–1264.
334	Hejny, C., and Armbruster, T. (2002) Polysomatism in högbomite: The crystal structures of 10T, 12H, 14T,
335	and 24R polysomes. American Mineralogist, 87, 277–292.
336	Huang, Y. H., Du, S.H., Wang, K.H., Zhao, C.L., and Yu, Z.Z. (1958) Hsianghualite, a new beryllium
337	mineral. Huanan Dizhi Yu Kuangchan, 7, 35 (in Chinese). American Mineralogist (1960), 44,
338	1327–1328 (abstract).
339	Huang, Y.H., Du, S. H., and Zhou, X.Z. (1988) Hsianghualing rocks, deposits and minerals. Beijing
340	Scientific Technique Press. 115–116 (in Chinese).
341	Huang, Y.H., Zhou, X.Z., Li, G.J., and Du, S.H. (1986) Mengxianminite, a new ferro-magnesium-calcium-
342	tin-aluminum oxide mineral. Papers and Proceedings of the General Meeting - International
343	Mineralogical Association (1986): p120 (abstract).
344	Krauz, W., and Nolze, G. (1996) POWDER CELL - a program for the representation and manipulation of
345	crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied
346	Crystallography, 29, 301–303.
347	Liu, J.Q., and Zeng Y.S. (1998) Preliminary study on fluid inclusions in hsianghualite. Huanan Dizhi Yu
348	Kuangchan, 1998, 56-63.
349	Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application.
350	Canadian Mineralogist, 19, 441–450.
351	Momma, K., and Izumi, F. (2011) VESTA 3 for three dimensional visualization of crystal, volumetric and
352	morphology data. Journal of Applied Crystallography, 44, 1272–1276.

- Oxford Diffraction (2007) CrysAlis CCD and CrysAlis RED, version 1.71. Oxford Diffraction, Oxford,
 England.
- 355 Rao, C., Hatert, F., Dal, B.F. Wang, R.C., Gu, X.P., and Baijot M. (2016) Mengxianminite, IMA 2015-070.
- 356 CNMNC Newsletter No. 29, February 2016 page 200; Mineralogical Magazine, 80(1), 199–205.
- 357 Smith, D.G.W., and Nickel, E.H. (2007) A system of codification for unnamed minerals: Report of the
- SubCommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and
 Classification. Canadian Mineralogist, 45, 983–1055).
- Wilson, A.J.C. (1992) International Tables for X-ray Crystallography, Vol. C. Kluwer Academic Press,
 London.
- Yang, Z.M., Ding, K.S., Fourestier, J.D., Mao, Q., and Li, H. (2012) Ferrotaaffeite- $2N^2S$, a new mineral species, and crystal structure of Fe²⁺-rich magnesiotaaffeite- $2N^2S$ from the Xianghualing tin-polymetallic ore field, Hunan Province, China. Canadian Mineralogist, 50, 21–29.
- Zhang, D.Q., and Wang, L.H. (1986) Metasomatism and zonation of the Xianghualing
 Tin-polymetallic deposit. Bulletin of the Institute of Mineral Deposits Chinese Academy of
 Geological Sciences, 2, 144–154.
- Zhong, J.L. (2014) Major types and prospecting direction of nonferrous and rare polymetallic ore deposit
 in Xianghualing area, South China. Geology and mineral resource of south China, 30(2), 99–108.
- 370 Zhu, J.C., Wang, R.C., Lu, J.J., Zhang, H., Zhang, W.L., Xie, L., and Zhang, R.Q. (2011) Fractionation,
- 371 Evolution, Petrogenesis and Mineralization of Laiziling Granite Pluton, Southern Hunan Province.
- 372 Geological Journal of China Universities, 17(3), 381–392.
- 373
- 374
- 375
- 376 377
- 378
- 379
- 380
- 381382
- 383
- 384
- 385
- 386

388 Figure captions:

389

- 390 FIGURE 1. BSE image (a) and photomicrograph (b) showing the occurrence and mineral associations of
- 391 mengxianminite in the Xianghualing skarn. Abbr.: Mxm mengxianminite, Fl fluorite, Phl phlogopite,
- 392 Hsh hsianghualite, Mag magnetite, Cas cassiterite.
- 393 FIGURE 2. The Raman spectrum of mengxianminite.
- 394 **FIGURE 3.** The infrared spectrum of mengxianminite.
- 395 FIGURE 4. The crystal structure of mengxianminite, drawn using the VESTA 3 program (Momma and
- 396 Izumi, 2011).
- 397 FIGURE 5. An enlarged view of a portion of the mengxianminite structure, showing the connectivity in the
- 398 A module (O-T1-O) and B module (T2-O'-T2). Drawn using the VESTA 3 program (Momma and Izumi
- 399 2011). For key, see Figure 4.
- 400

```
401 Table captions:
```

