1	Revision 1
2	A Raman calibration for the quantification of SO ₄ ²⁻ groups dissolved in silicate glasses:
3	Application to natural melt inclusions.
4	
5	Yann Morizet ^{1*} , Emanuela Gennaro ^{2,3} , Sébastien Jego ² , Zoltan Zajacz ⁴ , Giada Iacono-
6	Marziano ² , Michel Pichavant ² , Ida Di Carlo ² , Clément Ferraina ² , Priscille Lesne ²
7	
8	(1) Laboratoire de Planétologie et Géodynamique de Nantes (LPGN) UMR 6112 CNRS,
9	Université de Nantes, Nantes Atlantique Universités, 2 rue de la Houssinière, 44322
10	NANTES (France)
11	
12	(2) Institut des Sciences de la Terre D'Orléans (ISTO) UMR 7327 CNRS, Université
13	d'Orléans BRGM, Campus Géosciences, 1A rue de la Férolerie, 45071 ORLEANS Cedex 2
14	(France)
15	
16	(3) Dipartimento Scienze della Terra e del Mare (DiSTeM), Università di Palermo, via
17	Archirafi, 22, 90123 Palermo, Italy
18	
19	(4) Department of Earth Sciences, University of Toronto, 22 Russell St., Toronto, ON M5S
20	3B1 (Canada)
21	

- 23 *Corresponding author: Yann Morizet
- 24 Postal address:
- 25 Laboratoire de Planétologie et Géodynamique de Nantes (LPG Nantes), UMR-CNRS 6112,
- 26 Université de Nantes.
- 27 2 rue de la Houssinière, 44322 Nantes Cedex (FRANCE)
- 28 phone: +33 (0) 2 5112 5491
- 29 fax: +33 (0) 2 5112 5268
- 30 *E-mail: yann.morizet@univ-nantes.fr
- 31

32 Abstract

Sulfur is an important volatile element involved in magmatic systems. Its quantification in 33 34 silicate glasses relies on state-of-the-art techniques such as Electron Probe Micro-Analyses 35 (EPMA) or X-ray Absorption Spectroscopy but is often complicated by the fact that S dissolved in silicate glasses can adopt several oxidation states (S^{6+} for sulfates or S^{2-} for 36 37 sulfides). In the present work, we use Micro-Raman spectroscopy on a series of silicate 38 glasses to quantify the S content. The database is constituted by 47 silicate glasses of various compositions (natural and synthetic) with S content ranging from 1179 to 13180 ppm. Most 39 40 of the investigated glasses have been synthesized at high pressure and high temperature and under fully oxidizing conditions. The obtained Raman spectra are consistent with these fO_2 41 conditions and only S^{6+} is present and shows a characteristic peak located at ~1000 cm⁻¹ 42 corresponding to the symmetric stretch of the sulfate molecular group ($v_1 SO_4^{2-}$). The intensity 43 of the $v_1 SO_4^{2-}$ peak is linearly correlated to the ppm S⁶⁺ determined by EPMA. Using 44 subsequent deconvolution of the Raman spectra, we established an equation using the ratio 45 between the areas of the $v_1 \text{ SO}_4^{2-}$ peak and the silicate network species (Qⁿ) in the high 46 frequency region: 47

48
$$ppm S^{6+} = 34371 \frac{ASO_4^{2-}}{AQ^n} \pm 609$$

We tested our calibration on several silicate glasses equilibrated under moderately reducing conditions (QFM+0.8 \leq fO₂ \leq QFM+1.4) in which S is dissolved as both SO₄²⁻ and S²⁻. We also analysed several olivine-hosted melt inclusions collected from Etna for which the fO₂ and S speciation are unknown. For these samples, the S content estimated by the Raman calibration is systematically lower than the total S measured by EPMA. We combined both methods to estimate the S²⁻ content not accounted for by Raman and derive the S speciation

- and fO_2 conditions. The derived fO_2 is consistent with the imposed fO_2 for synthesised glasses
- and with current assumed fO_2 conditions for basaltic melt inclusions from Etna.
- 57 Keyword: Micro-Raman spectroscopy, S content, silicate glass, melt inclusions, S speciation,
- 58 redox conditions.

INTRODUCTION

61	Sulfur (S) is the most important volatile element in magmatic systems after H_2O and CO_2
62	(Carroll and Webster 1994; Symonds et al. 1994; Clemente et al. 2004). The S output from
63	volcanic emissions to the atmosphere contributes to the global change in the chemistry of the
64	Earth's atmosphere (Stevenson et al. 2003; Oppenheimer et al. 2011). Even at low
65	concentration, sulfur is partitioned into the fluid phase (Webster et al. 2009; Webster and
66	Botcharnikov 2011; Oppenheimer et al. 2011); hence, playing a major role in the eruptive
67	degassing of many volcanic eruptions (Scaillet et al. 2003). However, high sulfur
68	concentrations can be found in natural melt inclusions from various geological settings
69	(Métrich and Wallace 2008; Vigouroux et al. 2008; Mitchell and Dawson 2012), suggesting S
70	enrichment in the silicate melt at pre-eruptive conditions.
71	Experimental investigations have provided numerous constraints on how S behaves in silicate
72	melts at magmatic conditions (O'Neill and Mavrogenes 2002; Tsujimura et al. 2004; Scaillet
73	and Pichavant 2005; Jugo et al. 2005, 2010; Lesne et al. 2011). However, the different
74	oxidation state that S can take as a function of fO_2 represents a major difficulty for the
75	understanding of S behaviour in silicate melts. In magmatic systems, S is present dissolved in
76	silicate melt mainly as sulfides (S^{2-}) and sulfates (S^{6+}) (e.g. Fincham and Richardson 1954;
77	Carroll and Rutherford 1988; Métrich and Clocchiatti 1996; O'Neill and Mavrogenes 2002;
78	Moretti and Ottonello 2003; Klimm and Botcharnikov 2010; Métrich and Mandeville 2010).
79	The sulfate (SO_4^{2-}) groups are dissolved in silicate melts when oxidizing conditions are
80	prevailing whereas it is present as sulfide (S ²⁻) species when more reducing conditions are
81	achieved (e.g. Métrich and Clocchiatti 1996; Jugo et al. 2005; Baker and Moretti 2011).
82	Therefore, S speciation in silicate melt constitutes a good proxy for silicate melt redox state.

83	The quantification of S in silicate glasses either in experimental charges or in natural
84	magmatic rocks relies mainly on the use of Electron Micro-Probe Analysis (EPMA) technique
85	(e.g. Métrich and Clocchiatti 1996; O'Neill and Mavrogenes 2002; Scaillet and McDonald
86	2006; Moune et al. 2007, 2009; Morizet et al. 2013a, 2015a) or Secondary Ion Mass
87	Spectrometry (SIMS; e.g. Hauri et al. 2002). The EPMA method has also been used to
88	determine the oxidation state of S speciation in silicate glasses (Carroll and Rutherford 1988;
89	Beermann et al. 2011). However, more advanced analytical techniques are routinely used to
90	discriminate between oxidized (S^{6+}) and reduced (S^{2-}) S species such as X-ray absorption
91	spectroscopy (e.g. Paris et al. 2001; McKeown et al. 2004; Fleet et al. 2005; Wilke et al. 2008;
92	Métrich et al. 2009; Jugo et al. 2010; Stelling et al. 2011; Klimm et al. 2012a,b) and Micro-
93	Raman spectroscopy (Klimm and Botcharnikov 2010; Wilke et al. 2011; Morizet et al.
94	2013a). Determining S speciation in solid samples using Nuclear Magnetic Resonance also
95	offers great potentialities (Couch et al. 2004; Wilke et al. 2011; Klimm et al. 2012a). In
96	comparison to previously mentioned analytical techniques, Micro-Raman spectroscopy is a
97	more accessible analytical technique in laboratories. Furthermore, Micro-Raman spectroscopy
98	appears more straightforward as it is rapid (i.e. spectra are acquired within a few minutes) and
99	necessitates only little preparation of the samples.
100	S dissolved in silicate network structure as SO4 ²⁻ molecular groups exhibits a strong Raman
101	activity at ~1000 cm ⁻¹ corresponding to the symmetric stretch vibration of the S-O bonds (v_1

SO₄²⁻; McKeown et al. 2001; Tsujimura et al. 2004; Manara et al. 2007; Lenoir et al. 2009; 102

103 Klimm and Botcharnikov 2010; Morizet et al. 2013a). The position of this peak is dependent

on the charge balancing cation and has been shown to vary from 960 to 1060 cm⁻¹ in 104

crystalline phases from PbSO₄ to BeSO₄ (McKeown et al. 2001). In the case of crystalline 105

- sulfates, additional vibrations are also present but in lower intensity (Manara et al. 2007; 106
- White 2009) as compared to the $\sim 1000 \text{ cm}^{-1}$ peak intensity. The case of S²⁻ in reduced 107

108	conditions is more complex as the Raman activity is dependent on the silicate glass
109	composition. For instance, in Fe-free H_2O -bearing silicate glasses, S^{2-} species are dissolved in
110	the melt structure as HS ⁻ groups producing a Raman signal at \sim 2570 cm ⁻¹ attributed to the
111	symmetric stretch vibration of the H-S bond (Klimm and Botcharnikov 2010; Morizet et al.
112	2013a). For Fe-bearing natural silicate glasses, S ²⁻ species dissolves in silicate melt structure
113	by forming Fe-S complexes. By comparison with sulfide crystalline compounds, Klimm and
114	Botcharnikov (2010) suggested that such dissolution mechanism in silicate melts leads to a
115	peak located at ~400 cm ⁻¹ (Mernagh and Trudu 1993; Hope et al. 2001; White 2009);
116	however, a reliable quantification of such reduced species is hampered by the strong
117	overlapping of the 400 cm ⁻¹ peak and the bridging oxygen bending vibration of the silicate
118	network (Mysen et al. 1980; McMillan 1984; Mysen and Frantz 1994; Malfait et al. 2007).
119	Raman spectroscopy is an analytical technique initially non-quantitative; however, recent
120	progresses have led to the establishment of quantitative calibration of volatiles species
121	dissolved in silicate glasses such as H ₂ O (Thomas 2000; Zajacz et al. 2005; Mercier et al.
122	2009; Le Losq et al. 2012) and more recently CO_2 dissolved as carbonate groups (CO_3^{2-} ;
123	Morizet et al. 2013b). For S species, Lenoir et al. (2009) reported a quantitative Raman
124	calibration for SO_4^{2-} dissolved in borosilicate glasses (i.e. with an industrial purpose) for S
125	content up to ~6000 ppm. They found that the $v_1 \text{ SO}_4^{2-}$ intensity at ~1000 cm ⁻¹ is linearly
126	correlated to the S content (expressed as SO ₃) but the calibration factor appears dependent on
127	the glass chemical composition. More recently Klimm et al. (2012a) proposed an equation to
128	determine the S speciation in Fe-free to Fe-poor silicate glasses dissolving S as both SO_4^{2-} and
129	HS ⁻ . This calibration has been established on \sim 15 data point of various silicate glass
130	compositions with S speciation being constrained from XANES data.

