Subsolidus hydrogen partitioning between nominally anhydrous minerals in garnet-bearing peridotite

Sylvie Demouchy¹*, Svyatoslav Shcheka², Carole M.M. Denis¹, Catherine Thoraval¹

¹Géosciences Montpellier, Université Montpellier & CNRS, Montpellier, France
²Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany

#6089, Revision 2 for American Mineralogist

April 2017

* corresponding author: demouchy@um2.fr
Phone (office): +33 4 67 14 49 42
Phone (lab) +33 4 67 14 36 03
Fax: +33 4 67 14 36 03

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Abstract

Hydrogen distribution between nominally anhydrous minerals (NAMs) of a garnet-lherzolite under subsolidus conditions has been investigated. Separated NAMs from a garnet-peridotite from Patagonia (Chile) are annealed together (olivine, orthopyroxene, clinopyroxene and garnet) using a piston-cylinder at 3 GPa and 1100 °C using talc-Pyrex cell assembly for 10, 25 and 100 hours. The talc-pyrex assembly provides enough hydrogen in the system to re-equilibrate the hydrogen concentrations at high pressure. The three co-existing nominally anhydrous minerals (NAMs, i.e., olivine, orthopyroxene and clinopyroxene) were successfully analyzed using FTIR. The resulting hydrogen concentrations exceed significantly the initial hydrogen concentration by a factor of 13 for olivine and a factor of 3 for both pyroxenes. Once mineral-specific infrared calibrations are applied, the average concentrations in NAMs are 115±12 ppm wt H2O for olivine, 635±75 ppm wt H2O for orthopyroxene and 1214±137 ppm wt H2O for clinopyroxene, garnet grains are dry. Since local equilibrium seems achieved over time (for 100 hours), the calculated concentration ratios are interpreted as mineral-to-mineral hydrogen partition coefficients (i.e., Nernst’s law) for a garnet-peridotite assemblage. It yields, based on mineral-specific infrared calibrations, Dpx/ol=5±1, Dcpx/ol= 10±2, and Dcpx/opx=1.9±0.4. While Dcpx/opx is in agreement (within error) with previous results from experimental studies and concentration ratios observed in mantle-derived peridotites, the Dpx/ol from this study are significantly lower than the values reported from mantle-derived xenoliths and also at odd with several previous experimental studies where melt and/or hydrous minerals co-exists with NAMs. The results confirm the sensitivity of hydrogen incorporation in olivine regarding the amount of water-derived species (H) in the system and/or the amount of water in the co-existing silicate melt. The results are in agreement with an important but incomplete dehydration of mantle-derived olivine occurring at depth, during transport by the host magma or during slow lava flow cooling at the surface. The rapid concentration modification in mantle pyroxenes also points out that pyroxenes might not be a hydrogen recorder as reliable as previously thought.
Key words: olivine, pyroxenes, hydrogen, partition coefficient, upper mantle.

Highlights

- H partitioning coefficients between NAMs are quantified at 3 GPa and 1100°C
- Subsolidus partitioning differs from experiments with co-existing silicate melt
- Subsolidus bulk H content at 3 GPa (100 km) is estimated to ~ 340 ppm wt H₂O
Introduction

The distribution of hydrogen among the mantle minerals remains a key parameter to assess the contribution of the deep planet reservoir to the Earth’s water cycle. Indeed several physical and chemical properties of the mantle minerals and rocks are sensitive to the amount of water (i.e., molecular water and water-derived species, such as hydroxyl, hydrogen and protons) present in the geological system. One can mention melting temperature (e.g., Gaetani and Grove, 1998), electrical conductivity (e.g., Karato, 1990; Yoshino, et al., 2006), seismic wave velocities (e.g., Inoue et al., 1998; Jacobsen et al., 2004; Jacobsen, 2006), ionic diffusion (e.g., Hier-Majunder et al., 2004; Costa and Chakraborty, 2008; Demouchy et al., 2007; Gasc et al., 2016) and possibly viscoplastic deformation (Mackwell et al., 1985; Kohlstedt, 2006; Demouchy et al., 2012; Tasaka et al., 2016). These deep processes are all crucial players in geodynamics. To date, two approaches are currently used to quantify hydrogen in mantle nominally anhydrous minerals (NAMs): (1) measurements on natural samples such as mantle-derived xenoliths and peridotites from exhumed massifs or (2) experimental petrology and mineralogy. The first approach focuses on natural observations. Nevertheless, it only allows for a partial comprehension and quantification since many mantle processes are combined and in competition with each other (e.g., partial melting, various successive types of metasomatism, metamorphism, exhumation and surface weathering, see Bell and Rossmann, 1992; Dobson et al., 1995; Grant et al., 2007). The second approach has been hitherto very successful and provided a large amount of data for a wide range of pressures, temperatures, water or oxygen fugacities or chemical systems (e.g., Sweeney et al., 1997; Bolfan-Casanova et al., 2000; Asimow, 2001; Koga et al., 2003; Aubaud et al., 2004; 2008; Hauri et al. 2006; Mosenfelder et al., 2006; Bali et al., 2008; Tenner et al., 2009; Withers et al., 2008, 2011; Férot and Bolfan-Casanova, 2012; Ardia et al., 2012; Kovács et al., 2012; 4
Novella et al., 2014; Gaetani et al., 2014; Sokol et al., 2013, 2014; Green et al., 2014; Yang et al., 2015; see also Hirschmann, 2005 and Hirschmann et al., 2009 for reviews). However, these past experimental studies have focused on melt genesis and thus the hydrogen partition coefficients are obtained for systems where the NAMs are always co-existing with a large amount of hydrous melt (quenched as glass with/without quenched crystals). Since this type of experiments and subsequent chemical measurements are particularly difficult, a full set of inter-mineral hydrogen partition coefficients are rarely calculated from a single experiment but rather derived from a batch of experiments containing hydrous melt and at least one NAM.

For subsolidus conditions, as along a standard geotherm, the lack of partition coefficient is striking (only one study: Kovács et al., 2012, NAMs with co-existing amphibole +/- melt). The inter-mineral partition coefficients are required when calculating (1) the bulk hydrogen concentration when only one mineral is analyzed and (2) the effect of hydrogen on physical and chemical properties, for melt-free peridotites. Ideally, both approaches, quantification of water in natural specimens and experimental mineralogy, should be combined to provide the hydrogen concentration in each mantle mineral at depth.

