1	
2	Single crystal synthesis of δ-(Al,Fe)OOH
3	
4	Takaaki Kawazoe ^{1*} , Itaru Ohira ² , Takayuki Ishii ¹ , Tiziana Boffa Ballaran ¹ ,
5	Catherine McCammon ¹ , Akio Suzuki ² and Eiji Ohtani ^{2,3}
6	¹ Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
7	² Department of Earth Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan.
8	³ V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, 630090 Novosibirsk, Russia
9	
10	ABSTRACT
10 11	ABSTRACT Single crystals of δ -AlOOH, δ -(Al _{0.953} ,Fe _{0.047})OOH and δ -(Al _{0.878} ,Fe _{0.122})OOH with
10 11 12	ABSTRACT Single crystals of δ -AlOOH, δ -(Al _{0.953} ,Fe _{0.047})OOH and δ -(Al _{0.878} ,Fe _{0.122})OOH with dimensions up to ~0.4-0.6 mm were synthesized by the high-pressure hydrothermal method.
10 11 12 13	ABSTRACT Single crystals of δ-AlOOH, δ-(Al _{0.953} ,Fe _{0.047})OOH and δ-(Al _{0.878} ,Fe _{0.122})OOH with dimensions up to ~0.4-0.6 mm were synthesized by the high-pressure hydrothermal method. Synthesis experiments were performed at 21 GPa and 1470 K for 4 h using a Kawai-type
10 11 12 13 14	ABSTRACT Single crystals of δ-AlOOH, δ-(Al _{0.953} ,Fe _{0.047})OOH and δ-(Al _{0.878} ,Fe _{0.122})OOH with dimensions up to ~0.4-0.6 mm were synthesized by the high-pressure hydrothermal method. Synthesis experiments were performed at 21 GPa and 1470 K for 4 h using a Kawai-type multi-anvil apparatus. The crystals of δ-AlOOH, δ-(Al _{0.953} ,Fe _{0.047})OOH and
 10 11 12 13 14 15 	ABSTRACT Single crystals of δ-AlOOH, δ-(Al _{0.953} ,Fe _{0.047})OOH and δ-(Al _{0.878} ,Fe _{0.122})OOH with dimensions up to ~0.4-0.6 mm were synthesized by the high-pressure hydrothermal method. Synthesis experiments were performed at 21 GPa and 1470 K for 4 h using a Kawai-type multi-anvil apparatus. The crystals of δ-AlOOH, δ-(Al _{0.953} ,Fe _{0.047})OOH and δ-(Al _{0.878} ,Fe _{0.122})OOH were colorless, yellowish green and brown, respectively. Mössbauer
 10 11 12 13 14 15 16 	ABSTRACT Single crystals of δ-AlOOH, δ-(Al _{0.953} ,Fe _{0.047})OOH and δ-(Al _{0.878} ,Fe _{0.122})OOH with dimensions up to ~0.4-0.6 mm were synthesized by the high-pressure hydrothermal method. Synthesis experiments were performed at 21 GPa and 1470 K for 4 h using a Kawai-type multi-anvil apparatus. The crystals of δ-AlOOH, δ-(Al _{0.953} ,Fe _{0.047})OOH and δ-(Al _{0.878} ,Fe _{0.122})OOH were colorless, yellowish green and brown, respectively. Mössbauer spectra showed 95-100% Fe ³⁺ /ΣFe at the octahedral site in δ-(Al,Fe)OOH. Chemical