131 In the present work, we establish a calibration using Raman spectroscopy to quantitatively 132 determine the S content dissolved as SO_4^{2-} groups in silicate glasses. We used an extensive

	database of silicate glasses of various chemical compositions either natural (basaltic to
134	dacitic) or synthetic (Fe-free compositions), with S content from 1179 to 13180 ppm. Silicate
135	glasses used in the calibration were synthesised under oxidizing conditions and S is dissolved
136	as sulfate molecular groups (SO $_4^{2-}$). We tested the capability of our linear calibration, which
137	appears to be independent of the glass composition, to estimate the redox conditions on both
138	experimental glasses and natural melt inclusions. We initially used basaltic glasses
139	synthesised under known moderately reducing conditions to retrieve the fO ₂ at which they
140	were equilibrated. We then estimated the fO_2 of natural melt inclusions from Mt. Etna, and
141	compared to previous estimates.
142	
143	SAMPLE DESCRIPTION
144	Sample set for calibration of SO_4^{2-} content
144 145	Sample set for calibration of $SO_4^{2^2}$ content To establish the present calibration, we analysed a series of silicate glasses synthesised under
144 145 146	Sample set for calibration of SO_4^{2-} content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is
144 145 146 147	Sample set for calibration of SO ₄ ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content.
144 145 146 147 148	Sample set for calibration of SO ₄ ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content. This dataset is the most extensive compilation considered so far for establishing a calibration
144 145 146 147 148 149	Sample set for calibration of SO4 ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content. This dataset is the most extensive compilation considered so far for establishing a calibration of the S content using Raman spectroscopy with 47 data points with a wide range of silicate
144 145 146 147 148 149 150	Sample set for calibration of SO4 ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content. This dataset is the most extensive compilation considered so far for establishing a calibration of the S content using Raman spectroscopy with 47 data points with a wide range of silicate melt compositions: SiO ₂ from 46 to 68 wt.%, Al ₂ O ₃ from 13 to 20 wt.%, FeO ^{tot} up to 11
144 145 146 147 148 149 150 151	Sample set for calibration of SO ₄ ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content. This dataset is the most extensive compilation considered so far for establishing a calibration of the S content using Raman spectroscopy with 47 data points with a wide range of silicate melt compositions: SiO ₂ from 46 to 68 wt.%, Al ₂ O ₃ from 13 to 20 wt.%, FeO ^{tot} up to 11 wt.%, CaO from 1.5 to 24 wt.%, MgO up to 11 wt.%, Na ₂ O up to 8 wt.% and K ₂ O up to 9
144 145 146 147 148 149 150 151 152	Sample set for calibration of SO ₄ ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content. This dataset is the most extensive compilation considered so far for establishing a calibration of the S content using Raman spectroscopy with 47 data points with a wide range of silicate melt compositions: SiO ₂ from 46 to 68 wt.%, Al ₂ O ₃ from 13 to 20 wt.%, FeO ^{tot} up to 11 wt.%, CaO from 1.5 to 24 wt.%, MgO up to 11 wt.%, Na ₂ O up to 8 wt.% and K ₂ O up to 9 wt.% and S content from 1179 to 13180 ppm. The investigated samples have either Fe-free
144 145 146 147 148 149 150 151 152 153	Sample set for calibration of SO ₄ ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content. This dataset is the most extensive compilation considered so far for establishing a calibration of the S content using Raman spectroscopy with 47 data points with a wide range of silicate melt compositions: SiO ₂ from 46 to 68 wt.%, Al ₂ O ₃ from 13 to 20 wt.%, FeO ^{tot} up to 11 wt.%, CaO from 1.5 to 24 wt.%, MgO up to 11 wt.%, Na ₂ O up to 8 wt.% and K ₂ O up to 9 wt.% and S content from 1179 to 13180 ppm. The investigated samples have either Fe-free synthetic or Fe-bearing natural compositions, and are mostly obtained from previous works.
144 145 146 147 148 149 150 151 152 153 154	Sample set for calibration of SO ₄ ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content. This dataset is the most extensive compilation considered so far for establishing a calibration of the S content using Raman spectroscopy with 47 data points with a wide range of silicate melt compositions: SiO ₂ from 46 to 68 wt.%, Al ₂ O ₃ from 13 to 20 wt.%, FeO ^{tot} up to 11 wt.%, CaO from 1.5 to 24 wt.%, MgO up to 11 wt.%, Na ₂ O up to 8 wt.% and K ₂ O up to 9 wt.% and S content from 1179 to 13180 ppm. The investigated samples have either Fe-free synthetic or Fe-bearing natural compositions, and are mostly obtained from previous works. For Fe-free synthetic glasses, we analysed samples from Morizet et al. (2013a, 2015a) having
144 145 146 147 148 149 150 151 152 153 154 155	Sample set for calibration of SO ₄ ²⁻ content To establish the present calibration, we analysed a series of silicate glasses synthesised under pressure (up to 0.5 GPa) and equilibrated with different amount of S. The sample dataset is reported in Table 1 along with the major elements chemical composition, and the S content. This dataset is the most extensive compilation considered so far for establishing a calibration of the S content using Raman spectroscopy with 47 data points with a wide range of silicate melt compositions: SiO ₂ from 46 to 68 wt.%, Al ₂ O ₃ from 13 to 20 wt.%, FeO ^{tot} up to 11 wt.%, CaO from 1.5 to 24 wt.%, MgO up to 11 wt.%, Na ₂ O up to 8 wt.% and K ₂ O up to 9 wt.% and S content from 1179 to 13180 ppm. The investigated samples have either Fe-free synthetic or Fe-bearing natural compositions, and are mostly obtained from previous works. For Fe-free synthetic glasses, we analysed samples from Morizet et al. (2013a, 2015a) having composition of Anorthite-Diopside eutectic, and from Zajacz (2015) having various

157	$Na_2O-K_2O-CaO-FeO-MgO-Al_2O_3-SiO_2$ system. Investigated natural glass compositions are
158	various. Samples from Jégo and Pichavant (2012) have dacitic compositions with $SiO_2 > 67$
159	wt.%. Glass samples from Pichavant et al. (2006), Lesne (2008), Lesne et al. (2011), and
160	Gennaro (2017) have alkali basaltic compositions and were synthesised from natural rock
161	powders collected from different volcanic centres (e.g. Etna, Vesuvius, Stromboli, Mt Pelée
162	and Soufriere St Vincent). Glass samples from Iacono-Marziano et al. (subm.) have basaltic-
163	picritic compositions obtained from the minor crystallization of a picritic rock from Noril'sk 1
164	intrusion (Russia).
165	All investigated glasses were synthesised using high pressure apparatuses (either piston-
166	cylinder or Internally Heated Pressure Vessel) and have been equilibrated under oxidizing
167	conditions at more than 1 log unit above the Quartz-Fayalite-Magnetite solid buffer ($fO_2 >$
168	QFM+1, see Table 1). These fO ₂ conditions are reported in the considered publications and
169	often represent the intrinsic fO_2 conditions at pressure and temperature in IHPV (Lesne et al.
170	2011) and piston-cylinder (Morizet et al. 2015a) apparatuses. Zajacz (2015) imposed very
171	oxidizing conditions ($fO_2 > QFM+1.8$) in piston-cylinder experiments by using Re-ReO ₂ solid
172	buffer. Pichavant et al. (2006), Gennaro (2017), and Iacono-Marziano et al. (subm.) conducted

- their experiments in IHPV apparatuses, using variable hydrogen partial pressures. The fO_2
- 174 was estimated by redox sensor methods (Co-Pd-CoO, Ni-Pd-NiO; Pownceby and O'Neill
- 175 1994), from the composition of the solid sensor and the determined melt H_2O content (see
- 176 Morizet et al. 2010).
- 177 Under the reported oxidizing conditions in Table 1, S is expected to be mostly present as
- 178 SO_4^{2-} species (Nagashima and Katsura 1973; Carroll and Rutherford 1988; Jugo et al. 2005,
- 179 2010; Klimm et al. 2012). X-ray absorption spectroscopic data on HAB27, 28 and Ca-3 show
- 180 only the presence of sulphate species (Pichavant et al. *unpub*.).

More generally, the considered studies do not report any evidence of reduced sulfur species dissolved in the silicate glasses, except Morizet et al. (2013a), who observed by Raman spectroscopy a small proportion of HS⁻ in sample AD-5-5, and estimated it to represent less than 3% of the total S.

185

- 186 Moderately reduced basaltic glasses
- 187 Six basaltic glasses synthesised in IHPV from natural rock powders at 80-200 MPa and
- 188 1200°C and under moderately reducing conditions ($0.8 < fO_2 \le QFM+1.6$; Gennaro 2017;

189 Iacono-Marziano et al. *subm*.) have been considered (see Table 1). Under the fO_2 conditions

estimated for these samples, Jugo et al. (2010) showed that oxidized sulfate species (S^{6+}

dissolved as SO_4^{2-} molecular groups) and reduced sulfides species (S²⁻ complexed to Fe

atoms) coexist in basaltic melt compositions. We therefore used the equation (Eq. 1) of Jugo

et al. (2010) to estimate the molar fraction of oxidized sulfur (XS^{6+} , Table 1) in the six

194 experimental glasses:

195
$$S^{6+} / \sum S = 1/(1 + 10^{(2.1 - 2\Delta FMQ)})$$
 Eq. 1

With Eq. 1, we determined XS^{6+} at 0.4 and 0.6 for 27034 and 27042 samples, respectively; 0.8 for 27031 and 27032; 0.3 and 0.9 for GB44.2 and GV59.3, respectively. It should be emphasised that the calculated molar fractions are probably tainted with a large error considering that under those fO_2 conditions the change in S speciation is very fast and any slight variation in fO_2 will induce a strong change in XS^{6+} (Jugo et al. 2010; Wilke et al. 2011).

Our calibration was also tested via the analyses of natural basaltic glass inclusions entrapped
in olivine crystals collected at Etna volcano from pyroclastic products dated at 4000 years ago

204	(Coltelli et al. 2005; Kamenetsky et al. 2007) and lava flow dated at 5000-15000 years ago
205	(Kamenetsky and Clocchiatti 1996), in which S speciation (and fO_2) are unknown (see Table
206	1). Therefore, there is an interest as to whether or not it is possible to derive the concentration
207	of S ²⁻ , and thus the speciation of S, by calculating the difference between the total S
208	concentration as determined by EPMA and the SO_4^{2-} concentration obtained by Raman
209	spectroscopy. By extension, it would be possible to estimate the fO_2 conditions at which the
210	melt inclusions equilibrated. Data of the glass inclusions are reported in Table 1 and an
211	example of glass inclusion is shown in Figure 1. The inclusions are basaltic in composition
212	and the total S concentration determined by EPMA ranges from 1100 to 2570 ppm (see Table
213	1).
214	
215	ANALYTICAL METHODS
216	Electron Probe Micro Analyses for S content
217	The major element concentrations determined by EPMA are reported in Table 1 and were
218	collected from the scientific publications from which the silicate glasses are issued. Full
219	details on the analytical methods of the major element concentrations along with the
220	associated errors can be found from the subsequent references.
221	The glass S content was determined for each glass sample from at least 10 analyses. In most
222	studies, analytical conditions for S measurements were usually 50 to 70 nA beam current, 15
223	kV accelerating voltage and 60 s peak counting time on one spectrometer. Jégo and Pichavant
224	(2012) used a 10 s counting time on each spectrometer. The error on the S content in Table 1
225	
	represents the standard deviation calculated from the replicate analyses. Several standards
226	represents the standard deviation calculated from the replicate analyses. Several standards were used for calibrating the S signal from EPMA. Zajacz (2015) used anhydrite (CaSO ₄) and

228	and Pichavant (2012), Morizet et al. (2013a, 2015a) and Pichavant et al. (2006) are synthetic
229	hydrous dacitic glasses with 750, 1400 and 1900 ppm (Clemente et al., 2004). Gennaro (2017)
230	used the three previous glasses as well as barite and pyrrhotite (FeS) crystalline standards.
231	The reported error on S content from EPMA is on average ± 402 ppm, although several
232	samples exhibit large error on their determined S content such as the AD-5-5 for which an
233	error of ± 3397 ppm is given by Morizet et al. (2013a).