Here, we have performed high pressure, high temperature annealing experiments under hydrogenation conditions below the solidus temperature of garnet-bearing peridotites. Indeed, the melting temperature is around 1500°C for dry peridotite, and around 1010 °C for H₂O-saturated peridotite, according to the seminal study by Hirth and Kohlstedt (1996). For the bulk water content addressed here, and according to the recent study by Katz et al., (2003), which provides melting curves in water-poor conditions, the experimental conditions are sub-solidus. For water-rich systems, see also Grove et al., (2006); Hirschmann (2010) and Green et al., (2014). For the first time, hydrogen incorporation is achieved by ionic diffusion of protons from the high
pressure assembly. Finally, consequences for NAMs as recorders of hydrogen concentrations are discussed.

Method

Sample description and preparation

The samples used for the high pressure experiments are nominally anhydrous minerals (NAMs) which are hand-picked from a garnet-bearing peridotite from Pali-Aike (Chile). The peridotite was previously studied by Stern et al., (1999); Demouchy, (2004) and Demouchy et al., (2006). It is a lherzolitic xenolith, composed of millimetric olivine, enstatite (opx), diopside (cpx) and garnet, which has reached equilibrium in major elements composition (Stern et al., 1999). The equilibrium temperature has been estimated to 1050±50 °C (i.e., Ca-in-opx from Brey and Köhler, 1990) and equilibrium pressure to 2.2-2.4 GPa. Major elements compositions are available elsewhere (Demouchy, 2004) and are reproduced here as convenience in the supplementary material (Table S1). The dehydration concentration profiles, which were interpreted as the results of ionic diffusion, were observed in olivine but not in pyroxenes (Demouchy, 2004; Demouchy et al., 2006), suggesting a fast remobilization of H in olivine and caught-in-the-act by a rapid magma ascent towards the surface. In this study, optically clear and crystallographically not oriented crystals were selected; olivine and opx grains were hand-polished on both sides. Cpx and garnet were not polished and were added to the starting material (or starting mixture).

High pressure experiments
All the experiments reported here were performed at Bayerisches Geoinstitut (Germany).

High pressure assemblies were prepared by placing several doubly hand-polished submillimetric size crystals of iron-bearing olivine and opx, with submillimetric grains of cpx and garnet inside a Pt$_{0.95}$Rh$_{0.05}$ half-welded capsule (0.25 mm wall thickness). At least 10 grains of olivine and opx (medium to large grains), 5 to 14 grains of clinopyroxene and 2 to 4 grains of garnet are piled up on each other inside the capsule. The half-welded capsules were lined up with Ni foil (0.14 mm of thickness) and a minute amount of NiO was added at the bottom of the capsule to buffer oxygen fugacity along Ni-NiO joint (McCammon, 2005; Frost and McCammon, 2008). Each half-welded capsule was also lined with Au foil (0.18 mm) to minimize horizontal cracks during thermal quench and decompression. Fine powder of olivine+10%opx was packed around and above the crystal pile up. A Pt$_{0.95}$Rh$_{0.05}$ lid was finally placed at the capsule top and micro-arc welded. The mineral mode of the original peridotite was not strictly respected. Here, ol, opx and cpx grains (\approx 0.04 g, respectively) were used in equal amount to increase probability to successfully analyze pyroxenes later on by Fourier transform infrared spectroscopy (FTIR).

Nevertheless, taking into account the amount of olivine+10%opx powder and the amount of ol, opx and cpx grains, it yields a relative weight proportion of 68%, 19%, 12% and 2% for ol, opx, cpx and garnet respectively. The mineral distribution is then in agreement with mineral modes reported for mantle-derived peridotites (e.g., see Demouchy and Bolfan-Casanova, 2016, for a compilation). It yields a bulk content of \approx 0.009 H$_2$O wt.% (from 86 to 136 ppm wt H$_2$O).

According to Katz et al., (2003), which provides water-poor melting curves, the experimental conditions are thus sub-solidus. Neither free distilled water, nor brucite nor talc is added inside the capsule. Typical capsule set up is shown in Figure 1. The capsules were then placed in 1/3-inch talc cell for piston-cylinders. Experiments were performed in an end-loaded piston-cylinder apparatus. A friction correction of 5% was applied to correct the nominal pressure based on...
experimental data on the quartz–coesite transition at 790 °C (see Bose and Ganguly, 1995 for
details). Temperature was controlled using a Pt-Pt₉₀Rh₁₀ thermocouple (S-type) with an estimated
uncertainty of ±10 °C (Li et al., 2013). Three runs at 3 GPa were annealed at 1100 °C for
durations of 10, 35 and 100 hours. Flux of H from the talc cell outside the capsule during the run
provided enough protons (H) to enable hydration. Since annealing duration under hydrous
conditions over 10 h at temperature above 900 °C is long enough to reach hydrogen saturation at
pressures above 0.2 GPa in olivine (Demouchy and Mackwell, 2006) and in pyroxenes as well
(Stalder and Skogby 2003; Stalder and Behrens 2006; Ferris et al., 2015; 2016), we expected
similar kinetics of H diffusion in this new set up. Note that H diffusion through metal is faster
than in silicates with diffusivities around 10⁻⁸ m²s⁻¹ at 800 °C in nickel (e.g., Wimmer et al.,
2008) or 10⁻⁸m²s⁻¹ at 500 °C in platinum (Cermàk et al., 1979). Temperature quench rate was 80-
120 °C/s. Pressure release was performed over 12 hours in attempt to reduce post-quench
fracturing. Experimental conditions are summarized in Table 1.