18	Fe/(Al+Fe) of 0.0469(8) and 0.122(3), respectively. Unit-cell parameters of δ -AlOOH are
19	consistent with those of previous studies, and they increase with Fe/(Al+Fe). These results
20	confirm that δ -AlOOH can form a solid solution with ϵ -FeOOH. The crystals contained a small
21	number of fluid inclusions. The syntheses of large single crystals of δ -(Al,Fe)OOH will facilitate
22	investigation of their phase stability, physical properties including elasticity and elastic
23	anisotropy, behavior of hydrogen bonding and spin state of Fe, which will improve models of the
24	water and oxygen cycles in the deep Earth.
25	
26	Keywords: δ-AlOOH, δ-(Al,Fe)OOH, water, single crystal, hydrous mineral, high-pressure
27	synthesis, Kawai-type multianvil apparatus
28	
29	INTRODUCTION
30	δ -AlOOH is an important phase in the deep water cycle because: (1) a large amount of
31	water can be incorporated in its crystal structure; (2) this phase is stable in hydrous pyrolite
32	mantle (Ohtani et al., 2001), hydrous basalt (Suzuki et al., 2000) and hydrous sediment
33	components (Rapp et al., 2008) of slabs descending into the mantle transition zone (MTZ) and
34	lower mantle; (3) this phase can carry water to the core-mantle boundary (Ohira et al., 2014;

35	Sano et al., 2008); (4) chemical reaction between δ -AlOOH and Fe-Ni alloy can deliver hydrogen
36	to the Earth's core (Terasaki et al., 2012). Consequently, the physical and chemical properties of
37	δ -AlOOH are of fundamental importance to understanding the water cycle in the MTZ, the lower
38	mantle and the core.
39	Previous single-crystal X-ray diffraction (SC-XRD) studies of δ -AlOOH and
40	δ-(Al _{0.84} ,Mg _{0.07} ,Si _{0.09})OOH include crystal structure refinements (Komatsu et al., 2006; Kudoh et
41	al., 2004) and pressure-induced phase transitions (Kuribayashi et al., 2014). The dimensions of
42	crystals were less than 83 μ m in the mentioned studies, however. While such sizes are sufficient
43	for structure determinations, larger crystals (> 100 μ m) of high quality are required for
44	measurements of physical and chemical properties, for example as prepared by the focused ion
45	beam technique to obtain specific dimensions, shapes and crystallographic orientations
46	(Marquardt and Marquardt, 2012).
47	The effect of Fe substitution on the physical and chemical properties of δ -AlOOH has
48	not yet been studied. Fe is expected to be accommodated in δ -AlOOH as Fe ³⁺ in the MTZ and the
49	lower mantle because ϵ -Fe ³⁺ OOH is isostructural with δ -AlOOH (Chenavas et al., 1973) and
50	stable above 6 GPa at high temperature (Gleason et al., 2008; Nishihara and Matsukage, 2016).

Fe-bearing δ -AlOOH might exist in descending slabs and therefore carry Fe³⁺ (oxygen) into the 51 52 deep Earth. In this study, we synthesized single crystals of δ -AlOOH, δ -(Al_{0.953},Fe_{0.047})OOH and 53 δ -(Al_{0.878},Fe_{0.122})OOH with dimensions up to ~0.4-0.6 mm using a high-pressure hydrothermal 54 method. We report results of sample characterization that includes evaluation of crystal quality, 55 the presence of inclusions, chemical composition and unit-cell parameters. We discuss 56 implications for the stability of δ -(Al,Fe)OOH and the water and oxygen cycles in the MTZ and 57 the lower mantle. 58 59 **EXPERIMENTAL METHODS** 60 61 Synthesis experiments 62 Starting materials were either reagent grade Al(OH)₃ powder or mixtures of reagent 63 grade Al(OH)₃ and Fe₂O₃ powders with Fe/(Al+Fe) = 0.06 or 0.15 in molar ratios. The Fe₂O₃ 64 powder contained 96.64% ⁵⁷Fe₂O₃. The mixtures of Al(OH)₃ and ⁵⁷Fe-enriched Fe₂O₃ powders 65 were ground in an agate mortar with acetone for 1 h. The starting material was packed into a 66 Au₈₀Pd₂₀ capsule with inner and outer diameters of 0.9 and 1.2 mm, respectively. The lengths 67 of 4

68 the capsules for the syntheses of Fe-free and Fe-bearing δ -AlOOH were 3.3 and 2.0 mm,

69 respectively. The capsules were closed by welding.

