Spin state and electronic environment of iron in basaltic glass in the lower mantle

Fumiya Maeda¹, Seiji Kamada¹,², Eiji Ohtani¹, Naohisa Hirao³, Takaya Mitsui⁴, Ryo Masuda⁵, Masaaki Miyahara⁶, and Catherine McCammon⁷

¹Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
²Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan.
³Japan Synchrotron Radiation Research Institute, Hyogo, 679-5198, Japan.
⁴Synchrotron Radiation Research Center, Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo, 679-5148, Japan.
⁵Research Reactor Institute, Kyoto University, Osaka, 590-0494, Japan.
⁶Department of Earth and Planetary Systems Science, Graduate School of Science,
Abstract

The spin states of iron in deep magmas are one of the most important properties that affect the partitioning of iron between magmas and minerals, and thus the gravitational stability of magmas in the Earth. We investigated the spin state and electronic environments of iron in a basaltic glass at room temperature and pressures from 1 bar to 130 GPa using a diamond anvil cell combined with energy domain synchrotron 57Fe Mössbauer source spectroscopy. The basaltic glass represents an analog of a multi-component magma typical for the Earth. The Mössbauer spectra could be fitted by a two pseudo-Voigt doublet model including a high quadrupole splitting (QS) doublet and a low QS doublet, which were assigned to high-spin Fe$^{2+}$ and high-spin Fe$^{3+}$, respectively. The high-spin states of Fe$^{2+}$ and Fe$^{3+}$ remained up to 130 GPa corresponding to the pressure in the lowermost mantle. The center shift values of high-spin Fe$^{2+}$ and Fe$^{3+}$ did not show large changes with pressure, ruling out sharp electronic changes in the basaltic glass. Therefore, a sharp and complete
spin crossover of Fe$^{2+}$ from the high spin to the low spin state does not appear to occur in the basaltic glass although the possibility of a partial spin transition cannot be fully excluded. The QS values of Fe$^{2+}$ increased slightly at 0–20 GPa and above 100 GPa, and the higher value was preserved after decompression to ambient conditions. This behavior may be related to distortion of Fe$^{2+}$ polyhedra due to short-range ordering on compression. Such a distortion of Fe$^{2+}$ polyhedra could gradually stabilize Fe$^{2+}$ in the basaltic glass with pressure compared to bridgmanite according to the Jahn–Teller effect, and thus could gradually enhance the partitioning of iron into deep magmas in the lower mantle.

Keywords: Silicate glass, deep magma, spin transition, lower mantle, synchrotron Mössbauer spectroscopy, diamond anvil cell

Introduction

The existence of magmas in the deep Earth is important for understanding deep Earth processes and evolution of the Earth. New geophysical observations and advances in high-pressure and high-temperature experiments have provided new insight on deep magmatism in the Earth's mantle (e.g., Andrault et al. 2014; Kawakatsu et al. 2011; Lay et
al. 2004; Ohtani and Maeda 2001; Pradhan et al. 2015; Sakamaki et al. 2013; Schmandt et al. 2014; Schmerr 2012; Song et al. 2004; Williams and Garnero 1996). Since partial melting can explain seismic velocity anomalies of ultra-low velocity zones (ULVZ) in the lowermost mantle, dense deep magmas have been considered to exist above the core-mantle boundary (CMB) (e.g., Berryman 2000; Lay et al. 2004; Komabayashi et al. 2009; Ohtani and Maeda 2001; Williams and Garnero 1996). Such deep magmas may cause super-plumes relating to hot spots (e.g., Lay et al. 2004; Murakami et al. 2014). On the other hand, the observed anomalies in the lowermost mantle have also been explained by the existence of metallic iron from the outer core (Otsuka and Karato 2012).

The controversies regarding the ULVZ arise partly from a lack of knowledge about the stability of deep magmas. In order to discuss the possible existence of deep magmas, we need to understand the physical and chemical properties of magmas under extreme high-pressure conditions. For instance, the gravitational stability of deep magmas can depend on the density contrast between solid and melt (e.g., Ohtani and Maeda 2001; Agee and Walker 1993) or the permeability of the melt through mantle mineral assemblages (i.e., dihedral angles between melt and minerals). However, magmas are technically difficult to
study in high-pressure and high-temperature experiments. As an alternative, silicate glasses have been used as analogs of deep magmas because they are considered to preserve the structures of quenched silicate melts (e.g., Lee, 2011; Lee et al. 2012; Williams and Jeanloz 1988).