Fourier transform infrared spectroscopy

Each capsule was hand double-polished for unpolarized and polarized FTIR analyses. The
capsule sections were cleaned several times in a pure acetone bath for at least 12 h to dissolve
intergranular Crystal Bond glue. FTIR spectroscopy analyses were performed at the Laboratoire
Charles Coulomb at University of Montpellier (France) using a Bruker IFS66v coupled with a
Hyperion 3000 Bruker microscope and a liquid nitrogen-cooled mercury-cadmium-telluride
(MCT) detector. A Globar light source and a Ge-KBr beam splitter were used to generate Mid
Infrared Light (MIR). A wire-gird polarizer on Zn-Se substrate was used to generate polarized IR
radiation. A background measurement was performed before each analysis. Measurements were acquired with a square aperture yielding a square beam spot between 50 and 100 μm. More than two hundred scans were accumulated with a resolution of 4 cm⁻¹ for each measurement. A baseline correction was applied on each spectrum using the OPUS software. Fractures were strictly avoided. The sample thickness was measured using a micrometer with an accuracy of ± 1 μm and range from 204 to 368 μm. Spectra were normalized to a thickness of 1 cm. Unfortunately, IR profiles across the large crystal could not be acquired after annealing at high pressure, due to cracks and lack of sharp grain edges.

Several calibrations can be used to quantify the hydrogen concentration. The frequency-dependent calibration of Paterson (1982) was used to quantify the concentration of OH in NAMs as follows:

\[
C_{OH} = \frac{X_i}{150 \zeta} \int_0^{3780} \frac{k(\nu)}{(3780 - \nu)} d\nu
\]

where \(C_{OH}\) is the hydroxyl concentration (in mol H/l), \(\zeta\) is an orientation factor (=1/3 for unpolarized measurements or =1 for polarized measurements, Paterson, 1982), and \(k(\nu)\) is the absorption coefficient in cm⁻¹ for a given wavenumber \(\nu\). \(X_i\) is a density factor equal to 2695 ppm H₂O wt, for iron-bearing olivine, 2727 ppm H₂O wt, for mantle enstatite, 2769 ppm H₂O wt, for Cr-diopside, and 2408 ppm H₂O wt, for mantle-derived garnet (for details on the calculation method, see Bolfan-Casanova et al. 2000; Demouchy and Bolfan-Casanova, 2016). For the given thickness of the polished crystals (Table 1), the detection limit of FTIR spectroscopy is 1 to 3 ppm H₂O wt, and uncertainty on the hydrogen concentration is 15% to 30 % (e.g., Demouchy and Mackwell 2003). The calibration of Paterson applied on unpolarized spectra has been recurrently
considered to underestimate the hydrogen content (e.g., Withers et al., 2012). Nevertheless, the frequency–dependent calibration of Paterson enables to use the same method to extract hydrogen concentration from the different NAMs. However, in an attempt to improve accuracy on hydrogen concentration in all NAMs, we also used mineral-dependent calibrations (i.e., Bell et al., (1995) for pyroxenes and Withers et al. (2012) for iron-bearing olivine), which required the use of polarized IR light (see compilation of methods in Demouchy and Bolfan-Casanova, 2016). Unfortunately, the natural minerals used in the experiments were not crystallographically oriented and we have counteracted this problem by averaging numerous polarized FTIR spectra (as proposed by Asimow et al., 2006), taken at various orientations (rotation step of 45° of the polarizer respective to the sample position), to calculate an average polarized spectrum before applying the mineral-dependent calibrations (see Withers et al., 2012; Demouchy and Bolfan-Casanova, 2016).

Once the unpolarized and polarized spectra for each phase and for each experiment were at hand, there was no significant differences between them (Fig. S1, which confirms the studies by Kovács et al., 2008; Shuai and Yang, 2017). We have hence chosen to average all spectra together (e.g., unpolarized and polarized) to provide a ‘master’ average spectrum. This master average spectrum was used to determine hydrogen concentrations as well as to calculate concentration ratios for each phase and for each duration condition. Since new IR calibration could be proposed in the future, we also reported the normalized integrated absorbance for each average master spectrum.

The FTIR spectra for the starting material are shown in Figure 2. The main IR bands are located at 3572, 3594 and 3634 cm\(^{-1}\) for ol, opx and cpx respectively. Garnet did not show any OH band and is then considered dry. The observed OH bands are typical hydrolyzed defects of mantle-derived NAMs (see Miller et al., 1987; Bell and Rossmann, 1992; Ingrin and Skogby,
The hydrogen concentrations in NAMs in the starting material (lherzolitic material) are homogeneous from grains to grains. From the average MIR spectra, the averaged hydrogen concentrations of the starting material are 5, 186 and 286 ppm H$_2$O wt in ol, opx and cpx respectively, using the calibration of Paterson (1982) and 8, 201 and 422 ppm H$_2$O wt in ol, opx and cpx respectively, using the mineral-dependent calibrations (Bell et al., 1995; Withers et al., 2012). These values are in agreement with previous reports by Demouchy (2004) for the same garnet-bearing peridotite xenolith from Patagonia (Chile).

Results

The experimental conditions are reported in Table 1 and the concentrations in hydrogen are compiled in Table 2.

After annealing at 3 GPa and 1100 °C, thermal quench, decompression and sample preparation, the capsules display several horizontal fractures, but also large crystal portions which can be analyzed by FTIR as shown by Figure 3. Neither melt film, nor melt lens, nor melt pockets are visible at the sides or top of the capsule or between mineral grains, in reflective light to the contrary to Aubaud et al., (2004); Bali et al., (2008); Tenner et al., (2009); Withers et al., (2011), Férot and Bolfan-Casanova, (2012); Novella et al., (2015), demonstrating that the hydrogenated annealing conditions were subsolidus, as expected. Crystallization of new minerals is not observed.

The FTIR spectra of the hydrogenated NAMs are displayed in Figure 4. The main OH bands in olivine are the same as in the olivine from the starting material, but they have different intensities (Fig. 3 and 4a). Irrespective of annealing duration, the master spectrum of olivine, as defined in the previous section, shows dominant OH bands at 3612, 3572, 3525, 3352, 3328 and 3228 cm$^{-1}$. For orthopyroxene, the master spectrum also shows an increase of intensity from the
starting material with three dominant OH bands at 3595, 3520 and 3420 cm\(^{-1}\) (and minor bands at 3305 and 3060 cm\(^{-1}\)). The spectrum changes after annealing, the band at 3420 cm\(^{-1}\) being as high or higher than the peak at 3596 cm\(^{-1}\) which was dominant in the initial spectrum. The same modification was previously reported by Stalder and Skogby (2007). For clinopyroxene, the increase in intensity is global when compared to the starting material. The OH band at 3635 cm\(^{-1}\) remains the major IR band. Note that none of the spectrum displays evidence of contamination by molecular water and/or nano-inclusions containing water-derived species (see Keppler and Rauch, 2000 or Demouchy et al., 2012 for spectra comparison).

