1	Revision 2
2	Crystal structure of richetite revisited: crystallographic evidence for the presence of
3	pentavalent uranium
4	
5	Jakub Plášil 1*
6	
7	¹ Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ–182 21, Praha 8, Czech Republic,
8	*email: plasil@fzu.cz
9	

10 Abstract:

11	Revision of crystal structure of the rare U-oxide mineral richetite provided crystallographic
12	evidence for the presence of pentavalent U. The structure of richetite, space group $P-1$, $a =$
13	12.0919(2), $b = 16.3364(4)$, $c = 20.2881(4)$ Å, $\alpha = 68.800(2)^{\circ}$, $\beta = 78.679(2)^{\circ}$, $\gamma = 76.118(2)^{\circ}$,
14	with $V = 3600.65(14)$ Å ³ and $Z = 1$, was solved by charge-flipping algorithm and refined to an
15	agreement index (R) of 5.6% for 9955 unique reflections collected using microfocus X-ray
16	source. The refined structure, in line with the previous structure determination, contains U-O-
17	OH sheets of the α -U ₃ O ₈ type (protasite topology) and an interstitial complex comprising
18	Pb^{2+} , Fe^{2+} , Mg^{2+} cations and molecular H ₂ O. However, the polyhedral geometry, the bond-
19	valence sum incident at one U site within the sheet (U17) together with charge-balance
20	requirements, indicate that U17 site is occupied by U^{5+} . The U17 Φ_7 (Φ : O, OH) polyhedra is
21	rather distorted, with two shorter U–O bond-lengths (~2.01 Å), four longer U–O bond-lengths
22	(~2.2 Å) and one, very long U–O bond (2.9 Å). The color of richetite also supports the
23	presence of U^{5+} in the structure The current results show that $\alpha\text{-}U_3O_8$ type of sheet can
24	incorporate U ⁵⁺ . Richetite is the second mineral containing pentavalent uranium in Nature.
25	
26	Keywords: Richetite, uranyl oxide hydroxy-hydrate, crystal structure, pentavalent uranium,
27	weathering
28	

- 29 Running title: Pentavalent U in richetite
- 30

31

INTRODUCTION

32	Uranyl-oxide hydroxy-hydrate minerals (further labelled as UOH) are important
33	products of supergene weathering of primary U^{4+} minerals, predominantly uraninite. They
34	form in the initial alteration stages and are common constituents of the oxidized parts of
35	uranium deposits, and usually replace uraninite in-situ, forming massive aggregates called
36	"gummites" (Finch and Ewing 1992; Finch and Murakami 1999; Krivovichev and Plášil
37	2013; Plášil 2014). Weathering of uraninite, also called hydration-oxidation weathering, is of
38	further relevance because of the analogy between the alteration of uraninite and UO_{2+x} in
39	spent nuclear fuel (Janeczek et al. 1996). The crystallography and crystal chemistry of this
40	mineral group has attracted a lot of attention and this group is nowadays extensive (see e.g.,
41	Plášil et al. 2016). These minerals and the synthetic UOH phases have been studied
42	intensively by X-ray diffraction and only a few of their structures are unknown.
43	Richetite is a rare UOH mineral, occurring at few localities in the world. It was
44	originally described by Vaes (1947) from Shinkolobwe mine, Haut-Katanga province,
45	Democratic Republic of Congo, Africa, and later studied by Piret and Deliens (1984).
46	Richetite has a large triclinic unit-cell (Burns 1998), which is in line with results of Piret and
47	Deliens (1984). However, the structure has several issues prompting reexamination of the
48	structure.
49	
50	Redetermination of the crystal structure
51	Single-crystal X-ray diffraction
52	The crystal used in this study was obtained from a sample provided by Jean-Claude
53	Leydet (Brest, France) and originates from the type locality, Shinkolobwe mine (Haut-
54	Katanga province, DRC, Africa).

55	A tabular greyish brown fragment of richetite was selected under an optical
56	microscope and used for X-ray study. Data were collected using a Rigaku (Oxford diffraction)
57	SuperNova diffractometer, using MoKa radiation ($\lambda = 0.71073$ Å) from a micro-focus X-ray
58	tube collimated and monochromatized by mirror optics and detected by an Atlas S2 CCD
59	detector. From 39599 collected reflections, 13469 were independent and 9955 were unique
60	observed with the criterion $I_{obs} > 3\sigma(I)$. Integration of the diffraction data, including
61	corrections for background, polarization and Lorentz effects, was done using the CrysAlis
62	RED program. The absorption correction combining empirical scaling and spherical-
63	absorption correction was done with CrysAlis program; SCALE3 Abspack algorithm.
64	The structure of richetite was solved by the charge-flipping algorithm using the Shelxt
65	program (Sheldrick 2015). The structure model was refined by full-matrix least-squares in the
66	Jana2006 program (Petříček et al. 2014) based on F^2 . The reflection conditions were
67	consistent with the space-group $P-1$, which was further confirmed by the successful
68	refinement. The possibility for twinning by reticular merohedry was tested by Jana2006
69	(Petříček et al. 2016) (transformation matrix 1 -2 -1/1 0 0/0 -1 1), however it was negative.
70	The crystal used for the experiment was found to be a split crystal; the contribution of the
71	second fragment to the dataset was corrected by detecting fully separated, fully overlapped
72	and partially separated reflections in Jana2006 (Petříček et al. 2016). The structure solution
73	provided nearly complete structure sheets and missing atoms (mostly O atoms) were located
74	from the difference-Fourier maps. Anisotropic displacement parameters were used for U, Pb
75	and Fe atoms. Unconstrained and unrestrained refinement converged smoothly to final $R =$
76	0.056 for 9955 unique observed reflections (Table 1). Final atom coordinates and
77	displacement parameters are listed in Tables 2 and 1S (Supplementary file), selected
78	interatomic distances are in Tables 3 and 4, and the bond-valence sums (calculated by the
79	procedure of Brown, 1981, 2002) are listed in Table 2. The original crystallographic

4

information file (cif) is provided as Supplementary material and can be downloaded from
XXXX.
DESCRIPTION OF THE CRYSTAL STRUCTURE
The structure of richetite contains 18 unique U sites, 8 unique Pb sites, 1 mixed Fe/Mg site,
and 85 O sites (of which 18 correspond to H_2O groups) (Fig. 1). The U sites are coordinated
by seven ligands (O or OH ⁻) in two classes of distances: ~1.8 Å and 2.1 to ~2.8 Å. as it is
characteristic for the UO_2^{2+} ion (Evans 1963; Burns et al. 1997a; Lussier et al. 2016). The
structure contains 8 Pb sites; none of them is fully occupied, site-scattering refinement
showed occupancies ranging from 0.14 to 0.95. The coordination polyhedra around Pb atoms
are irregular; ligands are represented by O_{Ur} atoms and H_2O groups, with Pb- Φ bond-lengths
ranging from 2.4 to 3.1 Å (Table 5). Richetite structure contains also one symmetrically
unique octahedrally coordinated site, occupied by divalent cations Fe^{2+} and Mg^{2+} , with $< M^{2+}$ -
Φ > bond-length of 2.07 Å. The M^{2+} octahedron is quite regular and is formed by two O_{Ur}
atoms (of the U2) and four H ₂ O groups. Site-scattering refinement gave $M^{2+} = 0.62 \text{ Fe}^{2+} + $
0.38 Mg^{2+} .
The U17 site
Several U sites in the structure of richetite exhibit rather irregular coordination. In case of
U17 (Fig. 2; Table 4) O62 and O72 atoms (OH groups), which usually should be O_{Ur} atoms
with U–O bond-lengths of 1.8 Å, have U–O distances of 2.006(19) and 2.01(2) Å. Moreover,
O62–U17–O72 bond-angle is 171.82°, different from the usually linear UO_2^{2+} ion. Bond-
valence analysis (Table 2) indicates that the U17 site is occupied by pentavalent U.