The spin state of iron is one of the most important factors affecting the gravitational stability of deep magmas because iron is an abundant and relatively dense element among the major elements of the Earth. The partitioning of iron into silicate melt was reported to be enhanced at pressures greater than ~76 GPa, which could cause the formation of iron-rich dense melt above the CMB (Nomura et al. 2011). Nomura et al. (2011) suggested that iron partitioning between solid and liquid can be changed due to spin crossover of iron from the high-spin (HS) to the low-spin (LS) state occurring around 70 GPa. On the other hand, several recent studies have suggested that the HS-LS transition might not occur in a narrow pressure range in silicate glass at pressures corresponding to the Earth’s lower mantle (e.g., Gu et al. 2012; Mao et al. 2014; Murakami et al. 2014; Prescher et al. 2014). Moreover, no spin transition has been suggested in silicate glasses (Mao et al. 2014; Prescher et al. 2014). However, an intermediate-spin (IS) state of Fe$^{2+}$,
defined as the electron configuration with two unpaired d electrons, was recently observed in (Mg,Fe)SiO$_3$ glass above 20 GPa using Mössbauer spectroscopy, and a gradual HS-IS transition has been suggested under the pressure in the lower mantle (Murakami et al. 2014).

Previous studies have discussed the spin state of iron in simple-component glasses, for example, (Mg,Fe)(Si,Al)O$_3$ glass (Gu et al. 2012; Mao et al. 2014; Murakami et al. 2014; Nomura et al. 2011; Prescher et al. 2014) or (Na,Fe)Si$_2$O$_6$ glass (Prescher et al. 2014). Since the deep interior of the Earth likely involves multi-component systems, such complex systems should be studied in order to obtain realistic results for deep magmas. In this study we focused on a basaltic glass with composition typical for the Earth and measured the spin states of iron in this glass at pressures up to about 130 GPa, corresponding to the pressure in the lowermost mantle. The spin states of iron were measured using energy domain synchrotron 57Fe Mössbauer source spectroscopy, which provides direct information on the electronic environments of iron.

Experimental methods
The starting material was a synthesized 57Fe-enriched basaltic glass (Table 1). The basaltic glass was prepared by quenching a molten mixture of oxides and carbonates; SiO$_2$, MgO, Al$_2$O$_3$, TiO$_2$, 57Fe$_2$O$_3$ (96.64 % 57Fe, ISOFLEX) and CaCO$_3$, K$_2$CO$_3$, Na$_2$CO$_3$. The mixture was ground with an alumina mortar and melted in a gas-mixing furnace in a controlled H$_2$-CO$_2$ atmosphere at 1673 K for 5 min. The oxygen fugacity was adjusted to the conditions of coexistence of metallic iron and ferrous iron with approximately log fO$_2$ = -10.5. The quenched glass was ground again to make a chemically homogeneous powder.

The composition of the glass was analyzed using a field emission-scanning electron microscope (FE-SEM), JEOL JSM-7100F, operating at 15 kV and equipped with an energy dispersive X-ray spectroscopic (EDS) detector, Oxford Inca.

High-pressure experiments were performed using a symmetric-type diamond anvil cell (DAC). The culet size of the diamonds was 150 µm in diameter. Tungsten was used as a gasket, and was pre-intended to a thickness of 50 µm with a 70-µm hole as a sample chamber. The hole was drilled using a Nd: YAG laser. The silicate glass powder was sandwiched between NaCl pellets which worked as a pressure medium and a pressure scale. The pressure was determined based on the pressure dependence of the diamond T$_{2g}$ mode in
the experiments (Akahama and Kawamura 2004).