- 402
- 403 **TABLE 1.** Chemical composition of mengxianminite for the Xianghualing skarn
- 404 **TABLE 2.** X-ray powder diffraction pattern of mengxianminite (d in Å)
- 405 **TABLE 3.** Crystallographic data and refinement parameters for mengxianminite
- 406 **TABLE 4.** Final atomic coordinates, equivalent isotropic displacement parameters and bond
- 407 valence sums (BVS) for mengxianminite
- 408 **TABLE 5.** Anisotropic displacement parameters for mengxianminite (in $Å^2$)
- 409 **TABLE 6.** Selected bond distances (Å) in mengxianminite
- 410
- 411

412 413

414

(a) FI Mxm PhI Hsh Mag KLSG COMP 15.0kV ×120 100J/m WD11mm

FIGURE 1. BSE image (a) and photomicrograph (b) showing the occurrence and mineral associations of mengxianminite in the Xianghualing skarn. Abbr.: Mxm - mengxianminite, Fl - fluorite, Phl - phlogopite, Hsh - hsianghualite, Mag - magnetite, Cas - cassiterite.

FIGURE 2. The Raman spectrum of mengxianminite.

- 424
- 425
- 426

FIGURE 3. The infrared spectrum of mengxianminite.

453 454

FIGURE 4. The crystal structure of mengxianminite, drawn using the VESTA 3 program (Momma and Izumi, 2011).

- 456
- 457

FIGURE 5. An enlarged view of a portion of the mengxianminite structure, showing the connectivity in the module A (O-T1-O) and module B (T2-O'-T2). Drawn using the VESTA 3 program (Momma and Izumi 2011). For key, see Figure 4.

469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	
482	
483	

4	8	5

TABLE 1. Chemical composition of mengxianminite for the Xianghualing skarn

	Wt%	Range	Std. dev.		a.p
AI_2O_3	40.00	39.66-40.64	0.39	Al	8.423
SnO ₂	25.96	25.46-26.54	0.44	Sn	1.850
CaO	8.56	8.11-9.18	0.43	Са	1.637
MgO	6.57	5.86-7.75	0.74	Mg	1.748
FeO	4.83	4.58-5.24	0.23	Fe	0.721
$B_2O_3^*$	6.53	-		В	2.014
BeO [*]	4.37	-		Be	1.876
ZnO	1.81	1.21-2.24	0.38	Zn	0.238
MnO	1.23	1.09-1.42	0.13	Mn	0.186
Na ₂ O	1.13	0.77-1.40	0.28	Na	0.393
SiO ₂	0.04	0.02-0.05	0.01	Si	0.007
K ₂ O	0.00	0-0.01	0.00	К	0.000
T 0		0 01 0 22	0.08	т:	0.014
IIO_2	0.10	0.01-0.22	0.00	11	0.014
Total Total The B ₂ O ₃ and tructural form	0.10 101.12 I BeO conten nulas were ca	ts were measured	d by secondary basis of O = 26	ion mass atoms.	spectrom
Total Total The B ₂ O ₃ and	0.10 101.12 I BeO conten nulas were ca	ts were measured	d by secondary basis of O = 26	ion mass atoms.	spectrom
Total Total The B ₂ O ₃ and	0.10 101.12 I BeO conten nulas were ca	ts were measured alculated on the b	d by secondary pasis of O = 26	ion mass atoms.	spectrom
Total Total The B ₂ O ₃ and	0.10 101.12 I BeO conten nulas were ca	ts were measured	d by secondary pasis of O = 26	ion mass atoms.	spectrom
Total Total The B ₂ O ₃ and	0.10 101.12 I BeO conten nulas were ca	ts were measured alculated on the b	d by secondary basis of O = 26	ion mass atoms.	spectrom
Total Total The B ₂ O ₃ and tructural form	0.10 101.12 I BeO conten nulas were ca	ts were measured alculated on the b	d by secondary basis of O = 26	ion mass atoms.	spectrom
Total Total The B ₂ O ₃ and tructural form	0.10 101.12 I BeO conten nulas were ca	ts were measured alculated on the b	d by secondary basis of O = 26	ion mass atoms.	spectrom
Total Total The B ₂ O ₃ and tructural form	0.10 101.12 I BeO conten nulas were ca	ts were measured alculated on the b	d by secondary basis of O = 26	ion mass atoms.	spectrom
Total The B ₂ O ₃ and structural form	0.10 101.12 I BeO conten nulas were ca	ts were measured alculated on the b	d by secondary pasis of O = 26	ion mass atoms.	spectrome
Total The B ₂ O ₃ and tructural form	0.10 101.12 I BeO conten nulas were ca	ts were measured alculated on the b	d by secondary pasis of O = 26	ion mass atoms.	spectrom
Total The B ₂ O ₃ and tructural form	0.10 101.12 I BeO conten nulas were ca	ts were measured alculated on the b	d by secondary basis of O = 26	ion mass atoms.	spectrome