In all cases (duration and mineral phases), the intensity of each band is significantly higher than in the starting material, confirming significant hydrogenation during annealing (Fig 2 and 4). The difference between the spectra after annealing at 10, 25 or 100 hours is not exceeding the range of minimum and maximum values obtained for each set of spectra (see details in Table 2). Indeed, the post-annealing absorption coefficient normalized to the absorption coefficient of the starting material as shown in Figure 5, is almost constant for the 3 annealing durations (10, 35 and 100 hours). It confirms that the talc-pyrex cell from the piston-cylinder assembly provides an efficient flux of H to the system and enables modification of the initial hydrogen concentration. The increase in absorbance results from hydrogen incorporation and the initial hydrogen concentration is increased by a factor of 13 for olivine, and 3 for both pyroxenes, as shown in Fig. 5.

The application of the mineral-dependent calibrations (Bell et al., 1995, Withers et al., 2012, and described above) to each NAMs for each experiment enables the quantification of the hydrogen concentrations and yields 115 (107-126) ppm H\(_2\)O wt for olivine, 635 (568-716) ppm H\(_2\)O wt for opx and 1214 (1128-1372) ppm H\(_2\)O wt for cpx (Table 2 and Figure 4). At 3 GPa and 1100°C, for a peridotite containing 68% of olivine, 19% of opx, 12% of cpx and 2% of garnet...
(calculated using mineral proportion of the initial minerals mixed in the capsules), the bulk H concentration in the current melt-free peridotite is 342 ppm wt \(\text{H}_2\text{O} \) (range: 327-469 ppm \(\text{H}_2\text{O} \) wt). The bulk hydrogen concentration is 4 times higher than in the starting peridotite (94 ppm wt \(\text{H}_2\text{O} \), using the same calibration, Withers et al., 2012 and Bell et al., 1995 and mineral modes). If modal proportion in an average peridotite from a recent data compilation is used (i.e., containing 67% of olivine, 22 % of opx, 10% of cpx and 2% of garnet, from Demouchy and Bolfan-Casanova, 2016), the bulk H concentration is 338 ppm wt \(\text{H}_2\text{O} \) (range: 309-379 ppm \(\text{H}_2\text{O} \) wt).

Discussion

FTIR spectra

The NAMs IR bands from the annealed experiments (Fig. 4) are in agreement with previous experimental studies focusing on hydrogen incorporation in NAMs at saturation level at high pressure, high temperature and for mantle composition (e.g., for olivine: Kohlstedt et al., 1996; Férot and Bolfan-Casanova, 2012; Demouchy et al., 2016; e.g., for pyroxenes: Stalder and Skogby, 2003; Stalder et al., 2005). The IR band positions (Fig. 4) are also in agreement with results obtained from mantle-derived samples displaying high hydrogen concentrations for olivine (e.g., Miller, et al., 1987; Ingrin and Skogby, 2000; Peslier, 2010; Demouchy and Bolfan-Casanova, 2016) as well as for pyroxenes (e.g., Skogby and Rossman, 1989; Skogby et al., 1990; Ingrin and Skogby, 2000; Skogby, 2006; Xia et al., 2013; Hess et al., 2015; Bizimis and Peslier, 2015; Demouchy and Bolfan-Casanova, 2016). Therefore, even if only H was used as a dopant (i.e., ionic diffusion of H and no molecular \(\text{H}_2\text{O} \) or hydrous minerals in the capsule), we interpret the results of our hydrogen incorporation experiments as relevant to address the water storage in NAMs of the Earth’s upper mantle.
Hydrogen concentration

The bulk H concentration of a standard peridotite (67% ol, 22% opx, 10% cpx, 2% garnet), calculated from the current subsolidus experiments, is ∼340 ppm wt H₂O. This bulk value is a factor ~7 higher than values observed at 3 GPa in natural peridotite specimens, when using the same mineral-dependent IR calibrations. Indeed, a recent compilation by Demouchy and Bolfan-Casanova (2016) indicates that at 3 GPa (80-120 km of depth, number of xenoliths =10), NAMs contain in average 5, 104, and 234 ppm wt H₂O for olivine, orthopyroxene and clinopyroxene, respectively. It thus yields a bulk H concentration of 50 ppm wt H₂O (i.e., same mineral modes as above, and same mineral-dependent calibration). The discrepancy between the bulk hydrogen concentration in natural specimens and the results of our experiments is significant and the concentration gap is higher than that observed for one single geological setting (i.e., off-or on-craton, bulk between 8 and 153 ppm wt H₂O at 10 km of depth, data compilation from Demouchy and Bolfan-Casanova, 2016). We make the assumption that the limited amount of hydrogen observed in mantle specimens is mostly due to dehydration during partial melting (in an open system) at depth or during ascent towards the surface, which could have lower the hydrogen fugacity in the system and modified an originally higher hydrogen concentration primary resulting from cryptic or stealth metasomatism (i.e., Demouchy et al., 2015).

