1 **5957 Revision 1**

DIAGENETIC F-RICH FERROAN CALCITE AND ZIRCON IN THE OFFSHORE SCOTIAN BASIN, EASTERN CANADA: SIGNIFICANCE FOR UNDERSTANDING THERMAL EVOLUTION OF THE BASIN Georgia Pe-Piper^{*}, Christopher Sangster, and Yuanyuan Zhang[†] Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada

11

ABSTRACT

12 In the Scotian Basin, offshore eastern Canada, an unusual combination of high heat flow 13 in the Cretaceous and the abundance of halite has resulted in unusual diagenetic minerals such as 14 sphalerite. The Newburn H-23 well is the most distal well in the basin with good core samples 15 and has two previously unknown diagenetic mineral occurrences: fluorine-rich ferroan calcite 16 and diagenetic zircon. This study uses SEM backscattered electron images and EDS analyses, 17 EMP WDS mineral analyses and Raman spectroscopy to determine mineral chemistry and 18 textures in order to investigate the diagenetic and thermal significance of these minerals. 19 Late diagenetic Fe-calcite contains 1–2.5 wt% fluorine, mostly from adsorption, but 20 rarely as small fluorite crystals. Fluoride is also adsorbed on the surfaces of some framework 21 minerals and chlorite. Fluoride was transported in highly saline formation brines derived from 22 the Argo salt Formation. Zircon grains, $20-40 \,\mu\text{m}$ in size, have crystal outlines which are 23 straight adjacent to pores, partially lobate filling porosity, and cross cutting other grains: these 24 may be diagenetic. Some zoned detrital zircon grains show $1-3 \mu m$ wide diagenetic outgrowths.

25	Neoformation of diagenetic zircon requires temperatures of >250°C. Transport of zirconium is
26	favoured by ligands in low pH solution, principally fluoride and phosphate anions, with
27	zirconium mobilized during the alteration of metamict detrital zircon under low-grade
28	metamorphic conditions. The presence of diagenetic sphalerite and the documented mid
29	Cretaceous thermal event in the Scotian Basin indicate conditions that could have been suitable
30	for the formation of diagenetic zircon in this well. Suitable geological conditions for such
31	diagenetic formation of zircon will be found in a subsiding rift basin with early evaporites that is
32	affected by a subsequent phase of volcanism due to new rifting or subduction.
33	
34	Keywords: diagenesis, zircon, ferroan calcite, fluorine, Scotian Basin
35	
30 37	* E-mail: <u>gpiper@smu.ca</u>
38	† Present affiliation : School of Earth and Space Sciences, Peking University, Beijing, P.R .
39	China 100871.

40

INTRODUCTION

41	Diagenetic minerals preserve an important record of fluid flow and paleotemperatures in
42	the development of hydrocarbon basins. The Scotian Basin (Fig. 1) is a passive continental
43	margin basin with an unusual diagenetic history. Thick halite accumulated during Late Triassic
44	rifting (Holser et al. 1988), and as a consequence, formation waters in the basin are highly saline.
45	The Jurassic basin was located at the northeast end of the incipient Atlantic Ocean, and the
46	thermal effects of subsequent rifting between the Grand Banks and Iberia in the Cretaceous were
47	felt throughout the basin (Bowman et al. 2012). In the latest Jurassic and early Cretaceous, the
48	basin was a uniquely large depocenter on the eastern North American margin, accumulating
49	several kilometers of sandy deltaic sediment derived from the uplift of the Labrador rift (Zhang
50	et al. 2014). This sediment loading drove an active salt tectonic system (Albertz et al. 2010), with
51	salt detachments and extensional listric faulting providing pathways for diagenetic fluids (Pe-
52	Piper et al. 2015).

53 The unusual combination of high heat flow some 100 Ma after initial rifting of the basin, 54 and the abundance of halite in the basin has resulted in unusual diagenetic minerals in wells in 55 the more proximal parts of the basin on the Scotian Shelf, including sphalerite and Mn-rich 56 siderite (Pe-Piper et al. 2015). In this study, we investigate diagenesis in the only deep-water 57 well in the Scotian Basin with a long record of sandstone diagenesis in sidewall cores, the 58 Newburn H-23 well, drilled in 977 m water depth to a total depth of 6070 m. This well provides 59 the most basinward set of sandy core samples of any well in the Scotian basin. Therefore, as 60 diagenetic fluids originated the deep basin depocenter and migrated up-dip through the basin, 61 this well provides information about the early fluids. The purpose of this study was to investigate 62 diagenetic minerals in the most basinward setting possible. Particular attention is paid to two

63 diagenetic minerals, zircon and a fluorine-rich ferroan calcite (F-rich Fe-calcite), in order to

64 better understand the evolution of both temperature and diagenetic fluids in the basin.