70	Synthesis experiments were conducted at 21 GPa using a Kawai-type multi-anvil
71	apparatus with split-sphere type guide blocks (Keppler and Frost, 2005; Rubie, 1999). The
72	capsule was loaded into a Cr-doped MgO octahedron with a 10-mm edge length. We used
73	second-stage anvils made of tungsten carbide (ha-7%, hawedia) with 4-mm truncation and
74	pyrophyllite gaskets with a 3.0-mm width. The sample was heated using a LaCrO ₃ furnace with
75	inner and outer diameters of 1.8 and 2.5 mm, respectively, surrounded by a ZrO ₂ thermal
76	insulator with 0.65-mm thickness. The ceramic parts of the cell assembly were fired at 1273 K
77	before assembling them into the final configuration. Sample pressure was calibrated as a function
78	of press load using phase transformations between forsterite and wadsleyite in Mg ₂ SiO ₄ at 1673
79	K (Morishima et al., 1994) and between wadsleyite and ringwoodite in Mg ₂ SiO ₄ at 1873 K
80	(Suzuki et al., 2000).

81 The sample was first compressed at room temperature to a press load of 570 tons. 82 Temperature was then increased to 1470 K at a rate of 40-50 K/min, and the target temperature 83 was held constant for 4 h before rapid quenching. We estimated temperature based on the

84	temperature-power relation obtained in separate runs. The uncertainty in temperature is estimated
85	to be ± 50 K. The sample was decompressed to ambient pressure at room temperature over 13 h.
86	
87	Sample analyses
88	Crystals were selected based on the absence of twinning using a polarizing microscope
89	(Leitz, Laborlux 12 Pol S) and on the quality of their diffraction profiles (full width at half
90	maximum of omega scans <0.1°). Unit-cell lattice parameters were obtained from the vector
91	least-squares fit (Ralph and Finger, 1982) of 23-28 reflections centered following the 8-position
92	centering method (King and Finger, 1979) using a Huber four-circles diffractometer with Mo K α
93	radiation operated at 50 kV and 40 mA, which were equipped with a point detector and driven by
94	the SINGLE software (Angel and Finger, 2011).
95	The chemical compositions of the Fe-bearing crystals were measured using an electron
96	microprobe operating in wavelength-dispersive mode (JEOL, JXA-8800 installed at Tohoku
97	University) operated at 15 kV and 10 nA. Mössbauer spectra were collected on several crystals
98	with dimensions of ~ 0.1 -0.2 mm at room temperature in transmission mode using a constant
99	acceleration Mössbauer spectrometer with a ⁵⁷ Co source. We collected Mössbauer spectra for 1
100	day and fitted them using Lorentzian doublets assigned to octahedral Fe^{3+} and Fe^{2+} using the

101	program MossA (Prescher et al., 2012). The abundance of Fe^{3+} and Fe^{2+} and their uncertainties
102	were determined from relative areas and statistical fitting errors, respectively.
103	
104	RESULTS AND DISCUSSION
105	Single crystals of δ -AlOOH, δ -(Al _{0.953} ,Fe _{0.047})OOH and δ -(Al _{0.878} ,Fe _{0.122})OOH with
106	dimensions up to ~0.4-0.6 mm were successfully synthesized at 21 GPa and 1470 K for 4 h $$
107	(Table 1, Fig. 1). Aqueous fluid was observed when opening the recovered capsules. Crystals of
108	δ -AlOOH, δ -(Al _{0.953} , Fe _{0.047})OOH and δ -(Al _{0.878} , Fe _{0.122})OOH were colorless, yellowish green and
109	brown, respectively, and showed uniform extinction under cross-polarized light. The crystals
110	contained a small number of fluid inclusions (Fig.1).
111	The chemical compositions of the δ -(Al _{0.953} ,Fe _{0.047})OOH and δ -(Al _{0.878} ,Fe _{0.122})OOH
112	crystals were nearly homogeneous within each crystal and among different crystals with
113	Fe/(Al+Fe) of 0.0469(8) and 0.122(3) (Table 2). The Fe contents of the crystals were less than
114	those of the starting materials, most likely due to Fe loss to the $Au_{80}Pd_{20}$ capsule at high
115	temperature (Kawamoto and Hirose, 1994) or a low Fe partition coefficient between
116	δ -(Al,Fe)OOH and aqueous fluid. The Mössbauer spectra showed 95-100% Fe ³⁺ / Σ Fe with
117	hyperfine parameters consistent with octahedral site occupancy (Fig. 2). Oxide weight deficits

