1 2 2	Refractive Indices of Minerals and Synthetic Compounds
3 4	Ruth C. Shannon
5	Geological Sciences/ CIRES, University of Colorado, Boulder, Colorado 80309
6	Barbara Lafuente
7	NASA Ames Research Center, Moffett Field, Mountain View, CA 94035
8	Robert D. Shannon
9	Geological Sciences/ CIRES, University of Colorado, Boulder, Colorado 80309
10	Robert T. Downs
11	Department of Geosciences, University of Arizona, 1040 E. 4th St, Tucson, Arizona 85721-0077
12	Reinhard X. Fischer
13	Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Str. 2, D-28359 Bremen (Germany)
14	
15	Abstract
16	This is a comprehensive compilation of refractive indices of 1933 minerals and 1019 synthetic
17	compounds including exact chemical compositions and references taken from 30 compilations
18	and many mineral and synthetic oxide descriptions. It represents a subset of about 4000 entries
19	used by Shannon and Fischer (Amer. Mineral. 101, 2016, 2288-2300) to determine the
20	polarizabilities of 270 cations and anions after removing 425 minerals and compounds
21	containing the lone-pair ions $(Tl^+, Sn^{2+}, Pb^{2+}, As^{3+}, Sb^{3+}, Bi^{3+}, S^{4+}, Se^{4+}, Te^{4+}, Cl^{5+}, Br^{5+}, I^{5+})$ and
22	uranyl ions, U^{6+} . The table lists the empirical composition of the mineral or synthetic compound,
23	the ideal composition of the mineral, the mineral name or synthetic compound, the Dana classes
24	and subclasses extended to include beryllates, aluminates, gallates, germanates, niobates,
25	tantalates molybdates tungstates etc. descriptive notes e.g. structure polytypes and other

26 information that helps define a particular mineral sample, and the locality of a mineral when known. Finally, we list n_x , n_y , n_z , $< n_{\text{Dobs}} >$ (all determined at 589.3 nm), $< n_{\text{Dealc}} >$, deviation of 27 28 observed and calculated mean refractive indices, molar volume $V_{\rm m}$, corresponding to the volume of one formula unit, anion molar volume V_{an} , calculated from V_m divided by the number of 29 anions (O²⁻, F⁻, Cl⁻, OH⁻) and H₂O in the formula unit, the total polarizability $<\alpha_{AE}>$, and finally 30 31 the reference to the refractive indices for all 2952 entries. The total polarizability of a mineral, $<\alpha_{AE}>$, is a useful property that reflects its composition, crystal structure, and chemistry and was 32 calculated using the Anderson-Eggleton relationship $\alpha_{AE} = \frac{(n_D^2 - 1)V_m}{4\pi + (\frac{4\pi}{2} - c)(n_D^2 - 1)}$ where c = 2.26 is 33 34 the electron overlap factor. The empirical polarizabilities and therefore, the combination of refractive indices, compositions, and molar volumes of the minerals and synthetic oxides in the 35 table were verified by a comparison of observed and calculated total polarizabilities, $\langle \alpha_{AE} \rangle$ 36 derived from individual polarizabilities of cations and anions. The deviation between observed 37 and calculated refractive indices is less than 2% in most instances. 38 39 Keywords: Refractive index, electronic polarizabilities, optical properties, minerals, synthetic 40 compounds, refractive-index calculation, Anderson-Eggleton relationship. 41 42 Introduction 43 The most important optical properties of minerals and synthetic materials include, along 44 with absorption, their refractive indices (Nesse, 2013). Although identification of minerals by 45 46 the refractive index measurement has been replaced by the use of electron microprobes (EMP), 47 scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray

fluorescence spectroscopy (XRF), X-ray diffraction (XRD), Infrared spectroscopy (IR), and 48 Raman spectroscopy, the refractive index still provides important mineral information and can be 49 used for rapid identification of most common minerals using tables and charts (Feklichev, 1992). 50 As stated in Shannon and Fischer (2016), refractive indices are also used to predict optical 51 properties from chemical compositions, which is of value in developing new materials, 52 particularly borate optical crystals (Qin and Li, 2011). The refractive index is also an important 53 parameter of lasers and is required, for instance, in the analysis of the radiative properties of Ln³⁺ 54 ions (Han et al., 2012). 55

Refractive indices can be used to characterize chemical variations in a mineral, much as X-56 ray powder patterns can help understand chemical trends in structural families, illustrated in the 57 studies of andalusites, adularia, cordierites and zeolites (Bloss et al. 1983; Gunter and Bloss, 58 1982; Selkregg and Bloss, 1980; Gunter and Ribbe, 1993; Palmer and Gunter, 2000). They can 59 also help determine H₂O content of hydrated minerals and zeolites (Gunter and Ribbe, 1993). 60 61 Considering the importance of optical properties, especially in mineralogy, it is of particular interest to estimate and predict refractive indices from chemical compositions and crystal-62 structure parameters. This is possible using the polarizabilities of the ions as listed by Shannon 63 64 and Fischer (2006) for infinite wavelengths and by Shannon and Fischer (2016) for λ =589.3 nm as described in detail below (see section on calculation of refractive indices). Furthermore, in 65 conjunction with calculated refractive indices using empirical polarizabilities, the refractive 66 indices reflect the composition, crystal structure, valence state, and bond valences of the ions in 67 the crystal (Shannon and Fischer, 2006, 2016). 68 However, to the best of our knowledge most of the RI compilations provide only "generic" 69

values without inclusion of the specific compositions, unit cells, or mineral locality for specific

71	values of RI's. Generic refractive index values are only approximations when solid solutions
72	involving ions of greatly differing polarizabilities are present. For example in the solid solution
73	series pyrope (Mg ₃ Al ₂ Si ₃ O ₁₂) - knorringite (Mg ₃ Cr ₂ Si ₃ O ₁₂), RI = 1.83 ± 0.01 for pure knorringite
74	(Ringwood, 1977) as shown in Figure 1, whereas RI = 1.803 for knorringite from Basutoland,
75	South Africa, with the composition $Mg_{1.90}Ca_{0.66}Fe_{0.41}Mn_{0.17}Cr_{1.04}Al_{0.86}Fe_{0.07}Si_3O_{12}$ (Nixon and
76	Hornung, 1968). Similarly, in the solid solution series tephroite (Mn_2SiO_4) - (γ - Ca_2SiO_4), RI =
77	1.772, 1.804, and 1.814 for pure tephroite, Mn ₂ SiO ₄ , (Greer, 1932) as shown in Figure 2,
78	whereas RI = 1.761, 1.787, and 1.799 for tephroite from Pajsberg, Värmland, Sweden, with the
79	composition $Mn_{1.85}Mg_{0.15}SiO_4$ (Shannon et al., 2002). In the rare cases of minerals observed with
80	ideal stoiochiometric compositions the generic RI is valid. This paper remedies most of those
81	shortcomings by providing observed and calculated RI values along with total polarizabilities,
82	unit cells, compositions, and mineral localities for a large number of minerals and synthetic
83	compounds.
84	
85	Data Base
86	There are many sources of refractive index data. Most provide only the refractive indices
87	with no information on (1) the specific composition and unit-cell dimensions associated with the
88	RI, (2) the mineral locality, or (3) a journal reference to the data. Table 1 summarizes the
89	information in some important compilations of optical properties.
90	The following sources were used: Handbook of Mineralogy (Anthony et al., 2015);
91	Dana's New Mineralogy, (Gaines et al., 1997); The Microscopic Determination of the
92	Nonopaque Minerals (Larsen, 1921); Die oxydischen Kristallphasen der anorganischen
93	Industrieprodukte (Trojer, 1963); Mineralogy Database (Webmineral, 2015); Landolt-Börnstein

(Hellwege and Hellwege, 1962, 1969, 1979, 1981); Rock-forming Minerals (Deer, Howie, and 94 Zussman, 1963a, 1963b, 1978, 1982, 1986, 1996). The volumes by Deer, Howie, and Zussman 95 96 provide RI, composition, source, and reference with unit cells given for cubic compounds such 97 as garnets but not other families such as olivines, pyroxenes, tournalines, or humites, although references given there can sometimes be found with unit cell information. 98 99 Information on synthetic compounds is generally more complete than on minerals because the stoichimetry is known. See for example: Standard X-ray Diffraction Patterns, NBS 100 Circular 539 and Monograph 25, Sections 1 - 18 (Swanson et al., 1962-1981); The Microscopic 101 102 Characters of Artificial Inorganic Solid Substances or Artificial Minerals (Winchell, 1931; Winchell and Winchell, 1964); and Handbook of Laser Science and Technology 103 104 (Weber, 1986, 1995). In these references, the RI, composition, and unit cells are given but not 105 usually the associated journal references. The data necessary for this compilation are the refractive indices, crystal structure, unit-106 107 cell dimensions, and chemical composition. Refractive indices were taken from the publications listed in Table 1, which includes Palache et al. (1944, 1951, 1962); Gaines et al. (1997); Deer, 108 Howie, and Zussman (1963a, 1963b, 1978, 1982, 1986, 1996); Anthony et al. (2015); Hintze 109 110 (1897, 1915, 1933, 1938, 1960, 1968); Hellwege and Hellwege (1962, 1969, 1979, 1981); Nelson (1996); McLune (1989); Medenbach and Shannon (1997); Shannon et al. (2002); 111 Shannon and Fischer, (2016); Swanson et al. (1962-1981); Webmineral (2015); Winchell (1931); 112 113 Winchell and Winchell (1964). They were also taken from the powder diffraction files of the 114 International Centre for Diffraction Data (ICDD) and descriptions of minerals in mineralogical journals. In general the above publications were used to locate the refractive indices and the 115 original publications. Original publications were preferred in order to provide refractive indices, 116