234

235 Micro-Raman spectroscopy

236 We conducted the micro-Raman analyses on two different spectrometers. For silicate glasses synthesised under oxidizing conditions, we used a Jobin-Yvon LabRam 300 spectrometer 237 238 equipped with an Innova 300-5W Argon ion laser from Coherent© operating at a wavelength 239 of 514 nm. Natural silicate glass inclusions and silicate glasses synthesised under moderately 240 reducing conditions (Gennaro 2017) were analysed on a Jobin-Yvon LabRam HR800 241 equipped with a solid-state diode laser operating at 532 nm. The LabRam 300 spectrometer is 242 equipped with a 2400 grooves/mm grating and the spectral resolution is determined to be on the order of 1 cm⁻¹. The LabRam HR800 spectrometer is equipped with a 1800 grooves/mm 243 grating allowing a spectral resolution better than 0.5 cm⁻¹. On both spectrometers, the 244 245 analyses were performed in confocal mode and the spatial resolution is better than $2 \mu m$. On 246 the LabRam 300, a x50 Olympus objective was used for the analyses of the synthesised glasses; on the LabRam HR 800, a x100 Olympus objective was used for the analyses of the 247 248 melt inclusions. In confocal mode, the depth resolution of the analyses is lower than 5 μ m on 249 the LabRam 300 and better than 2 µm on the LabRam HR 800. The backscattered Raman signal was collected in between 200 and 1250 cm⁻¹. Analyses were also conducted in the 2500 250

cm⁻¹ region to check for the possible presence of HS⁻ groups. The spectral frequency position
was calibrated using the emission lines of Ne- and Hg-lamps.

253 On both spectrometers, the output power was set to between 50 and 125 mW depending on the sample composition. For Fe-bearing silicate glasses, the output power of the laser was 254 255 kept low in order to avoid sample heating and melting; for synthetic Fe-free samples, an 256 output power of 125 mW could be used without damaging the glass chips. Several spectra 257 were collected on each glass samples. For each spectrum, we performed 5-10 scans on a given 258 sample with an acquisition time of 15 to 60 s on the LabRam 300. Due to the small size of the 259 glass inclusions (\sim 40 µm) as shown in Figure 1, at best two spectra were collected on each inclusion with the LabRam HR 800. For silicate glass inclusions, 5 scans of 10 s were 260 261 sufficient to obtain a good signal to noise ratio. The use of two different spectrometers and 262 different analytical conditions does not represent a problem. For instance, we provide in the 263 Supplementary material Raman spectra acquired on both spectrometers for a typical sample 264 (IN52). The Raman spectra are almost identical and subsequent treatment of the spectra lead 265 to comparable results in term of S content as determined from the calibration. This is 266 consistent with previous works which have demonstrated that analytical conditions are not 267 influencing subsequent quantitative Raman calibrations (e.g. Le Losq et al. 2012; Morizet et 268 al. 2013b; Di Genova et al. 2015, 2016). This is especially true considering that the calibration of the SO₄²⁻ Raman signal with the aluminosilicate network Raman signal are located in the 269 270 same frequency range ($800-1200 \text{ cm}^{-1}$); therefore detector sensitivity will be identical for the SO_4^{2-} and the aluminosilicate network Raman signals (Le Losq et al. 2012). 271

272

273

RESULTS

274 Spectrum description

275Typical spectra are shown in Figure 2 for different samples: A) synthetic Fe-free Anorthite-276Diopside eutectic glasses from Morizet et al. (2013a, 2015a); B) synthetic Fe-free various277glass compositions from Zajacz (2015); C) natural dacitic glasses from Jégo and Pichavant278(2012); D) natural alkali Fe-bearing basaltic glasses from Lesne (2008) and Lesne et al.279(2011); E) natural Fe-bearing basaltic glasses from Gennaro (2017) synthesised at 200 MPa,2801200°C and fO_2 calculated at QFM+1; F) natural basaltic glass inclusions in olivine crystals281investigated in Gennaro (2017). A typical Raman spectrum acquired for each glass sample is

282 provided in Supplementary material.

283 The Raman spectra in Figure 2 consist of two different regions: the Low Frequency (LF)

region at 200-650 cm⁻¹ and the High Frequency (HF) region at 800-1250 cm⁻¹. The LF is

commonly assigned to vibration of bridging oxygens in membered-ring configuration (Mysen

et al. 1980; McMillan et al. 1982; Seifert et al. 1982; Neuville and Mysen 1996; Pasquarello

287 2001; Le Losq et al. 2013; Di Genova et al. 2015, 2016). This spectral region is often

complicated to apprehend as the nature of the vibrations (stretching or bending) is not clearly

known (Le Losq et al. 2013) and is a mixture of several types of vibrations. Due to the

290 complexity of interpreting the vibrations in the LF region, we will not use it for establishing

291 our calibration. The HF region is attributed to the stretching vibration of T-O ($T = Si^{4+}, Al^{3+}$

mainly) bonds in non-bridging oxygens and T-O-T stretching vibration in fully polymerized
 tetrahedral unit called Qⁿ species (Mysen et al. 1982; Seifert et al. 1982; Neuville and Mysen

1996; Le Losq et al. 2013, 2014; Di Genova et al. 2015, 2016; Moussallam et al. 2016). The

HF vibrational region will be used for establishing our calibration.

296 The SO_4^{2-} Raman signal is located at ~1000 cm⁻¹ (Figure 2) and attributed to the symmetric

stretch (v_1) of the S-O bonds (Bény et al. 1982; Dubessy et al. 1992; Burke 2001; McKeown

- et al. 2001; Lenoir et al. 2009; White 2009; Klimm and Botcharnikov 2010; Wilke et al.
- 2011). In comparison to crystalline sulfate (gypsum or anhydrite for example), the $v_1 \operatorname{SO}_4^{2-1}$

peak observed in silicate glasses appears broader suggesting that SO_4^{2-} groups are dissolved 300 within the amorphous structure of the silicate glasses. The broader shape is attributed to a 301 larger distribution in S-O bond length and O-S-O angles in the SO₄²⁻ groups as compared to 302 303 the crystalline equivalent. From Figure 2 and peak maximum determination, the apparent SO_4^{2-} peak position varies from 990 to 1005 cm⁻¹. This variation in v₁ SO_4^{2-} has also been 304 305 mentioned by McKeown et al. (2001) and is due to the nature of the surrounding charge compensating cation for the negative charges of the SO_4^{2-} molecular group. It is clearly seen 306 that as S content increases there is an increase in the relative intensity of the ~ 1000 cm⁻¹ peak 307 suggesting that the Raman signal intensity is proportional to the concentration of active 308 molecular S-O bonds. 309 In Figure 2E and F, we show the spectra for samples for which a mixture of SO_4^{2-} and S^{2-}

310 species is expected. The peak for SO_4^{2-} groups is visible at ~1000 cm⁻¹ (less clear for 311 synthesised basalt due to the strong overlapping between the peaks) and we observe a 312 prominent broad peak located at ~400 cm⁻¹. As stated earlier, based on the Raman spectra of 313 sulfide crystalline compounds (pyrite, marcasite; see White 2009), Klimm and Botcharnikov 314 (2010) proposed an assignment of this peak to S^{2-} species complexed with Fe cations. The 315 location of this peak in the LF region 1) on the shoulder of the silicate network line shape and 316 2) in a region where the baseline is strongly non-linear makes it difficult to investigate (i.e. 317 the determination of the peak area). 318

319

320 Spectrum deconvolution

We used a protocol similar to Morizet et al. (2013b) for deconvolution of the HF region and determination of the $v_1 SO_4^{2-}$ peak area. The first step involves the background subtraction from the Raman raw spectrum. Currently, there is no physical systematic for this step and the

324	subtraction of the background is realised by subtracting a non-linear (third-order polynomial
325	function or cubic spline function) baseline (see Figure 2; Behrens et al. 2006; Di Muro et al.
326	2006; Le Losq et al. 2012; Morizet et al. 2013b; Rossano and Mysen 2013). The baseline is
327	anchored in regions which have no bands. Those regions are indicated by the arrows in Figure
328	2B and are located at Raman shift below 300 cm ⁻¹ , around 800 cm ⁻¹ and above 1200 cm ⁻¹ ,
329	their exact position being strongly dependant on the glass composition. For instance, the
330	beginning of the no band high frequency region is 1200 cm ⁻¹ for Anorthite-Diopside eutectic,
331	and basaltic – alkali and basaltic glasses (Figures 2A, D, E, F) whereas it is 1250 cm ⁻¹ for
332	dacitic glasses (Figure 2C), due to the difference in the distribution of the silicate network
333	units as a function of the chemical composition (e.g. McMillan 1984; Mysen 1999;
334	Moussallam et al. 2016). Furthermore, in Figure 2E, we observe that the 'no band' region,
335	usually located at 800 cm ⁻¹ , is shifted at 620 cm ⁻¹ for the basaltic glasses synthesised under
336	moderately reducing conditions from Gennaro (2017). Those spectra exhibit a relatively flat
337	background (acquisition on the LabRam HR 800) but the signature between 600 and 800 cm ⁻¹
338	had to be included in the deconvolution procedure.
339	After the background subtraction, the HF envelop is simulated with five individual Gaussian
340	peaks: one peak corresponding to the $v_1 \operatorname{SO_4}^{2-}$ peak and four peaks corresponding to the

341 stretching vibrations of the silicate network units (Q^n). The most difficult step is the initial

parametrization of the Gaussian lines. We placed the $v_1 SO_4^{2-}$ peak at 1000 cm⁻¹ and with a

Full Width at Half Maximum (FWHM) of 25 cm⁻¹. This width value has been chosen in the

light of the SO_4^{2-} group dissolution mechanisms. Recent research suggests that SO_4^{2-}

345 dissolves in the silicate melt structure either by scavenging non-bridging oxygen (Morizet et

al. 2013a, 2015b) or possibly in a similar way to CO_3^{2-} groups by forming free $M^{n+}..SO_4^{2-}$

- clusters (Brooker et al. 2001b; Machacek et al. 2010; Morizet et al. 2015b; Moussallam et al.
- 348 2016) where M^{n+} is a charge balancing cation of different nature (e.g. Ca^{2+} or Mg^{2+}). In both

349	cases, the SO ₄ ²⁻ molecule geometry is only weakly perturbed by the surrounding silicate
350	network; therefore the S-O bond length and O-S-O bond angles have a limited distribution.
351	The four Gaussian lines for the Q^n units have been initially set at 60-65 cm ⁻¹ for the FWHM.
352	The geometry of the different Q ⁿ units is affected by the surrounding cations and the
353	interconnectivity in between the Q ⁿ units; hence the distribution in T-O length and O-T-O
354	angles is larger. We placed the four Gaussian lines at 1100, 1050, 950 and 875 cm ⁻¹ as an
355	initial guess. This initial guess is based on our current knowledge of the Q ⁿ units distribution
356	systematics which is described in details in Rossano and Mysen (2013 and reference therein);
357	however, structural information on Q ⁿ distribution systematics can also be found in previous
358	research (e.g. Mysen et al. 1980, 1982; McMillan 1984). Those line positions are consistent
359	with the limited range of investigated composition ($46 < SiO_2 < 68$ wt.%). For instance, for
360	silica-undersaturated melt compositions, the line at 1100 cm^{-1} attributed to Q^4 units will not
361	appear (Moussallam et al. 2016).
362	Initially, all the peak position and FWHM are kept fixed in order to optimise the peaks area.
363	Because, we consider that sulfur behaves as a dilute compound in a solvent, we firstly
364	optimize the peak position and FWHM of the Q ⁿ units. Only after this optimization, the peak
365	position and FWHM of the $v_1 {\rm SO_4}^{2-}$ are left free to evolve until optimization. These two steps
366	are repeated several times in order to obtain the best chi-square (χ^2) which is a parameter
367	reflecting the deconvolution efficiency and the robustness of the deconvolution. Because of
368	the overlapping between the peaks, the estimated peak area of each species is not unique. Two
369	additional Gaussian lines were necessary for basaltic glasses synthesised under moderately
370	reducing conditions (Gennaro 2017). These lines could be assigned to vibrations of tetrahedra
371	in a membered ring configuration (Seifert et al. 1982; Pasquarello et al. 1998). Optimization

- of these lines was conducted in a similar way to the others. The results are reported in the
- 373 Supplementary material 1. Those peak positions are \sim 795 and 700 cm⁻¹ and FWHM \sim 90 cm⁻¹.

374 It should be emphasised that those two additional Gaussian lines were not included in the 375 calculation of the A SO_4^{2-} / A HF ratio and only the Gaussian lines corresponding to Qⁿ units 376 have been taken into consideration.