118	were 17.2(6) and 16.6(4) wt% for δ -(Al _{0.953} ,Fe _{0.047})OOH and δ -(Al _{0.878} ,Fe _{0.122})OOH, respectively.
119	If we assign the oxide weight deficits to H_2O , these are larger than the H_2O contents based on
120	their ideal chemical formulae (14.68 and 14.18%, respectively).
121	The unit-cell parameters of δ -AlOOH are $a = 4.7139(2)$ Å, $b = 4.2263(2)$ Å, $c =$
122	2.8321(2) Å and $V = 56.422(6)$ Å ³ (Table 3, Fig. 3). These values are consistent with those of
123	previous studies (Komatsu et al., 2006; Suzuki et al., 2000). The unit-cell parameters of
124	δ -(Al,Fe)OOH increase with Fe/(Al+Fe). The unit-cell volumes of δ -(Al _{0.953} ,Fe _{0.047})OOH and
125	δ -(Al _{0.878} ,Fe _{0.122})OOH deviate positively by 0.27 and 0.75%, respectively, from a straight line
126	connecting values for δ -AlOOH (Komatsu et al., 2006; Suzuki et al., 2000) and ϵ -FeOOH
127	(Suzuki, 2010). The full widths at half maximum of the omega scans of the 110 spots are
128	$0.054-0.064^{\circ}$ (Table 1), demonstrating the high quality of the crystals.
129	
130	IMPLICATIONS
131	The synthesis conditions of δ -(Al _{0.953} ,Fe _{0.047})OOH and δ -(Al _{0.878} ,Fe _{0.122})OOH, 21 GPa
132	and 1470 K, are close to those where $\delta\text{-AlOOH}$ decomposes to Al_2O_3 corundum and aqueous
133	fluid (Sano et al., 2004). The decomposition temperature of δ -(Al,Fe)OOH may not be
134	substantially affected, therefore, by Fe substitution in this phase. The excess volumes of

135	δ -(Al _{0.953} ,Fe _{0.047})OOH and δ -(Al _{0.878} ,Fe _{0.122})OOH (0.27 and 0.75%, respectively) are smaller than
136	those of Fe-bearing corundum in the Al_2O_3 -Fe ₂ O ₃ system (e.g., 1.52% for $(Al_{0.909}, Fe_{0.091})_2O_3)$
137	(Majzlan et al., 2002). The relatively small excess volume of δ -(Al,Fe)OOH supports Fe
138	substitution up to Fe/(Al+Fe) = 0.122 in this phase. If δ -(Al,Fe)OOH were as stable as δ -AlOOH
139	in terms of pressure-temperature conditions (Sano et al., 2008), δ-(Al,Fe)OOH could play an
140	important role in the cycling of water (hydrogen) and Fe ³⁺ (oxygen) in the deep Earth. Further
141	study is necessary to determine the stability of δ -(Al,Fe)OOH.
142	The single crystals of δ -(Al,Fe)OOH synthesized in this study are ideal for preparation
143	of single-crystal samples with specific dimensions, shape and, if needed, crystallographic
144	orientation. Such samples are particularly well suited for high-pressure experiments using a
145	diamond anvil cell and would enable studies of phase stability, physical properties such as
146	elasticity and elastic anisotropy, behavior of hydrogen bonding and the spin state of Fe.
147	Consequently, single crystals of δ -(Al,Fe)OOH can contribute to the advancement of
148	high-pressure mineralogy.
149	