- 117 crystal structure, unit-cell dimensions, and chemical composition on the same sample.
- 118 Occasionally, unit-cell dimensions and composition were taken from the Inorganic Crystal
- 119 Structure Database (Belsky et al. 2002).
- 120 The complete data set consisted of approximately 4000 refractive index measurements on
- 121 3000 minerals and 1000 synthetic compounds, ~275 F-containing compounds, 85 Cl-containing
- 122 compounds, and 700 hydroxyl-containing compounds. The data set contains 400 silicates, 120
- 123 carbonates, 20 nitrates, \sim 375 sulfates, and 15 perchlorates. [Table S1 in the supplements¹ shows
- a total of 2952 data on minerals and synthetic compounds]. Some data were not included for
- various reasons. These are summarized in Table 3 of Shannon and Fischer (2016) and include,
- 126 with a few examples:
- 127 1. Poor or no analysis composition uncertain: taikanite (Armbruster et al., 1993); cerchiaraite-
- 128 Mn (Basso et al., 2000);
- 129 2. Analysis total < 100%: e.g., haineaultite (McDonald and Chao, 2004);
- 130 3. Rare earth ions not specified: e.g., thalenite (Fitzpatrick and Pabst, 1986);
- 4. Iron valence uncertain Fe^{2+}/Fe^{3+} : e.g., morimotoite (Henmi et al., 1995);
- 132 5. H₂O content uncertain: e.g., hydroandradite (Peters, 1965);
- 133 6. Zonation: e.g., morimotoite (Henmi et al., 1995); londonite (Simmons et al., 2001); Zn
- 134 sonolite (Cook, 1969);
- 135 7. Only two indices measured (common): e.g., liebenbergite (DeWaal and Calk, 1973);
- 136 mercallite (Carobbi, 1935); and
- 137 8. Crystal reacts with immersion fluid: e.g., millosevichite (Miura et al., 1994).

¹ Deposit item AM-xx-xxxxx, Supplemental Table. Deposit items are free to all readers and found on the MSA web site, via the specific issue's Table of Contents (go to http://www.minsocam.org/msa/ammin/toc/2017/...).

138	Compounds containing lone-pair ions (Tl ⁺ , Sn ²⁺ , Pb ²⁺ , As ³⁺ , Sb ³⁺ , Bi ³⁺ , S ⁴⁺ , Se ⁴⁺ , Te ⁴⁺ , Cl ⁵⁺ ,
139	Br^{5+} , I^{5+}) and uranyl ions, U^{6+} (~425 compounds) showing systematic deviations between
140	observed and calculated RI's were not included in the database (Shannon and Fischer, 2016) as
141	well as compounds with duplicate RI measurements (~650 compounds).
142	Special cases include (1) 35 compounds with corner-shared octahedral (CSO) network and chain
143	structures, (2) 40 compounds containing edge-sharing Fe^{3+} and Mn^{3+} octahedra (ESO) such as
144	LiFeO ₂ and goethite (FeOOH), (3) 40 alkali ion conductors, and (4) 120 sterically-strained (SS)
145	structures with strong bond valence deviations (Shannon and Fischer, 2016). Although these
146	~235 compounds show large deviations of observed to calculated polarizabilities, they,
147	nevertheless, have excellent optical data included in Table S1.
148 149	Calculation of refractive indices
150	Refractive indices are calculated using the polarizabilities of cations and anions compiled in
151	Shannon and Fischer (2016). The cation polarizabilities are simply additive. The anion
152	polarizabilities are calculated using the relationship
153	$\alpha_{-} = \alpha_{-}^{o} \cdot 10^{-N_o/V_{an}^n} \tag{1}$
154	with α_{-} = anion polarizability, α_{-}^{o} = free-ion polarizability, and V_{an} = anion molar volume
155	(calculated from the molar volume $V_{\rm m}$ divided by the number of O ²⁻ , F ⁻ , Cl ⁻ , OH ⁻ , and H ₂ O in the
156	formula unit) as described by Shannon and Fischer (2006). However, the exponent n of the anion
157	volume was empirically determined to yield the best results for $n = 1.2$ (see Shannon and
158	Fischer, 2016). The α_{-}^{o} and N_{o} parameters are listed in Table 5 in Shannon and Fischer (2016).
159	Summing cation and anion polarizabilities yields the total polarizability of a compound. As an
160	example, the total polarizability of orthoclase, KAlSi ₃ O ₈ , is calculated according to $\alpha(K) + \alpha(Al)$

161
$$+ 3 \times \alpha(\text{Si}) + 8 \times \alpha(\text{O}) = 1.35 + 0.533 + 3 \cdot 0.284 + 8 \cdot 1.79 \cdot 10^{-1.776/22.51^{1.2}} = 15.724 \text{ Å}^3$$
. In a

162 classical approach, also used by Shannon and Fischer (2006), the mean refractive index can be

163 calculated from the total polarizability using the Lorenz-Lorentz relationship solved for n

164
$$\alpha_{LL} = \frac{1}{b} V_m \cdot \frac{n^2 - 1}{n^2 + 2}$$
(2)

with the Lorentz factor $b = 4\pi/3$, $V_{\rm m} =$ molar volume in Å³, and n = the mean refractive index.

166 In Shannon and Fischer (2016), and thus also here, we are using a relationship modified by

167 Anderson (1975) and Eggleton (1991)

168
$$\alpha_{AE} = \frac{(n^2 - 1)V_m}{4\pi + \left(\frac{4\pi}{3} - c\right)(n^2 - 1)}$$
(3)

with the electronic overlap factor empirically determined to be c = 2.26. This equation solved for the refractive index *n* yields

171
$$n_{AE} = \sqrt{\frac{4\pi\alpha_{AE}}{(c-b)\alpha_{AE} + V_m} + 1}$$
(4)

Using $V_m = 180.10$ Å³ and the total polarizability calculated above for albite yields the mean refractive index $\langle n \rangle = 1.523$ in excellent agreement with the experimentally determined value of

- 174 1.524 (see albite entries in Table S1).
- 175 176

Results

177 This study lists the database of minerals and synthetic compounds used to calculate the empirical

polarizabilities by Shannon and Fischer (2016). Minerals are frequently classified using the

- 179 Strunz or Dana systems (Mills et al. 2009). We have chosen to sort the minerals and synthetics
- using the Dana classification in Dana's New Mineralogy (Gaines et al. (1997) and Dana's
- 181 classes/subclasses with Borates as an example: Borates/Class 24: Anhydrous Borates; Class 25:

- 182 Anhydrous Borates containing Hydroxyl or Halogen; Class 26: Hydrated Borates containing
- 183 Hydroxl or Halogen and Class 27: Compound Borates.
- 184 Table 2 summarizes information on selected oxide and hydroxide minerals or compounds,
- 185 where, with the exceptions of compounds showing steric strain and having edge-, face-shared,
- and corner-shared octahedra, the mean deviation $\Delta = ((\langle n_D \rangle obs \langle n_D \rangle calc) / \langle n_D \rangle obs) = 0.7\%$.
- 187 In column 1 we list the empirical composition of the mineral or synthetic compound. In column
- 188 2 we list the mineral or compound name. Column 3 lists the locality of a mineral when known or
- whether the compound was prepared synthetically. Columns 4-13 list n_x , n_y , n_z , $\langle n_D \rangle_{obs}$,
- 190 $\langle n_D \rangle_{calc}, \Delta, V_m, V_{an}, \langle \alpha_{AE} \rangle$, and reference. In column 12 we list the total polarizability of a
- 191 mineral, α_{AE} , a useful property that reflects its composition, crystal structure, and chemistry
- 192 (Shannon and Fischer, 2016).
- 193 In some cases, the cation sums in their respective crystallographic sites did not correspond to the
- ideal or refined values of the sums of cations found from the structure analysis. In many of those
- minerals (approximately 35 out of the total of \sim 2000 minerals) the cation composition was
- 196 normalized to agree with the structure analysis identified as "normalized" in column 5 ("Notes"
- 197 section) of Table 2.
- 198 Table 3 summarizes the compositions found by chemical analysis and the normalized
- 199 composition for 6 silicates, 5 phosphates, 1 arsenate, and 2 sulfate minerals. Normalized cation
- 200 compositions generally did not differ by more than 5% from the chemical analytical value.
- 201 Normalization generally improved the fit between α (obs) and α (calc).
- Table S1 (Supplementary data¹) contains the most important information in this work and
- represents about 20 years of data compilation. It summarizes the total data set of minerals and
- synthetic compounds. In column A we list the empirical composition of the mineral or synthetic