65

REGIONAL GEOLOGICAL SETTING

The early stages of Triassic rifting in the Scotian basin produced syn-rift clastic successions and salt deposits (Fig. 2). As rifting continued into the Jurassic, the deposition became dominated by carbonate rocks. This was followed by fluvial, deltaic, and shelf deposition of the sandstones and shales of the Upper Jurassic and Lower Cretaceous Missisauga and Logan Canyon Formations (Wade and MacLean 1990), with principally shales and some sandy turbidites in deep water. Later deposits in the Upper Cretaceous and Cenozoic are shales and lesser chalks.

73 The Scotian Basin has been strongly influenced by salt tectonics (Albertz et al. 2010). 74 The Upper Triassic-(?) Lower Jurassic Argo Formation salt was remobilized, principally in the 75 Jurassic and Cretaceous, with widespread salt expulsion creating accommodation beneath the 76 Scotian Shelf (Cummings and Arnott 2005), when extensive allochthonous salt bodies were 77 emplaced on the Scotian Slope (Kendell 2012). The Newburn H-23 well is located in zone II of 78 Shimeld (2004), which is dominated by vertical salt structures, with autochthonous salt overlying 79 syn-rift clastic sedimentary rocks and Meguma terrane basement (Fig. 1b; Deptuck et al. 2009). 80 Basin modeling for the Scotian Basin (Williamson 1995; OETR 2011) suggests that most 81 maturation and hydrocarbon charge took place during the Cretaceous. Fluid inclusions show that 82 hydrocarbon transport postdated silica overgrowths and the main carbonate cements, but that 83 some secondary fluid inclusions in fractures contain hydrocarbons (Karim et al. 2012). In the 84 central Scotian Basin, the C-isotope composition of carbonate cements and fluid inclusions in 85 cements indicate a period of flow of hot (<175°C and <23 wt.% NaCl_{eq}) basinal brines in the

86	Aptian-Albian (Wierzbicki et al. 2006; Karim et al. 2012). At this time, regionally high heat flow
87	in the northern Appalachians that resulted in high vitrinite reflectance in the lower Cretaceous
88	Chaswood Formation on land and widespread paleomagnetic resetting of basement rocks
89	(Bowman et al. 2012). Barite and sphalerite are widespread late diagenetic minerals in deeply
90	buried sandstones.
91	In the Newburn H-23 well, thin sandstone and siltstone beds are present in the Albian
92	Cree Member of the Logan Canyon Formation, and the Barremian-Hauterivian Upper and
93	Middle Missisauga Formations (Fig. 3). These beds were interpreted as deep-water turbidites
94	prior to drilling, but biota (OETR 2011) and sedimentary structures indicate an outer shelf
95	depositional environment.

96

METHODS

Polished thin sections were made from rock slices from 21 sidewall cores, of which 12 97 98 had fine sandstone or siltstone layers and were studied in detail (Fig. 3). Diagenetic minerals 99 textures were studied from backscattered electron (BSE) images acquired by scanning electron 100 microscope (SEM), supplemented by elemental X-ray maps of selected features acquired by SEM. Minerals were identified by energy dispersive spectroscopy (EDS) analysis using the 101 102 SEM, and wavelength dispersive spectroscopy (WDS) chemical analyses were obtained by 103 electron microprobe (EMP). 104 The SEM analysis was completed in the Regional Analytical Centre at Saint Mary's 105 University using a LEO 1450 VP SEM acquiring the BSE images and EDS chemical analyses of 106 minerals. This SEM has a maximum resolution of 3.5 nm at 30 kV. It is equipped with an INCA X-max 80 mm² silicon-drift detector (SDD) EDS system that has a detection limit >0.1%. A 107 108 tungsten filament produces a 10 µm beam, calibrated with a cobalt standard. Elemental X-ray

109 mapping data were processed by the QuantMap package in Oxford Instrument's INCA program.

110 The color bar at the bottom of each elemental mapping image is scaled to EDS analysis (volatile

111 free) and values are presented as oxides to facilitate comparison with standards.

Minerals requiring fluorine analysis were analyzed at the Regional Electron Microprobe Centre at Dalhousie University, using a JEOL-8200 electron microprobe with a Noran 133 eV energy dispersive spectrometer and five wavelength spectrometers. Fluorite (~49 wt.% F) was chosen as a standard for fluorine, with fluorapatite analyzed as a control, because SEM-EDS analysis suggested fluorine contents as high as ~25 wt.%. Diffracting crystal LDE1 is more sensitive than other crystals in the microprobe spectrometers and is thus chosen for F analysis. The measured elements and different standards for calibration of each element and the element

119 distribution for each channel (spectrometer) with different diffracting crystal are listed in