The successful hydrogenation of olivine and pyroxenes is at odd with the dryness of garnet in this study. Mantle-derived garnets were reported to contain limited amount of hydrogen (e.g., Peslier, 2010), but not in a systematic way (e.g., Demouchy et al., 2015). Here the garnet grains are dry after annealing, it could be due the detection limit (grains are too small) or to a composition effect (Beran and Libowitzky, 2006).
Subsolidus partition coefficients

The bulk water content is 0.009 wt.% H\textsubscript{2}O in the initial peridotite and equals to 0.034 wt.% H\textsubscript{2}O after hydrogenation. At a pressure of 3 GPa, and at 1 100°C and for bulk water content between 0 and 0.05 wt.% H\textsubscript{2}O, the models of Katz et al., (2003) indicate the absence of melting (see their figure 3). Other models, based on experimental petrology, predicted melting and/or precipitation of pargasite, but in water-rich systems (e.g., Grove et al., 2006; 14.5 wt.% H\textsubscript{2}O in the bulk) or at lower pressure conditions (water-poor system at 2.5 GPa, Green et al., 2014). In this study, the H concentrations in NAMs are high, and remain just below water saturation (e.g., Férot and Bolfan-Casanova, 2012; Demouchy and Bolfan-Casanova, 2016). If melt was present in the capsule, a significant drop in hydrogen concentration would have been observed compared to water-saturation values (see e.g., Bali et al., 2008; Férot and Bolfan-Casanova, 2012), which is not the case here. Thus, melting model for water-poor systems (<0.05 wt.% H\textsubscript{2}O) and the reported high hydrogen concentrations in the NAMs (0.0350 wt.% H\textsubscript{2}O in bulk) both settle again the subsolidus status of the present experiments.

From the experimental conditions and the size of the minerals, 10 hours are long enough to modify the hydrogen concentrations to a new hydrogen fugacity at 3 GPa and 1100 °C (Figure 5) for all NAMs grains (i.e., ranging from 1 mm for olivine to the small 300-200 micron clinopyroxenes). Since the hydrogen concentration remains constant for the three annealing durations in all mineral phases (within error bars), the system can be considered at equilibrium regarding hydrogen concentrations. The inter-mineral hydrogen concentration ratios can therefore be taken as accurate partition coefficients for the given pressure and temperature conditions (3 GPa, 1100 °C). It yields \(D_{\text{oopx/ol}}=5\pm1\), \(D_{\text{cpx/ol}}=10\pm2\), and \(D_{\text{cpx/opx}}=1.9\pm0.4\), as reported in Table 3 and displayed in Figure 6. The apparent partition coefficient of hydrogen between the two
pyroxenes is constant, and around 2, both after annealing and in the starting material, while the
partition coefficients between olivine and pyroxenes are significantly smaller than in the
lherzolitic protolith (from D_{initial \text{ opx/ol}} \approx 24 \text{ down to } D_{final \text{ opx/ol}} \approx 5, \text{ and from } D_{initial \text{ cpx/ol}} \approx 53 \text{ down}
to D_{final \text{ cpx/ol}} \approx 10, \text{ see Table 3 for } D_{final \text{ min/min}} \text{ calculated using other IR calibrations}). \text{ These results}
lead to the following conclusions \text{ regarding hydrogen distribution under subsolidus conditions: (1) it confirms that the very high diffusivity of hydrogen in olivine induces rapid intake to new}
higher hydrogen fugacity than experienced at depth, and implies that olivine is indeed an\text{ unreliable recorder of original mantle hydrogen content, even when co-existing with other}
NAMs. The same conclusion was previously reached from studies on natural peridotites (e.g.,\text{ Demouchy et al., 2006; Peslier and Luhr, 2006; Denis et al., 2013), and suggested from ionic}
diffusion experiments in single crystals of olivine and pure forsterite (Mackwell and Kohstedt,\text{ 1990; Demouchy and Mackwell, 2003; 2006; Padron-Navarta et al., 2014; Demouchy et al.,}
2016). It is the first time that it is directly observed from experiments where co-existing NAMs\text{ are subjected to a H flux, that is to say to H diffusion only. (2) The current results also settle the}
hydrogen partition coefficient between the two pyroxenes to \approx 2, \text{ as previously inferred from data}
compilation on natural specimens (Peslier et al., 2002; Xia et al., 2010; Denis et al., 2015; see\text{ Peslier et al., 2010 and Demouchy and Bolfan-Casanova for reviews). This factor of 2 appears to}
hold even if the hydrogen concentrations are modified rapidly and increase by a factor 3 within
only 10 hours of annealing. It thus questions both pyroxenes as reliable hydrogen recorders as\well. However, the partition coefficient between opx and cpx seems to be a very steady feature\whatever the pressure and temperature conditions, the bulk hydrogen content or the presence of
melt. It could therefore be used to assess equilibrium conditions in natural samples or
experimental charges where opx and cpx have behaved differently, as it is the case for the
crystallization of secondary metasomatic cpx during stealth metasomatism for example.
The new partition coefficients are compared to previous experimental results and concentration ratios obtained from natural samples in Table 3. The projections from Hirth and Kohstedt (1996) are in strikingly good agreement with the results of this study. Nonetheless, results from experiments where all three NAMs (ol, opx and cpx) are present in the experimental specimens and were analysed, are dissimilar from our results (Table 3). Note that in most of the other studies, the NAMs are neo-formed solid phases at equilibrium, always co-existing with a large amount of water-rich silicate melt and/or other neo-formed minerals (i.e., pargasite, Kovács et al., 2012). From the data compilation, the $D_{\text{cpx/opx}}$ is the coefficient with the smallest variability and a value ≈ 2 (Table 3). The $D_{\text{cpx/ol}}$ values are the most heterogeneous, ranging from $D_{\text{cpx/ol}} = 33$ (Tenner et al., 2009) down to $D_{\text{cpx/ol}} = 3.3$ for experiments at higher pressure (6 GPa, Novella et al., 2014) and from $D_{\text{cpx/ol}} = 176$ to 37 for natural samples (Bell and Rossmann, 1992). The $D_{\text{opx/ol}}$ values have smaller variability, and range from 12.2 (Hauri et al., 2006) down to 1.8 (Novella et al., 2014). Again, natural samples display a large heterogeneity with $D_{\text{opx/ol}}$ values ranging from 62 to 18 (Bell and Rossmann, 1992). While the values from Bell and Rossmann (1982) can be altered, as they did not use mineral-specific calibrations at that time, the same variability in $D_{\text{opx/ol}}$ is described in the data compilation by Peslier et al., (2010) and Demouchy and Bolfan-Casanova (2016). We attribute the diversity of $D_{\text{px/ol}}$ in natural samples to significant but incomplete loss of hydrogen in olivine (e.g., Demouchy et al., 2006; Peslier and Luhr, 2006; Denis et al., 2013; Peslier et al 2015). The variability in the data from experiments in laboratory can be attributed to important variations in pressure range, precision of the secondary ion mass spectrometer (SIMS), quality of the standards used for the SIMS calibration curves, and stability/reproducibility of the vacuum (i.e., Mosenfelder et al., 2011; Withers et al., 2011). Nevertheless, the most recent study by Novella et al., (2014), where two independent quantitative techniques were used (SIMS and Elastic Recoil Detector analyses), provides the most reliable partition coefficients for 17
asthenospheric mantle (6 GPa, 180 km of depth, low Al-pyroxenes) when water-rich silicate melt is present. The study presented here illustrates the need for melt-free and melt-bearing inter-mineral partition coefficients for hydrogen at realistic lithospheric conditions.