104 The sheets of polyhedra

105	The sheet of polyhedra found in richetite has the protasite uranyl-anion topology, i.e.
106	the α -U ₃ O ₈ sheet (Fig. 3) (Burns 1998, 2005; Lussier et al., 2016). All pentagons are occupied
107	by U atoms, the U17 site by U^{5+} , and the rest by U^{6+} . Based upon distribution of (OH) ⁻ within
108	the equatorial ligands (excluding two OH groups associated with U17), we can distinguish
109	several structures of protasite topology. In richetite (Burns 1998), we have the AABAAB
110	sequence, where considering type-A triangles (which have (OH) groups at all corners), and
111	type-B triangles (which contain only O ²⁻ anions), richetite has twice as many A triangles as B
112	triangles. The O:OH ratio in richetite is 3:2, however, there are also two OH groups linked to
113	U17 (in case of other U sites in richetite, they are O_{Ur} atoms), linking U17 to Pb1 through
114	O62, and to Pb4 and Pb7 through O72. In case of protasite (Pagoaga et al. 1987), all (OH)
115	groups are located at the corners of triangles of the topology, such that all triangles in the
116	sheet contain two (OH) groups. The sheets in the structures of becquerelite (Burns and Li
117	2002) and billietite (Finch et al. 2006) (considering there the α -U ₃ O ₈ sheet only) have the
118	composition $[(UO_2)_6O_4(OH)_6]^{2-}$ with O:OH = 2:3. In the becquerelite and billietite sheet
119	anion-topologies, all (OH) groups are located at the corners of triangles, and all triangles
120	contain three (OH) groups.

121

122 The interlayer complex

As indicated by Burns (1998), the structure of richetite contains two different interlayer complexes containing Pb^{2+} , M^{2+} and H_2O groups. Adjacent sheets of protasite topology are linked through an extensive network of Pb–O, M^{2+} –O and O–H…O bonds. The interstitial complex comprising M^{2+} octahedra occurs at $\mathbf{b} = 0$, $\mathbf{c} = 0$ and is built from two tetramers (Pb2, Pb4, Pb7 and Pb8) linked by M^{2+} octahedra (Fig. 4). Four of the ligands coordinated to M^{2+} site are H₂O groups, and two are O_{Ur} atoms. There is an additional O site

129	(O84) that is occupied by an H_2O group that links to the structure through H-bonds only. The	
130	coordination environment of the corresponding Pb sites is shown in Fig. 4.	
131	The interlayer complex that does not contain the M^{2+} site occurs at b ~0.5, c ~0.5. It	
132	contains a dimer of Pb1 Φ_8 and Pb3 Φ_9 ($\Phi = O$, OH, H ₂ O) polyhedra and a tetramer of Pb5 Φ_8	
133	and Pb6 Φ_8 ($\Phi = O, H_2O$) polyhedra (Fig. 5). Between these clusters of polyhedra there are	
134	three independent O sites that belong to H ₂ O groups that are not coordinated directly to any	
135	metal cation site.	
136		
137	The structural formula	
138	The structural formula of the studied richetite crystal is therefore	
139	$M^{2+}_{0.50}$ Pb _{4.86} [U ⁵⁺ (U ⁶⁺ O ₂) ₁₇ O ₁₈ (OH) ₁₄](H ₂ O) _{~19.5} , Z = 2. This formula is in line with the color	
140	of richetite (Fig. 6). Most UOH minerals are orange or yellow, whereas those minerals	
141	containing U ⁵⁺ , wyartite (Burns and Finch 1999) and dehydrated wyartite (Hawthorne et al.	
142	2006) are similar in color to richetite.	
143		
144	α - U_3O_8 topology and the presence of U^{5+}	
145	Incorporation of U^{5+} into α -U ₃ O ₈ type sheets has not been considered; all minerals	
146	with U^{5+} or U^{4+} present adopt β -U ₃ O ₈ sheets (Burns and Finch 1999; Burns et al. 1997b;	
147	Hawthorne et al. 2006). For shinkolobweite, $Pb_{1.25}[U^{5+}(H_2O)_2(UO_2)_5O_8(OH)_2](H_2O)_5$ (Olds et	
148	al. 2017), there are sheets resembling β -U ₃ O ₈ topology. Geometrically, the U17 site in	
149	richetite is consonant with the idealized α -U ₃ O ₈ topology and bond-valence analysis clearly	
150	indicates incorporation of U^{5+} . Thus, incorporation of U^{5+} into α -U ₃ O ₈ topology is possible.	
151		
152	THE ROLE OF RICHETITE IN URANINITE ALTERATION	

153	UOH minerals are important products of oxidation-hydration weathering of uraninite,
154	or UO ₂ in spent nuclear fuel (Finch and Ewing 1992; Janeczek et al. 1996; Wronkiewicz et al.
155	1992, 1996; Krivovichev and Plášil 2013; Plášil 2014). Based on field as well as laboratory
156	observations (for references, see above cited papers), a weathering sequence for UOH has
157	been established (after Finch and Ewing 1992; Fig. 7). At very early stages of uraninite
158	alteration under oxidizing conditions, result in minerals with a high-proportion of molecular
159	H_2O and low content of metal cations such as schoepite, $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$ (Finch et
160	al. 1996, 1998). With increasing time UOH structures will incorporate metal cations released
161	from the gradually weathering uraninite (such as radiogenic Pb, and others) or from host-
162	rocks (Na, K, Ca etc.). The position of richetite in the alteration sequence is determined by the
163	molar proportion of H ₂ O and Me close to fourmarierite, masuyite and protasite. Also the
164	value of charge deficiency per anion (CDA; defined by Schindler and Hawthorne 2008),
165	~0.21 v.u., is close to that of fourmarierite (0.19 v.u.) and masuyite (0.22 v.u.). It has been
166	shown that the CDA value correlates closely with increase of Me and decrease of H ₂ O in the
167	structures, therefore higher CDA corresponds to older products during the weathering
168	sequence. There are two or three other UOH minerals that contain reduced forms of U. They
169	are ianthinite (with U^{4+}), wyartite and dehydrated wyartite (with U^{5+} in addition to U^{6+}). The
170	presence of the reduced form of an easily oxidized species indicates high gradients of redox
171	conditions within the systems where these phases form. All of these phases form during initial
172	stages of uraninite weathering. Ianthinite is related to the schoepite family of minerals (Fig.
173	7); there is a solid-state spontaneous phase transition from ianthinite to schoepite. The
174	position of wyartite is not clear; the usual mineral association comprises uranophane,
175	schoepite and fourmarierite. Samples of ianthinite, besides those from Shinkolobwe, also
176	come from the well-known uranium deposit Menzenschwand (Krunkelbachtal, Baden-
177	Württemberg, Germany), where ianthinite is usually associated with pyrite and often fills