205	compound. In general, we preferred to use the empirical composition listed in the formal mineral
206	description, e.g. Na _{2.06} K _{0.95} (Y _{0.77} Dy _{0.09} Gd _{0.04} Er _{0.04} Ho _{0.02} Sm _{0.02} Nd _{0.01} Tb _{0.01}) Si ₆ O ₁₅ (moskvinite-
207	Y; Sokolova et al., 2003). Occasionally, when the empirical composition was not available, we
208	used the composition found in structure analyses, although these compositions are sometimes
209	idealized, e.g. Na ₂ KY(Si ₆ O ₁₅) (see moskvinite-Y; ICSD 97289).
210	In general, integral numbers of H ₂ O molecules were used in the compilation and
211	calculations of polarizabilities. In some instances non-integral numbers were used. In column B
212	we list the ideal mineral composition. In column C we list the mineral or compound name. In
213	columns D and E we list the Dana categories. Column F contains descriptive notes, e.g. structure
214	polytypes, sample numbers from Deer, Howie, and Zussman, and other information that helps
215	define a particular mineral sample. Column G lists the locality of a mineral when known or
216	whether the compound was prepared synthetically. Columns H-S list n_x , n_y , n_z ,
217	$< n_D >_{obs}, < n_D >_{calc}, \Delta n$, deviation (%), remarks, V_m , V_{an} , and $< \alpha_{AE} >$, where $V_m =$ molar volume in
218	Å ³ corresponding to the volume of one formula unit, V_{an} = anion molar volume , and $\langle \alpha_{AE} \rangle$ is
219	the mean total polarizability calculated from the individual polarizabilities of the ions as
220	described above. Columns T-X contain the refractive index reference.
221	Figure 3 shows statistical data on the distribution of deviations between observed and
222	calculated refractive indices. It clearly demonstrates that the majority of deviations is in the
223	range below 1 % for 2,377 entries. Another 370 entries have deviations below 2 %.
224	
225	Implications
226	The comprehensive table presented here provides a set of accurate refractive index,
227	composition, unit cell volume, and locality data for 1800 minerals and 1030 synthetic

228	compounds arranged according to Dana's classification scheme. The table can serve as a primary
229	source of optical data for mineralogists, chemists, and physicists. It thus represents a large
230	database compiled during the last 20 years used to calculate the empirical polarizabilities of
231	cations and anions by regression analyses. The scheme of calculating total polarizabilities and
232	hence refractive indices using the Anderson-Eggleton relationship will be a powerful tool to
233	predict refractive indices.
234	
235	Acknowledgements
236	We thank the Deutsche Forschungsgemeinschaft for financial support under grant
237	FI442/21-1,2 and BL and RTD acknowledge funding from NASA NNX11AP82A, Mars Science
238	Laboratory Investigations. We gratefully acknowledge Gabriele Ebert for providing hundreds of
239	reprints of mineral literature, Frank Hawthorne for advice on minerals and mineralogy,
240	especially amphibole mineralogy and mineral classification, Elena Sokolova for advice on
241	Russian minerals, Ed Grew and Tony Kampf for published and unpublished refractive indices,
242	and Manfred Burianek for providing crystals for optical studies. One of us, RDS gratefully
243	acknowledges the Humboldt Foundation for a Research grant in 1994 which led to this study.
244	
245	References cited
246	
247	Alfors, J.T., Stinson, M.C., and Matthews, R.A. (1965) Seven new barium minerals from Eastern
248	Fresno County, California. American Mineralogist, 50, 314-340.
249	Anderson, O.L. (1975) Optical Properties of rock-forming minerals derived from atomic
250	properties. Fortschritte der Mineralogie, 52, 611-629.

- Anderson, C.J., and Hensley, E.B. (1975) Index of refraction of barium oxide. Journal of Applied
 Physics, 46, 443.
- Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2015) Handbook of
- 254 Mineralogy, Mineralogical Society of America. Chantilly, VA 20151-1110, USA,
- 255 http://www.handbookofmineralogy.org.
- Armbruster, T., Oberhänsli, R., and Kunz, M. (1993) Taikanite, BaSr₂Mn³⁺₂O₂[Si₄O₁₂], from the
- 257 Wessels mine, South Africa: A chain silicate related to synthetic $Ca_3Mn_2^{3+}O_2[Si_4O_{12}]$.
- American Mineralogist, 78, 1088-1095.
- 259 Bailly, R. (1948) Utilisation des radiations infra-rouge dans les recherche mineralogiques et en
- 260 particulier pour la determination des mineraux opaques. Bulletin societe Francaise de
- 261 Mineralogie, 70, 49-145.
- 262 Basso, R., Lucchetti, G., Zefiro, L., and Palenzona, A. (2000) Cerchiaraite, a new natural Ba-
- 263 Mn-mixed anion silicate chloride from the Cerchiara mine, Northern Apennines, Italy.
- 264 Neues Jahrbuch für Mineralogie Monatshefte, 2000, 373-384.
- 265 Belsky, A., Hellenbrandt, M., Karen, V. L., and Luksch, P. (2002) New developments in the
- Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research
 and design. Acta Crystallographica, B58, 364–369.
- Bloss, F.D., Gunter, M., Su, S-C., and Wolfe, H.E. (1983) Gladstone-Dale constants: a new
 approach. CanadianMineralogist, 21, 93-99.
- Bond, W.L. (1965) Measurement of the refractive indices of several crystals. Journal of Applied
 Physics, 36, 1674-1677.
- 272 Burianek, M., Birkenstock, J., Mair, P., Kahlenberg, V., Medenbach, O., Shannon, R.D., and
- Fischer, R.X. (2016) High-pressure synthesis, long-term stability of single crystals of

- diboron trioxide, B_2O_3 , and an empirical electronic polarizability of ${}^{[3]}B^{3+}$. Physics and
- 275 Chemistry of Minerals, 43, 527-534.
- 276 Carobbi, G. (1935) Mercallite, nuovo minerale fra I prodotti dell attivita fumarolica vesuviana
- del 1933. Rendiconti 21, 385-392.
- 278 Cesbron, F., and Ginderow, D. (1985) La sidwillite, MoO₃. 2H₂O, une nouvel espece mineral de
- Lake Como, Colorado, USA. Bulletin de Mineralogie, 108, 813-823.
- 280 Chakhmouradian, A.R., Mitchell, R.H., Burns, P.C., Mikhailova, Y., and Reguir, E.P. (2008)
- 281 Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbonatite,
- 282 Ontario. Canadian Mineralogist, 46, 1023-1032.
- 283 Clark, A.M., Fejer, E.E., Couper, A.G., and Jones, G.C. (1984) Sweetite, a new mineral from
- 284 Derbyshire. Mineralogical Magazine, 48, 267-269.
- 285 Clark, A.M., Fejer, E.E., Cressey, G., and Tandy, P.C. (1988) Ashoverite, a new mineral, and
- 286 other polymorphs of $Zn(OH)_2$ from Milltown, Ashover, Derbyshire. Mineralogical
- 287 Magazine, 52, 699-702.
- Cook, D. (1969) Sonolite, alleghanyite and leucophoenicite from New Jersey. American
 Mineralogist 54, 1392-1398.
- 290 Deer, W.A., Howie, R.A., and Zussman, J. (1963a) Rock-Forming Minerals. vol. 2: Chain
- silicates. Longman Green & Co., London, England. 379 pp.
- 292 Deer, W.A., Howie, R.A., and Zussman, J. (1963b) Rock-Forming Minerals. vol.4: Framework
- silicates. Longman, Green & Co., London, England, 435 pp.
- 294 Deer, W.A., Howie, R.A., and Zussman, J. (1978) Rock-Forming Minerals. vol. 2A: Single chain
- silicates, 2nd edition. Halstead Press, John Wiley, N.Y., 680 pp.

296	Deer, W.A., Howie, R.A., and Zussman, J. (1982) Rock-Forming Minerals Vol.1A.
297	Orthosilicates, 2 nd edition. Longman House, Burnt Hill, Harlow, Essex CM20 2JE,

- England, 932 pp.
- 299 Deer, W.A., Howie, R.A., and Zussman, J. (1986) Rock-Forming Minerals Vol.1B.Di-silicates
- and ring silicates, 2nd edition. Longman Group, Longman House, Burnt Hill, Harlow,
- 301 Essex CM20 2JE, England, 629 pp.
- 302 Deer, W.A., Howie, R.A., and Zussman, J. (1996) Rock-Forming Minerals. vol.5B: Non-
- 303 silicates: Sulphates, Carbonates, Phosphates, Halides. Longman, Essex CM20 2JE,
- 304 England, 392 pp.
- 305 DeWaal, S.A., and Calk, L.C. (1973) Nickel minerals from Barberton, South Africa:VI.
- Liebenbergite, a nickel olivine. American Mineralogist, 58, 733-735.
- 307 Durrell, C. (1940) New data on the optical properties of tridymite. American Mineralogist, 25,
 308 501-502.
- 309 Eggleton, R.A. (1991) Gladstone-Dale constants for the major elements in silicates: coordination
- number, polarizability, and the Lorentz-Lorentz relation. Canadian Mineralogist, 29, 525532.
- Elliott, P., Brugger, J., Pring, A., Cole, M.L., Willis, A.C., and Kolitsch, U. (2008) Birchite, a
- new mineral from Broken Hill, New South Wales, Australia: Description and structure
 refinement. American Mineralogist, 93, 910-917.
- Ellis, W.P., and Lindstrom, R.M. (1964) Refractive indices of fluoride interference films on
 thorium dioxide. Optica Acta, 11, 287-294.
- 317 Feklichev, V.G. (1992) Diagnostic Constants of Minerals, Advances in Science and Technology
- in the USSR, CRC Press, Mir Publishers, London, 687 pp.