ACKNOWLEDGMENTS

151	We are grateful to R. Njul, Y. Ito, and H. Fischer for their support in sample polishing,
152	chemical analysis and manufacturing of cell assembly parts, respectively. We thank A. Shatskiy
153	and two anonymous reviewers for helpful reviews. This study was supported by the International
154	Research Training Group "Deep Earth Volatile Cycles" funded by the German Research
155	Foundation (DFG) and the Japan Society for the Promotion of Science (JSPS) and by the JSPS
156	Japanese-German Graduate Externship.
157	
158	REFERENCES CITED
159	Angel, R.J., and Finger, L.W. (2011) SINGLE: A program to control single-crystal dif-
160	fractometers. Journal of Applied Crystallography, 44, 247-251.
161	Chenavas, J., Joubert, J.C., Capponi, J.J., and Marezio, M. (1973) Synthese de nouvelles phases
162	denses d'oxyhydroxydes M ³⁺ OOH des metaux de la premiere serie de transition, en milieu
163	hydrothermal à tres haute pression. Journal of Solid State Chemistry, 6(1), 1-15.
164	Gleason, A.E., Jeanloz, R., and Kunz, M. (2008) Pressure-temperature stability studies of FeOOH
165	using X-ray diffraction. American Mineralogist, 93, p. 1882.
166	Kawamoto, T., and Hirose, K. (1994) Au-Pd sample containers for melting experiments on iron
167	and water bearing systems. European Journal of Mineralogy, 6, 381-385.

168	Keppler, H., and Frost, D.J. (2005) Introduction to minerals under extreme conditions. In R.
169	Miletich, Ed. Mineral behaviour at extreme conditions, EMU notes in mineralogy, 7, p.
170	1-30. European Mineralogical Union.
171	King, H.E., and Finger, L.W. (1979) Diffracted beam crystal centering and its application to
172	high-pressure crystallography. Journal of Applied Crystallography, 12, 374–378.
173	Komatsu, K., Kuribayashi, T., Sano, A., Ohtani, E., and Kudoh, Y. (2006) Redetermination of the
174	high-pressure modification of AlOOH from single-crystal synchrotron data. Acta
175	Crystallographica Section E, 62(11), i216-i218.
176	Kudoh, Y., Kuribayashi, T., Suzuki, A., Ohtani, E., and Kamada, T. (2004) Space group and
177	hydrogen sites of δ -AlOOH and implications for a hypothetical high-pressure form of
178	Mg(OH) ₂ . Physics and Chemistry of Minerals, 31(6), 360-364.
179	Kuribayashi, T., Sano-Furukawa, A., and Nagase, T. (2014) Observation of pressure-induced

- 180 phase transition of δ -AlOOH by using single-crystal synchrotron X-ray diffraction
- 181 method. Physics and Chemistry of Minerals, 41(4), 303-312.
- 182 Majzlan, J., Navrotsky, A., and Evans, B.J. (2002) Thermodynamics and crystal chemistry of the
- hematite-corundum solid solution and the FeAlO₃ phase. Physics and Chemistry of
 Minerals, 29(8), 515-526.
- 185 Marquardt, H., and Marquardt, K. (2012) Focused ion beam preparation and characterization of
- 186 single-crystal samples for high-pressure experiments in the diamond-anvil cell. American
- 187 Mineralogist, 97(2-3), 299-304.

188	Morishima, H., Kato, T., Suto, M., Ohtani, E., Urakawa, S., Utsumi, W., Shimomura, O., and
189	Kikegawa, T. (1994) The phase-boundary between α -Mg ₂ SiO ₄ and β -Mg ₂ SiO ₄
190	determined by in-situ X-ray observation. Science, 265, 1202-1203.
191	Nishihara, Y., and Matsukage, K.N. (2016) Iron-titanium oxyhydroxides as water carriers in the
192	Earth's deep mantle. American Mineralogist, 101, p. 919.

Ohira, I., Ohtani, E., Sakai, T., Miyahara, M., Hirao, N., Ohishi, Y., and Nishijima, M. (2014) 193

Stability of a hydrous δ -phase, AlOOH-MgSiO₂(OH)₂, and a mechanism for water 194 transport into the base of lower mantle. Earth and Planetary Science Letters, 401, 12-17. 195