178	vugs in altered uraninite-pyrite aggregates in a quartz matrix. Richetite forms during later
179	stages of uraninite weathering. The presence of Fe^{2+} in richetite also indicates special
180	geochemical conditions. It seems likely that most of sulfides (as a source of Fe) had
181	undergone complete dissolution prior to the formation of richetite. It is clear that partial
182	reduction of U^{6+} to U^{5+} is most probably connected to the Fe ²⁺ /Fe ³⁺ pair, which is also the
183	most frequent redox agent in Nature. To assess the role of Fe in the formation of richetite,
184	more detailed textural work is needed. To conclude, minerals where U is present in a reduced
185	valence state, such as in ianthinite, wyartite and richetite, may play an important role during
186	the alteration of uraninite or SNF under less-oxidizing conditions, or at places with reduced
187	fO_2 or where the redox conditions are characterized by high gradients, as in roll-front,
188	environments with extremely low pH etc. Such phases also might play role during long-term
189	storage of SNF in geological repositories under reducing conditions (Ewing 2015; Ewing et
190	al. 2016).
191 192	A CKNOWI EDCEMENTS
192	ACKINOWLEDGEIMEINIS
193	Jean-Claude Leydet (Brest, France) is thanked for providing me a sample for single-crystal
194	study. My thanks go to Jiří Čejka (Roudnice nad Labem, Czech Republic) for his
195	encouragement for the study and critical reading of the manuscript and to Stephan Wolfsried
196	(Waiblingen, Germany) for beautiful microphotography or richetite crystals. The manuscript
197	benefited from the comprehensive thorough reviews of Sergey Krivovichev and an
198	anonymous referee. The editorial handling of Peter Burns is highly acknowledged. This
199	research was financially supported the project No. LO1603 under the Ministry of Education,
200	Youth and Sports National sustainability program I of Czech Republic.
201	

202 **REFERENCES CITED**

203	Bénard, P., Louër, D., Dacheux, N., Brandel, V. and Genet, M. (1994) U(UO ₂)(PO ₄) ₂ , a new
204	mixed-valence uranium orthophosphate: ab initio structure determination from powder
205	diffraction data and optical and X-ray photoelectron spectra. Chemistry of Materials, 6,
206	1049–1058.

- 207 Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure
- 208 and bonding. In Structure and Bonding in Crystals II (M. O'Keeffe & A. Navrotsky,
- 209 eds.). Academic Press, New York, N.Y., 1–30.
- 210 Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model.
- 211 Oxford University Press, UK.
- 212 Brown, I.D. (2009) Recent Developments in the Methods and Applications of the Bond
- 213 Valence Model. Physical Reviews, 109, 6858–6919.
- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic
- analysis of the inorganic crystal structure database. Acta Crystallographica, B41,
- 216 244–247, with updated parameters from <u>http://www.ccp14.ac.uk/ccp/web-</u>
- 217 <u>mirrors/i_d_brown/</u>.
- Burns, P.C. (1998) The structure of richetite, a rare lead uranyl oxide hydrate. Canadian
- 219 Mineralogist, 36, 187–199.
- 220 Burns, P.C. (1999) A new complex sheet of uranyl polyhedra in the structure of
- 221 wölsendorfite. American Mineralogist, 84, 1661–1673.
- Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded
- structural hierarchy of crystal structures. Canadian Mineralogist, 43, 1839–1894.
- 224 Burns, P.C. and Finch, R.J. (1999) Wyartite: crystallographic evidence for the first
- 225 pentavalent-uranium mineral. American Mineralogist, 84, 1456–1460.

10

- 226 Burns, P.C. and Li, Y. (2002) The structures of becquerelite and Srexchanged becquerelite.
- American Mineralogist, 87, 550–557.
- 228 Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997a) The crystal chemistry of hexavalent
- 229 uranium: polyhedron geometries, bond-valence parameters, and polymerization of
- polyhedra. Canadian Mineralogist, 35, 1551–1570.
- 231 Burns, P.C., Finch, R.J., Hawthorne, F.C., Miller, M.L. and Ewing, R.C. (1997b) The crystal
- structure of ianthinite, $[U^{4+}_{2}(UO_{2})_{4}O_{6}(OH)_{4}(H_{2}O)_{4}](H_{2}O)_{5}$: a possible phase for Pu⁴⁺
- 233 incorporation during the oxidation of spent nuclear fuel. Journal of Nuclear Materials,
- 234 249, 199–206.
- 235 Busch, J. and Gruehn, R. (1994) Chemischer Transport und Struktur von UNb₂O₇-einem
- neien MM'₂O₇-Typ. Zeitschrift für Anorganische und Allgemeine Chemie, 620, 1066–
 1072.
- 238 Cordfunke, E.H.P., Van Vlaanderen, P.V., Goubitz, K. and Loopstra, B.O. (1985):
- Pentauranium(V) chloride dodecaoxide U₅O₁₂Cl. Journal of Solid State Chemistry, 56,
 166–170.
- 241 Deliens, M. and Piret, P. (1996) Les Masuyites de Shinkolobwe (Shaba, Zaïre) constituent un
- 242 groupe formé de deux variétés distinctes par leur composition chimique et leurs
- 243 propriétés radiocristallographiques. Bulletin Institut Royal des sciences naturelles de
- 244 Belgique. Sciences de la Terre, 66, 187–192.
- 245 Dickens, P.G. and Stuttard, G.P. (1992) Structure of uranium antimony oxide (USbO₅)
- powder neutron diffraction study. Journal of Materials Chemistry, 2, 691–694.
- 247 Dickens, P.G., Stuttard, G.P, Ball, R.G.J., Powell, A.V., Hull, S. and Patat, S. (1992) Powder
- 248 neutron diffraction study of the mixed uranium vanadium oxides $Cs_2(UO_2)_2(V_2O_8)$ and
- 249 UVO₅. Journal of Materials Chemistry, 2, 161–166.
- Evans, H.T., Jr. (1963) Uranyl ion coordination. Science, 141, 154–157.
 - 11