- Fitzpatrick, J., and Pabst, A. (1986) Thalenite from Arizona. American Mineralogist, 71, 188193.
- 321 Flanigen, E.M., Bennett, J.M., Grose, R.W., Cohen, J.P., Patton, R. L., Kirchner, R. M., and
- Smith, J.V. (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature,
 271, 512-516.
- Fleischer, M. Wilcox, R.E. and Matzko, J.J. Microscopic determination of the nonopaque
 minerals. (1984) USGS Bulletin 1627. 453 pp.
- 326 Flint, E.P., McMurdie, H.F., and Wells, L.S. (1941) Hydrothermal and X-ray studies of the
- 327 garnet-hydrogarnet series and the relationship of the series to hydration products of
- Portland cement. Journal of Research of the National Bureau of Standards, 26, 13-33.
- 329 Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana's New
- 330 Mineralogy, The System of Mineralogy of James Dwight Dana and Edward Salisbury
- Dana, 8th edition. John Wiley & Sons, N.Y., 1819 pp.
- 332 Gavrish, A.M., Zoz, E.I., Gulko, N.V., and Soloveva, A.E. (1975) Solid solutions in the system
- HfO₂-CeO₂. Inorganic Materials, 11, 668-670.
- Genkin, A.D., and Muraveva, I.V. (1964) Indite and dzalindite, new indium minerals. American
 Mineralogist, 49, 439.
- Greer, W.L.C. (1932) Mix-crystals of Ca_2SiO_4 and Mn_2SiO_4 , American Mineralogist 17, 135-142.
- 338 Gunter, M., and Bloss, F.D. (1982) Andalusite-kanonaite series: lattice and optical parameters.
- American Mineralogist, 67, 1218-1228.
- Gunter, M.E., and Ribbe, P.H. (1993) Natrolite group zeolites: correlations of optical properties
- and crystal chemistry. Zeolites, 13, 435-440.

- 342 Han, X., Lahera, D.E., Serrano, M.D., Cascales, C., and Zaldo, C. (2012) Ultraviolet to infrared
- 343 refractive indices of tetragonal double tungstate and double molybdate laser crystals.
- 344 Applied Physics, B108, 509-514.
- Hellwege, K.N., and Hellwege, A.M. (1962) Landolt-Börnstein, Band II. Teil 8. Optische
- 346 Konstanten, Springer-Verlag, Berlin (in German).
- 347 Hellwege, K.N., and Hellwege, A.M. (1969) Landolt-Börnstein, New Series, Group III. Crystal
- and Solid State Physics, Vol. 2. Springer-Verlag, Berlin.
- Hellwege, K.N., and Hellwege, A.M. (1979) Landolt-Börnstein, New Series, Group III.Crystal
 and Solid State Physics, Vol. 11. Springer-Verlag, Berlin.
- Hellwege, K.N., and Hellwege, A.M. (1981) Landolt-Börnstein, New Series, Group III, Crystal
 and Solid State Physics, Vol. 16a: Oxides. Springer-Verlag, Berlin.
- Henmi, C., Kusachi, I., and Henmi, K. (1995) Morimotoite, Ca₃TiFe²⁺Si₃O₁₂, a new titanian
- 354 garnet from Fuka, Okayama Prefecture, Japan. Mineralogical Magazine, 59, 115-120.
- Hiemstra, S.A. (1955) Baddeleyite from Phalaborwa, Eastern Transvaal. American Mineralogist,
- **356 40**, 275-282.
- Hill, W.L., Faust, G.T., and Reynolds, D.S. (1944) The binary system P₂O₅-2CaO.P₂O₅. Part II.
- 358 American Journal of Science, 242, 542-562.
- 359 Hintze, C. (1897) Handbuch der Mineralogie, Band II. Silcate und Titanate. Verlag Veit & Co.,
 360 Leipzig (in German).
- 361 Hintze, C. (1915) Handbuch der Mineralogie, Band I, Abteilung 2. Verlag-Veit & Co., Leipzig
 362 (in German).
- Hintze, C. (1933) Handbuch der Mineralogie, Band I. Abteilung 4. Walter De Gruyter & Co.,
- 364 Berlin (in German).

- 365 Hintze, C. (1938) Handbuch der Mineralogie, Ergänzungsband I. Neue Mineralien. Walter De
- 366 Gruyter & Co., Berlin (in German).
- 367 Hintze, C. (1960) Handbuch der Mineralogie, Ergänzungsband II. Neue Mineralien und neue
- 368 Mineralnamen. Walter De Gruyter & Co., Berlin (in German).
- 369 Hintze, C. (1968) Handbuch der Mineralogie, Ergänzungsband III, Neue Mineralien und neue
- 370 Mineralnamen. Walter De Gruyter & Co., Berlin (in German).
- 371 Iguchi, E., Matsuda, T., and Tilley, R.J.D. (1984) An estimation of polarizabilities in tungsten
- trioxide (WO₃). Journal of Physics C, 17, 319-329.
- Keat, P.P. (1954) A new crystalline silica. Science, 120, 328-330.
- 374 Khomyakov, A.P., Kazakova, M.E., and Pushcharovskii, D.Yu. (1981) Nacaphite, Na₂CaPO₄F, a
- new mineral. American Mineralogist, 66, 218.
- King, B.W., and Suber, L.L. (1955) Some properties of the oxides of vanadium and their
 compounds Journal of the American Ceramic Society, 38, 306-311.
- Larsen, E.S. (1921) The Microscopic Determination of the Nonopaque Minerals. United States
- Geological Survey Bulletin 679. Government Printing Office, Washington, D.C.
- Laubengayer, A.W., and Morton, D.S. (1932) Germanium. XXXIX The polymorphism of
- 381 germanium dioxide. Journal of the American Chemical Society, 54, 2303-2320.
- Lerch, W., Ashton, F.W., and Bogue, R.H. (1929) The sulfoaluminates of calcium. Journal of
- 383 Research, 2, 715-731.
- Marcopoulos, T., and Economou, M. (1981) Threophrastite, Ni(OH)₂, a new mineral from
- northern Greece. American Mineralogist, 66, 1020-1021.

- 386 Marshukova, N.K., Palovskii, A.B., Sidorenko, G.A., and Christyakova, N.I. (1982)
- 387 Vismirnovite, ZnSn(OH)₆, and Natanite, FeSn(OH)₆, new tin minerals. American
- 388 Mineralogist, 67, 1077.
- 389 McClune, W.F. (1989) JCPDS 1989 reference, Powder Diffraction File, 1989; JCPDS-
- 390 International Centre for Diffraction Data. Swarthmore, PA.
- 391 McConnell, D. (1964) Refringence of garnets and hydrogarnets. Canadian Mineralogist, 8, 11-
- 392 22.
- 393 McDonald, A.M., and Chao, G.Y. (2004) Haineaultite, a new hydrated sodium calcium
- titanosilicate from Mont Saint-Hilaire, Quebec: description, structure determination and
- 395 genetic implications. Canadian Mineralogist, 42, 769-780.
- 396 Medenbach, O., and Shannon, R.D. (1997) Refractive indices and optical dispersion of 103
- 397 synthetic and mineral oxides and silicates measured by a small-prism technique. Journal of
 398 the Optical Society of America, B14, 3299-3318.
- 399 Mills, S.J., Hatert, F., Nickel, E.H., and Ferraris, G. (2009). The standardisation of mineral group
- 400 hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy,
 401 21, 1073–1080.
- Miura, H., Suzaki, H., and Kikuchi, T. (1994) Synthesis and properties of the system Al₂(SO₄)₃ Fe₂(SO₄)₃. Mineralogical Journal, 17, 42-45.
- Moore, P.B. (1972) Natrophilite, NaMn(PO₄), has ordered cations. American Mineralogist, 57,
 1333-1344.
- 406 Moore, P.B., and Smith J.V. (1968) Wickmanite, MnSn(OH)₆, a new mineral from Langban.
- 407 American Mineralogist, 53, 1063.
- 408 NBS Circular 539 (1955-1960) Standard X-ray Diffraction Patterns

409	NBS Monograph Series 25 (1962-1981) Standard X-ray Diffraction Patterns- Sections 1-15.
410	Nefedov, E.I., Griffin, W.L., and Kristiansen, R. (1977) Minerals of the schoenfliesite-
411	wickmanite series from Pitkäranta, Karelia, U.S.S.R. Canadian Mineralogist, 15, 437-445.
412	Nelson, D.F. (1996) Landolt-Börnstein, New Series, Group III, Condensed Matter, Vol. 30. High
413	frequency properties of dielectric crystals. Springer-Verlag, Berlin.
414	Nesse, W.D. (2013) Introduction to Optical Mineralogy. 2 nd Edition. Oxford University Press.
415	N.Y., Oxford.
416	Nixon, P.H. and Hornung, G. (1968) A new chromium garnet end member, knorringite from
417	Kimberlite. American Mineralogist, 53, 1853-1839.
418	Novak, G.A. and Gibbs, G. V. (1971) The crystal chemistry of the silicate garnets, American
419	Mineralogist, 56, 791-825.
420	Orlandi, P., Pasero, M., and Vezzalini, G. (1998) Scandiobabingtonite, a new mineral from the
421	Baveno pegmatite, Piedmont, Italy. American Mineralogist, 83, 1330-1334.
422	Palache, C. (1938) Leightonite, a new sulphate of Copper from Chile. American Mineralogist,
423	23, 34-37.
424	Palache, C., H. Berman, and C. Frondel (1944) Dana's system of mineralogy,
425 426	(7th edition), v. I Elements, sulfides, sulfosalts, oxides. 834 pp.
427 428	Palache, C., H. Berman, and C. Frondel (1951) Dana's system of mineralogy,
429 430	(7th edition), v. II, 1124 pp.
431 432	Palache, C., H. Berman, and C. Frondel (1962) Dana's system of mineralogy,
433 434	(7th edition), v. III, Silica minerals. 334 pp.
435	Palmer, J.L., and Gunter, M.E. (2000) Optical properties of natural and cation-exchanged
436	heulandite group zeolites. American Mineralogist, 85, 225-230.