- 196 Ohtani, E., Litasov, K., Suzuki, A., and Kondo, T. (2001) Stability field of new hydrous phase,
- 197 δ -AlOOH, with implications for water transport into the deep mantle. Geophysical Research Letters, 28(20), 3991-3993. 198
- Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for analyzing 199
- energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of 200 Applied Crystallography, 45(2), 329-331. 201
- Ralph, R.L., and Finger, L.W. (1982) A computer-program for refinement of crystal orientation 202
- matrix and lattice-constants from diffractometer data with lattice symmetry constraints. 203 Journal of Applied Crystallography, 15, 537–539. 204
- Rapp, R.P., Irifune, T., Shimizu, N., Nishiyama, N., Norman, M.D., and Inoue, T. (2008) 205 Subduction recycling of continental sediments and the origin of geochemically enriched 206 207 reservoirs in the deep mantle. Earth and Planetary Science Letters, 271(1-4), 14-23.

208	Rubie,	D.C.	(1999)	Characterising	the	sample	environment	in	multianvil	high-pressure
209		experi	ments. P	hase Transitions	, 68(3	3), 431-4:	51.			

- 210 Sano, A., Ohtani, E., Kondo, T., Hirao, N., Sakai, T., Sata, N., Ohishi, Y., and Kikegawa, T.
- (2008) Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the
 core-mantle boundary. Geophysical Research Letters, 35(3), L03303.
- 213 Sano, A., Ohtani, E., Kubo, T., and Funakoshi, K.-i. (2004) In situ X-ray observation of
- 214 decomposition of hydrous aluminum silicate AlSiO₃OH and aluminum oxide hydroxide
- δ -AlOOH at high pressure and temperature. Journal of Physics and Chemistry of Solids,
- 216 65(8-9), 1547-1554.
- Suzuki, A. (2010) High-pressure X-ray diffraction study of ε-FeOOH. Physics and Chemistry of
 Minerals, 37(3), 153-157.
- 219 Suzuki, A., Ohtani, E., and Kamada, T. (2000) A new hydrous phase δ-AlOOH synthesized at 21

GPa and 1000 °C. Physics and Chemistry of Minerals, 27(10), 689-693.

221 Suzuki, A., Ohtani, E., Morishima, H., Kubo, T., Kanbe, Y., Kondo, T., Okada, T., Terasaki, H.,

Kato, T., and Kikegawa, T. (2000) In situ determination of the phase boundary between
 wadsleyite and ringwoodite in Mg₂SiO₄. Geophysical Research Letters, 27(6), 803-806.

224 Terasaki, H., Ohtani, E., Sakai, T., Kamada, S., Asanuma, H., Shibazaki, Y., Hirao, N., Sata, N.,

- 225 Ohishi, Y., Sakamaki, T., Suzuki, A., and Funakoshi, K.-i. (2012) Stability of Fe-Ni
- hydride after the reaction between Fe-Ni alloy and hydrous phase (δ -AlOOH) up to 1.2

227	Mbar: Possibility of Hcontribution to the core density deficit. Physics of The Earth and
228	Planetary Interiors, 194-195, 18-24.
229	
230	FIGURE CAPTIONS
231	Figure 1. Photographs of the samples. (a) Cross section of the capsule (run H4444). Single
232	crystals of (b) δ -AlOOH, (c) δ -(Al _{0.953} ,Fe _{0.047})OOH and (d) δ -(Al _{0.878} ,Fe _{0.122})OOH. The fluid
233	inclusion is indicated with an arrow in (b).
234	Figure 2. Mössbauer spectrum of δ -(Al _{0.953} ,Fe _{0.047})OOH. The spectrum was fit to two components,
235	each assigned to Fe ³⁺ in the octahedral site: a quadrupole doublet (grey with red outline)
236	and a broad magnetic component (blue outline).
237	Figure 3. Orthorhombic unit-cell parameters of δ -(Al,Fe)OOH. (a) a . (b) b . (c) c . (d) V . Open
238	squares and diamonds are those of δ -AlOOH reported in Suzuki et al. (2000) and Komatsu et
239	al. (2006), respectively. V of ε -FeOOH (Suzuki, 2010) is also plotted as an open circle in (d).
240	Dashed lines connect the end-member values.
241	
242	
243	
244	
245	
246	

Run No.	Starting material	Recovered sample	Max. size	Omega scan for 110
	Fe/(Al+Fe)	Phase ^a Fe/(Al+Fe)	(mm)	(°, FWHM ^b)
H4444	0	δ, fluid - δ, fluid	0.6	0.064
H4473	0.06	0.0469(8) δ, fluid	0.5	0.058
H4468	0.15	0.122(3)	0.4	0.054

Notes: All runs were performed at 21 GPa and 1470 K for 4

h. ^a Abbreviations: $\delta = \delta$ -(Al,Fe)OOH; fluid = aqueous fluid.