- Ewing, R.C. (2015) Long-term storage of spent nuclear fuel. Nature Materials, 14, 252–257.
- 252 Ewing, R.C., Whittlestone, L.A. and Yardley, B.W.D. (2016) Geological Disposal of Nuclear
- 253 Waste: a Primer. Elements, 12, 233–237.
- 254 Finch, R.J. and Ewing, R.C. (1992) The corrosion of uraninite under oxidizing conditions.
- 255 Journal of Nuclear Materials, 190, 133–156.
- 256 Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. In:
- 257 Burns PC, Ewing RC (eds) Uranium: Mineralogy, Geochemistry and the Environment.
- 258 Mineralogical Society of America and Geochemical Society. Reviews in Mineralogy
- and Geochemistry, 38, 91–179.
- 260 Finch, R.J., Cooper, M.A., Hawthorne, F.C. and Ewing, R.C. (1996) The crystal structure of
- 261 schoepite, $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$. Canadian Mineralogist, 34, 1071–1088.
- 262 Finch, R.J., Hawthorne, F.C. and Ewing, R.C. (1998) Structural relations among schoepite,
- 263 metaschoepite and "dehydrated schoepite". Canadian Mineralogist, 36, 831–845.
- Finch, R.J., Burns, P.C., Hawthorne, F.C. and Ewing, R.C. (2006) Refinement of the crystal
 structure of billietite Ba[(UO₂)₆O₄(OH)₆](H₂O)₈. Canadian Mineralogist, 44, 1197–
- 266 1205.
- 267 Hawthorne, F.C., Finch, R.J. and Ewing, R.C. (2006) The crystal structure of dehydrated
- 268 wyartite, $Ca(CO_3)(U^{5+}(U^{6+}O_2)_2O_4(OH))(H_2O)_3$. Canadian Mineralogist, 44, 1379–1385.
- 269 Janeczek, J., Ewing, R.C., Oversby, V.M. and Werme, L.O. (1996) Uraninite and UO₂ in

270 spent nuclear fuel: a comparison. Journal of Nuclear Materials, 238, 121–130.

- 271 Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and
- processing in the mineral world. Mineralogical Magazine, 77, 275–326.
- 273 Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an
- artifact of the bond valence parameters? Zeitschrift für Kristallographie, 216, 245–247.

- 275 Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and crystallography of uranium. in
- 276 "Uranium, from cradle to grave", P.C. Burns and G.E. Sigmon, eds. MAC Short
- 277 Course, 43, pp. 15–119, Winnipeg MB, May 2013.
- 278 Li, Y. and Burns, P.C. (2000a) Investigations of crystal-chemical variability in lead uranyl
- oxide hydrates. I. Curite. Canadian Mineralogist, 38, 727–735.
- Li, Y. and Burns, P.C. (2000b) Investigations of crystal-chemical variability in lead uranyl
- 281 oxide hydrates. II. Fourmarierite. Canadian Mineralogist, 38, 737–749.
- 282 Lussier, A.J., Lopez, R.A.K. and Burns, P.C. (2016) A Revised and Expanded Structure
- Hierarchy of Natural and Synthetic Hexavalent Uranium Compounds. Canadian
 Mineralogist, 54, 177–283.
- 285 Olds, T.A., Lussier A.J., Oliver, A.G., Petříček, V., Plášil, J., Kampf, A.R., Burns, P.C.,
- 286 Dembowski, M., Carlson, S.M. and Steele, I.M. (2017) Shinkolobweite, IMA 20XX-
- 287 XXX. CNMNC Newsletter No. XX, XXX 2017, page XXX. Mineralogical Magazine,
- 288 XX, XXX–XXX.
- 289 Pagoaga, M.K., Appleman, D.E. and Stewart, J.M. (1987) Crystal structures and crystal
- chemistry of the uranyl oxide hydrates becquerelite, billietite, and protasite. American
 Mineralogist, 72, 1230–1238.
- 292 Petříček, V., Dušek M. and Palatinus, L. (2014) Crystallographic Computing System
- JANA2006: General features. Zeitschrift für Kristallographie, 229, 345–352.
- 294 Petříček, V., Dušek, M. and Plášil, J. (2016) Crystallographic computing system Jana2006:
- solution and refinement of twinned structures. Zeitschrift für Kristallographie, 231,
 583–599.
- 297 Piret, P. and Deliens, M. (1984) Nouvelles données sur la richetite PbO.4UO₃.4H₂O. Bulletin
 298 de Minéralogie, 107, 581–585.

- 299 Plášil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge.
- 300 Journal of Geosciences, 59, 99–114.
- 301 Plášil, J., Škoda, R., Čejka, J., Bourgoin, V. and Boulliard, J.-C. (2016) Crystal structure of
- the uranyl-oxide mineral rameauite. European Journal of Mineralogy, 28, 959–967.
- 303 Schindler, M. and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of
- 304 interstitial complexes in uranyl-oxysalt minerals. Canadian Mineralogist, 46, 467–501.
- 305 Serezhkin, Kovba, L.M., and Trunov, V.K. (1973) Crystal structure of U₂MoO₈.
- 306 Kristallografiya, 18, 514–517. (in Russian)
- 307 Sheldrick, G.M. (2015) SHELXT Integrated space-group and crystal-structure
- 308 determination. Acta Crystallographica, A71, 3–8.
- 309 Siidra, O., Zenko, D.S. and Krivovichev, S.V. (2014) Structural complexity of lead silicates:
- 310 Crystal structure of Pb₂₁[Si₇O₂₂]₂[Si₄O₁₃] and its comparison to hyttsjoite. American
- 311 Mineralogist, 99, 817–823.
- 312 Vaes, J.F. (1947) Six nouveaux minéraux d'urane provenant de Shinkolobwe (Katanga).
- 313 Annal. Soc. Géol. Belg., 70, 212–225.
- 314 Wronkiewicz, D.J., Bates, J.K., Gerding, T.J. and Veleckis, E. (1992) Uranium release and
- secondary phase formation during unsaturated testing of UO₂ at 90°C. Journal of
- 316 Nuclear Materials, 190, 107–127.
- 317 Wronkiewicz, D.J., Bates, J.K., Wolf, S.F. and Bick, E.C. (1996) Ten year results from
- 318 unsaturated drip tests with UO_2 at 90°C: implications for the corrosion of spent nuclear
- 319 fuel. Journal of Nuclear Materials, 238, 78–95.
- 320
- 321

322 Caption to Figures

323	FIGURE 1. Crystal structure of richetite viewed down a . Uranyl polyhedra are drawn in yellow
324	color, except of U^{5+17} polyhedra (red); M^{2+} octahedra are green, Pb atom dark grey and
325	O atoms are displayed as red balls. Unit-cell edges are outlined in solid black line.
326	FIGURE 2. Coordination environment around U17 site, occupied by U ⁵⁺ , with displayed bond-
327	lengths and O–U–O bonding-angle.
328	FIGURE 3. Sheet of uranyl polyhedra of the α -U ₃ O ₈ type (or protasite topology) found in the
329	structure of richetite. In red is displayed U17 polyhedron, occupied by U^{5+} ; the
330	distribution of OH groups within the sheet is shown by blue balls.
331	FIGURE 4. Interstitial constituents at $\mathbf{b} \sim 0$, $\mathbf{c} \sim 0$ (extended to for about four unit-cell content).
332	The M^{2+} (mixed Fe1/Mg1 site) octahedra are shown in green color, Pb ²⁺ -sites are dark
333	grey, O atoms are represented by red balls. H ₂ O groups are labelled (W).
334	FIGURE 5. Interstitial constituents at $b\sim 0.5$, $c\sim 0.5$ (extended to for about four unit-cell
335	content). Pb^{2+} -sites are dark grey, O atoms are represented by red balls. H_2O groups are
336	labelled (W).
337	FIGURE 6. Richetite crystals (olive brown) among masuyite (orange). Shinkolobwe mine (type
338	locality), Haute-Katanga province, DRC, Africa. FOV 2 mm, photo S. Wolfsried.
339	FIGURE 7. Composition of uranyl-oxide hydroxy-hydrate minerals as a function of proportion
340	of molecular H_2O and a content of metal cations (Me).