- 437 Pekov, I.V., Chukanov, N.V., Turchkova, A.G., and Grishin, V.G. (2002) Ferronordite-(La),
- 438 Na₃Sr(La, Ce)FeSi₆O₁₇, a new mineral of the nordite group from the Lovozero massif,
- 439 Kola Peninsula. American Mineralogist, 87, 1510.
- 440 Peters, T. (1965) A water-bearing andradite from the Totalp Serpentine, Davos, Switzerland.
- 441 American Mineralogist, 50, 1482-1486.
- 442 Posnjak, E., and Merwin, H.E (1919) The hydrated ferric oxides. American Journal of Science,
- 443 47, 311-347.
- 444 Pynchon, G.E., and Sieckmann, E.F. (1966) Refractive index of strontium oxide. Physical
- 445 Review, 143, 595-597.
- 446 Qin, F., and Li, R.K. (2011) Predicting refractive indices of the borate optical crystals. Journal of
- 447 Crystal Growth, 318, 642-644.
- Rams, J., Tejeda, A., and Cabrera, J.M. (1997) Refractive indices of rutile as a function of

temperature and wavelength. Journal of Applied Physics, 82, 994-997.

- 450 Ringwood, A.E. (1977) Synthesis of pyrope-knorringite solid solution series. Earth and Planetary
- 451 Science Letters, 36, 443-448.
- 452 Roy, R., and McKinstry, H.A. (1953) Concerning the so-called Y(OH)₃-type structure, and the
- 453 structure of La(OH)₃. Acta Crystallographica, 6, 365-366.
- 454 Ruchkin, E.D., Sokolova, M. N., and Batsanov, S.S. (1967) Optical properties of oxides of the
- 455 rare earth elements. V. Study of monoclinic modifications (B-forms). Journal of Structural
- 456 Chemistry, 8, 410-414.
- 457 Sahama, T.G., Lehtinen, M., and Rehtijärvi, P. (1973) Natural boehmite single crystals from
- 458 Ceylon. Contributions of Mineralogy and Petrology, 39, 171-174.

- 459 Schmetzer, K., Horn, W., and Medenbach, O. (1981) Uber Kobaltkoritnigit, (Co,Zn)
- 460 $[H_2O][AsO_3OH]$, ein neues Mineral, und Pitticit, FeO₃. As₂O₅. 9-10H₂O, ein
- 461 röntgenamorphes Fe-Arsenat-Hydrat. Neues Jahrbuch für Mineralogie Monatshefte, 1981,
 462 257-266.
- 463 Sclar, C.B., Carrison, L.C., and Schwartz, C.M. (1962) Optical crystallography of coesite.
- 464 American Mineralogist, 47, 1292-1302.
- Selkregg, K.R., and Bloss, F.D. (1980) Cordierites: compositional controls of Δ, cell parameters,
 and optical properties. American Mineralogist, 65, 522-533.
- 467 Shannon, R.D., and Fischer, R.X. (2006) Empirical electronic polarizabilities in oxides,
- 468 hydroxides, oxyfluorides, and oxychlorides. Physical Review B73, 235111/1-28.
- 469 Shannon, R.D and Fischer, R.X., (2016) Empirical electronic polarizabilities of ions for the
- 470 prediction and interpretation of refractive indices: Oxides and oxysalts, American
- 471 Mineralogist, 101, 2288-2300.
- 472 Shannon, R.D., Shannon, R.C., Medenbach, O., and Fischer, R.X. (2002) Refractive index and
- dispersion of fluorides and oxides. Journal of Physical and Chemical Reference Data, 31,
 931-970.
- Shigley, J.E., Kampf, A.R., and Rossman, G.R. (1986) New data on painite. Mineralogical
 Magazine, 50, 267-270.
- 477 Simmons, W.B., Pezzotta, F., Falster, A.U., and Webber, K.L. (2001) Londonite, a new mineral
- 478 species: the Cs-dominant analogue of rhodizite from the Antandrokomby granitic
- 479 pegmatite, Madagascar. Canadian Mineralogist, 39, 747-755.
- 480 Sokolova, E., Hawthorne, F.C., Agakhanov, A.A. and Pautov, L.A. (2003) The crystal structure
- 481 of moskvinite-(Y), $Na_2K(Y,REE)[Si_6O_{15}]$, a new silicate mineral with $[Si_6O_{15}]$ three-

- 482 membered double rings from the Dara-I-Pioz moraine, Tien-Shan mountains, Tajikistan.
- 483 Canadian Mineralogist, 41, 513-520.
- 484 Sonnet, P.M. (1981) Burtite, calcium hexahydroxostannate, a new mineral from El Hamman,
- 485 central Morocco. Canadian Mineralogist, 19, 397-401.
- 486 Strunz, H., Soehnge, G. and Geier, B.H. (1958) Stottite, ein neues Germanium- mineral and
- 487 seine Paragenese in Tsumeb. Neues Jahrbuch Mineralogie Monatshefte, 1958, 85-96.
- 488 Sturman, B.D. and Mandarino, J.A. and Corlett, M.I. (1977) Marićite, a sodium iron phosphate,
- 489 from the Big Fish River area, Yukon Territory, Canada. Canadian Mineralogist, 15, 396490 398.
- 491 Swanson, H.E., Morris, M.C., Evans, E.H. and Ulmer, L. (1962-1981) Standard X-ray
- 492 Diffraction Patterns, NBS Monograph 25, Sections 1-15.
- Thiel, J.P., Chiang, C.K. and Poeppelmeier, K.R. Structure of LiAl₂(OH)₇. 2H₂O (1993)
 Chemistry of Materials, 5, 297-304.
- Tilley, C.E. (1933) Portlandite, a new mineral from Scawt Hill, County Antrim. Mineralogical
 Magazine, 23, 419-420.
- 497 Togari, K., and Akasaka, M. (1987) Okhotskite, a new mineral, an Mn³⁺-dominant member of
- 498 the pumpellyite group, from the Kokuriki mine, Hokkaido, Japan. Mineralogical
- 499 Magazine, 51, 611-614.
- 500 Trojer, F. (1963) Die oxydischen Kristallphasen der anorganischen Industrieprodukte. E.
- 501 Schweizerbartsche Verlagsbuchhandlung, Stuttgart. 375 pp.
- 502 Vergasova, L.P., Filatov, S.K., Seraphimova, E.K., and Varaksina, T.V. (1990) Kamachatkite
- 503 $KCu_3OCl(SO_4)_2 A$ new mineral from volcanic sublimates. American
- 504 Mineralogist, 75, 1210.

- 505 Voloshin, A.V., Pakhomovskii, Y.A., Rogatschev, D.L., Nadezhina, T.N., Pustscharovskii, D.Y.,
- and Bahkchisaraytsev, A.Y. (1991) Clinobehoite-A new natural modification of Be(OH)₂ from
 desilicated pegmatites. American Mineralogist, 76, 666-667.
- 508 Washburn, E.W. (1930) Ed. International Critical Tables of Numerical Data, Physics, Chemistry
- and Technology. National Research Council USA, McGraw-Hill Book Co., New York.
 499 pp.
- 511 Weber, M.J. (1986) CRC Handbook of Laser Science and Technology. Volume V: Optical
- 512 Materials, Part 3. Applications, Coatings and Fabrication. CRC Press, Boca Raton,
 513 520pp.
- 514 Weber, M.J. (1995) CRC Handbook of Laser Science and Technology. Supplement 2: Optical
- 515 Materials, CRC Press, Boca Raton, 833 pp.
- 516 Webmineral (2015) <u>http://www.webmineral.com</u>.
- 517 Williams, P.A., Leverett, P., Sharpe, J.L., and Colchester, D.M. (2005) Elsmoreite, cubic WO₃ ·
- 518 0.5H₂O, a new mineral species from Elsmore, New South Wales, Australia. Canadian
- 519 Mineralogist, 43, 1061-1064.
- 520 Williams, S.A. (1985) Mopungite, a new mineral from Nevada, American Mineralogist, 70,
- 521 1330.
- Winchell, A.N. (1931) The Microscopic Characters of Artificial Inorganic Solid Substances or
 Artificial Minerals, 2nd edition. J.Wiley, New York, 403 pp.
- 524 Winchell, A.N., and Winchell, H. (1964) The Microscopical Characters of Artificial Inorganic
- 525 Solid Substances. Optical Properties of Artificial Minerals. Academic Press, New York.
- 526 439 pp.

- 527 Wise, W.S. (1975) Solid solution between the alunite, woodhouseite, and trandallite mineral
- series. Neues Jahrbuch für Mineralogie Monatshefte, 1975, 540-545.
- 529 Zadov, A.E., Gazeev, V.M., Karimova, O.V., Pertsev, N.N., Pekov, I.V., Galuskin, E.V.,
- 530 Galuskina, I.O., Gurbanov, A.G., Belakovsky, D.I., Borisovsky, S.E., Kartashov, P.M.,
- 531 Ivanova, A.G. and Yakubovich, O.V. (2011) Magnesioneptunite,
- 532 $KNa_2Li(Mg,Fe)_2Ti_2Si_8O_{24}$, a new mineral species of the neptunite group. Geology of Ore
- 533 Deposits, 53, 775-782.
- 534

Figure 1. Refractive indices of pyrope-knorringite solid solutions $Mg_3(Al_{1-x}Cr_x)_2Si_3O_{12}$. Lattice

536 Figure captions:

537

538

parameter of knorringite from Novak and Gibbs (1971), a = 11.64 Å (α (Al) = 0.47 Å³, α (Cr) = 539 3.02 Å³), the line is calculated from polarizabilities, points are from Ringwood (1977). 540 541 542 Figure 2. Refractive indices of tephroite- γ - Ca₂SiO₄ series (Mn_xCa_{1-x})₂SiO₄ (Greer, 1932) $(\alpha(Ca) = 1.79 \text{ Å}^3, \alpha(Mn) = 2.07 \text{ Å}^3).$ 543 544 545 Figure 3. Frequency of occurrence of absolute values of deviations between observed and calculated refractive indices $\left|\frac{n_{obs}-n_{calc}}{n_{obs}}\right| \cdot 100$ in Table S1 (supplementary data¹) in the range 546 from 0 % to 3 %, excluding entries with systematic deviations as indicated in the remarks 547 548 column of Table S1.