^b Abbreviation: full width at half maximum.

Run No./	n ^a	Mass (wt%)			Atomic ratio $(O = 2)$					
Crystal		Al_2O_3	Fe ₂ O ₃	$\mathrm{H}_2\mathrm{O}^{\mathrm{b}}$	Total	Al	Fe	H^{\flat}	Al+Fe	Fe/(Al+Fe)
H4473										
1	10	76.9(4)	6.05(14)	17.1(5)	100	0.908(9)	0.045(1)	1.14(3)	0.953(9)	0.0472(10)
2	10	76.8(5)	5.90(8)	17.3(5)	100	0.905(9)	0.044(1)	1.15(3)	0.949(9)	0.0462(7)
3	10	76.5(9)	6.12(11)	17.3(10)	100	0.901(17)	0.045(1)	1.16(5)	0.947(18)	0.0480(8)
4	10	77.0(4)	5.94(11)	17.1(5)	100	0.909(8)	0.044(1)	1.14(3)	0.953(9)	0.0463(8)
Average		76.8(5)	6.00(11)	17.2(6)	100	0.906(11)	0.045(1)	1.15(3)	0.951(11)	0.0469(8)
H4468										
1	10	68.3(5)	14.6(3)	17.1(5)	100	0.830(8)	0.111(3)	1.18(3)	0.942(9)	0.118(3)
2	10	67.1(5)	16.3(4)	16.5(7)	100	0.824(10)	0.126(4)	1.15(4)	0.951(13)	0.133(3)
3	10	68.7(3)	15.1(5)	16.1(4)	100	0.843(5)	0.117(5)	1.12(2)	0.960(8)	0.122(4)
4	9	68.6(3)	14.9(3)	16.5(2)	100	0.838(4)	0.115(2)	1.14(1)	0.952(5)	0.120(2)
5	10	69.0(3)	14.5(2)	16.5(4)	100	0.843(6)	0.112(2)	1.14(2)	0.954(8)	0.117(1)
Average		68.4(4)	15.1(3)	16.6(4)	100	0.835(7)	0.116(3)	1.14(3)	0.952(9)	0.122(3)

TABLE 2. Chemical compositions of δ -(Al,Fe)OOH single crystals

Notes: Numbers in parentheses are one standard deviation on the last digit.

^a Number of analyses.

 $^{\rm b}$ H_2O content was calculated from deficit in total mass.

Run No./	Fe/(Al+Fe)	а	b	С	V	Method
Reference		(Å)	(Å)	(Å)	(Å ³)	
This study						
H4444	0	4.7139(2)	4.2263(2)	2.8321(2)	56.422(6)	SC-XRD
H4473	0.0469(8)	4.7291(2)	4.2397(2)	2.8421(2)	56.984(5)	SC-XRD
H4468	0.122(3)	4.762(3)	4.262(3)	2.858(3)	58.00(8)	SC-XRD
Previous studies						
Suzuki et al. (2000)	0	4.7134(1)	4.2241(1)	2.83252(8)	56.395(5)	Powder XRD ^a
Komatsu et al. (2006)	0	4.7128(11)	4.2221(15)	2.8315(7)	56.34(3)	SC-XRD
Suzuki (2010)	1	4.954(1)	4.4540(9)	3.0001(8)	66.20 (3)	Powder XRD ^b

TABLE 3. Unit-cell parameters of δ -(Al,Fe)OOH and $\epsilon\text{-FeOOH}$

^a The unit-cell parameters were refined by the Rietveld method.

^b The XRD pattern was taken using synchrotron X-ray by energy-dispersive mode.

Figure 1