377 In Figure 3, we show several deconvolution results for different compositions, from low S

content in C7D (Figure 3C) to high S content in 263b (Figure 3B), and for basaltic glasses

379 synthesised under reducing conditions (Figure 3E) and basaltic glass inclusions (Figure 3F).

380 The spectra are reported along with the simulated envelop and Gaussian lines. The

deconvolution results are provided in the Supplementary material 1; derived peak position and

FWHM are listed in Table 2. As shown in Table 2, the $v_1 SO_4^{2-}$ peak position varies from

383 987.9 to 1008.9 cm⁻¹ with an average derived position at 999.7 cm⁻¹; $v_1 \text{ SO}_4^{2-}$ FWHM varies

from 23.2 to 51.8 cm⁻¹ with an average value at 34.1 cm⁻¹. The error on $v_1 SO_4^{2-}$ peak position

and FWHM is on the order of ± 0.5 cm⁻¹ as reported by the deconvolution software package

386 (Origin 7.5°). The peak location variability is probably due to the varying charge

387 compensating cation around the SO_4^{2-} group as inferred by McKeown et al. (2001) for S-

bearing borosilicate glasses and by White (2009) for crystalline sulphates. However, because

389 investigated glass samples were synthesised under different pressure and temperature

conditions, we cannot rule out any effect of the intensive conditions on the $v_1 \text{ SO}_4^{2-}$ peak

391 position and FWHM as witnessed for the $v_1 CO_3^{2-}$ peak position (Morizet et al. 2013b).

From Figure 3, we observe that the intensity of the 1000 cm^{-1} peak obtained from the

393 spectrum deconvolution increases with the increase in the S content measured by EPMA.

394 There is a strong overlapping between the lines that makes the determination of the ppm S

dissolved as SO_4^{2-} difficult in low-S silicate glasses. Although SO_4^{2-} appears to have a strong

Raman activity for the symmetric stretch of the S-O bonds due to the high symmetry of the

 SO_4^{2-} molecular group (T_d point group), obtaining a reliable quantitative deconvolution at S

398 concentrations below 1000 ppm S is unlikely.

399

400

DISCUSSION

401 Calibration for SO_4^{2-} groups dissolved in silicate glasses

402	For the calibration we used only the glasses in which S is dissolved in the oxidized form. We
403	therefore selected only samples with $XS^{6+}=1$ (Table 1) and by checking that they presented no
404	peaks at ~400 and ~2570 cm ⁻¹ in their Raman spectrum. In Figure 3, next to each spectrum,
405	we indicate the ratio A SO_4^{2-} / A HF calculated from the area of the v_1 SO_4^{2-} peak and the total
406	area of the silicate network units in the HF region and derived from the performed
407	deconvolutions (reported in Table 2). The error reported on the ratio corresponds to the
408	standard deviation obtained from the replicated deconvolution on the obtained Raman spectra
409	for a given glass sample. The entire set of results can be found in the Supplementary material
410	1.

As shown in Figure 4, the ratio A SO_4^{2-} / A HF is linearly correlated with the S content 411 determined by EPMA up to 13180 ppm S. Furthermore, the linear trend appears independent 412 of the glass composition for the range of chemical composition investigated here. It is not 413 414 surprising to find linear correlation independent of the glass composition. Linear correlation 415 of the Raman vibrational intensity as a function of the concentration of a molecule has been previously shown for CO₂ dissolved as CO_3^{2-} groups (Morizet et al. 2013b) and also for H₂O 416 dissolved in silicate glasses (Le Losq et al. 2012). We fitted a linear function through the data 417 points with the hypothesis that at 0 ppm S the ratio A SO_4^{2-} / A HF = 0. By inversion of the 418 equation provided in Figure 4, the determination of the S content dissolved as SO_4^{2-} groups in 419 420 silicate glasses is achieved with Eq. 2:

421
$$ppm S^{6+} = 34371 \frac{A SO_4^{2-}}{AQ^n} \pm 609$$
 Eq. 2

on 47
the strong
e standard
he
less
by
ions (see
asses
no-
ed from
a
on of
asaltic
ned ppm
n S ⁶⁺ from
v of sulfur
ions asses no- ed fr a on o vasalt ned p n S ⁶⁺ 7 of s

446	systematically observed in these samples). The amount of reduced S cannot be assessed
447	directly by Raman spectroscopy, but can be calculated as the difference between the total S
448	measured by EPMA and the S^{6+} estimated using our calibration. We then used the equation of
449	Jugo et al. (2010), to estimate the fO_2 of each glass sample from the molar fraction of S ⁶⁺
450	(XS^{6+}) . We compared the fO_2 obtained by this method with those estimated by the redox
451	sensor method for the basaltic glasses synthesised at fO_2 between QFM+0.8 and QFM+1.6.
452	We followed the same approach for natural melt inclusions from Mt. Etna and estimated fO_2
453	conditions between QFM+1.1 and QFM+1.5, in agreement with previous work suggesting
454	redox conditions between QFM+0.7 and QFM+1 (Metrich and Clocchiatti 1996), or even
455	more oxidizing (QFM+1.4), for basaltic inclusions hosted in olivine crystals from 2001 lava
456	flow with S mainly present as S^{6+} species (Metrich et al. 2009).
457	We reported in Figure 5, the evolution lines of the ppm S^{6+} as a function of total ppm S for
458	constant fO_2 (QFM+1, +1.5 and +3) as determined from the equation of Jugo et al. (2010).
459	The line for QFM+3 represents the most oxidized conditions and all S is present as S^{6+}
460	species. Considering the large error obtained from the Raman method (±609 ppm), a reliable
461	estimate of the fO_2 would only be obtained for samples having high S content (>2000 ppm).
462	At such a high S content, the Raman method combined with EPMA analyses can provide an
463	estimate of the fO_2 at $\pm 0.5 \log$ unit for fO_2 below QFM+1.5.

464

465 IMPLICATION: DETERMINING REDOX CONDITIONS IN SILICATE MELT INCLUSIONS

The major implication of the present results and methodology is the potential determination of

467 redox conditions in S-bearing silicate melt inclusions. Although, the proposed method is

- 468 accompanied by a large error; it should be emphasised that the determination of natural
- 469 magmas redox conditions has always been challenging especially in presence of sulfur which

470 exhibits a non-linear evolution of its speciation as a function of redox conditions (e.g. Métrich 471 et al. 2009; Baker and Moretti 2011; Wilke et al. 2011). This determination is further 472 complicated by the usually small size of natural silicate melt inclusions which require µm 473 scale analytical techniques and substantial sample preparation. Micro-Raman spectroscopy 474 allows punctual µm scale analyses, ideal for concentration profile construction; and requires 475 limited sample preparation. 476 As pointed out in the discussion, the combination of EPMA and Micro-Raman spectroscopy 477 will allow the determination of the fO_2 conditions with an accuracy of ± 0.5 log unit and for melt inclusions having more than 2000 ppm in total S content. Although, these prerequisites 478 479 prohibit the determination of the redox conditions for natural systems having low S content, 480 we propose the first straightforward method (combination EPMA and Micro-Raman 481 spectroscopy) to determine S content and speciation and by extension redox conditions. Such 482 an approach could be used in S-bearing experimental studies but also in some particular 483 natural systems. 484 As an example, we consider that the proposed method could be applied to the melts generated 485 in the subduction geological setting of Central America. Recent works showed that melt 486 inclusions collected from Central America volcanoes have high S content above 2000 ppm and to more than 4000 ppm S (e.g. Wade et al. 2006; Benjamin et al. 2007; Sadofsky et al. 487 488 2008) and for which the redox conditions have never been clearly investigated. Additionally, 489 recent investigations of the volatile pre-eruptive content in East African Rift silica

490 undersaturated volcanic rocks exhibits extremely high S content up to 1 wt.% (Mitchell 2009;

- 491 Mitchell and Dawson 2012). The present method is totally designated to the determination of
- the redox condition in this particular setting showing high S content and for which the redox
- 493 conditions are virtually unknown.

494

495 *Acknowledgments:*

496	The authors are grateful to the CNRS INSU (ALEAS program) and the OSUNA for their
497	financial support for the current work. Zoltan Zajacz acknowledges the support of the Swiss
498	National Science Foundation (Ambizione Grant no. PZ00P2-136857) and the Discovery
499	Grant program of the Natural Sciences and Engineering Research Council of Canada. The
500	authors thank the University of Orléans and the University of Nantes for their access to
501	analytical facilities.

502

- Baker, D.R., and Moretti, R. (2011) Modeling the solubility of sulfur in magmas: a 50-year
- old geochemical challenge. In: Behrens, H., Webster, J.D. (Eds.), Sulfur in Magmas and
- 506 Melts: Its Importance for Natural and Technical Processes. Washington, Mineralogical
- 507 Society of America, Geochemical Society, Reviews in Mineralogy and Geochemistry, 73,
- 508 167–213.
- 509
- 510 Beermann O., Botcharnikov R.E., Holtz F., Diedrich O., and Nowak M. (2011) Temperature
- 511 dependence of sulphide and sulphate solubility in olivine-saturated basaltic magmas.
- 512 Geochimica and Cosmochimica Acta, 75, 7612-7631.

⁵⁰³ References

- 514 Behrens, H., Roux, J., Neuville, D.R., and Siemann, M. (2006) Quantification of dissolved
- 515 H₂O in silicate glasses using confocal microRaman spectroscopy. Chemical Geology, 229,

516 96–112.

517

- 518 Benjamin, E.R., Plank, T., Wade, J.A., Kelley, K.A., Hauri, E.H., Alvarado, G.E. (2007) High
- 519 water contents in basaltic magmas from Irazú volcano, Costa Rica. Journal of Volcanology
- and Geothermal Research, 168, 68-92.

521

- 522 Bény, C., Guilhaumou, N., and Touray, J.C. (1982) Native-sulfur-bearing fluid inclusions in
- 523 the CO₂–H₂S–H₂O–S-system micro-thermometry and Raman micro-probe (mole) analysis

524 — thermochemical interpretations. Chemical Geology, 37, 113–127.

525

- 526 Brooker, R.A., Kohn, S.C., Holloway, J.R., and McMillan, P.F. (2001b) Structural controls on
- 527 the solubility of CO₂ in silicate melts. Part II: IR characteristics of carbonate groups in silicate
- 528 glasses. Chemical Geology, 174, 241–254.
- 529

530 Burke, E.A.J. (2001) Raman microspectrometry of fluid inclusions. Lithos, 55, 139–158.

- 532 Carroll, M.R., and Rutherford, M.J. (1988) Sulfur speciation in hydrous experimental glasses
- 533 of varying oxidation state: results from measured wavelength shifts of sulfur X-rays.
- 534 American Mineralogist, 73, 845–849.

535

550 Carton, where 0 coston, 5.0 , $(1)/(1)/(1)$ soluting of summer house gases, introgen, one

- and fluorine in magmas. In: Holloway, J.R., Carroll, M.R. (Eds.), Volatiles in Magmas.
- 538 Washington, Mineralogical Society of America, Geochemical Society, Reviews in
- 539 Mineralogy, 30, 231–280.

540

- 541 Clemente, B., Scaillet, B., and Pichavant, M. (2004) The solubility of sulfur in hydrous
- rhyolitic melts. Journal of Petrology, 45, 2171–2196.
- 543
- 544 Coltelli, M., Del Carlo, P., Pompilio, M., and Vezzoli, L. (2005) Explosive eruptions of a
- 545 picrite: The 3930 BP subplinian eruption of Etna volcano (Italy). Geophysical Research Letter
- 546 32, L23307, doi:10.1029/2005GL024271.

547

548 Couch, S., Howes, A.P., Kohn, S.C., and Smith, M.E. (2004) S-33 solid state NMR of sulphur

```
549 speciation in silicate glasses. Solid State Nuclear Magnetic Resonance, 26, 203–208.
```

550

- 551 Di Genova D., Morgavi D., Hess K.-U., Neuville D.R., Borovkov N., Perugini D., and
- 552 Dingwell D.B. (2015) Approximate chemical analysis of volcanic glasses using Raman
- spectroscopy. Journal of Raman Spectroscopy, 46, 1235-1244.