549 **Table 1.** Refractive index compilations

Refractive-index sources	Information provided	Reference			
Dana's New Mineralogy, The System of Mineralogy	RI, uc, location [no specific composition,	Gaines et al., (1997); Dana's New Mineralogy;			
of James Dwight Dana and Edward Salisbury Dana,	uc or reference]				
Empirical electronic polarizabilities in oxides,	RI, composition, uc, references	Shannon and Fischer (2006); minerals and			
hydroxides, oxyfluorides, and oxychlorides		synthetics.			
Empirical electronic polarizabilities of ions for the	RI, composition, uc, references	Shannon and Fischer (2016); minerals and			
prediction and interpretation of refractive indices		synthetics.			
Handbook of Mineralogy	RI, uc, composition, location, references;	Anthony (2015); Handbook of Mineralogy:			
		www.handbookofmineralogy.org;			
Handbook of Optical Materials	RI, composition, references [uc from ICSD	Weber, CRC Handbook of Laser Science and			
	or JCPDS]	Technology (1986, 1995); synthetics.			
International Critical Tables of Numerical Data,	RI, references [uc from ICSD or JCPDS]	Washburn (1930) International Critical Tables			
Physics, Chemistry and Technology		of Numerical Data, Physics, Chemistry and			
		Technology –synthetics and minerals.			
Landolt-Börnstein	RI, references [no uc or mineral location].	Hellwege, K.N., and Hellwege, A.M. (1962-			

1981) Landolt-Börnstein.

Microscopic Characters of Artificial Inorganic Solid	RI, composition, symmetry [uc from ICSD	Winchell (1931); Winchell and Winchell				
Substances or Artificial Minerals	or JCPDS]	(1964) synthetics.				
Mineralogy Database	RI, composition, uc, location[no specific	Mineralogy Database: Webmineral.com.				
	composition, uc or reference]					
NBS Circular and Monograph Series	synthetics - RI, composition, uc	NBS Circular 539 (1955-1960) Standard X-ray				
		Diffraction Patterns; Monograph Series 25				
		(1962-1981) Standard X-ray Diffraction				
		Patterns- Sections 1-15.				
Oxydischen Kristallphasen der anorganischen	synthetics and minerals- RI,uc, references	Trojer – Die oxydischen Kristallphasen der				
Industrieproduckte		anorganischen Industrieprodukte (1963);				
Refractive index and dispersion of fluorides and	RI, composition, uc, references	Shannon and Fischer (2002); minerals and				
oxides.		synthetics.				
Rock-Forming Minerals.	minerals, RI, composition, location,	Deer, Howie and Zussman (1963-1996);				
	references, [no uc]					
System of Mineralogy	RI, composition, uc, locations [no specific	Palache, Berman and Frondel (1944,				

		composition, uc or reference]	1952,1962) Dana's system of mineralogy,				
			minerals.				
	USGS Bulletin 1627	RI [no composition or location]	Fleischer et al. (1984) USGS Bulletin 1627.				
550	Notes: RI = refractive index; uc = unit cell						

Table 2. Information on selected oxide and hydroxide minerals or compounds, where, with the exceptions of compounds showing

steric strain, and having edge-, face-shared, and corner-shared octahedra, the mean deviation, $\Delta = ((\langle n_D \rangle obs - \langle n_D \rangle obs)) =$

554 0.7%.

Measured chemical formula	Compound name	Locality	n _x	ny	nz	<n<sub>D></n<sub>	$< n_{\rm D} >$ calc	Δ [%]	$V_{ m m}$	V _{ox}	< \alpha_{AE} >	Reference
H ₂ O	ice		1.3091	1.3091	1.3105	1.3096	1.300	0.4	32.58	32.58	1.648	Shannon et al. (2002)
Cu ₂ O	cuprite		2.849	2.849	2.849	2.849	2.856	-0.2	38.84	38.84	10.513	Palache et al. (1944)
BeO	bromellite	Synthetic	1.7184	1.7184	1.7342	1.7237	1.726	-0.1	13.79	13.79	1.661	Shannon et al. (2002)
MgO	periclase	Synthetic	1.7355	1.7355	1.7355	1.7355	1.719	0.9	18.67	18.67	2.284	Shannon et al. (2002)
CaO	lime	Synthetic	1.8396	1.8396	1.8396	1.8396	1.745	5.0 ^a	27.83	27.83	3.865	Shannon et al. (2002)
SrO		Synthetic	1.871	1.871	1.871	1.871	1.786	4.5 ^a	33.16	33.16	4.768	Pynchon and Sieckmann (1966)
BaO		Synthetic	1.9841	1.9841	1.9841	1.9841	1.764	11.1 ^ª	42.48	42.48	6.843	Anderson and Hensley (1975)
ZnO	zincite	Synthetic	2.0222	2.0222	2.0256	2.0233	1.862	8.0^{a}	23.55	23.55	3.931	Bond (1965)
HgO	montroydite	Terlingua, Texas	2.37	2.5	2.65	2.5067	2.551	-1.8	32.13	32.13	7.459	Palache et al. (1944)
B_2O_3		Synthetic	1.653	1.653	1.632	1.646	1.636	0.6	45.26	15.09	4.877	Burianek et al. (2016)
Al ₂ O ₃	corundum		1.7673	1.7673	1.7598	1.7648	1.776	-0.6	42.45	14.15	5.393	Shannon et al. (2002)
$Fe_{1.98}Fe_{0.02}O_3$	hematite	Elba Island, Livorno, Tuscany, Italy	3.19	3.19	2.912	3.0973	2.620	15.5 ^b	50.32	16.77	14.839	Shannon et al. (2002)
Sc_2O_3		Synthetic	1.9943	1.9943	1.9943	1.9943	1.965	1.5	59.64	19.88	9.698	Shannon et al. (2002)
Y ₂ O ₃		Synthetic	1.9311	1.9311	1.9311	1.9311	1.858	3.8 ^b	74.5	24.83	11.403	Shannon et al. (2002)
Eu ₂ O ₃		Synthetic	1.969	1.969	1.969	1.969	1.970	0.0	80.05	26.68	12.713	Shannon et al. (2002)

Gd_2O_3		Synthetic	1.977	1.977	1.977	1.977	1.964	0.6	79.01	26.34	12.643	Ruchkin et al. (1967)
Dy ₂ O ₃		Synthetic	1.9757	1.9757	1.9757	1.9757	1.959	0.8	75.86	25.29	12.124	Shannon et al. (2002)
Ho ₂ O ₃		Synthetic	1.963	1.963	1.963	1.963	1.995	0.4	74.57	24.86	11.775	Ruchkin et al. (1967)
Er ₂ O ₃		Synthetic	1.959	1.959	1.959	1.959	1.954	0.3	73.33	24.44	11.535	Shannon et al. (2002)
Tm_2O_3		Synthetic	1.951	1.951	1.951	1.951	1.943	0.4	72.07	24.02	11.249	Ruchkin et al. (1967)
Yb ₂ O ₃		Synthetic	1.9468	1.9468	1.9468	1.9468	1.934	0.6	70.98	23.66	11.034	Shannon et al. (2002)
Lu ₂ O ₃		Synthetic	1.9349	1.9349	1.9349	1.9349	1.935	0.0	70.1	23.37	10.77	Shannon et al. (2002)
SiO ₂	coesite	Synthetic	1.594	1.5955	1.599	1.5962	1.598	-0.1	34.17	17.08	3.401	Sclar et al. (1962)
SiO ₂	cristobalite		1.487	1.487	1.484	1.486	1.496	-0.7	42.33	21.16	3.433	Gaines et al. (1997)
SiO ₂	quartz	Zambia	1.5444	1.5444	1.5535	1.5474	1.550	-0.2	37.66	18.83	3.442	Shannon et al. (2002)
SiO ₂	quartz	Para, Brazil	1.5444	1.5444	1.5533	1.5474	1.550	-0.2	37.66	18.83	3.442	Shannon et al. (2002)
SiO ₂	quartz	Synthetic	1.5442	1.5442	1.5533	1.5472	1.550	-0.2	37.66	18.83	3.441	Shannon et al. (2002)
SiO ₂	stishovite	Synthetic	1.799	1.799	1.826	1.808	1.800	0.4	23.25	11.62	3.114	Anthony et al. (2016)
SiO ₂	tridymite	Plumas County, California	1.478	1.479	1.481	1.4793	1.486	-0.4	43.4	21.7	3.471	Durrell (1940)
SiO ₂	SiO ₂ -keatite	Synthetic	1.522	1.522	1.513	1.519	1.521	-0.2	40.02	20.01	3.468	Keat (1954)
SiO ₂	silicalite	Synthetic	1.39	1.39	1.39	1.39	1.391	-0.1	55.27	27.63	3.586	Flanigen et al. (1978)
TiO ₂	anatase	Binnental, Switzerland	2.5621	2.5621	2.4889	2.5377	2.561	-0.9	34.07	17.03	8.038	Shannon et al. (2002)
TiO ₂	anatase	Binnental, Switzerland	2.5608	2.5608	2.4879	2.5365	2.561	-1.0	34.07	17.03	8.033	Shannon et al. (2002)
TiO ₂	brookite	Virgental, Tyrol, Austria	2.585	2.584	2.702	2.6237	2.667	-1.6	32.3	16.1	7.947	Shannon et al. (2002)
TiO ₂	rutile	Synthetic	2.6098	2.6098	2.8976	2.7057	2.741	-1.3	31.21	15.61	7.968	Rams et al. (1997)
				• •								