Energy domain synchrotron 57Fe Mössbauer source (SMS) spectroscopy was conducted at beamlines BL10XU and BL11XU of SPring-8 at room temperature and pressures ranging from 1 atm to 130 GPa. A SMS with a 57FeBO$_3$ (111) nuclear Bragg monochromator is useful to study a small specimen in a DAC (Mitsui et al. 2009; Potapkin et al. 2012). The Doppler velocity scales were calibrated using a 3-µm thick piece of α-57Fe foil under ambient conditions. Spectra were collected for 3–11 hours depending on the signal quality. The obtained Mössbauer spectra were fitted with pseudo-Voigt lineshape doublets (e.g., Alberto et al. 1996; Lagarec and Rancourt 1997) using the MossA software package (Prescher et al. 2012). This fitting model empirically explains well the lineshape of the ferric doublet in basaltic glasses (Partzsch et al. 2004). Ferrous doublets are often fitted assuming distributions of hyperfine parameters. However, the present glass has a high ferric content ($\text{Fe}^{3+}/\Sigma\text{Fe} \sim 0.66$) and therefore the shape of the ferrous iron doublet is not well constrained by the data. Without constraints on the correlation between center shift (CS) and quadrupole splitting (QS) (Fig. 1), unrealistic values often result (e.g., negative correlation between CS and QS). We therefore assumed zero correlation (i.e., assuming no
distributions in CS) for the ferrous iron doublet and obtained plausible fitting results that are consistent with previous studies (e.g., Alberto et al. 1996; Partzsch et al. 2004).

A thin foil was prepared from the sample recovered after quenching from 130 GPa to ambient conditions using a focused ion beam (FIB) system, JEOL JEM-9320FIB, and observed using a field emission-gun transmission electron microscope (FE-TEM), JEOL JEM-2100F, operating at 200 kV at Tohoku University. The thin foil (~10 µm × 3 µm × 1 µm) was extracted from the center of the sample chamber first, and then thinned to ~100 nm in thickness. The Ga ion beam was accelerated to 30 kV. The detailed FIB procedures are described by Miyahara et al. (2008).

Results

Figure 1 shows representative Mössbauer spectra at 1 atm and high pressures. The obtained Mössbauer spectra were fitted using a two-doublet model, one with higher quadrupole splitting (QS: 1.9–2.9 mm/s) and one with lower QS (1.2–1.8 mm/s). The high and low QS doublets are assigned to HS Fe$^{2+}$ and HS Fe$^{3+}$, respectively, from comparison of QS and center shift (CS) values with those of HS Fe$^{2+}$ and Fe$^{3+}$ reported by Dyar et al.
The CS values of the two doublets show relatively small changes with pressure compared to the CS decrease caused by the HS-IS transition, and thus they are almost constant on compression and after decompression to ambient pressure (Figs. 2, 3a). This behavior suggests that there are no abrupt electronic transitions involving the two iron species in the glass up to 130 GPa. The QS values of the two doublets show some increase from 1 bar to 130 GPa (Fig. 3b). The QS of HS Fe$^{2+}$ slightly increases at pressures up to ~20 GPa and above 100 GPa with somewhat steeper gradients. The QS increase of HS Fe$^{3+}$ is smaller and thus QS is not as sensitive to pressure. The QS of Fe$^{2+}$ is higher in the recovered sample than in the starting material (Figs. 3b, 4). QS of Fe$^{2+}$ therefore changes irreversibly with pressure while CS of Fe$^{2+}$ and CS and QS of Fe$^{3+}$ are reversible (Fig. 3a, b). The area ratios of Fe$^{2+}$ and Fe$^{3+}$ (Fe$^{2+}$/ΣFe and Fe$^{3+}$/ΣFe) do not change with pressure within fitting uncertainties (Fig. 3c). Nevertheless, the Fe$^{2+}$/ΣFe ratio of the recovered sample is slightly less than the starting value. Therefore we considered the possibility of the iron disproportionation reaction: $3\text{Fe}^{2+} \rightarrow 2\text{Fe}^{3+} + \text{Fe}^0$ (e.g., Frost et al. 2004; Miyajima et al. 1999) and investigated the recovered sample using TEM. We confirmed that no
crystalline products were present in the recovered glass based on the selected area electron
diffraction pattern and the bright field image (Fig. 5), and thus we do not consider that the
iron disproportionation reaction occurred to any observable extent.

Discussion

Spin states of iron under high-pressure conditions in silicate glasses.