Table 1. Summary of data collection conditions and refinement parameters for richetite.

Structural formula	(Fe ²⁺ _{0.31} Mg _{0.19})Pb _{4.86} [U ⁵⁺ (U ⁶⁺ O ₂) ₁₇ O ₁₈ (OH) ₁₄](H ₂ O) _{~19.5}
Unit cell parameters	<i>a</i> = 12.0919(2), <i>b</i> = 16.3364(4), <i>c</i> = 20.2881(4) Å
17	$\alpha = 68.800(2), \beta = 78.6794(18), \gamma = 76.1181(19)$
V	3600.68(14) A ³
	2 D 1
D_{rade} (g cm ⁻³)	6 194 (for the formula given above)
Temperature	298 K
Diffractometer	Rigaku SuperNova, Atlas S2 CCD
Radiation	Mo <i>K</i> _α (0.7107 Å)
(wavelength)	
Crystal dimensions	0.174 × 0.135 × 0.029 mm
Collection mode	ω scans to cover the Ewald sphere
time	1.0°, 300 S
Limiting θ angles	3.40–28.10°
Limiting Miller indices	-15< <i>h</i> <15, -21< <i>k</i> <21, -26< <i>l</i> <26
No. of reflections	39599
No. of unique	13469
reflections	
No. of observed	9955 $[I_{obs} > 3\sigma(I)]$
(mm^{-1})	51 76
$\frac{\mu(11111)}{T_{min}/T_{max}}$	0.055/0.079
Coverage, Rint	0.98. 0.043
F_{000}	5479
Refinement	Full matrix least-squares by Jana2006 on F^2
Parameters refined	593
R, wR (obs)	0.0560, 0.1142
R, WR (all)	0.0771, 0.1210
Weighting scheme	1.99, 1.00 $1/(\sigma^2(\Lambda + 0.0004\ell^2))$
$\Delta \sigma_{min}$, $\Delta \sigma_{max}$ (e/Å ³)	-4.12, 6.56 (1.29 Å from O70 atom)
Twin ratio; twin matrix	(-1 0 0)
	0.8482(17)/0.15118(17); 0 -0.328 -0.671
	0 −1.328 0.328

Table 2. Atom positions, occupation factors, displacement parameters (equivalent and isotropic, in $Å^2$) and bond-valence sums (in valence units) for the crystal structure of richetite.

Atom	0 (-1)	x/a	y/b	z/c	$U_{\rm eq}/U_{\rm iso}$	ΣΒV
	<i>Ucc.</i> (<1)		2		$(Å^2)$	
U1		0.56884(6)	0.32974(5)	0.40750(4)	0.0139(3)	5.93(8)
U2		1.06978(6)	0.82861(5)	-0.09742(4)	0.0137(3)	5.81(8)
U3		0.26120(6)	-0.02209(6)	0.75313(4)	0.0151(3)	6.07(8)
U4		0.42599(6)	0.16277(6)	0.57945(4)	0.0153(3)	5.95(7)
U5		0.43851(6)	0.83810(6)	-0.08721(4)	0.0160(3)	5.92(7)
U6		0.75344(6)	0.48241(5)	0.25073(4)	0.0136(3)	5.97(8)
U7		0.05207(6)	0.51722(6)	0.24384(4)	0.0150(3)	5.88(7)
U8		0.93510(6)	0.34134(6)	0.41004(4)	0.0152(3)	5.89(7)
U9		0.58292(6)	0.66312(6)	0.08266(4)	0.0160(3)	5.81(8)
U10		0.93432(6)	0.65868(6)	0.07252(4)	0.0143(3)	5.93(7)
U11		0.25508(6)	0.64896(6)	0.09384(4)	0.0165(3)	5.91(8)
U12		0.43717(7)	0.51334(6)	0.24642(4)	0.0177(3)	5.86(9)
U13		0.75112(6)	0.15270(6)	0.59592(4)	0.0158(3)	6.01(8)
U14		0.74315(6)	0.82801(5)	-0.05630(4)	0.0149(3)	5.95(8)
U15		0.54990(6)	0.02117(6)	0.74772(4)	0.0150(3)	5.91(8)
U16		0.24484(6)	0.32640(5)	0.44176(4)	0.0140(3)	5.98(8)
U17		0.08254(7)	0.16447(6)	0.57735(4)	0.0186(3)	5.37(7)
U18		-0.06322(7)	0.01441(6)	0.74493(4)	0.0197(3)	5.93(9)
Pb1	0.945(3)	0.83195(8)	-0.12157(7)	0.62331(5)	0.0317(4)	1.739(18)
Pb2	0.857(3)	0.54386(8)	0.71947(7)	0.26790(5)	0.0260(4)	1.90(2)
Pb3	0.862(3)	0.47019(9)	0.22291(8)	0.27319(5)	0.0331(5)	1.829(19)
Pb4	0.865(3)	0.18826(9)	0.36382(8)	0.63576(6)	0.0400(5)	1.772(19)
Pb5	0.776(3)	0.97785(9)	0.41404(8)	0.11436(6)	0.0260(5)	1.82(2)
Fe1/Mg1	0.62(2)/0.38(2)	Ì	<u> </u>	Ó	0.018(2)	2.24(3)
Pb6	0.242(3)	0.1971(4)	0.4301(3)	0.0430(2)	0.047(2)	1.93(2)
Pb7	0.146(3)	0.03-99(5)	0.2196(4)	0.7709(3)	0.030(3)	1.89(2)
Pb8	0.142(3)	0.3150(5)	0.1421(4)	0.8660(3)	0.030(3)	1.89(2)
01		0.0913(11)	-0.0665(9)	0.7974(7)	0.023(3)*	2.08(3)
02		0.0981(10)	0.4323(9)	0.3675(6)	0.018(3)*	1.206(16)
O3		0.4133(13)	-0.0543(12)	0.8074(9)	0.042(5)*	2.18(4)
04		0.4194(12)	0.2765(10)	0.4770(8)	0.027(4)*	2.12(3)
O5		0.9215(11)	0.7776(10)	-0.0263(8)	0.025(4)*	2.12(3)
O6		1.2686(10)	0.8320(8)	-0.1317(6)	0.014(3)*	1.283(19)
07		0.5713(10)	0.2598(9)	0.3542 (6)	0.018(3)*	1.8Ò(5)
08		0.9032(12)	0.4544(10)	0.3083 (8)	0.026(4)*	2.09(3)
09		0.3690(10)	0.4284(8)	0.3672 (6)	0.016(3)*	1.261(16)
O10		0.6419(11)	0.2013(9)	0.4986(7)	0.020(3)*	1.261(19)
011		0.7685(10)	0.3286(9)	0.3719(6)	0.019(3)*	1.27(2)
012		0.6265(11)	0.5420(9)	0.1730(7)	0.025(3)*	1.86(3)
013		0.5863(11)	0.4432(9)	0.3063(7)	0.023(3)*	2.11(3)
014		0.0834(12)	0.6081(10)	0.1337(7)	0.027(4)*	2.13(3)
015		0.2550(11)	0.1902(9)	0.5404(7)	0.020(3)*	1.98(3)
016		0.7605(11)	0.6852(9)	0.0397(7)	0.023(3)*	1.92(3)
017		0.8854(11)	0.2093(9)	0.4979(7)	0.025(3)*	1.243(18)