H loss in peridotite

Even if hydrogen under-saturation of the uppermost mantle, induced by partial melting, is a reasonable hypothesis, we must discuss an alternative, which is an important hydrogen loss in NAMs during (late) sub-surface processes (e.g., melt extraction, magma chamber dynamics, transport to the surface, fast decompression and lava flow cooling) in natural samples. The hydrogen loss was especially reported for olivine (Demouchy et al., 2006; Peslier and Luhr, 2006; Denis et al., 2013; see also Lloyd et al., 2012; 2016; Biró et al. 2016 for dehydration in other NAMs)). However, the discrepancy between bulk concentrations calculated from the present experiments and from natural samples cannot be attributed solely to H loss in olivine. Partial depletion of pyroxenes must also occur and participate to lower the bulk hydrogen concentration observed in mantle peridotites. This hypothesis of a significant hydrogen loss in opx has indeed recently been reported by Tian et al., (2016) in peridotite xenoliths from China. Nonetheless, many other studies did not report systematic hydrogen loss in ortho- or clinopyroxenes (see Demouchy and Bolfan-Casanova for full list of references), leaving the reasons of the preservation from dehydration (e.g., caught–in-the-act) in NAMs unexplained and calling for more systematic line analyses (by FTIR or SIMS) in H-rich and H-poor pyroxenes. Moreover, if mechanisms of dehydration are somehow different than hydration (or re-hydration of pre-existing defects), pyroxenes could indeed behave as a reliable H recorder, then our new subsolidus partition coefficients could be used to calculate the initial hydrogen concentration in
olivine before transport towards the surface. It might be of particular importance for olivine, which is controlling the rheology of the upper mantle.

Implications

The results of this experimental study point out the requirement to establish melt-free inter-mineral partition coefficients for hydrogen, for a wide range of pressure and temperature, especially under lithospheric conditions (i.e., temperature lower than a mantle adiabat) and for chemical composition relevant to Earth’s mantle only. Our hydration experiments question the reliability of both pyroxenes and olivine as hydrogen recorders. Further studies are required to decipher hydration and dehydration mechanisms since they may not be symmetrical (Thoraval and Demouchy, 2014). Indeed several crystal defects are involved, and must interplay during diffusion out hydrogen in NAMs.

At last, our results imply that the mere use of partition coefficients derived from melt-rich high pressure experiments could lead to misunderstanding of hydrogen distribution at depth when applied to mantle-derived rocks equilibrated at subsolidus temperatures.

Acknowledgments

The authors thank the associated editor and two reviewers for very constructive comments. S.D. deeply thanks J.-A. Padròn-Navarta for fruitful discussion on peridotite melting curves, H. Schulze for outstanding capsule polishing, H. Fisher for perfect capsule manufacture, and D. Maurin for the management of the FTIR lab at the University of Montpellier. This study was financially supported by DFG Core facility: High-pressures laboratories of Bayerisches Geoinstitut, Bayreuth University, Germany (KE501/10-1).
References

and implications for the transport properties and processes in the upper mantle. Physic

Demouchy, S., (2004) Thermodynamics and kinetics of hydrogen incorporation in olivine and
wadsleyite, Bayerisches Geoinstitut. Bayreuth University, Bayreuth.

recorded by water diffusion profiles in mantle olivine. Geology, 34, 429–432.

interdiffusion in (Mg,Fe)O and implications for Earth’s lower mantle. Contribution
to Mineralogy and Petrology, 154, 279–289

olivine in torsion under hydrous conditions. Physics of Earth and Planetary Interiors,
202-203, 57–70.

hydration in the mantle lithosphere: Peridotite xenoliths from the Ontong Java Plateau as
an example. Lithos, 212-215, 189–201.

environment. American Mineralogist, 75, 764–774.

experiments on the Udachnaya kimberlite at 6.3-7.5 GPa: Implications for the role of H\textsubscript{2}O
in magma generation and formation of hydrous olivine. Geochimica et Cosmochimica Acta
101, 133–155.

kimberlite magmas: Constraints from multiple saturation experiments.
American Mineralogist, 99, 2292–2302.

J. Mineral. 2007, 19, 201–216

orthopyroxene: interaction of different trivalent cations. Contribution to Mineralogy and
Petrology 150, 473–485.

xenoliths for relatively thin (<100 km) continental lithosphere below the Phanerozoic crust

analysis (ERDA) microbeam technique for the quantitative determination of hydrogen in
materials and hydrogen partitioning between olivine and melt at high pressures,

Figure captions

Figure 1: Sketch of the capsule assembly used in the experimental study. Batch of nominally anhydrous minerals from a mantle-derived garnet-lherzolite are placed as layers in a welded metal capsule. See main text for details.

Figure 2: Average FTIR spectra (master spectrum, see main text and Fig. 1S for details) for each mineral phase in the starting material (mantle-derived lherzolite from Pali-Aike). The thick black spectrum is for olivine; the thin black spectrum is for orthopyroxene and the thick grey spectrum is for clinopyroxene. All the spectra are normalized to 1 cm of thickness.
Figure 3: (a) Micrograph of a capsule after annealing at 3 GPa, 1100 °C, 100 hours (PSD6), in reflective light. (b) Micrograph of a capsule after annealing at 3 GPa, 1100 °C, 100 hours (PSD6) in cross-polarized light showing large sections of crystals suitable for FTIR analyses.