$Zr_{0.94}Hf_{0.02}Ca_{0.02}Ti_{0.02}O_2$	baddeleyite	Phaloaborwa, South Africa	2.136	2.236	2.243	2.205	2.247	-1.9	35.22	17.61	6.796	Hiemstra (1955)
$Zr_{0.671}Y_{0.329}O_{1.835}$		Synthetic	2.0691	2.0691	2.0691	2.0691	2.137	-3.3 ^d	34.46	18.78	5.984	Shannon et al. (2002)
$Zr_{0.869}Y_{0.131}O_{1.934}$		Synthetic	2.1581	2.1581	2.1581	2.1581	2.229	-3.3 ^d	33.86	17.51	6.312	Shannon et al. (2002)
GeO ₂		Synthetic	1.695	1.695	1.735	1.7083	1.720	-0.7	40.5	20.25	4.776	Laubengayer and Morton (1932)
GeO ₂		Synthetic	1.96	1.96	2.048	1.9893	2.017	-1.4	27.62	13.81	4.471	Shannon et al. (2002)
SnO ₂	cassiterite	Araca, Bolivia	2.0004	2.0004	2.0971	2.0326	2.040	-0.4	35.77	17.87	6.02	Hellwege and Hellwege (1962)
HfO ₂		Synthetic	2.06	2.1	2.14	2.1	2.115	-0.7	34.55	17.27	6.154	Gavrish et al. (1975)
$Hf_{0.85}Y_{0.15}O_{1.925}$		Synthetic	2.0881	2.0881	2.0881	2.0881	2.106	-0.9	33.9	17.61	5.98	Shannon et al. (2002)
CeO ₂		Synthetic	2.425	2.425	2.425	2.425	2.765	-14.0 ^a	39.71	19.86	8.818	Gavrish et al.
P ₂ O ₅		Synthetic	1.545	1.578	1.589	1.5707	1.573	-0.2	81.84	16.37	7.798	Hill et al. (1944)
V ₂ O ₅	shcherbi- naite	Synthetic	2.89	2.1	2.55	2.5133	2.000	20.3°	89.52	17.9	20.856	King and Suber (1955)
$MoO_3 \cdot 2H_2O$	sidwillite	Lake Como, Colorado	1.7	2.21	2.38	2.0967	1.734	19.3°	95.94	19.19	17.044	Cesbron and Ginderow (1985)
WO ₃		Synthetic	2.703	2.376	2.282	2.4537	1.946	20.7 ^c	52.86	17.62	11.927	Iguchi et al. (1984)
$WO_3 \cdot H_2O$	tungstite	Salmo, British Columbia, Canada	2.09	2.24	2.26	2.1967	1.820	17.1°	72.15	18.03	13.838	Hellwege and Hellwege (1962)
WO ₂ (OH) ₂	tungstite	Wolframocker, Salmo, British Columbia, Canada	2.09	2.24	2.26	2.1967	1.820	17.1°	72.15	18.03	13.838	Larsen (1921)
$WO_3 \cdot 0.5 H_2 O$	hydro- kenoels- moreite	Elsmore, New South Wales, Australia	2.24	2.24	2.24	2.24	1.826	18.5°	66.38	18.97	13.127	Williams et al. (2005)

$CaZr_{0.91}Ti_{0.06}Hf_{0.03}BAl_9O_{18}$	painite	Mogok Township, Pyin- Oo-Lwin district, Mandalay division,	1.8159	1.8159	1.7875	1.8064	1.799	0.4	278.6	15.48	37.274	Shigley et al. (1986)
$\begin{array}{l} Ca_4Al_2SO_4(OH)_{12} \cdot \\ 6H_2O \end{array}$	kuzelite	Myanmar Zeilberg Quarry, Maroldsweisach , Franconia, Bavaria, Germany	1.504	1.504	1.488	1.4987	1.499	-0.1	256.5	23.31	21.35	Lerch et al. (1929)
ThO ₂		Synthetic	2.105	2.105	2.105	2.105	2.078	1.3	43.9	21.95	7.851	Ellis and Lindstrom (1964)
LiOH		Synthetic	1.4639	1.4639	1.4518	1.4599	1.458	0.1	27.44	27.44	2.105	Shannon et al. (2002)
$LiAl_2(OH)_7 \cdot 2H_2O$		Synthetic	1.545	1.545	1.555	1.5483	1.547	0.1	169.81	18.86	15.548	(1993)
NaSb(OH) ₆	mopungite	Mopung Hills, Nevada	1.614	1.614	1.605	1.611	1.635	-1.5	125.55	20.92	12.804	Williams (1985)
Be(OH) ₂	clinobehoite	Murzinkha region, Ural Mts. Russia	1.539	1.544	1.548	1.5437	1.536	0.5	37.22	18.61	3.379	Voloshin et al. (1991)
Mg(OH) ₂	brucite	Wood Mine, Lancaster, Pennsylvania	1.5665	1.5665	1.5853	1.5728	1.565	0.5	40.9	20.45	3.911	Shannon et al. (2002)
$Mg_{0.94}Mn_{0.126}Sn_{0.97}(OH)_{6}$	schoen- fliesite	Pitkaranta, Republic of	1.667	1.667	1.667	1.667	1.660	0.4	117.73	19.62	13.091	Nefedov et al. (1977)
Ca(OH) ₂	portlandite	Scawt Hill, Antrim County,	1.575	1.575	1.547	1.5657	1.558	0.5	54.78	27.39	5.174	Tilley (1933)
Ca _{0.98} Mg _{0.02} Sn(OH) ₆	burtite	El Hamman, Morocco	1.633	1.633	1.633	1.633	1.644	-0.6	134.15	22.35	14.168	Sonnet (1981)
Ca ₃ Al ₂ (OH) ₁₂	katoite	Synthetic	1.605	1.605	1.605	1.605	1.599	0.3	247.97	20.66	25.042	Flint et al. (1941)
$Ca_3Fe_2(OH)_{12}$	hydro-	Synthetic	1.724	1.724 32	1.724	1.724	1.735	-0.6	260	21.67	31.323	McConnell

Mn(OH) ₂	andradite pyrochroite	Langban, Sweden	1.723	1.723	1.681	1.709	1.706	0.2	45.24	22.62	5.34	(1964) Palache et al. (1944)
$Mn_{0.95}Mg_{0.03}Ca_{0.02}Sn(OH)_{6}$	wickmanite		1.705	1.705	1.705	1.705	1.701	0.3	122	20.33	14.322	Moore and Smith (1968)
$Fe_{1.05}Mn_{0.01}Ge_{0.95}(OH)_6$	stottite	Tsumeb, Namibia	1.738	1.738	1.731	1.7357	1.731	0.2	106.5	17.75	13.031	Strunz et al.
FeSn(OH) ₆	natanite	Tullion	1.755	1.755	1.755	1.755	1.766	-0.6	113.69	18.95	14.264	Marshukova et al. (1982)
Ni(OH) ₂	theophrastite	Vermion, Greece	1.759	1.759	1.759	1.759	1.750	0.5	39.28	19.64	4.954	Marcopoulos and Economou (1981)
Zn(OH) ₂	ashoverite	Ashover, Derbyshire,	1.629	1.629	1.639	1.6323	1.616	1.0	48.56	24.28	5.123	(1901) Clark et al. (1988)
Zn(OH) ₂	sweetite	Derbyshire, England	1.635	1.635	1.628	1.6327	1.617	1.0	48.47	24.24	5.116	Clark et al. (1984)
AlO(OH)	bohmite	Ratnapura gem gravel, Sri	1.648	1.657	1.668	1.6577	1.661	-0.2	32.32	16.16	3.544	Sahama et al. (1973)
$Al_{0.99}Fe^{3+}_{0.01}(OH)_{3}$	gibbsite	Chester or Richmond, Massachusetts	1.568	1.568	1.587	1.5743	1.571	0.2	53.06	17.68	5.088	Larsen (1921)
CrO(OH)	grimaldiite	Merume River, Guvana	2.155	2.155	1.975	2.095	2.107	-0.7	34.25	17.12	6.076	Milton et al. (1976)
Mn ³⁺ O(OH)	manganite	Thuringia, Germany	2.26	2.26	2.54	2.3533	2.321	1.4	33.27	16.64	7.082	Larsen (1921)
Fe ³⁺ O(OH)	goethite	Restormel Royal Iron Mines, Lanlivery, Cornwall,	2.275	2.409	2.415	2.3663	2.267	4.2 ^b	34.65	17.33	7.434	Bailly (1948)
Fe ³⁺ O(OH)	goethite	Negaunee, Michigan	2.26	2.39	2.4	2.35	2.267	3.5 ^b	34.65	17.33	7.361	Posjnak and Merwin (1919)
Fe ³⁺ O(OH)	lepidocrocite	Easton Pennsylvania	1.938	2.2	2.515	2.2177	2.169	2.2	37.34	18.67	7.27	Posjnak and Merwin (1919)
$In_{0.86}Fe_{0.14}(OH)_3$	dzhalindite	Synthetic	1.725	1.725	1.725	1.725	1.720	0.3	62.8	20.93	7.576	Genkin and Muraveva
				22								

La(OH) ₃	1.74	1.74	1.768	1.7493	1.753	-0.2	71.53	23.84	8.91	(1964) Roy and McKinstry (1953)
NT-4	1 1	1	1			.1. 1.	1 (· · · · 1. ·	$1 \sim 10$	

Notes: a = sterically strained compounds with strong bond-valence deviations; b = compounds with edge- and face-sharing MO₆

556 octahedra ($M = Fe^{3+}$, Mn^{3+} , Ti^{4+} , V^{5+} , Mo^{6+} and W^{6+} ; c = compounds with corner-sharing octahedral; d = oxide ion conductivity

557

- **Table 3.** Chemical compositions from chemical analyses and the corresponding normalized composition for 6 silicates, 5 phosphates,
- 560 1 arsenate and 2 sulfate minerals.