The present Mössbauer spectra can be fitted to a two-doublet model over the entire
pressure range and the CS values of Fe$^{2+}$ and Fe$^{3+}$ do not show a large change with pressure.
Therefore, there is no clear evidence for a sharp spin crossover of ferrous iron (e.g., spin
collapse around 70 GPa: Nomura et al. 2011) at any pressure within the lower mantle. This
conclusion is consistent with recent studies of silicate glasses that also show no evidence
for spin crossover (Mao et al. 2014; Prescher et al. 2014). On the other hand, some recent
studies reported gradual spin transitions of HS Fe$^{2+}$ in silicate glasses (Gu et al. 2012;
Murakami et al. 2014; Ramo and Stixrude 2014). They reported HS-LS and/or HS-IS
transitions of ferrous iron that occurred over a broad pressure range. From the present
results we cannot rule out such a partial and gradual spin transition. Moreover, the large
proportion of Fe$^{3+}$ could make it difficult to detect a lower spin-number component in this study, since IS Fe$^{2+}$ might partially overlap with HS Fe$^{3+}$ in the spectra during such a spin transition. Although such subtle spin transitions from HS Fe$^{2+}$ to LS or IS Fe$^{2+}$ cannot be completely excluded, our data support the conclusion that HS Fe$^{2+}$ and HS Fe$^{3+}$ are the main iron species in the present basaltic glass up to 130 GPa.

Relation between hyperfine parameters and structure on compression.

Hyper-fine parameters and the structure of glasses are closely related with each other. The CS is sensitive to the s-electron density at the iron nucleus, which directly relates to the Fe-O distances of iron polyhedra. Changes of CS on compression can be caused by two possible changes of Fe-O polyhedra: reduced Fe-O distances and increased coordination numbers of the polyhedra. Since the reduction of the Fe-O distances can increase s-electron density at the nucleus and hence decrease CS, CS becomes smaller on simple compression of Fe-O polyhedra. On the other hand, CS enhancement can occur when the coordination number of Fe increases and Fe-O bonds are elongated. Changes of coordination number can occur over wide pressure ranges in the case of silicate glasses.
Therefore, the effect of pressure on CS is determined by a competition between the effects of Fe-O shortening and gradual coordination increase in silicate glasses.

The CS of Fe$^{2+}$ and Fe$^{3+}$ shows only minor changes with increasing pressure in the present basaltic glass compared with the drop in CS at the HS-IS transition (Fig. 2: Murakami et al. 2014). The CS of HS Fe$^{2+}$ decreases slightly at 20–60 GPa and then increases between 60 and 80 GPa. A decrease of ferrous CS has also been reported at similar pressures in previous studies (Prescher et al. 2014; Rouquette et al. 2008). Prescher et al. (2014) observed a decreasing tendency of Fe$^{2+}$ CS below 50 GPa. They explained this tendency by the stronger influence of compression compared to the coordination increase of Fe$^{2+}$ up to 50 GPa with a possible change in compression mechanism below 50 GPa. Such a change in compression mechanism could be caused by the increase of Si coordination number from 4 to 6 reported in silicate glasses, which can be nearly finished around 50 GPa (e.g., Murakami and Bass 2010; 2011; Prescher et al. 2014; Sanloup et al. 2013; Sato and Funamori 2008; 2010). The intense compression of silicate glasses was reported up to 20 GPa to be related to an Si-coordination increase (Wakabayashi et al. 2011; 2015). A recent
ab initio study showed a coordination number increase in Fe$^{2+}$ up to 40 GPa, which contributes to the increase of Fe$^{2+}$ CS. Therefore, the present CS decrease might be the result of the stronger compression effect related to Si-coordination increase rather than a coordination-increase effect in Fe$^{2+}$ (Wakabayashi et al. 2011; 2015). The coordination number of Fe$^{2+}$ was reported to increase slightly between 50 and 80 GPa (Bajgain et al. 2015). The subtle CS increase in this study might be related to a small coordination change. The Fe$^{2+}$ CS becomes almost constant with pressure and decreases above 120 GPa. The invariance of CS around 100 GPa might be related to a trade-off between compression and increase of coordination number. The Si coordination number has been suggested to increase above 100 GPa in silicate glasses, which may be related to a coordination change of Fe around 100 GPa (e.g., Murakami and Bass 2010; 2011; Ohira et al. 2016). The CS of Fe$^{3+}$ shows almost no dependence on pressure apart from a slight decrease with increasing pressure. The CS of Fe$^{3+}$ may therefore record only the compression effect of Fe$^{3+}$ polyhedra.