 TABLE 2. X-ray powder diffraction pattern of mengxianminite (d in Å)

I _{obs.}	d _{obs.}	I _{calc.}	d _{calc.}	hkl
_	-	74	7.604	800
-	-	39	4.307	711
20	4.04	41	3.998	911
17	3.63	38	3.692	11 1 1
35	3.00	43	3.008	16 2 0
100	2.931	78	2.902	17 1 1
25	2 0 4 2	46	2.858	202
20	2.042	100	2.844	131
0	0 701	14	2.772	531
9	2.701	22	2.762	602
20	2 714	16	2.706	731
20	2.714	78	2.690	19 1 1
-	-	35	2.587	20 2 0
20	2 5 1 5	12	2.535	24 0 0
20	2.010	32	2.531	11 3 1
29	2.475	34	2.479	022
30*	2.430	87	2.432	13 3 1
-	-	60	2.408	622
100	2 275	85	2.395	14 0 2
100	2.375	41	2.390	640
-	-	55	2.330	15 3 1
20	2.281	11	2.280	10 4 0
-	-	23	2.154	14 2 2
15	2 071	21	2.077	16 2 2
15	2.071	10	2.065	16 4 0
52	2.028	13	2.031	21 3 1
**	1.933	32	1.922	20 2 2
15	1.859	15	1.854	442
35	1.807	2	1.810	913
17	1 727	8	1.729	13 5 1
17	1.721	13	1.728	33 1 1
16	1.603	15	1.592	20 4 2
18	1 566	71	1.570	30 2 2
10	1.000	42	1.564	30 4 0
08*	1 530	18	1.534	14 6 0
30	1.550	10	1.531	15 3 3

511

* overlapping with phlogopite. ** overlapping with fluorite.

- 512
- 513
- 514
- 515

TABLE 3. Crystallographic data and refinement parameters for mengxianminite

Crystal size (mm)	0.139 x 0.108 x 0.088
Color	green
Space group	Fdd2
a, b, c (Å)	60.699 (4), 9.914 (1), 5.745 (1)
V (Å ³)	3457.4 (4)
Ζ	8
<i>D</i> (calc) (g/cm³)	4.170(calc.)
$2\theta_{min}, 2\theta_{max}$	5.36°, 57.48°
Range of indices	$-82 \le h \le 77, -13 \le k \le 12, -7 \le l \le 7$
Measured intensities	7315
Unique reflections	2063
Independent non-zero [$l > 2\sigma(l)$] reflections	1722
Refined parameters	193
$R_1 [F_0 > 2\sigma(F_0)]$	0.0432
R ₁ (all)	0.0594
wR ₂ (all)	0.0844
S (goodness of fit)	1.055
Max $\varDelta \sigma$ in the last l.s. cycle	0.001
Max peak and hole in the final ΔF map	+1.08 and -0.85
(<i>e</i> /Å ³)	

TABLE 4. Final atomic coordinates, equivalent isotropic displacement parameters and bond

540

541

542

543

544 valence sums (BVS) for mengxianminite Y Ζ BVS Atom Layer Х U_{eq} Sn T2 0.82975(6) 0.572538(9) -0.6547(2)0.00931(15) 3.72 Τ1 Mg 0.51025(3) 0.8333(2) 0.3371(6) 0.0096(5) 2.12 Са T2 0.58662(3) 0.6614(2) -0.1507(10) 0.0175(6) 1.74 AI1 0 0.53869(4)0.5824(3) 0.5907(13) 0.0101(5) 2.90 0 Al2 0.53871(3) 0.8324(3) -0.1616(9) 0.0099(5) 2.90 AI3 T1 0.5 0.5 0.3361(9) 0.0111(7) 3.01 Al4 0 0.53854(3)0.5838(3)0.0883(12) 0.0094(5)2.86 O' 0.4188(3) AI5 0.62505(4) 0.0792(11) 0.0126(9) 2.59 Be T2 0.66786(16) 0.7580(12) 0.008(2) -0.441(2)1.86 В O' 0.63570(14) 0.6693(11) -0.173(3)0.012(2) 3.04 01 0.52004(8) 0.9249(7) 0.612(3) 0.015(2) 1.95 02 0.52010(9) 0.9259(7) 0.0557(14) 0.013(2) 1.98 O3 0.55514(8) 0.5075(6) -0.1692(19)0.0108(14) 1.926 04 0.51997(8) 0.6469(6) 0.0138(14) 2.48 0.339(3) O5 0.55522(9) 0.7431(6) -0.396(2) 0.0130(13) 1.99 06 0.65819(9)0.6739(8) -0.185(3) 0.019(2) 1.933 07 0.55505(9) 0.7467(6) 0.0720(16) 0.0118(14) 2.20 0.0193(16) 08 0.62469(11) 0.6116(7) 0.0028(11) 1.86 09 0.55529(8) 0.5004(7) 0.3305(18) 0.0105(13) 1.74 O10 0.65806(9) 0.4121(7) 0.065(2) 0.015(2) 2.05 011 0.62279(10) 0.7261(7) -0.3461(12) 0.0185(18) 1.74 012 0.52210(8) 0.6663(7) -0.159(3)0.0155(12) 1.91 O13 0.59206(8) 0.4282(7) 0.089(3) 0.0174(13) 1.72 545 Occupancy: Sn = 0.92 Sn + 0.08 Mn; Mg = 0.56 Mg + 0.36 Fe + 0.08 Zn; 546 Ca = 0.81 Ca + 0.19 Na; AI5 = 0.69 AI + 0.31 Mg. 547 548 549 550 551 552 553 554 555 556 557 558