O18	0.7116(12)	0.2575(10)	0.6124(7)	0.031(4)*	1.65(6)
O19	0.5745(11)	0.1264(10)	0.6393(7)	0.023(3)*	2.08(3)
O20	1.0637(11)	0.9043(9)	-0.0475(7)	0.022(3)*	1.73(6)
O21	0.3867(11)	0.7066(9)	-0.0031(7)	0.024(3)*	1.275(19)
O22	0.8698(10)	0.9315(9)	-0.1340(6)	0.019(3)*	1.219(16)
O23	0.5446(12)	1.0730(10)	-0.0756(8)	0.035(4)*	0.0158(5)
O24	0.5206(11)	0.7666(9)	-0.1382(7)	0.022(3)*	1.74(4)
O25	0.2096(10)	0.3929(9)	0.4993(6)	0.017(3)*	1.87(5)
O26	0.2083(12)	0.7539(10)	0.1094(7)	0.032(4)*	1.63(5)
O27	0.8848(11)	0.7363(9)	0.1224(7)	0.026(3)*	1.60(5)
O28	1.0774(11)	0.7525(9)	-0.1464(7)	0.023(3)*	1.67(5)
O29	1.1420(11)	0.6983(9)	-0.0045(7)	0.019(3)*	1.227(18)
O30	0.5726(11)	0.7295(9)	0.1433(7)	0.022(3)*	1.74(5)
O31	-0.0129(11)	0.6115(9)	0.2723(7)	0.024(3)*	1.93(5)
032	0.5986(10)	0.9344(9)	-0.1298(6)	0.017(3)*	1.211(16)
033	1.0159(11)	0.2690(9)	0.3601(7)	0.023(3)*	1.81(5)
034	0.0688(12)	0.2863(10)	0.4863(7)	$0.029(4)^*$	2.06(3)
035	0 4782(11)	0.0771(9)	0.5359(7)	$0.023(3)^*$	1 49(5)
036	0.7707(11)	0 7686(9)	-0.1192(7)	$0.023(3)^*$	1 63(5)
037	0 1637(13)	0.6894(11)	0.3020(8)	0.020(0)	0 0204(6)
038	0.3895(11)	0.0552(9)	0.6809(7)	$0.023(3)^*$	1.92(3)
039	0.8560(11)	0.4142(10)	0.4595(7)	$0.027(3)^{*}$	1.59(5)
040	0.8945(11)	0.5407(9)	0.1709(7)	$0.025(3)^*$	1.91(3)
041	0.1386(12)	0.0414(10)	0.6659(8)	0.020(0)	1.57(3)
042	0.7904(11)	0.0467(9)	0.5790(7)	$0.024(3)^*$	1.86(5)
043	0.2763(11)	0 2681(9)	0.3779(7)	$0.023(3)^{*}$	1.82(5)
$\bigcirc 40$	0.2700(11)	0.2001(0)	0.0770(7) 0.1210(6)	0.020(0)	0.110(3)
045	0.8009(11)	0.3875(10)	0.2179(7)	0.000(0) 0.027(3)*	1 68(5)
O46	0.5375(12)	0.0070(10) 0.4237(10)	0.2175(7)	0.027(0) 0.029(4)*	1.00(0)
O_{40}	0.0070(12) 0.7347(10)	0.4237(10)	0.0710(7)	0.020(4)	1 250(18)
048	0.7377(10) 0.2334(11)	0.5642(9)	0.7300(0) 0.2324(7)	0.013(3)*	1 237(18)
O40 O49	0.2004(11)	0.0042(0) 0.6214(11)	0.1304(8)	0.020(0)	2 07(3)
050	0.4100(12)	0.0214(11)	0.1334(0) 0.7840(7)	0.002(7)	1 93(5)
051	0.7022(11) 0.35/3(12)	0.1000(0)	-0.0377(7)	0.022(0)	1.63(5)
051	0.00+0(12)	0.3001(10)	0.0377(7)	0.027(3)	1.03(3)
052	0.3024(11) 0.5674(10)	0.3084(0)	0.0243(7)	0.020(3) 0.017(3)*	1.0+(+) 1.62(5)
050	0.307 + (10)	0.530 + (3) 0.5431(0)	0.7001(0)	0.017(3)	1.02(0)
054	0.3031(11)	-0.0711(11)	0.0770(7)	0.022(3)	1.01(5)
055	0.0209(13)	-0.0711(11)	0.7100(0)	0.040(4) 0.025(3)*	1.80(3)
050	0.3001(11)	-0.1116(10)	0.0230(7)	0.025(3)	1.65(5)
057	0.3234(11) 0.7074(11)	-0.1110(10) 0.5843(10)	0.7142(7) 0.2793(7)	0.027(3)	1.00(5)
050	0.7074(11) 0.6024(12)	0.5043(10)	0.2703(7)	0.020(3)	1.03(3)
059	0.0034(12)	0.3921(10)	0.0234(7)	0.029(4)	1.49(3)
060	0.1217(12) 0.1591(12)	0.4100(10)	0.2104(7)	0.032(4)	1.03(3)
	0.1301(12)	-0.1940(10)	0.0002(7)	0.029(4)	1 22(4)
002	0.11/0(12)	0.0090(10)	0.3142(8) _0.0119(7)	0.030(4)	1.33(4)
003		0.7697(9)	-0.0110(7)	$0.010(3)^{\circ}$	2.03(4)
065	-0.0770(12)	-0.0094(10)	0.7115(7)	0.035(4)*	1.87(0)
	0.4315(13)	0.4201(11)	0.2199(8)	0.038(4)	1.09(0)
	-0.0643(11)	0.0997(9)	0.7798(7)	$0.024(3)^{\circ}$	1.75(6)
067	0.7132(10)	0.8952(9)	0.0000(6)	0.017(3)*	1.70(5)