The QS is sensitive to the electric field gradient at the iron nucleus, which is influenced by the asymmetry of the coordination polyhedron and/or the electronic
distribution. The QS of Fe$^{2+}$ generally increases with distortion of the Fe-O coordination polyhedron but it decreases at the Fe$^{2+}$ HS-IS transition to almost the same values as the QS of HS Fe$^{3+}$ in the case of silicate glass (Murakami et al. 2014). The QS of HS Fe$^{2+}$ in the present glass increases somewhat up to 20 GPa and between 100 and 130 GPa. This tendency may be caused by a distortion of Fe$^{2+}$ polyhedra related to short-range ordering that occurs during compression (e.g., Kantor et al. 2009). An increase of coordination number of Si and Fe is expected at these pressures (e.g., Bajgain et al. 2015; Murakami and Bass 2010; 2011; Ohira et al. 2016; Sanloup et al. 2013; Sato and Funamori 2008; 2010). The Si coordination increase was suggested to originate from the change of Si-O-Si angles and distortion of the SiO$_4$ tetrahedra in silicate glasses (Stolper and Ahrens 1987). The coordination change might also be related to the distortion of Fe polyhedra. If distorted polyhedra existed during the continuous structural changes in the glass, Fe might prefer distorted sites because their energies are lower than non-distorted ones according to the Jahn–Teller effect. Such short-range ordering was observed to be preserved after quenching to ambient pressure for (Mg,Fe)O (Kantor et al. 2009). The larger QS of Fe$^{2+}$ in the present recovered sample is comparable to the value at high pressure (Fig. 3). This observation
might also be evidence of short-range ordering in the basaltic glass.

Fe$^{2+}$ QS decreases between 80 and 100 GPa, while Fe$^{2+}$ CS slightly increases in the same pressure range (Fig. 3). This behavior differs from previous observations of the HS-IS spin transition in a silicate glass where both Fe$^{2+}$ CS and QS decrease (Murakami et al. 2014); hence the spin transition can be excluded as the cause of the Fe$^{2+}$ QS decrease. Experiments and calculations indicate that structural changes might be small in silicate glasses within this pressure range (e.g., Bajgain et al. 2015; Sanloup et al. 2013; Murakami and Bass 2011). Therefore, Fe$^{2+}$ QS might show the opposite tendency to short-range ordering after forming higher coordination polyhedra and without structural changes between 80 and 100 GPa.

Relative area ratios of Fe$^{2+}$ and Fe$^{3+}$.

The relative abundance of iron species in the basaltic glass as measured by their relative areas does not change with pressure within experimental uncertainty (Fig. 3c), although visually the relative area of the Fe$^{2+}$ component appears smaller at the highest pressure and in the recovered sample (Fig. 1). Considering the large uncertainties in fitted
areas and that two previous studies reported an apparent decrease of Fe$^{2+}/\sum$Fe with pressure in silicate glasses (Gu et al. 2012; Prescher et al. 2014), we examine more carefully the case for a decrease of Fe$^{2+}/\sum$Fe. We distinguish between effects that change the relative areas of Fe$^{2+}$ and Fe$^{3+}$ components while relative abundance remains constant, and effects that do change their relative abundance.

Previous studies suggested that the relative area of the Fe$^{2+}$ doublet could decrease due to: (i) HS-LS spin transition of Fe$^{2+}$ with overlap of HS Fe$^{3+}$ and LS Fe$^{2+}$, and/or (ii) different changes in the recoil-free fractions of Fe$^{2+}$ and Fe$^{3+}$ with pressure (Gu et al. 2012; Prescher et al. 2014). An argument against both of these effects is the important observation that the relative area of Fe$^{2+}$ remains smaller after quenching in both the present study and that of Prescher et al. (2014). This observation rules out both possibilities because spin transitions and effects leading to changes in recoil-free fraction are not preserved on decompression to ambient conditions. Previous studies further suggested that Fe$^{2+}/\sum$Fe could decrease through iron disproportionation and/or pressure-induced oxidation of Fe$^{2+}$ (Prescher et al. 2014). Since we confirmed (see above) the lack of evidence for iron disproportionation using TEM and iron oxidation is not expected to occur at room
temperature, these possibilities can also be ruled out.