Mineral and location	Not normalized	Normalized	Reference
SILICATES			
ferronordite- La	$\begin{array}{l} (Na_{2.92}Ca_{0.08})(Sr_{0.99}Ba_{0.02})_{\Sigma 1.01}(La_{0.57}Ce_{0.41}Pr_{0.05}Nd_{0.04})_{\Sigma 1.07} \\ Fe_{0.43}Mn_{0.29}Zn_{0.23}Mg_{0.06}(Si_{5.92}Al_{0.02})_{\Sigma 5.94}O_{17} \\ f \ Puscia \end{array}$	$\begin{array}{l}(Na_{2.92}Ca_{0.08})(Sr_{0.99}Ba_{0.01})_{\Sigma 1.0}(La_{0.53}Ce_{0.38}Pr_{0.05}Nd_{0.04})_{\Sigma 1.0}(Fe_{0.43}Mn_{0.29}\\Zn_{0.23}Mg_{0.06})(Si_{5.92}Al_{0.08})_{\Sigma 6.0}O_{17}\end{array}$	Pekov et al. (2002)
scandio- babingtonite	$(Ca_{1.71}Na_{0.25})_{\Sigma 1.96}(Fe_{0.65}Mn_{0.32})_{\Sigma 0.97}(Sc_{0.91}Sn_{0.04}Fe^{3+}_{0.03})_{\Sigma 0.98}$ Si ₅ O ₁₄ (OH)	$(Ca_{1.74}Na_{0.26})_{\Sigma 2.0}(Fe_{0.67}Mn_{0.33})_{\Sigma 1.0}(Sc_{0.93}Sn_{0.04}Fe^{3+}{}_{0.03})_{\Sigma 1.0}Si_5O_{14}(OH)$	Orlandi et al. (1998)
Montecatini Gra	anite Quarry, Baveno, Novara, Italy		
marianoite	$\begin{array}{l}(Ca_{4.0}Mn_{0.04})_{\Sigma 4.04}(Na_{1.93})(Nb_{0.97}Zr_{0.90}Ti_{0.09}Fe_{0.08}Mg_{0.03})_{\Sigma 2.07}\\Si_4O_{16.93}F_{1.07}\end{array}$	$(Ca_{3.96}Mn_{0.04})_{\Sigma 4.0}(Na_{1.93})(Nb_{0.93}Zr_{0.86}Ti_{0.09}Fe_{0.08}Mg_{0.03})_{\Sigma 1.99}Si_4O_{16.93}$ F _{1.07}	Chakhmoura- dian et al. (2008)
Prairie Lake, Or	ntario, Canada		
krauskopfite	$(Ba_{1.03}K_{0.01}Ca_{0.01})_{\Sigma 1.05}Si_{1.95}O_{4.95} \cdot 3.08H_2O$	$(Ba_{0.98}Ca_{0.02})_{\Sigma 1.0}Si_2O_5 \cdot 3H_2O$	Alfors et al. (1965)
Rush Creek area	a, Mono County, California	2, 2,	
okhotskite	$\begin{array}{l}(Ca_{1.91}Na_{0.04})_{\Sigma 1.95}(Mn_{0.69}Mg_{0.28})_{\Sigma 0.97}(Mn^{3^{+}}{}_{1.13}Al_{0.47}Fe^{3^{+}}{}_{0.40}\\Ti_{0.005})Si_{3.03}O_{9.93}(OH)_{4.07}\end{array}$	$\begin{array}{l} (Ca_{1.95}Na_{0.05})_{\Sigma 2.0}(Mn_{0.71}Mg_{0.29})_{\Sigma 1.0}(Mn^{3^+}{}_{1.13}Al_{0.47}Fe^{3^+}{}_{0.40}Ti_{0.005})\\ Si_3O_{9.93}(OH)_{4.07} \end{array}$	Togari and Akasaka (1987)
Kokuriki mine,I	Hokkaido, Japan		
magnesio- neptunite	$(K_{0.67}Na_{0.32}Ca_{0.016})(Na_{2.06})(Li)(Mg_{1.39}Fe_{0.71})\Sigma_{2.1}(Ti_{2.03})_{\Sigma_{2.03}}$ $(Si_{7.9}Al_{0.02})_{\Sigma_{7.92}}O_{24}$	$(K_{0.67}Na_{0.32}Ca_{0.016})(Na_2)(Li)(Mg_{1.32}Fe_{0.67})_{\Sigma 1.99}(Ti_2)_{\Sigma 2.0}(Si_{7.99}Al_{0.01})_{\Sigma 8.0}$ O ₂₄	Zadov et al. (2011)
Upper Chegem	caldera near Mt.Lakargi,No. Caucasus, Russia		
PHOSPHATES	8		
natrophilite Brancheville, C	$(Na_{0.93}Li_{0.02})_{\Sigma 0.95}Mn_{0.93}Fe_{0.07}PO_{3.95}(OH)_{0.05}$ onn.	$(Na_{0.96}Li_{0.04})_{\Sigma1.0}Mn_{0.93}Fe_{0.07}PO_{3.95}(OH)_{0.05}$	Moore(1972)
maricite	$(Na_{0.91})_{\Sigma 0.91}(Fe_{0.89}Mn_{0.07}Mg_{0.03})_{\Sigma 0.99}P_{1.02}O_4$	$(Na)_{\Sigma 1.0}(Fe_{0.90}Mn_{0.07}Mg_{0.03})_{\Sigma 1.0}PO_4$	Sturman et al. (1977)
Big Fish River a	area, Yukon Territory, Canada		
nacaphite	$Na_{1.99}(Ca_{0.94}Sr_{0.01}Mn_{0.01})_{\Sigma 0.96}PO_{3.97}F_{0.97}$	$Na_{2}(Ca_{0.96}Sr_{0.02}Mn_{0.02})_{\Sigma 1.0}PO_{4}F$	Khomyakov et al. (1981)
Mt. Rasvumcho	rr, Khibina massif, Russia		
woodhouseite White Mountair	$(Ca_{0.73}Sr_{0.04}Ba_{0.17}Na_{0.01})_{\Sigma 0.95}Al_{2.99}[P_{01.06}S_{0.97}O_4](OH)_6$ ns. CA	$(Ca_{0.76}Sr_{0.04}Ba_{0.19}Na_{0.01})_{\Sigma 1.0}Al_{2.99}[P_{01.06}S_{0.97}O_4](OH)_6$	Wise (1975)
birchite Broken Hill, Ne	$(Cu_{1.94}Zn_{0.10})_{\Sigma 2.04}(Cd_{2.09}Ca_{0.02}Mn_{0.02})_{\Sigma 2.13}P_{2.07}S_{0.88}O_{12}.5H_2O$ w So. Wales, Australia	$(Cu_{1.90}Zn_{0.10})_{\Sigma 2.0}(Cd_{1.96}Ca_{0.02}Mn_{0.02})_{\Sigma 2.0}P_{2.07}S_{0.88}O_{12}.\ 5H_2O$	Elliott (2008)
		35	

ARSENATES

cobalt-	$(Co_{0.68}Zn_{0.24}Cu_{0.02}Fe_{0.01}Ni_{0.01})_{\Sigma 0.96}AsO_{3}OH \cdot H_{2}O$	$(Co_{0.71}Zn_{0.25}Cu_{0.02}Fe_{0.01}Ni_{0.01})_{\Sigma 1.0}AsO_{3}OH \cdot H_{2}O$	Schmetzer et al.
korignite			(1981)
Saxony Erzgeb	irge Germany		

SULFATES

leightonite	$(K_{1.92}Na_{0.12})_{\Sigma 2.04}Ca_2Cu[SO_4]_4$. $2H_2O$	$(K_{1.92}Na_{0.08})_{\Sigma 2.0}Ca_2Cu[SO_4]_4 \cdot 2H_2O$	Palache (1938)
Chuquicamata,	Chile		
kamchatkite	$K(Cu_{2.92}Zn_{0.04})_{\Sigma 2.96}(SO_4)_2O_{1.04}Cl_{0.84}$	$K(Cu_{2.92}Zn_{0.08})_{\Sigma 3.0}(SO_4)_2OCl$	Vergasova et al.
			(1990)

Tolbachik volcano, Russia

Figure 1. Refractive indices of pyrope-knorringite solid solutions $Mg_3(Al_{1-x}Cr_x)_2Si_3O_{12}$. Lattice

parameter of knorringite from Novak and Gibbs (1971), a = 11.64 Å (α (Al) = 0.47 Å³, α (Cr) =

 3.02 Å^3), the line is calculated from polarizabilities, points are from Ringwood (1977).

- _

578

Figure 2. Refractive indices of tephroite- γ - Ca₂SiO₄ series (Mn_xCa_{1-x})₂SiO₄ (Greer, 1932)

581
$$(\alpha(Ca) = 1.79 \text{ Å}^3, \alpha(Mn) = 2.07 \text{ Å}^3).$$

583

585