- 555 Di Genova D., Kolzenburg S., Vona A., Chevrel M.O., Hess K.-U., Neuville D.R., Ertel-
- 556 Ingrisch W., Romano C., and Dingwell D.B. (2016) Raman spectra of martian glass
- analogues: A tool to approximate their chemical composition. Journal of Geophysical
- 558 Research Planets, 121, 740-752.

559

- 560 Di Muro, A., Villemant, B., Montagnac, G., Scaillet, B., and Reynard, B. (2006)
- 561 Determination of water content and speciation in natural silicic glasses by confocal Raman
- spectrometry. Geochimica and Cosmochimica Acta, 70, 2878–2884.

563

- 564 Dubessy, J., Boiron, M.-C., Moissette, A., Monnin, C., and Sretenskaya, N. (1992)
- 565 Determinations of water, hydrates and pH in fluid inclusions by micro-Raman spectrometry.
- 566 European Journal of Mineralogy, 4,885-894.

567

- 568 Fincham, C.J.B., and Richardson, F.D. (1954) The behavior of sulfur in silicate and aluminate
- 569 melts. Proc. R. Soc. Lond. A, 223, 40–62.

570

- 571 Fleet, M.E., Liu, X.Y., Harmer, S.L., and King, P.L. (2005) Sulfur K-edge xanes
- 572 spectroscopy: chemical state and content of sulfur in silicate glasses. The Canadian
- 573 Mineralogist, 43, 1605–1618.

Gennaro, E. (2016) Sulfur behavior and redox conditions in Etnean hydrous basalts inferred
from melt inclusions and experimental glasses. PhD thesis Università degli Studi di Palermo
pp. 155.

578

- 579 Hauri, E., Wang, J., Dixon, J.E., King, P.L., Mandeville, C., and Newman, S. (2002) SIMS
- analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with
- 581 FTIR. Chemical Geology, 183, 99-114.

582

- Hope, G.A., Woods, R., and Munce, C.G. (2001) Raman microprobe mineral identification.
- 584 Mineral Engineering, 14, 1565-1577.

585

- 586 Iacono-Marziano, G., Ferraina, C., Gaillard, F., Di Carlo, I., and Arndt, N. (subm.)
- 587 Assimilation of sulfate and carbonaceous rocks: experimental study, thermodynamic
- 588 modeling and application to the Noril'sk-Talnakh region (Russia). Ore Geology Reviews.

589

- 590 Jégo, S., and Pichavant, M. (2012) Gold solubility in arc magmas: Experimental
- determination of the effect of sulfur at 1000°C and 0.4 GPa. Geochimica and Cosmochimica
- 592 Acta, 84, 560-592.

- Jugo, P.J., Luth, R.W., and Richards, J.P. (2005a) An experimental study of the sulfur content
- in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 °C and 1.0 GPa.
- 596 Journal of Petrology, 46, 783–798.

597

598	Jugo, P.J.	, Wilke, M.,	and Botchar	nikov, R.E.	(2010) St	ulfur K-edge	XANES ar	nalysis of
-----	------------	--------------	-------------	-------------	-----------	--------------	----------	------------

- natural and synthetic basaltic glasses: Implications for S speciation and S content as function
- of oxygen fugacity. Geochimica et Cosmochimica Acta, 74, 5926–5938.

601

- 602 Kamenetsky, V., and Clocchiatti, R. (1996) Primitive magmatism of Mt. Etna: Insights from
- mineralogy and melt inclusions. Earth Planetary Science Letters, 142, 553-572.

604

605 Kamenetsky, V.S., Pompilio, M., Métrich, N., Sobolev, A.V., Kuzmin, D.V., and Thomas, R.

606 (2007) Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount

607 Etna. Geology, 35, 255-258.

608

- Klimm, K., and Botcharnikov, R.E. (2010) The determination of sulfate and sulfide species in
 hydrous silicate glasses using Raman spectroscopy. American Mineralogist, 95, 1574–1579.
- 611
- Klimm, K., Kohn, S.C., O'Dell, L.A., Botcharnikov, R.E., and Smith, M.E. (2012a) The
- dissolution mechanism of sulphur in hydrous silicate melts. I: assessment of analytical
- techniques in determining the sulphur speciation in iron-free to iron-poor glasses. Chemical
- 615 Geology, 322-323, 237–249.

- 617 Klimm, K., Kohn, S.C., and Botcharnikov, R.E. (2012b) The dissolution mechanism of
- sulphur in hydrous silicate melts. II: Solubility and speciation of sulphur in hydrous silicate
- melts as a function of fO_2 . Chemical Geology, 322-323, 250-267.

620

- 621 Le Losq, C., Neuville, D., Moretti, R., and Roux, J. (2012): Determination of water content in
- silicate glasses using Raman spectrometry: implications for the study of explosive volcanism.
- American Mineralogist, 97, 779–790.

624

- Le Losq, C., Moretti, R., Neuville, D.R. (2013) Speciation and amphoteric behaviour of water
- 626 in aluminosilicate melts and glasses: high-temperature Raman spectroscopy and reaction
- equilibria. European Journal of Mineralogy, 25, 777-790.

628

- Le Losq, C., Neuville, D.R., Florian, P., Henderson, G.S., and Massiot, D. (2014) The role of
- Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and
- melts. Geochimica and Cosmochimica Acta, 126, 495-517.
- 632
- 633 Lenoir, M., Grandjean, A., Poissonnet, S., and Neuville, D.R. (2009) Quantitation of sulfate
- 634 solubility in borosilicate glasses using Raman spectroscopy. Journal of Non-Crystalline
- 635 Solids, 355, 1468–1473.

637 Lesne, P. (2008) Etude expérimentale de la solubilité des volatils C-H-O-S dans les basaltes
638 alcalins italiens. Simulations numériques du dégazage chimique : application à l'Etna. Ph.D
639 Thesis, 236 p.

640

- Lesne, P., Kohn, S.C., Blundy, J., Witham, F., Botcharnikov, R.E., and Behrens, H. (2011)
- Experimental simulation of closed-system degassing in the system basalt-H₂O-CO₂-S-Cl.
- 643 Journal of Petrology, 52, 1737–1762.

644

645 Machacek, J., Gedeon, O., Liska, M., and Marhoul, F. (2010) Molecular simulations of

silicate melts doped with sulphur and nitrogen. Journal of Non-Crystalline Solids, 356, 2458-2464.

648

649 Manara, D., Grandjean, A., Pinet, O., Dussossoy, J.L., and Neuville, D.R. (2007) Sulfur

behavior in silicate glasses and melts: Implications for sulfate incorporation in nuclear waste

glasses as a function of alkali cation and V_2O_5 content. Journal of Non-Crystalline Solids,

652 353, 12**-**23.

653

- McKeown, D.A., Muller, I.S., Gan, H., Pegg, I.L., and Kendziora, C.A. (2001) Raman studies
- of sulfur in borosilicate waste glasses: sulfate environments. Journal of Non-Crystalline

656 Solids, 288, 191–199.

- 658 McKeown, D.A., Muller, I.S., Gan, H., Pegg, I.L., and Stolte, W.C. (2004) Determination of
- sulfur environments in borosilicate waste glasses using X-ray absorption nearedge
- spectroscopy. Journal of Non-Crystalline Solids, 333, 74–84.

661

- 662 McMillan, P.F., Piriou, B., and Navrotsky, A. (1982) A Raman spectroscopic study of glasses
- along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium
- aluminate. Geochimica et Cosmochimica Acta, 46, 2021–2037.

665

- 666 McMillan, P. (1984) Structural studies of silicate glasses and melts-applications and
- 667 limitations of Raman spectroscopy. American Mineralogist, 69, 622–644.
- 668
- 669 Mercier, M., Di Muro, A., Giordano, D., Métrich, N., Lesne, P., Pichavant, M., Scaillet, B.,
- and Clocchiatti, R. (2009) Influence of glass polymerisation and oxidation on micro-Raman
- water analysis in alumino-silicate glasses. Geochimica et Cosmochimica Acta, 73, 197–217.

672

- 673 Mernagh, T.P., and Trudu, A.G. (1993) A laser Raman microprobe study of some
- 674 geologically important sulphide minerals. Chemical Geology, 103, 113-127.

- 676 Métrich, N., and Clocchiatti, R. (1996) Sulfur abundance and its speciation in oxidized
- alkaline melts. Geochimica and Cosmochimica Acta,, 60, 4151–4160.
- 678

679	Métrich, N., and Wallace, P.J. (2008) Volatile abundances in basaltic magmas and their
680	degassing paths tracked by melt inclusions. In: Putirka, K.D., Tepley III, F.J. (Eds.). Minerals,
681	Inclusions and Volcanic Processes. Washington, Mineralogical Society of America,
682	Geochemical Society, Reviews in Mineralogy and Geochemistry, 69, 363-402.
683	
684	Métrich, N., and Mandeville, C.W. (2010) Sulfur in magmas. Elements, 6, 81-86.
685	
686	Métrich, N., Berry, A.J., O'Neill, H.S.C., and Susini, J. (2009) The oxidation state of sulfur in
687	synthetic and natural glasses determined by X-ray absorption spectroscopy. Geochimica et
688	Cosmochimica Acta, 73, 2382–2399.
689	
690	Mitchell, R.H. (2009) Peralkaline nephelinite-natrocarbonatite immiscibility and carbonatite
691	assimilation at Oldoinyo Lengai, Tanzania. Contributions to Mineralogy and Petrology, 158,
692	589-598.
693	
694	Mitchell, R.H., and Dawson, J.B. (2012) Carbonate-silicate immiscibility and extremely
695	peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai
696	Volcano, Tanzania. Lithos, 152, 40-46.

- 698 Moretti, R., and Ottonello, G. (2003) Polymerization and disproportionation of iron and sulfur
- 699 in silicate melts: insights from an optical basicity-based approach. Journal of Non-Crystalline
- 700 Solids, 323, 111-119.

701

- 702 Morizet, Y., Paris, M., Gaillard, F., and Scaillet, B. (2010) C-O-H fluid solubility in
- haplobasalt under reducing conditions: An experimental study. Chemical Geology, 279, 1–16.

704

Morizet, Y., Paris, M., Di Carlo, I., and Scaillet, B. (2013a) Effect of sulfur on the structure of
silicate melts under oxidising conditions. Chemical Geology, 358, 131–147.

707

- 708 Morizet, Y., Brooker, R.A., Iacono-Marziano, G. and Kjarsgaard, B. (2013b) Quantification
- of CO₂ dissolved in silicate glasses of various compositions with micro-Raman spectroscopy.
- 710 American Mineralogist, 98, 1788–1802.
- 711
- 712 Morizet, Y., Ory, S., Di Carlo, I., Scaillet, B., and Echegut, P. (2015a) The effect of sulphur
- on the glass transition temperature in anorthite-diopside eutectic glasses. Chemical Geology,416, 11-18.

715

- 716 Morizet, Y., Vuilleumier, R., and Paris, M. (2015b) A NMR and molecular dynamics study of
- 717 CO_2 -bearing basaltic melts and glasses. Chemical Geology, 418, 89-103.

- Moune, S., Sigmarsson, O., Thordarson, T., and Gauthier, P.J. (2007) Volatile evolution in
- the magmatic system of Hekla volcano, Iceland. Earth Planetary Science Letters, 255, 373–
- 721 389.

722

- 723 Moune, S., Holtz, F., and Botcharnikov, R.E. (2009) Sulphur solubility in andesitic to basaltic
- melts: implications for Hekla volcano. Contributions to Mineralogy and Petrology, 157, 691–
- 725 707.

726

- 727 Moussallam, Y., Florian, P., Corradini, D., Morizet, Y., Sator, N., Vuilleumier, R., Guillot,
- B., Iacono-Marziano, G., Schmidt, B.C., and Gaillard, F. (2016) The molecular structure of
- melts along the carbonatite-kimberlite-basalt compositional joint: CO₂ and polymerization.
- Earth Planetary Science Letters, 434, 129-140.