We propose a further possibility to explain an apparent decrease in the relative area of the Fe$^{2+}$ component without changing the abundance of Fe$^{2+}$, namely electron hopping between Fe$^{2+}$ and Fe$^{3+}$. Such an electron exchange between Fe$^{2+}$ and Fe$^{3+}$ could result in a virtual valence state of Fe$^{n+}$ ($2 < n < 3$), which has been observed as a Mössbauer doublet in iron-bearing minerals at ambient conditions with CS intermediate between Fe$^{2+}$ and Fe$^{3+}$ (Amthauer and Rossman 1984; Fei et al. 1994). This electron change could occur between edge- or face-shared Fe$^{2+}$ and Fe$^{3+}$ polyhedra (e.g., Amthauer and Rossman 1984; Fei et al. 1994) and could be enhanced at high pressure (Morris and Williams 1997). Tetrahedral sites of Si were considered to share edges or faces in the process of coordination increase from 4 to 6 at high pressure (Stolper and Ahrens 1987). Such edge- or face-sharing in Fe$^{2+}$ and Fe$^{3+}$ polyhedra can be expected in the case of Fe$^{2+}$ since its coordination number may also change from 4 to 6 (Bajgain et al. 2015). Coordination increase could hence promote electron hopping between Fe$^{2+}$ and Fe$^{3+}$. In addition, silicate glasses have been reported to partially retain their densified structures after decompression (e.g., Ohtani et al. 1985; Xue et al. 1989; Wakabayashi et al. 2015). Therefore, Fe$^{n+}$
resulting from electron hopping enhanced by pressure could be preserved after
decompression to ambient conditions in the basaltic glass. In this case the subspectra of
Fe^{n+} and Fe^{3+} could overlap due to the broad linewidths of the Mössbauer spectra of silicate
glass. In any event, such a minor change in relative areas does not influence the conclusion
of our study.

\textbf{Implications}

The basaltic composition is typical for the Earth; thus basaltic glass has been used
as an analog for the magmas in the deep Earth (e.g., Murakami et al. 2014; Ohtani and
Maeda 2001). Deep magmas expected in the lowermost mantle may be generated by partial
melting of the basaltic portion of subducted slabs in the lowermost mantle and are
suggested to be richer in SiO$_2$ compared to the composition of mid-ocean ridge basalts
(MORB) (Andrault et al. 2014). The basaltic glass used in the present study is more
SiO$_2$-rich than MORB. Therefore it may be relevant for the magmas in the lowermost
mantle that can cause seismic anomalies (e.g., Lay et al. 2004; Williams and Garnero
1996).
One of the most significant observations in the present study is the absence of a sharp spin crossover in Fe$^{2+}$, contrary to one suggested by Nomura et al. (2011) to occur around 59–77 GPa. We therefore do not predict iron enrichment in magmas through a sharp change in the magma-crystal partition coefficient, $D_{Fe}(\text{solid/liquid})$, caused by spin crossover of Fe$^{2+}$ in magmas. On the other hand, Andrault et al. (2012) reports a gradual decrease of $D_{Fe}(\text{solid/liquid})$ on compression without any steep change up to pressures corresponding to the lowermost mantle conditions. This gradual change may be explained based on the present results in terms of a distortion of Fe$^{2+}$ polyhedra, because the cation could be more stable in the distorted site according to the Jahn–Teller effect. As mentioned above, the slight increase of Fe$^{2+}$ QS combined with the irreversible change of QS after decompression suggests increased short-range order in Fe$^{2+}$ polyhedra. Such a distortion of Fe-O polyhedra can enhance the stability of octahedrally coordinated ferrous ion in the basaltic glass because of the Jahn–Teller splitting of the 3d orbitals (Burns 1993). In the case of (Mg,Fe)(Si,Al)O$_3$ bridgmanite, the main component of the lower mantle, the QS of each Fe species has been reported to decrease or remain almost constant on compression to lower-mantle pressures (e.g., Kupenko et al. 2015; Lin et al. 2012; McCammon et al. 2010).
This behavior may be an indication that Fe-O polyhedra in bridgmanite undergo less distortion than the present glass, and thus, Fe$^{2+}$ in bridgmanite may have a higher energy than in the silicate glass in terms of the Jahn–Teller effect. Therefore, Fe may favor the silicate melt relative to minerals under lower mantle conditions, based on the consideration of the present glass as a structural analog to the multicomponent melt of Andrault et al. (2012). In addition, the slight and gradual change of QS with pressure is a common tendency of ferrous QS in the present study and the $D_{Fe}(\text{solid/liquid})$ decrease reported by Andrault et al. (2012) (Fig. 6). Moreover, the Fe$^{2+}$ QS increase around 80 GPa and decrease above 100 GPa corresponds almost exactly to the decrease and increase of $D_{Fe}(\text{solid/liquid})$ in Andrault et al. (2012) (Fig. 6). These observations may also support a relation between the distortion of Fe-O polyhedra and the partitioning of iron.