Figure 4: Average FTIR spectra (master spectrum, see main text for details) for each mineral phase. The thick gray spectrum is the starting material, shown as reference, the thick black line is for an annealing duration of 10 h, the thin black line is for an annealing duration of 25 h and the dashed black line is for an annealing duration of 100 h for (a), olivine, (b) orthopyroxene and (c) clinopyroxene. All the spectra are normalized to 1 cm of thickness.

Figure 5: Evolution of the absorption coefficients (absorbance normalized to a thickness of 1 cm) in the minerals divided by the absorption coefficients of the starting material as a function of the duration of annealing. The thick black line is for olivine; thin black line is for orthopyroxene and the thick grey line is for clinopyroxene.

Figure 6: Evolution of the hydrogen partition coefficient between minerals as a function the duration of annealing. The thin black line is for clinopyroxene/olivine; dashed black line is for orthopyroxene/olivine and the thick grey line is for clinopyroxene/orthopyroxene. The mineral-dependent calibration was used for the partition coefficients calculation (see Table 2 and 3 for details).

Figure S1: FTIR spectra for sample PSD4, set of spectra for NAMs showing the average polarized spectrum (black) relative to the sets of polarized spectra (grey), and relative to the unpolarized average spectrum (red) demonstrating that averaging a large set of polarized and unpolarized spectra yields very similar result.
Table 1. Compilation of the piston-cylinder (talc-pyrex cell) run conditions.

<table>
<thead>
<tr>
<th>Run#</th>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
<th>Buffer Assemblage</th>
<th>Duration (hours)</th>
<th>Thickness for FTIR μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSD4</td>
<td>3</td>
<td>1100</td>
<td>Ni-NiO ol+opx+cpx+gt</td>
<td>10</td>
<td>271</td>
</tr>
<tr>
<td>PSD5</td>
<td>3</td>
<td>1100</td>
<td>Ni-NiO ol+opx+cpx+gt</td>
<td>25</td>
<td>204</td>
</tr>
<tr>
<td>PSD6</td>
<td>3</td>
<td>1100</td>
<td>Ni-NiO ol+opx+cpx+gt</td>
<td>100</td>
<td>368</td>
</tr>
</tbody>
</table>
Table 2. Normalized integrated absorbances (NIA) and hydrogen concentrations in NAMs from the starting material (PSM) and the annealed samples at high pressures (PSM#). We used several IR calibrations: the calibration of Paterson (1982), Bell et al., (1995) and Withers et al., (2012).

<table>
<thead>
<tr>
<th>Nb§ spectra</th>
<th>NIA *</th>
<th>Calib. of Paterson **</th>
<th>Calib. of Withers (ol) or of Bell (px)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>PSM-ol</td>
<td>10</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>PSM-opx</td>
<td>6</td>
<td>1043</td>
<td>762</td>
</tr>
<tr>
<td>PSM-cpx</td>
<td>6</td>
<td>997</td>
<td>711</td>
</tr>
<tr>
<td>PSD#4-ol</td>
<td>9</td>
<td>328</td>
<td>265</td>
</tr>
<tr>
<td>PSD#4-opx</td>
<td>13</td>
<td>2952</td>
<td>2376</td>
</tr>
<tr>
<td>PSD#4-cpx</td>
<td>15</td>
<td>3242</td>
<td>2925</td>
</tr>
<tr>
<td>PSD#5-ol</td>
<td>15</td>
<td>352</td>
<td>311</td>
</tr>
<tr>
<td>PSD#5-opx</td>
<td>11</td>
<td>3226</td>
<td>2905</td>
</tr>
<tr>
<td>PSD#5-cpx</td>
<td>11</td>
<td>2666</td>
<td>2357</td>
</tr>
<tr>
<td>PSD#6-ol</td>
<td>10</td>
<td>285</td>
<td>253</td>
</tr>
<tr>
<td>PSD#6-opx</td>
<td>5</td>
<td>3723</td>
<td>2878</td>
</tr>
<tr>
<td>PSD#6-cpx</td>
<td>5</td>
<td>2698</td>
<td>2625</td>
</tr>
</tbody>
</table>

§ Number of spectra used for calculation of the average spectrum for each mineral phase, it is the same number for unpolarized and polarized spectra.

* NIA: normalized integrated absorbance from normalized and averaged spectra.

** Since the average of unpolarized and polarized spectra are not different, we have averaged all of them to calculate a ‘master’ average spectrum, which is used afterwards for estimation of the hydrogen concentrations and estimation of partition coefficients.
Table 3. Hydrogen concentration ratios from this study and partition coefficients from previous experimental studies as well as concentration ratios in mantle-derived peridotites. Partition coefficients are compiled only for experimental runs where at least three NAMs are co-existing (ol+opx+cpx or ol+opx+cpx+gt). Most of the previous studies used mostly used SIMS measurements, or FTIR or ERDA or a combinaison of theses analytical methods to quantify hydrogen concentration.