731

- 732 Mysen, B.O., and Frantz, J.D. (1994) Structure of haplobasaltic liquids at magmatic
- temperatures: In-situ, high-temperature study of melts on the join $Na_2Si_2O_5$ - $Na_2(NaAl)_2O_5$.
- Geochimica et Cosmochimica Acta, 58, 1711–1733.

- 736 Mysen, B.O. (1999) Structure and properties of magmatic liquids: From haplobasalt to
- haploandesite. Geochimica et Cosmochimica Acta, 63, 95-112.
- 738
- Mysen, B.O., Virgo, D., and Scarfe, C.M. (1980) Relations between the anionic structure and
- viscosity of silicate melts—a Raman spectroscopic study. American Mineralogist, 65, 690-
- 741 710.
- 742

- 743 Mysen, B.O., Virgo, D., and Seifert, F.A. (1982) The structure of silicate melts: implications
- for chemical and physical properties of natural magma. Reviews of Geophysics and Space
- 745 Physics, 20, 353–383.

746

- Nagashima, S., and Katsura, T. (1973) The solubility of S in Na₂O–SiO₂ melts under various
- oxygen partial pressures at 1100 °C, 1250 °C, and 1300 °C. Bulletin Chemical Society of

749 Japan, 46, 3099–3103.

750

- 751 Neuville, D.R., and Mysen, B.O. (1996) Role of the Al in the silicate network: in situ, high
- temperature study of glasses and melts on the join SiO₂-NaAlO₂. Geochimica et
- 753 Cosmochimica Acta, 60, 1727–1737.

754

755 O'Neill, H.S.C., and Mavrogenes, J.A. (2002) The sulfide capacity and the sulfur content at

sulphide saturation of silicate melts at 1400 °C and 1 bar. Journal of Petrology, 43, 1049–

757 1087.

758

- 759 Oppenheimer, C., Scaillet, B., and Martin, R.S. (2011) Sulfur degassing from volcanoes:
- source conditions, surveillance, plume chemistry and earth system impacts. Sulfur in magmas
- and melts: its importance for natural and technical processes. In: Behrens, H., Webster, J.D.
- 762 (Eds.), Washington, Mineralogical Society of America, Geochemical Society Reviews in
- 763 Mineralogy and Geochemistry, 73, 363–421.

765	Paris, E.,	Giuli, G.	, Carroll, M.R.	, and Davoli, I.	(2001)) The valence and	speciation of sulfur
	, <i></i> ,	0	,	,	(=)		

in glasses by X-ray absorption spectroscopy. Canadian Mineralogist, 39, 331–339.

767

- 768 Pasquarello, A., Sarnthein, J., and Car, R. (1998) Dynamic structure factor of vitreous silica
- 769 from first principles: comparison to neutron-inelastic-scattering experiments. Physical Review
- 770 B, 57, 14133–14140.

771

- Pasquarello, A. (2001) First-principles simulation of vitreous systems. Current Opinion in
- 773 Solid State and Material Science, 5, 503–508.

774

- Pichavant, M., Scaillet, B., Di Carlo, I., Rotolo, S., and Métrich, N. (2006). Sulfur in hydrous,
- oxidized, basaltic magmas: phase equilibria and melt solubilities. Abstract AGU Spring
- 777 Meeting, Baltimore.

778

```
779 Pownceby, M.I., and O'Neill, H.S.C. (1994) Thermodynamic data from redox reactions at
```

- high temperatures. IV. Calibration of the Re-ReO₂ oxygen buffer from EMF and NiO + Ni-Pd
- redox sensor measurements. Contributions to Mineralogy and Petrology, 118, 130-137.

- 783 Robie, R.A., and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related
- substances at 298.15 K and 1 bar (10^5 Pascals) pressure and at higher temperatures. U.S.
- 785 G.P.O.; U.S. Geological Survey, Information Services, Bulletin 2131, pp. 461.

786

787	Rossano, S., and M	ysen, B.O. (2013) Raman spectroso	copy of	f silicate glasses a	and melts in
-----	--------------------	--------------	------	-------------------	---------	----------------------	--------------

- geological system. In J. Dubessy, M.C. Caumon, and F. Rull, Eds., Raman spectroscopy
- applied to Earth Sciences and Cultural Heritage, EMU Notes in Mineralogy, Eötvös
- 790 University Press, Budapest, 12, 321–366.

791

- 792 Sadofsky, S.J., Portnyagin, M., Hoernle, K., van den Bogaard, P. (2008) Subduction cycling
- of volatiles and trace elements through the Central American volcanic arc: evidence from melt
- inclusions. Contributions to Mineralogy and Petrology, 155, 433-456.

795

- 796 Scaillet, B., and Macdonald, R. (2006) Experimental and thermodynamic constraints on the
- sulphur yield of peralkaline and metaluminous silicic flood eruptions. Journal of Petrology, 47
 (7), 1413–1437.

799

- Scaillet, B., and Pichavant, M. (2005) A model of sulphur solubility for hydrous mafic melts:
 application to the determination of magmatic fluid compositions of Italian volcanoes. Annals
- 802 of Geophysics, 48, 671–697.

- 804 Scaillet, B., Luhr, J.F., and Carroll, M.C. (2003) Petrological and volcanological constraints
- on volcanic sulphur emissions to the atmosphere. Volcanism and the Earth's atmosphere. A.
- 806 Robock and C. Oppenheimer. Geophysical Monograph, 139, 11–40.
- 807

- 808 Seifert, F., Mysen, B.O., and Virgo, D. (1982) 3-dimensional network structure of quenched
- melts (glass) in the systems SiO_2 -NaAlO₂, SiO_2 -CaAl₂O₄ and SiO_2 -MgAl₂O₄. American
- 810 Mineralogist, 67, 696–717.

811

- 812 Stelling, J., Behrens, H., Wilke, M., Göttlicher, J., and Chalmin-Aljanabi, E. (2011) Interaction
- between sulphide and H2O in silicate melts. Geochimica and Cosmochimica Acta, 75, 3542–
- 814 3557.

815

- 816 Stevenson, D.S., Johnson, C.E., Highwood, E.J., Gauci, V., Collins, W.J., and Derwent, R.G.
- 817 (2003) Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling.
- 818 Atmospheric Chemistry and Physics, 3, 487–507.

819

- 820 Symonds, R.B., Rose, W.I., Bluth, G.J.S., and Gerlach, T.M. (1994) Volcanic-gas studies:
- 821 Methods, results and applications. In M.R. Carroll and J.R. Holloway, Eds., Volatiles in
- 822 Magmas, Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia, 30,

823 1–66.

824

- 825 Thomas, R. (2000) Determination of water contents of granite melt inclusions by confocal
- laser Raman microprobe spectroscopy. American Mineralogist, 85, 868–872.

828	Tsuiimura.	Τ.	Xue.	Х.	Kanzaki.	М.	and	Walter.	. M.J.	(2004)) Sulfur	- speciation	and	networ	k
	1 0 00 1111001 000		,				,		,	, – • • •	/ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	000000000000000000000000000000000000000			-

- 829 structural changes in sodium silicate glasses: constraints from NMR and Raman spectroscopy.
- B30 Geochimica and Cosmochimica Acta, 68, 5081–5101.

831

832 Vigouroux, N., Wallace, P.J., and Kent, A.J.R. (2008) Volatiles in high-K magmas from the

833 Western Trans-Mexican volcanic belt: Evidence for fluid fluxing and extreme enrichment of

the mantle wedge by subduction processes. Journal of Petrology 49, 1589-1618.

835

836 Wade, J.A., Plank, T., Melson, W.G., Soto, G.J., Haury, E.H. (2006) The volatile content of

magmas from Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research,
157, 94-120.

839

840 Webster, J.D., and Botcharnikov, R.E. (2011) Distribution of sulfur between melt and fluid in

841 S–O–H–C–Cl-bearing magmatic systems at shallow crustal pressures and temperatures.

Sulfur in Magmas and Melts: Its Importance for Natural and Technical Processes: Reviews in
Mineralogy & Geochemistry. Mineralogical Soc Amer, 73, 247–283.

- 845 Webster J.D., Sintoni M.F., and De Vivo, B. (2009) The partitioning behavior of Cl, S, and
- H2O in aqueous vapor- ±saline-liquid saturated phonolitic and trachytic melts at 200 MPa.
- 847 Chemical Geology, 263, 19-36.
- 848

- 849 White, S.N. (2009) Laser Raman spectroscopy as a technique for identification of seafloor
- hydrothermal and cold seep minerals. Chemical Geology, 259, 240–252.

851

- Wilke, M., Jugo, P.J., Klimm, K., Susini, J., Botcharnikov, R., Kohn, S.C., and Janousch, M.
- (2008) The origin of S⁴⁺ detected in silicate glasses by XANES. American Mineralogist, 93,

854 235–240.

855

- 856 Wilke, M., Klimm, K., and Kohn, S.C. (2011) Spectroscopic studies on sulfur speciation in
- 857 synthetic and natural glasses. In: Behrens, H., Webster, J.D. (Eds.), Sulfur in Magmas and
- 858 Melts: Its Importance for Natural and Technical Processes. Washington, Mineralogical
- 859 Society of America, Geochemical Society, Rev. Mineral. Geochem., 73, 41–78.

860

861 Zajacz, Z. (2015) The effect of melt composition on the partitioning of oxidized sulfur

between silicate melts and magmatic volatiles. Geochimica and Cosmochimica Acta, 158,

864

863

```
865 Zajacz, Z., Halter, W., Malfait, W.J., Muntener, O., Bodnar, R.J., Bahcmann, O., Webster,
```

J.D., Ulmer, P., Mandeville, C.W., Hirschmann, M.M., and Morizet, Y. (2005) A composition

- 867 independent quantitative determination of the water content in silicate glasses and silicate
- 868 melt inclusions by confocal Raman spectroscopy. Contributions to Mineralogy and Petrology,

869 150, 631–642.

223-244.

871 Zolotov, M.Y., and Fegley, B. (1999) The oxidation state of volcanic gases and interior of Io.

872 Icarus, 141, 40-52.

874 Figure caption:

875	Figure 1. Microphotograph of basaltic glass inclusion hosted in olivine crystal
876	collected from Etna lava flow. Picture was obtained from the LabRam HR 800 camera in
877	reflective light with objective x5. The size of the glass inclusions is on the order of 50 μ m

878

879	Figure 2. Raman spectra obtained on different S-bearing silicate glasses: A) Anorthite-
880	Diopside eutectic glasses from Morizet et al. (2013a, 2015a); B) Various glass composition
881	from Zajacz (2015); C) Dacitic glasses from Jégo and Pichavant (2012); D) Alkali basalt
882	glasses from Lesne (2008) and Lesne et al. (2011); E) Basalt glasses synthesised at $fO_2 <$
883	QFM+1.5 from Gennaro (2017); F) Natural basalt melt inclusions hosted in olivine crystals
884	from Etna (Gennaro 2017). For A to D, acquisitions were conducted on the Labram 300; for E
885	and F, acquisitions were conducted on the Labram HR 800. The ppm S determined from
886	EPMA as well as the name of the corresponding sample is reported next to each spectrum.
887	The Raman spectrum is divided in two regions Low Frequency (LF) and High Frequency
888	(HF) and evidence for SO_4^{2-} species is shown by the peak at~1000 cm ⁻¹ . The no band areas
889	are shown in Figure 2B. Typical third-order polynomial baseline function has been added to
890	Figure 2A and B. For glasses synthesised under moderately reducing conditions (Figure 2E)
891	and natural melt inclusions (Figure 2F), the presence of S^{2-} species is suspected as evidenced
892	from the prominent peak at 400 cm ⁻¹ .