We note that $D_{Fe}(\text{solid/liquid})$ can be affected by spin crossovers in mantle minerals (e.g., Fujino et al. 2014). A gradual HS-IS(1S) spin transition was reported for bridgmanite in previous Mössbauer studies (e.g., Kupenko et al. 2015; McCammon et al. 2008; 2010). On the other hand, we cannot rule out the possibility of a partial HS-IS transition in the basaltic glass. Therefore, the effect of the spin transition on
$D_{Fe}(\text{solid/liquid})$ may be moderated if the spin transitions occurred in both bridgmanite and a silicate melt. Although the present results suggest that Jahn–Teller effects in basaltic melts may play a greater role in iron partitioning in the lower mantle than the spin transition in mantle minerals, more detailed work is required to understand the geophysical and geochemical properties of deep magmas.

Acknowledgments

Nanami Suzuki, Maki Hamada, Tatsuya Sakamaki, Akio Suzuki (Tohoku University) and Yasuo Ohishi (JASRI) contributed valuable discussion and technical support during the experiments. Bjorn Mysen (Carnegie Institution of Washington) and Clemens Prescher (University Cologne) provided valuable discussions and suggestions on the manuscript. This work was supported by the Grant-in-Aid for Scientific Research to E.O. (numbers 22000002 and 15H05748) from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government, and by the International Research and Training Group "Deep Earth Volatile Cycles" funded by the German Science Foundation (grant number GRK 2156/1). The synchrotron radiation experiments were
performed at SPring-8 with the approval of the Japanese Radiation Research Institute (Proposals 2014A0104, 2014A3516, 2014B0104, 2014B3519, 2015A0104, and 2015B0104). F.M. was supported by the International Joint Graduate Program in Earth and Environmental Science (GP-EES), Tohoku University. This work and F.M. were supported by the JSPS Japanese-German Graduate Externship.

References cited

Dyar, M.D. (1985) A review of Mössbauer data on inorganic glasses: the effects of
composition on iron valency and coordination. American Mineralogist, 70, 304–316.

Figure Captions

Figure 1. Mössbauer spectra of the basaltic glass at high pressures. The spectra were acquired at ambient conditions and 10 ± 2 GPa, 56 ± 7 GPa, 88 ± 2 GPa and 126 ± 2 GPa. The top and bottom ambient spectra correspond to the starting material ("starting") and the recovered sample ("recovered"). All of these spectra were fitted well based on HS Fe\(^{2+}\) (gray shaded area) and HS Fe\(^{3+}\) (red line) doublets.

Figure 2. QS-CS relations in basaltic glass. The QS and CS values of the present study are compared to those from Dyar et al. (1985). The solid black squares and solid red diamonds show values from the present study on compression for HS Fe\(^{2+}\) and HS Fe\(^{3+}\), respectively. The open symbols show the present results of the recovered sample after quenching to ambient conditions. The blue triangles and green squares show the CS-QS values of HS Fe\(^{2+}\) and IS Fe\(^{2+}\) from Murakami et al. (2012). The gray and red shaded areas ("D85") indicate values for Fe\(^{2+}\) and Fe\(^{3+}\), respectively, in various silicate glasses at ambient conditions reported by Dyar (1985).
Figure 3. Pressure dependence of hyperfine parameters of the basaltic glass: (a) center shift (CS), (b) quadrupole splitting (QS) and (c) area ratio of sites in the basaltic glass. The solid black squares and solid red diamonds show values on compression for HS Fe$^{2+}$ and HS Fe$^{3+}$, respectively. The open symbols show the results for the recovered sample.

Figure 4. Mössbauer spectra of the basaltic glass at 1 atm: (a) starting basaltic glass acquired at BL11XU of SPring-8, (b) sample recovered after quenching from 130 GPa to 1 atm.

Figure 5. TEM observations of the basaltic glass recovered from 130 GPa: (a) bright field image and (b) electron diffraction image of the basaltic glass observed by the TEM. The texture is homogenous and shows no evidence for existence of metallic iron grains. In addition, only a halo pattern from the glass was observed in the diffraction pattern; there are no spots or lines derived from crystalline phases.

Figure 6. Relation between Fe partition coefficient and quadrupole splitting of Fe$^{2+}$: The
upper and lower figures show the pressure dependence of the iron partition coefficient $D_{\text{Fe(solid/liquid)}}$ in Andrault et al. (2012) and the QS of HS Fe$^{2+}$ in this study, respectively. The blue and green arrows indicate trends of D_{Fe} and QS, respectively. The dashed lines represent linear least squares fits of each dataset. The solid and open circles show the data on compression and after quenching to ambient conditions, respectively, for Fe$^{2+}$ QS in the present study.
Table 1. Composition of basaltic glass.