<table>
<thead>
<tr>
<th>Concentration ratio$</th>
<th>R_{opx/ol}</th>
<th>R_{cpx/ol}</th>
<th>R_{cpx/opx}</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM-0h</td>
<td>24.4</td>
<td>51.3</td>
<td>2.1</td>
<td>This study*, mantle xenolith</td>
</tr>
<tr>
<td>PSM4-10h</td>
<td>4.8</td>
<td>11.7</td>
<td>2.4</td>
<td>This study*, subsolidus, 3 GPa, 1100°C</td>
</tr>
<tr>
<td>PSM5-25h</td>
<td>4.9</td>
<td>8.9</td>
<td>1.8</td>
<td>This study*, subsolidus, 3 GPa, 1100°C</td>
</tr>
<tr>
<td>PSM6-110h</td>
<td>7.0</td>
<td>11.2</td>
<td>1.6</td>
<td>This study*, subsolidus, 3 GPa, 1100°C</td>
</tr>
<tr>
<td>Average</td>
<td>5.6</td>
<td>10.6</td>
<td>1.9</td>
<td>This study*, subsolidus, 3 GPa, 1100°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>D_{opx/ol}</th>
<th>D_{cpx/ol}</th>
<th>D_{cpx/opx}</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirth and Kohlstedt, 1996</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>with melt, constant values over P and T</td>
</tr>
<tr>
<td>Aubaud et al., 2004</td>
<td>9.1</td>
<td>12.5</td>
<td>1.4±0.3</td>
<td>with melt, 1-2 GPa, 1230-1380 °C</td>
</tr>
<tr>
<td>Hauri et al., 2006** Tenner</td>
<td>12.2</td>
<td>14.6</td>
<td>1.2</td>
<td>with melt, 1.2-1.6 GPa, 1185-1370 °</td>
</tr>
<tr>
<td>et al., 2009§ Kovács et al., 2012 Karimova and Stalder</td>
<td>n.d.</td>
<td>33</td>
<td>n.d.</td>
<td>C with melt, 3 GPa, 1450 °C</td>
</tr>
<tr>
<td>2013§ Novella et al., 2014 §</td>
<td>4.7±1.1</td>
<td>16.45</td>
<td>3.5±1.5</td>
<td>with melt, 4 GPa, 1100-1225 °C</td>
</tr>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td>2.0±0.3</td>
<td>melt-free, 6 GPa, 1150-1300 °</td>
</tr>
<tr>
<td>Bell and Rossman, 1992</td>
<td>62</td>
<td>176</td>
<td>2.8</td>
<td>Sp-lherzolite xenolith (KBH-1)</td>
</tr>
<tr>
<td>Bell and Rossman, 1992</td>
<td>18</td>
<td>37</td>
<td>2.05</td>
<td>Gt-lherzolite xenolith (KOH-29) Gt-</td>
</tr>
<tr>
<td>Grant et al., 2007§</td>
<td>6.6</td>
<td>12.7</td>
<td>1.9</td>
<td>peridotite xenolith (South Africa)</td>
</tr>
<tr>
<td>SD&NBC, 2006</td>
<td>33</td>
<td>64</td>
<td>2.0</td>
<td>Date compil. / Sp- and Gt peridotite</td>
</tr>
<tr>
<td>St.Dev on SD&NBC, 2006</td>
<td>36</td>
<td>70</td>
<td>0.7</td>
<td>Date compil. / Sp- and Gt peridotite</td>
</tr>
<tr>
<td>Linear Fit, y=(a±a')x, a+a'= 11±1</td>
<td>21±5</td>
<td>1.9±0.1</td>
<td>Date compil. / Sp- and Gt peridotite</td>
<td></td>
</tr>
<tr>
<td>R² of the linear fit</td>
<td>0.17</td>
<td>0.06</td>
<td>0.82</td>
<td>Date compil. / Sp- and Gt peridotite</td>
</tr>
</tbody>
</table>

N.B.: Grant et al, 2006 and 2007b were excluded since the system is Fe-Al-free. Koga et al., 2003 and Férot and Bolfan-Casanova (2012) were excluded since no cpx were present in the run products.*The ratios are calculated using values obtained using Withers et al., (2012) and Bell et al., (1995) for olivine and pyroxenes respectively.** Only values from run B359, B366, B394 and B432 (at least ol+opx+cpx+melt) were taken into account for calculating an average reported here. # only 1 run M373 (assemblage ol+opx+cpx+melt) but opx could not be analysed in this run. $ only S5281 (assemblage ol+opx+cpx+gt+melt). § only KBJ30 and LMA 15, values were then averaged and reported here, values using the Libowitzky and Rossman (1997) calibration were taken for olivine as it is closer to calibration of Withers et al., (2012). SD&NBC: Demouchy and Bolfan-Casanova, 2016. § based on runs AK019 and AK021 only, and following the calibration (Bell et al., 1995, 2004). § The hydrogen concentrations ratios, calculated using other IR calibrations (B/B=Bell1995/Bell2003, P/P: Paterson1982/Paterson1982) yield: D_{B/B}^{opx/ol}= 3.5 ; D_{B/B}^{cpx/ol}= 6.7 ; D_{P/P}^{opx/ol}= 9.7 ; D_{P/P}^{cpx/ol}= 12.9 ; D_{P/P}^{cpx/opx}= 12.9.
Demouchy et al., Figure 1R

Section through piston-cylinder cell and capsule

- Talc
- Pyrex glass
- Graphite furnace
- Al₂O₃
- Welded capsule
- Grt
- Cpx
- Opx
- Pt₀.₉₅Rh₀.₀₅
- Au Foil
- Ni Foil
- Olivine
- Ol+Opx10%
- NiO
- 5.0 mm
Starting Material
NAMs from Pali-Aike

- Olivine: 8 (7-14) ppm water wt
- Opx: 201 (147-243) ppm water wt
- Cpx: 422 (301-637) ppm water wt
Demouchy et al.
Demouchy et al., Fig. 4

a) Absorption coefficients vs. wavenumber for different mineral species with varying water contents. The absorption coefficients are shown for olivine (OLIVINE) with water contents of 8 ppm, 10 ppm, and 126 ppm, and for garnet-lherzolite (Grt-Lherzolite) with water contents of 8 ppm, 117 ppm, and 126 ppm, along with hydration times of 10h, 25h, and 100h. The data are calibrated by Withers et al., 2012.

b) Similar to a), showing absorption coefficients for orthopyroxene (OPX) with water contents of 201 ppm, 568 ppm, and 620 ppm, and for garnet-lherzolite with water contents of 201 ppm, 568 ppm, and 620 ppm, along with hydration times of 10h, 25h, and 100h. The data are calibrated by Bell et al., 1995.

c) Similar to a) and b), showing absorption coefficients for clinopyroxene (CPX) with water contents of 422 ppm, 1372 ppm, and 1128 ppm, and for garnet-lherzolite with water contents of 422 ppm, 1372 ppm, and 1128 ppm, along with hydration times of 10h, 25h, and 100h. The data are calibrated by Bell et al., 1995.
Demouchy et al., Figure 5

Annealing duration (hours) vs. Abs. coeff. / Starting mat. Abs. coeff.

- OLIVINE
- OPX
- CPX
Demouchy et al., Figure 6

Hydrogen partition coefficient
- $D_{\text{opx/ol}}$
- $D_{\text{cpx/ol}}$
- $D_{\text{cpx/opx}}$

Partition coeff. ($D_{\text{H}}^H_{\text{min/min}}$)

Annealing duration (hours)