O68		0.2040(12)	0.0675(10)	0.7909(8)	0.035(4)*	1.61(5)
O69		0.3070(14)	-0.0599(12)	0.5604(9)	0.048(5)*	0
O70		0.4776(18)	-0.0868(15)	0.6098(11)	0.081(7)*	0.210(7)
071		1.0388(11)	-0.0868(10)	0.5766(7)	0.025(3)*	0.249(6)
072		0.0718(15)	0.2366(13)	0.6408(9)	0.058(5)*	1.30(4)
073		0.4279(11)	0.6030(10)	0.2808(7)	0.029(3)*	1.85(6)
074		0.0351(14)	0.5711(12)	0.4209(9)	0.051(5)*	0.116(3)
075		0.6599(12)	0.1895(10)	0.8039(8)	0.034(4)*	0.123(3)
076		0.2442(11)	0.2423(10)	0.7573(7)	0.031(4)*	0.516(8)
077		0.1987(12)	0.5527(10)	-0.0634(8)	0.035(4)*	0.415(9)
078		1.1511(12)	0.9506(10)	0.0539(7)	0.032(4)*	0.184(6)
079		-0.0779(13)	0.1232(11)	0.6358(8)	0.035(4)*	2.05(3)
O80		1.3589(11)	0.6965(9)	-0.1864(7)	0.024(3)*	0.191(5)
O81		0.2462(13)	0.2491(11)	0.2473(8)	0.048(5)*	0.322(6)
O82		0.9164(12)	0.9135(10)	0.0806(7)	0.029(4)*	0.297(9)
O83		0.4094(13)	0.4197(11)	0.5856(8)	0.043(4)*	0.214(4)
O84		0.3286(15)	0.5479(12)	0.4356(9)	0.056(5)*	0
O85	0.5	1.030(2)	0.278(2)	0.2254(15)	0.032(8)*	0.221(13)

*Refined with isotropic atomic displacement parameters.

U1–O4	2.216(12)	U2–O1 ⁱ	2.215(12)	U3–O1	2.256(13)
U1–07	1.829(16)	U2–O5	2.189(12)	U3–O3	2.185(15)
U1_09	2 657(11)	U2-06	2 381(12)	U3-06 ⁱⁱ	2 666(10)
11_{-010}	2355(11)	12-020	1843(17)		2.000(10)
	2.000(11)		2.659(11)		2.200(12)
	2.372(12)		2.000(11)		2.314(14)
	2.227(12)	02 - 020	1.030(17)	03 - 057	1.049(17)
01-053	1.801(16)	02-029	2.388(11)	03-068	1.810(18)
<01–0 _{Ur} >	1.82	<02–0 _{Ur} >	1.84	<03–0 _{Ur} >	1.83
<u1-o<sub>eq></u1-o<sub>	2.37	<02-0 _{eq} >	2.37	<u3-o<sub>eq></u3-o<sub>	2.33
U4–O4	2.226(13)	U5–O3'''	2.246(14)	U6–O8	2.210(15)
U4–O10	2.876(12)	U5–O6 [™]	2.431(14)	U6–O11	2.807(11)
U4–O15	2.246(13)	U5–O21	2.342(12)	U6–O12	2.212(13)
U4–O19	2.211(14)	U5–O24	1.827(15)	U6–O13	2.233(12)
U4–O35	1.842(16)	U5–O32	2.610(14)	U6–O40	2.236(12)
U4–O38	2.217(12)	U5–O51	1.795(15)	U6–O45	1.837(17)
U4-056	1.854(16)	U5-063	2.211(14)	U6-058	1.866(17)
<114-00	1 85	<u5-0></u5-0>	1 81	<u6-0ur></u6-0ur>	1 85
<1/4-0.02	2 36	<115-0>	2 37		2 34
	2 / 87(11)		2 577(14)		2 10/(11)
	2.707(11)		2.577(17)		2.13 + (11)
	2.240(13)		2.241(13)		2.210(12)
07 - 014	2.200(12)		2.370(14)		3.011(14)
07 - 031	1.791(15)	08-017	2.371(12)	09-030	1.882(17)
U7-040	2.518(14)	08-033	1.817(15)	09-049	2.206(12)
U7–O48	2.430(14)	U8–O34*	2.259(13)	U9–O59	1.868(18)
U7–O60	1.826(16)	U8–O39	1.808(16)	U9–O63	2.252(12)
<u7–o<sub>Ur></u7–o<sub>	1.81	<u8–0<sub>Ur></u8–0<sub>	1.81	<u9–0<sub>Ur></u9–0<sub>	1.88
<u7–o<sub>eq></u7–o<sub>	2.38	<u8–o<sub>eq></u8–o<sub>	2.37	<u9–0<sub>eq></u9–0<sub>	2.38
U10–O5	2.234(13)	U11–O14	2.247(13)	U12–O9	2.430(10)
U10–O14 ^v	2.208(13)	U11–O21	2.335(12)	U12–O12	2.525(12)
U10–O16	2.231(13)	U11–O26	1.795(17)	U12–O13	2.211(12)
U10–O27	1.821(16)	U11–O29 ^{iv}	2.425 ¹⁴	U12–O48	2.447(12)
U10-029	2.770(12)	U11–O48	2.638(12)	U12-049	2.256(13)
U10-040	2 285(12)	U11–O49	2 241(14)	U12–O65	1 812(19)
U10-052	1.200(12)	$U11_{-054}$	1.815(15)	U12 - 073	1 810(18)
<1110-0>	1 85	1111_0u	1.010(10)	<1112_0u>	1.010(10)
	2 35		2 38	<012 Our>	2 37
	2.00		2.00		2 107(13)
013-010	2.370(17)	01 - 00	2.271(12)	015-03	2.137(13)
	2.337(12)	014 - 010	2.433(12)	015-019	2.200(12)
	1.709(17)	014 - 022	2.403(12)	015-032	2.403(11)
013-019	2.221(12)	014-032	2.444(11)	015-038	2.419(14)
013-042	1.820(16)	U14–O36	1.804(17)	U15–O47	2.480(14)
U13–O47	2.566(11)	U14–O63	2.274(12)	U15–O50	1.796(15)
U13–O79v	2.247(14)	U14–O67	1.787(15)	U15–O55	1.819(16)
<u13–o<sub>Ur></u13–o<sub>	1.80	<u14–o<sub>Ur></u14–o<sub>	1.80	<u15–o<sub>Ur></u15–o<sub>	1.81
<u13–o<sub>eq></u13–o<sub>	2.35	<u13–o<sub>eq></u13–o<sub>	2.37	<u15–o<sub>eq></u15–o<sub>	2.37
U16–O2	2.471(11)	U17–O15	2.161(12)	U18—O1	2.222(12)
U16–O4	2.227(13)	U17–O17 ^{iv}	2.943(14)	U18—O22ii	2.422(10)
U16–O9	2.409(12)	U17–O34	2.166(12)	U18—O41	2.684(12)
	. ,		. ,		. ,

Table 3. Interatomic distances among U atoms (in Å) in the structure of richetite.