ABLE 5. Anisotropic displacement parameters for mengxianminite (in Å ²)						
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn	0.0100(2)	0.0080(2)	0.0094(3)	0.0004(3)	-0.0002(4)	0.0002(3)
Mg	0.0109(8)	0.0077(8)	0.010(1)	-0.0007(9)	0.001(1)	-0.001(1)
Са	0.0123(9)	0.017(1)	0.023(1)	-0.002(1)	-0.001(2)	-0.0001(9)
Al1	0.011(1)	0.009(1)	0.010(1)	-0.0052)	0.003(3)	-0.000(1)
Al2	0.011(1)	0.008(1)	0.011(1)	-0.001(1)	0.000(2)	-0.001(1)
AI3	0.012(1)	0.012(2)	0.010(2)	0	0	0.001(2)
Al4	0.009(1)	0.008(1)	0.011(1)	-0.006(2)	-0.000(2)	-0.000(1)
AI5	0.012(1)	0.013(1)	0.013(2)	0.003(1)	-0.002(2)	-0.001(1)

TABLE 6. Selected bond distances (Å) in mengxianminite

			пендхіантні	.0	
Sn-O3	2.056(6)	Al1-03	1.858(11)	Al2-05	1.897(10)
Sn-O5	2.014(9)	AI1-05	1.884(7)	Al2-07	1.873(9)
Sn-O7	2.066(8)	AI1-09	1.978(10)	Al2-09	1.947(7)
Sn-O13	2.079(12)	Al1-012	1.940(15)	Al2-012	1.931(7)
Sn-O6	2.200(11)	AI1-O2	1.929(7)	Al2-02	1.922(8)
Sn-O10	2.045(6)	AI1-O4	1.946(1)	Al2-01	1.954(11)
<sn-o></sn-o>	2.077	<ai-o></ai-o>	1.923	<ai-o></ai-o>	1.921
AI4-O3	1.943(11)	AI5-013	2.006(6)	Ca-O3	2.448(6)
Al4-07	1.903(7)	AI5-08	1.961(8)	Ca-O5	2.504(9)
Al4-09	1.911(10)	AI5-08'	1.959(10)	Ca-07	2.455(8)
Al4-012	1.921(15)	AI5-O11	1.955(10)	Ca-O13	2.713(13)
Al4-04	1.934(14)	AI5-011'	1.963(8)	Ca-O13'	3.055(12)
Al4-01	1.940(7)	AI5-O10	2.007(6)	Ca-O6	2.899(11)
<ai-o></ai-o>	1.925	<ai-o></ai-o>	1.975	Ca-O6'	2.884(12)
Mg-O12	1.964(5)	Be-O6	1.787(17)	Ca-O8	2.522(7)
Mg-O2	1.953(8)	Be-O9	1.637(11)	Ca-O11	2.548(7)
Mg-O4	1.940(6)	Be-O13	1.607(19)	Ca-O10	2.694(1)
Mg-O1	1.916(13)	Be-O10	1.640(13)	Ca-O10	3.088(10)
<mg-o></mg-o>	1.943	<be-o></be-o>	1.668	<ca-o></ca-o>	2.71
B-O6	1.368(9)	Al3-02×2	1.903(8)		
B-08	1.338(15)	Al3-04 ×2	1.895(6)		
B-011	1.387(14)	Al3-O1 ×2	1.922(11)		
<b-o></b-o>	1.364	<ai-o></ai-o>	1.907		