893

Figure 3. Typical Raman spectrum deconvolution for different silicate glasses in the HF spectral region. The entire set of deconvolution parameters is reported in Table 2 and Supplementary material 1. Except for Basalt glasses synthesised at $fO_2 < QFM+1.5$ (Figure 3E); Raman spectra were deconvoluted with four Gaussian lines for Qⁿ species and one

898	Gaussian line for $v_1 \operatorname{SO_4}^{2^2}$ (black line). The simulated spectrum is reported underneath each
899	spectrum. The Gaussian lines are shown as well as the residual from the simulation. The A
900	SO ₄ ²⁻ / A HF ratio is reported and calculated from the determined areas of each Gaussian line.
901	The indicated error corresponds to the standard deviation obtained on the replicated
902	deconvolutions (see Supplementary material 1).
903	

Figure 4. Raman A SO_4^{2-} / A HF ratio determined from spectra deconvolutions as a function of ppm S measured by EPMA for the different investigated compositions. The A SO_4^{2-} / A HF ratio is linearly correlated to the ppm S from EPMA and appears to be independent of glass composition. The linear correlation factor is reported (2.91 10⁻⁵) and the r^2 representing the prediction is 0.950 based on 47 data points. Inversion to obtain the ppm S⁶⁺ from Raman calibration is provided in the text as Eq. 1.

911	Figure 5. ppm S^{0+} determined from Raman calibration as a function of ppm S
912	determined from EPMA measurements from Gennaro (2017) and Iacono-Marziano et al.
913	(subm.) for Basalt melt inclusions collected from Etna lava flows and Basalt glasses
914	synthesised at high pressure (80-200 MPa) and fO_2 conditions below QFM+1.5 (see Table 1).
915	Raman measurements are in favour of an unaccounted amount of S attributed to S ²⁻ species.
916	We show the calculated ppm S^{6+} evolution line as a function of total S content for different
917	fO_2 (QFM+1, +1.5 and +3) from the equation of Jugo et al. (2010).

Figure 1

Figure 2

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 4

Figure 5

Major element chemical composition in wt.% ^a										
Sample	SiO ₂	Al ₂ O ₃	FeO ^{tot}	MgO	CaO	Na ₂ O	K_2O	$fO_2 \\ \Delta QFM^b$	XS ^{6+ c}	Ppm S ^d
Morizet et al. (2013, 2015) Anorthite – Diopside eutectic										
AD2M-5	50.1	13.0		8.5	23.1			>+1	1	2365 (138)
AD10M-5	50.2	13.3		8.7	22.8			>+1	1	5481 (324)
AD2M-1r	50.2	15.7		10.6	23.4			>+1	1	7191 (447)
AD10 na	50.2	15.7		10.6	23.4			+2.3	1	6973 (73)
AD-4.7-0.5	51.4	15.0		10.6	22.9			+2.8	1	2434 (567)
AD-4.5-1	52.2	14.8		9.3	23.5			+2.1	1	4150 (974)
AD-5-3	52.0	14.6		9.1	24.1			+1.8	1	6621 (355)
AD-5-5	53.2	15.5		8.9	22.2			+2.3	1	7519 (3397)
AD4	51.3	15.2		10.7	22.8			+2	1	2718 (598)
			Jégo and	Pichavan	t (2012)	Dacite				
C6D	68.1	16.4	2.8	2.4	2.6	5.3	2.0	>+3.9	1	1795 (222)
C7D	67.7	17.2	4.2	1.7	3.4	4.6	0.7	>+3.9	1	1851 (138)
C5D	67.9	16.2	3.1	2.7	2.6	5.1	2.0	>+3.9	1	2184 (170)
C4D	67.7	16.1	3.1	2.7	3.0	5.1	1.9	>+3.9	1	2422 (146)
C3D	67.2	16.3	4.0	2.4	3.3	4.6	1.6	>+3.9	1	1651 (140)
C2D	68.0	16.6	3.6	2.3	2.6	4.7	1.7	>+3.9	1	1892 (116)
C8D	67.6	17.1	4.2	1.7	3.5	4.7	0.7	>+3.9	1	1619 (132)
C9D	67.2	17.1	4.3	1.7	3.8	4.6	0.7	>+3.9		1400 (128)
		Z	Lajacz (20	015) Vario	ous comp	ositions				
263a	52.6	14.4			16.8	5.5		>+1.8	1	13180 (481)
263b	53.7	14.6			14.4	7.9		>+1.8	1	6209 (240)
272b	53.8	18.6	4.8	0.6	1.5	7.4	5.0	>+1.8	1	2306 (61)
286a	51.3	15.1	6.3	4.1	6.8	3.2	0.8	>+1.8	1	2847 (80)
272a	53.8	15.8	6.6	4.2	6.9	4.1	1.0	>+1.8	1	1179 (152)
239a	56.2	15.6		11.0	7.4			>+1.8	1	1402 (41)
286b	51.6	17.2	4.54	0.7	1.7	6.8	4.7	>+1.8	1	4788 (256)
245a	51.9	14.6			21.8			>+1.8	1	9054 (401)
241b	53.8	14.6		2.4	18.3			>+1.8	1	5689 (280)
239b	55.2	15.2		4.8	15.8			>+1.8	1	3285 (80)
244a	53.2	14.4			18.0	3.5		>+1.8	1	9534 (280)
			Pichav	ant et al.	(2006) B	asalt				
Ca3	51.7	17.6	6.3	7.5	10.4	2.7	0.6	+2.5	1	6492 (650)
idc10-5	52.0	17.3	7.9	5.7	9.6	2.7	2.3	+2	1	5530 (560)
HAB27	54.2	19.2	7.1	3.5	9.3	4.4	0.9	+2	1	2222 (225)
HAB28	59.8	20.3	3.0	4.1	6.9	4.0	0.9	+4	1	2070 (207)
		Les	sne (2008	3), Lesne (et al. (20	11) Basa	lt			
Run 33#2	46.2	15.8	10.3	6.3	9.7	3.4	1.9	+2.4	1	3058 (171)
Run 33#3	47.7	14.5	8.5	8.0	11.6	2.4	1.8	+2.4	1	3317 (326)
Run 38#1	46.9	13.5	8.0	6.8	12.4	1.9	9.3	+2.4	l	5764 (76)
Run 38#2	47.4	15.7	11.1	6.4	10.1	3.3	4.1	+2.4	1	5832 (96)
Run 38#3	48.1	14.1	8.8	8.3	11.9	2.2	5.6	+2.4	l	5865 (78)
Run 40#2	47.6	13.6	6.9	6.9	12.4	1.9	5.6	+2.4	1	3491 (349)
Run 40#3	48.6	13.9	7.4	6.9	12.4	1.8	7.9	+2.4	1	4013 (429)
Run 40#4	48.2	16.1	9.7	6.8	10.8	3.4	3.2	+2.4	l	2553 (241)
Run 40#5	50.1	14.8	7.6	8.5	12.5	2.2	3.4	+2.4	l	1776 (182)
Run 45#1	48.5	13.9	8.2	7.1	12.3	1.8	7.1	+2.4	l	3629 (137)
Run 45#2	48.9	16.0	8.6	6.4	10.6	3.3	4.3	+2.4	1	3915 (89)
Run 45#3	49.3	14.7	8.4	8.3	12.3	2.1	3.8	+2.4	1	4725 (176)
		15.0	Iac	cono-Mar	ziano et a	al. (<i>subm</i>	.) Basalt			0074 (1070)
IN52	47.5	15.0	9.8	10.9	13.0	1.49	0.47	+3.5		8976 (1073)
GB44.2	50.5	16.7	7.2	7.2	11.6	1.76	0.60	+0.8	0.3	2658 (240)
GV59.3	48.6	16.3	9.7	9.9	11.1	1.77	0.59	+1.5	0.9	4004 (305)
			Ger	nnaro (20	17) Basa	lt				

Table 1: Silicate glasses major element concentrations and S content, fO_2 conditions and calculated S speciation.

#19021	49.4	14.0	10.1	9.1	11.4	3.2	1.3	+2.4	1	3849 (341)
#19022	49.9	14.1	9.4	9.1	11.4	3.3	1.3	+2.4	1	6454 (410)
#27042	49.0	14.1	9.6	9.1	11.3	3.4	1.3	+1.1	0.6	1640 (250)
#27031	49.4	14.4	8.6	9.1	11.7	3.3	1.3	+1.4	0.8	2116 (170)
#27032	50.1	14.5	7.3	9.4	11.9	3.3	1.3	+1.4	0.8	2395 (260)
#27034	50.0	14.6	7.5	9.3	11.8	3.4	1.3	+1	0.4	1438 (120)
Gennaro (2017) Basalt, natural glass inclusions										
FS00	49.0	10.2	8.6	10.8	13.2	1.9	0.8	unknown	unknown	1100 (179)
FS3	47.2	9.54	8.6	10.5	13.4	1.7	0.8	unknown	unknown	1533 (225)
FS28a	44.3	9.3	8.4	11.5	13.4	1.6	0.7	unknown	unknown	2570 (226)
FS28b	46.0	9.5	8.1	11.1	14.0	1.6	0.8	unknown	unknown	1710 (198)
FSX	44.1	10.3	7.8	10.1	13.8	1.7	1.1	unknown	unknown	2190 (160)
FS25	45.3	9.1	8.7	12.2	13.0	1.6	0.6	unknown	unknown	2463 (175)
FSB	44.0	9.2	8.1	11.3	13.3	1.4	0.9	unknown	unknown	2235 (190)
FSD	44.7	10.3	7.9	11.1	12.6	1.9	0.8	unknown	unknown	2235 (205)
SPAGNOLO	46.7	16.4	9.2	6.3	9.5	4.5	1.8	unknown	unknown	1330 (133)
a mi :	1 .			•	1 ' 5		1	.1 .1	. 0 / . 1	1 50/

^a The major element concentration was determined using EPMA. The error on the oxide wt.% is better than 5% in relative to the value. The details of the analytical conditions can be found in the main text.

^b The fO_2 relative to FMQ was calculated using the thermodynamic data from Robie and Hemingway (1995) and the equation reported in Zolotov and Fegley (1999). For the melt inclusions, the fO_2 conditions are unknown. ^c The sulfur speciation is determined according to the fO_2 conditions relative to FMQ buffer and using the

reported equation from Jugo et al. (2010). Most of the investigated samples have S^{6+} sulfur species as the main species.

^d The ppm S corresponds to the total S determined by EPMA (see text for analytical conditions).