U16–O15	2.390(12)	U17–O41	2.228(13)	U18—047iv	2.427(12)
U16–O25	1.794(15)	U17–O62	2.005(19)	U18—O64	1.784(18)
U16–O34	2.294(13)	U17–O72	2.01(2)	U18—O66	1.774(17)
U16–O43	1.805(16)	U17–O79	2.186(12)	U18—079	2.290(13)
<u16–o<sub>Ur></u16–o<sub>	1.80	<i><u17–< i="">0></u17–<></i>	2.24	<u16–o<sub>Ur></u16–o<sub>	1.78
<u16–o<sub>eq></u16–o<sub>	2.36			<u16–o<sub>eq></u16–o<sub>	2.41

Symmetry codes: (i) x+1, y+1, z-1; (ii) x-1, y-1, z+1; (iii) x, y+1, z-1; (iv) x-1, y, z; (v) x+1, y, z; (vi) x, y-1, z+1; (vii) -x+2, -y, -z+1; (viii) -x+1, -y, -z+1; (ix) -x+1, -y+1, -z+1; (x) -x+1, -y+1, -z; (xi) -x+2, -y+1, -z; (xii) -x, -y+1, -z+1; (xiii) -x+2, -y+2, -z; (xiv) -x+1, -y+2, -z.

Pb1–O33 ^{vii}	2.613(12)	Pb2–O30	2.434(15)	Pb3–07	2.531(16)
Pb1–O42	2.519(13)	Pb2–O50 ^{ix}	2.578(13)	Pb3–O24 ^x	2.664(15)
Pb1–O43 ^{viii}	2.998(16)	Pb2–O56 ^{ix}	2.874(17)	Pb3–O43	2.986(13)
Pb1–O55	2.954(13)	Pb2–058	2.562(13)	Pb3–O55 ^{viii}	2.919(18)
Pb1–O62 ^{viii}	2.617(16)	Pb2–073	2.535(17)	Pb3–O57 ^{viii}	2.710(12)
Pb1–O64 [∨]	2.729(18)	Pb2–O75 ^{ix}	2.915(13)	Pb3–O65	2.952(15)
Pb1–071	2.616(13)	Pb2–O76 ^{ix}	2.695(13)	Pb3–O70 ^{viii}	2.655(16)
Pb1–O81 ^{viii}	2.851(13)	Pb2–O83 ^{ix}	3.081(13)	Pb3–O80 ^{xi}	2.703(12)
<pb1–0></pb1–0>	2.74	<pb2–o></pb2–o>	2.71	Pb3–O81	2.766(13)
				<pb3–0></pb3–0>	2.77
Pb4–O25	2.606(12)	Pb5–O28 ^{xi}	2.772(15)	Pb6–O16 ^x	2.847(17)
Pb4–O31 ^{xii}	2.591(12)	Pb5–O40	2.623(16)	Pb6–O36 ^x	3.013(14)
Pb4–O56	2.548(12)	Pb5–O45	2.683(12)	Pb6–O44	2.350(13)
Pb4–O58 ^{ix}	2.798(18)	Pb5–O52	2.613(12)	Pb6–O52 ^{iv}	3.051(12)
Pb4–072	2.73(2)	Pb5–O52 ^{xi}	2.707(15)	Pb6–O52 ^x	2.811(16)
Pb4–O74 ^{xii}	2.949(14)	Pb5–O60 ^v	3.023(16)	Pb6–O54	2.839(18)
Pb4–076	2.637(12)	Pb5–O77 [×]	2.417(14)	Pb6–O59 ^x	2.554(12)
Pb4–083	2.905(13)	Pb5–085	2.58(3)	Pb6–077	2.359(14)
<pb4–0></pb4–0>	2.72	<pb5–o></pb5–o>	2.68	<pb6–0></pb6–0>	2.72
Pb7–O27 ^{ix}	2.871(18)	Pb8–O23 ^{vi}	3.039(14)	<i>M</i> ²⁺ –O20	2.046(16)
Pb7–O31 ^{xii}	2.534(15)	Pb8–O27 ^{ix}	2.768(13)	<i>M</i> ²⁺ –O20 ^{xiii}	2.046(16)
Pb7–O37 ^{xii}	2.924(14)	Pb8–O30 ^{ix}	2.693(17)	<i>M</i> ²⁺ –078	2.148(13)
Pb7–O66	2.507(17)	Pb8–O50	2.439(13)	<i>M</i> ²⁺ –078 ^{xiii}	2.148(13)
Pb7–O68	2.744(14)	Pb8–O67 ^{ix}	2.533(13)	<i>M</i> ²⁺ –082	2.013(12)
Pb7–072	2.511(19)	Pb8–068	2.93(2)	M ²⁺ –082 ^{xiii}	2.013(12)
Pb7–076	2.529(15)	Pb8–076	2.394(13)	< <i>M</i> ²⁺ –O>	2.07
Pb7–O82 ^{ix}	3.073(13)	Pb8–O82 ^{ix}	3.023(14)		
<pb7–o></pb7–o>	2.71	<pb8–o></pb8–o>	2.73		

Table 4. Interatomic distances among Pb and M^{2+} sites (in Å) in the structure of richetite.

Symmetry codes: (i) x+1, y+1, z-1; (ii) x-1, y-1, z+1; (iii) x, y+1, z-1; (iv) x-1, y, z; (v) x+1, y, z; (vi) x, y-1, z+1; (vii) -x+2, -y, -z+1; (viii) -x+1, -y, -z+1; (ix) -x+1, -y+1, -z+1; (x) -x+1, -y+1, -z; (xi) -x+2, -y+1, -z; (xii) -x, -y+1, -z+1; (xiii) -x+2, -y+2, -z; (xiv) -x+1, -y+2, -z.

Table 5. Comparison of the U17 Φ_7 polyhedral geometry in richetite with other compounds.

				U–Φ (Å)				0–U–O (°)	BV (v.u.)	Ref.
Richetite (U17)	2.161	2.943	2.166	2.228	2.01	2.01	2.186	171.8	5.37	this work
Wyartite (U3)	2.07	2.09	2.06	2.14	2.44	2.47	2.480	167.0	5.07	1
Dehyd. wyartite (U2)	2.095	2.095	2.092	2.092	2.476	2.512	2.301	163.6	5.10	2
U ₂ MoO ₈	2.06	2.06	2.11	2.18	2.36	2.46	2.73	178.1	4.92	3
	2.08	2.08	2.13	2.15	2.32	2.35	2.58	164.1	5.12	
USbO ₃	1.93	2.02	2.13	2.30	2.35	2.43	2.50	173.0	5.23	4
UVO ₅	2.05	2.07	2.21	2.21	2.30	2.30	2.32	179.9	5.26	5
U ₅ O ₁₂ Cl	2.06	2.06	2.25	2.25	2.30	2.30	2.54	178.9	4.95	6

1 = Burns and Finch (1999); 2 = Hawthorne et al. (2006); 3 = Serezhkin et al. (1973); 4 = Dickens and Stuttard (1992); 5 = Dickens et al. (1992); 6 = Cordfunke et al. (1985).