<table>
<thead>
<tr>
<th></th>
<th>[wt%]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>55.11</td>
<td>± 3.90</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.36</td>
<td>± 0.14</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.66</td>
<td>± 0.99</td>
</tr>
<tr>
<td>FeO*</td>
<td>9.93</td>
<td>± 1.52</td>
</tr>
<tr>
<td>MgO</td>
<td>8.77</td>
<td>± 0.81</td>
</tr>
<tr>
<td>CaO</td>
<td>11.33</td>
<td>± 0.84</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.34</td>
<td>± 0.10</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.34</td>
<td>± 0.12</td>
</tr>
<tr>
<td>Total</td>
<td>100.85</td>
<td>(n = 66)</td>
</tr>
</tbody>
</table>
Table 2. Fitting results of the Mössbauer spectra of the basaltic glass.

<table>
<thead>
<tr>
<th>Pressure [GPa]</th>
<th>Fe2+</th>
<th>Fe3+</th>
<th>Fe2+/ΣFe3+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CS [mm/s]</td>
<td>QS [mm/s]</td>
<td>CS [mm/s]</td>
</tr>
<tr>
<td>0</td>
<td>1.05 ± 0.06</td>
<td>1.88 ± 0.09</td>
<td>0.31 ± 0.03</td>
</tr>
<tr>
<td>8 ± 2</td>
<td>1.06 ± 0.05</td>
<td>2.12 ± 0.10</td>
<td>0.35 ± 0.03</td>
</tr>
<tr>
<td>10 ± 2</td>
<td>1.05 ± 0.05</td>
<td>2.20 ± 0.12</td>
<td>0.34 ± 0.03</td>
</tr>
<tr>
<td>24 ± 2</td>
<td>0.97 ± 0.26</td>
<td>2.54 ± 0.12</td>
<td>0.37 ± 0.12</td>
</tr>
<tr>
<td>56 ± 7</td>
<td>0.93 ± 0.13</td>
<td>2.50 ± 0.51</td>
<td>0.33 ± 0.05</td>
</tr>
<tr>
<td>75 ± 2</td>
<td>1.04 ± 0.10</td>
<td>2.79 ± 0.21</td>
<td>0.41 ± 0.08</td>
</tr>
<tr>
<td>86 ± 2</td>
<td>1.07 ± 0.10</td>
<td>2.64 ± 0.25</td>
<td>0.28 ± 0.06</td>
</tr>
<tr>
<td>98 ± 2</td>
<td>1.11 ± 0.21</td>
<td>2.29 ± 0.24</td>
<td>0.23 ± 0.05</td>
</tr>
<tr>
<td>103 ± 2</td>
<td>1.09 ± 0.12</td>
<td>2.26 ± 0.11</td>
<td>0.25 ± 0.04</td>
</tr>
<tr>
<td>109 ± 2</td>
<td>1.10 ± 0.12</td>
<td>2.37 ± 0.14</td>
<td>0.24 ± 0.04</td>
</tr>
<tr>
<td>121 ± 2</td>
<td>1.05 ± 0.07</td>
<td>2.52 ± 0.21</td>
<td>0.25 ± 0.04</td>
</tr>
<tr>
<td>126 ± 2</td>
<td>1.03 ± 0.07</td>
<td>2.67 ± 0.17</td>
<td>0.23 ± 0.04</td>
</tr>
<tr>
<td>130 ± 2</td>
<td>0.94 ± 0.39</td>
<td>2.86 ± 0.19</td>
<td>0.38 ± 0.14</td>
</tr>
<tr>
<td>0 (quenched)</td>
<td>0.99 ± 0.16</td>
<td>2.43 ± 0.72</td>
<td>0.38 ± 0.09</td>
</tr>
</tbody>
</table>
Figure 3b

Quadrupole splitting [mm/s]

(b)

Pressure [GPa]

- Black circles
- Red diamonds

- Error bars indicate uncertainty.
Figure 3c

(c)
Figure 4

(a) Starting material

(b) Recovered sample
D_{Fe} (Bridgmanite/Liquid) in Andrault et al. (2012)

Quadrupole splitting [mm/s]

HS Fe$^{2+}$ in this study