Sample	$v S \Omega^{2-a}$	$O^n nk 1^a$	$O^n nk 2^a$	$O^n nk 3^a$	O^n nk A^a	$A SO_4^2 / A$	Measured	Calculated		
Bample	VI 504	Q PKI	Q PK2	Q pk5	У РК 4	HF⁵	ppm S°	ppm S ^{6+ d}		
Morizet et al. (2013, 2015) Anorthite – Diopside eutectic										
AD2M-5	1003.4	1094.5	1035.5	965.5	902.1	0.053(1)	2365 (138)	1816 (609)		
11021110	30.8	81.5	76.0	73.2	69.1	0.0000 (1)	2000 (100)	1010 (00))		
AD10M-5	1004.0	1098.3	1036.3	969.5	906.8	0.177 (9)	5481 (324)	6070		
	30.6	95.5 1101.0	/8.4	/0.0	69./ 805.2					
AD2M-1r	1002.5	87.0	1037.0	902.9 72 7	895.5	0.212 (2)	7191 (447)	7280		
	50.4 1002.0	87.9 1104.0	1040.1	050.8	/1.8					
AD10 na	36.4	67.8	66 7	66.1	500.7 65.4	0.205 (18)	6973 (73)	7051		
	1003 7	1109.0	1041 3	973.6	904.9					
AD-4.7-0.5	30.2	110 2	91.9	91.5	79.7	0.059 (4)	2434 (567)	2042		
	1002.8	1102.4	1031.6	972 7	906.1					
AD-4.5-1	28.8	114 1	84.0	83.1	75.2	0.141 (2)	4150 (974)	4846		
	1004 7	1114 5	1037.5	984.9	909.0					
AD-5-3	28.3	106.1	77.4	70.1	73.0	0.197 (4)	6621 (355)	6763		
	1002.8	1101.9	1033.6	970.3	901.2					
AD-5-5	29.6	103.0	72.3	77.3	67.8	0.198 (4)	7519 (3397)	6790		
	1003.7	1120.1	1046.1	986.1	908.2					
AD4	27.8	123.9	97.7	97.5	85.8	0.049 (12)	2718 (598)	1696		
	27.0	123.9	Iégo and	Pichavant ((2012) Daci	te				
	1003 3	1138 3	1058.3	986.2	911.2					
C6D	43.9	93.2	82.9	67.1	70.4	0.043 (8)	1795 (222)	1467		
	15.9	1135.8	1054 1	978.9	901.8					
C7D	996.7 35.4	84.6	92.0	70.1	66.1	0.034 (5)	1851 (138)	1177		
	1000 7	1143.0	1054 3	976.9	906.0	0.040(1)				
C5D	35.1	92.6	112.9	83.9	74.1		2184 (170)	1391		
	1008.9	1156.5	1074.6	976.8	906.0	0.061 (3)				
C4D	30.6	82.6	112.3	79.5	67.5		2422 (146)	2107		
~~~	1001.8	1131.2	1044.4	970.6	898.4	0.042 (10)		1 100		
C3D	35.9	84.2	81.6	87.5	80.5		1651 (140)	1433		
~~~	1001.4	1131.7	1038.6	965.6	896.1	0.040 (4)	1000 (110)			
C2D	35.0	94.9	86.9	87.4	76.5		1892 (116)	1475		
COD	1005.0	1132.0	1051.1	961.1	893.2	0.0((.12))	1(10(122))	~~~~		
C8D	39.6	89.1	82.7	91.2	51.3	0.066 (12)	1619 (132)	2257		
COD	1007.9	1135.5	1048.3	965.5	899.4		1 400 (100)	2202		
C9D	36.2	95.1	86.1	85.3	53.5	0.064 (12)	1400 (128)	2202		
			Zajacz (20	15) Variou	s compositi	ons				
	1003.1	1126.2	1038.9	956.6	883.5	· · · · · · · · · · · · · · · · · · ·				
263a	29.5	92.1	70.8	57.8	58.5	0.412 (4)	13180 (481)	14163		
0(0)	006 5 05 0	1114.7	1046.1	973.1	892.9	0.100 (0)	(200, (240))	(202		
2636	996.5 25.2	75.7	73.0	70.0	65.4	0.180 (6)	6209 (240)	6203		
2721	000 5 42 0	1112.5	1029.4	940.9	870.4	0.072 (2)	220((1))	2490		
2726	989.5 42.0	87.7	75.2	76.9	54.2	0.072(3)	2306 (61)	2489		
296	000 0 20 0	1110.2	1033.9	967.0	894.9	0.002 (1.4)	29.47 (90)	2100		
286a	998.0 30.9	77.9	75.3	74.1	66.2	0.093 (14)	2847 (80)	3198		
272	007.0.51.0	1114.2	1032.9	952.0	883.2	0.020 (0)	1170 (152)	1047		
272a	987.9 51.8	88.3	80.9	80.3	67.2	0.030(0)	11/9 (152)	1047		
220	1002.8	1125.7	1042.0	964.7	893.5	0.050 (2)	1402 (41)	2040		
239a	36.6	92.8	75.7	67.4	64.4	0.039 (3)	1402 (41)	2040		
20/1-	002 1 20 2	1109.4	1049.0	956.3	893.5	0.160	1700 (250)	5400		
2800	992.1 30.3	76.2	60.7	56.9	69.1	0.160	4/88 (200)	5498		
245-	1002.0	1130.5	1047.5	979.8	895.8	5.8 0.250 (10)	(10) 0054 (401)	0577		
243a	26.4	76.4	68.7	69.9	76.2	0.230 (10)	9034 (401)	03//		
2/11	006 7 22 2	1117.5	1050.5	961.5	893.1	0.180 (10)	5600 (200)	6510		
2410	990./23.2	71.2	71.2	60.5	58.4	0.109 (10)	2009 (280)	0310		

Table 2: Deconvolution results (peak position and FWHM), determined A SO_4^{2-}/A HF ratio and derived S content.

239b	1002.5	1137.0	1050.4	972.1	893.1	0.117(1)	3285 (80)	4027			
	32.4 1000 7	80.9	76.3 1050.6	/8./ 973 1	66.7 885.9						
244a	28.3	75.3	69.1	73.3	64.6	0.315 (18)	9534 (280)	10830			
	Pichavant et al. (2006) Basalt										
C-2	1001.6	1119.3	1038.2	957.7	878.1	0.1(0.(()	(402 ((50)	5921			
Cas	34.5	70.7	71.4	70.6	65.6	0.169 (6)	6492 (650)	5821			
idc10-5	1002.5	1126.9	1042.2	957.1	876.0	0 186 (44)	5530 (560)	6406			
lucio 5	33.4	62.7	72.5	78.8	65.6	0.100 (11)	5550 (500)	0100			
HAB27	1000.5	1113.2	1036.9	959.9	888.1	0.085 (12)	2250 (225)	2928			
	32.8	/0.9	107.3	/8.5	64./ 802.5						
HAB28	31.1	91 7	96.7	905.2 85.5	695.5 64 7	0.065 (4)	2070 (207)	2226			
J1.1 71.7 70.7 0J.J 04.7 Lesne (2008) Lesne et al (2011) Rasalt											
		1084.8	1016.8	959 0	893 7	Jasan					
Run 33#2	996.8 30.7	81.3	72.6	72.0	70.2	0.076 (4)	3058 (171)	2600			
D 22//2	1001.5	1102.6	1030.6	966.3	897.5	0.000 (5)	2217 (220)	2055			
Run 33#3	31.7	100.6	78.3	74.7	71.9	0.089 (5)	3317 (326)	3055			
Dup 28#1	006 8 22 8	1104.2	1035.3	950.0	877.2	0.140(2)	5764 (76)	5120			
Kull 36#1	990.0 52.0	61.2	82.5	68.4	60.3	0.149(2)	5704 (70)	5129			
Run 38#2	994 4 34 9	1091.0	1023.2	953.9	887.5	0 167 (29)	5832 (96)	5726			
Run 50/12	JJ4.4 J4.J	75.8	68.0	66.7	63.9	0.107 (27)	5652 (56)	5720			
Run 38#3	997.4 32.0	1104.0	1030.9	953.1	881.7	0.135 (2)	5865 (78)	4627			
		64.7	69.7	69.2	58.5						
Run 40#2	997.3 32.8	1097.4	1029.0	957.8 62.1	886.7	0.079 (6)	3491 (349)	2723			
		/0.1	04.0	02.1	03.2 881.2						
Run 40#3	998.6 35.9	54 9	73.4	64 1	62.2	0.096 (12)	4013 (429)	3307			
-		1088.0	1021.9	955.6	887.6			100 (
Run 40#4	994.5 34.5	73.9	70.9	69.8	69.0	0.056 (5)	2553 (241)	1936			
Dum 40#5	000 8 24 5	1099.0	1032.1	961.6	894.0	0.052 (0)	1776 (192)	1926			
Kull 40#3	yyy.8 34.3	73.5	69.9	67.9	65.7	0.053 (0)	1//0(182)	1850			
Run 45#1	999 8 34 2	1099.7	1031.6	957.9	889.2	0.081(11)	3629 (137)	2779			
ituii ionii	<i>yyy</i> .0 51.2	79.9	74.9	69.9	67.3	0.081 (11)	5027 (157)	2119			
Run 45#2	996.4 33.3	1094.6	1026.4	957.0	891.9	0.085(1)	3915 (89)	2934			
	1001.2	/4.9	/0.2	08.8	00.3 806.0						
Run 45#3	37.4	77.2	67.8	67.3	64.6	0.140 (2)	4725 (176)	4811			
	57.4	Iac	ono-Marzia	no et al (si	uhm) Basa	 lt					
	1003.6	1120.0	1042.8	959.7	892.4						
IN52	36.9	53.7	64.5	61.9	67.2	0.253 (28)	8976 (1073)	8701			
CV50	1003.2	1106.5	1031.8	963.2	895.9	0.069 (25)	4004 (205)	2224			
6739	33.3	76.7	70.6	69.9	65.4	0.068 (23)	4004 (303)	2324			
GB44	1000.6	1111.1	1031.8	961.1	893.0	0.039(3)	2658 (240)	1352			
	32.3	82.9	72.7	73.7	74.7	0.059 (5)	2030 (210)				
			Gen	naro (2017) Basalt						
19021	997.0 35.4	1110.9	1032.0	954.7	878.5	0.108(1)	3849 (341)	3704			
19021	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70.9	74.6	66.6	74.2	01100 (1)		2701			
19022	997.5 36.9	1103.2	1035.0	953.4	8/7.9	0.188 (2)	6454 (410)	6446			
		/0./	08./	04.1	/1.8						
27042	994.2 47.6	03.0	84.9	67.9	68.8	0.030(1)	1640 (210)	1031			
		1065 7	1009.0	946.4	879.1	~ /					
27031	992.1 41.4	106.0	87.6	65.6	67.2	0.037 (2)	2116 (170)	1272			
27022	000 0 07 (1078.4	1014.9	946.4	878.6	0.050 (1)	2205 (2(0)	2020			
2/032	992.9 37.6	97.5	77.3	62.2	63.7	0.059(1)	2395 (260)	2028			
27034	997 3 11 5	1069.3	1007.3	946.8	879.4	0.030(1)	1438 (120)	1031			
27034	<i>772.3</i> 44 .3	97.4	86.6	68.1	68.9	0.050(1)	1430 (120)	1031			
		Gen	naro (2017)	Basalt, nat	ural melt in	clusions					
FS00	994.9 31.8	1066.0	1010.0	945.7	879.3	0.020(0)	1100	704			
1.000		104.3	94.2	71.5	70.8		1100				

FS3	1001.9	1048.4	974.2	914.8	857.9	0.034(0)	1533	1171
155	33.2	95.4	78.2	95.4	74.8	0.034 (0)	1555	11/1
FS282	000 1 33 /	1045.8	977.3	932.2	871.1	0.063 (13)	2570	2160
1 ^{-526a}	<i>999</i> .1 <i>33</i> . 4	99.0	77.3	68.6	66.0		2370	2107
ESJOL	007 5 21 2	1060.9	998.8	935.6	869.4	0.027	1710	021
13260	997.5 51.2	95.6	73.8	72.3	71.4	0.027		931
FSV	1001.9	1047.4	979.6	921.7	864.3	0.040(1)	2190	1385
ГЗЛ	31.7	90.5	71.5	72.9	72.8	0.040(1)		
E\$25	992.0 31.0	1064.7	1007.5	943.2	872.8	0.049	2463	1600
F325		79.1	65.0	67.6	72.2			1090
ECD	1001.6	1042.4	977.3	935.7	873.7	0.058	2225	2000
F2B	33.0	97.7	71.6	71.3	72.2		2233	2000
FSD	1001.9	1052.5	983.9	936.4	873.7	0.050	2225	1716
	34.3	89.5	70.5	70.9	72.2	0.050	2233	1/10
SPACNOLO	002 0 21 0	1069.1	992.5	930.4	862.6	0.020	1220	608
SPAGNULU	992.0 31.0	101.9	82.3	73.0	69.7	0.020	1550	098

^a The reported values represent the Raman peak position and full-width at half maximum (FWHM) obtained from the spectra simulation of the HF region. The typical error is ± 0.5 cm⁻¹ on the value for an analytical resolution on the order of ± 1 cm⁻¹.

^b The A $SO_4^{2^-}$ / A HF ratios are calculated from the area of the individual Gaussian peak obtained by the Raman spectra simulation. The error reported in between brackets represent the error on the A $SO_4^{2^-}$ / A HF ratio obtained from the standard deviation of the replicated measurements.

^c The ppm S corresponds to the total S determined by EPMA (see text for analytical conditions).

^d Calculated ppm S⁶⁺ using Eq. 2 obtained from the linear regression. The standard deviation determined from the linear regression is ± 609 ppm.