120 Supplementary Table 1.

121 Raman laser (LRM) spectroscopy was completed in the Regional Analytical Centre at 122 Saint Mary's University using a Horiba Jobin-Yvon LabRam HR confocal instrument. The LRM 123 uses a 100mW 532 nm Nd-YAG diode laser from Toptica Phonotics and a Synapse charge-124 coupled device from Horiba Jobin-Yvon. The LRM also uses a 100x Olympus MPlanN objective for images and analysis. The detector is cooled to -50 °C, and a minimal working distance 125 126 between the objective and sample is used to reduce interference. A 25 µm confocal hole 127 diameter, and 600 grooves/mm grating was used for all analyses, yielding a spectral resolution of 128 approximately 20 mm. Spectra were collected using an accumulation of three, ten second 129 acquisitions with a laser spot size of approximately 1 µm at 50% laser power. The spectra were collected in two spectral windows 200-4000 cm⁻¹ and 200-2600 cm⁻¹. The analyzed polished thin 130 131 section had all carbon coating removed using methanol to increase the intensity of the peaks.

132

DATA PRESENTATION

133 Fluorine-rich ferroan calcite

134	Sandstone and siltstone layers show diagenetic minerals similar to those described
135	elsewhere in shallow water wells in the Scotian Basin (Karim et al. 2010; Gould et al. 2010; Pe-
136	Piper et al. 2015). Unusual diagenetic ferroan calcite (Fe-calcite) grains with elevated fluorine
137	content (2-27 wt.%) were identified using SEM EDS analyses in five samples. The term ferroan
138	calcite is applied to calcite with 1–6 mole % FeCO ₃ ; magnesian calcite has 1–7 mole % MgCO ₃ .
139	One sample with F-rich Fe-calcite was from the Cree Member (4353.5 m), the others from the
140	Middle Missisauga Formation (most common at 5403.6 m and 5407 m, also present at 5213.5 m
141	and 5408.5 m) (Supplementary Table 2). EDS analyses of F are imprecise, but in EMP analyses,
142	fluorine totals range between 1 wt.% and 2.5 wt.% in F-rich Fe-calcite. Fluorine was also found
143	in diagenetic chlorite with concentrations as high as 6.9 wt.%,.
144	Textural evidence suggests that the F-rich Fe-calcite is a late diagenetic mineral.
145	Framework grains comprise quartz, lithic clasts, K-feldspar, albite and muscovite, together with
146	small amounts of volcanic glass. Quartz grains have overgrowths that have resulted in complete
147	silica cementation in many areas, but with some pores bounded by euhedral quartz crystal faces.
148	Calcite, Mg-calcite and Fe-calcite engulf originally detrital quartz and feldspar grains (Fig. 4A).
149	Fe-calcite and F-rich Fe-calcite engulf quartz overgrowths (Figs. 4C, 4D, and 4E positions a) and
150	Fe-calcite surrounds and replaces ankerite that may have replaced framework feldspar (Fig. 4C).
151	Earlier Mg-calcite and calcite are replaced by later F-rich Fe-calcite (Fig 4F) and Fe-calcite (Fig.
152	4B). Chlorite fills dissolution voids in F-rich Fe-calcite and calcite (Fig. 4F), cuts F-rich Fe-
153	calcite (Figs. 4D and 4E), and engulfs silt sized quartz (Fig. 4E). Late siderite forms rims (Fig.
154	4A) on or fills secondary dissolution voids (Fig. 4B) in Fe-calcite. It is associated with late

155	diagenetic sphalerite and barite (Fig. 3). The paragenetic sequence for the minerals which
156	interact with F-rich Fe-calcite is thus: quartz overgrowths \rightarrow ankerite + calcite + Mg-calcite \rightarrow
157	Fe-calcite + F-rich Fe-calcite \rightarrow <i>dissolution</i> \rightarrow fibrous chlorite \rightarrow siderite ± sphalerite ± barite.
158	EMP data from a variety of diagenetic calcite grains show that the Mg content of Fe-
159	calcite increases steadily from 0.1 to 0.3 wt.% as Fe increases, whereas fluorine ranges from 0 up
160	to 2.5 wt.% in the Fe-calcite (Figs. 5A, 6A) and shows no correlation with Fe content (Fig. 5C).
161	There is no fluorine in the Mg-calcite and there is no correlation between Mg and fluorine in the
162	Fe-calcite (Fig. 5B), despite the relationship suggested by several studies that a higher Mg
163	content increases the adsorption of fluoride (F) onto calcite (Rude and Aller 1991).
164	The question of how F ⁻ is incorporated in calcite has been further investigated by Raman
165	spectroscopy. In the literature, both F ⁻ adsorption and surface precipitation of fluorite on calcite
166	have been proposed (Budyanto et al., 2015). Raman spectral analyses were performed on F-rich
167	Fe-calcite crystals from sample 5403.6 m in order to determine if fluorine is present as fluorite
168	on the F-rich Fe-calcite surface (Supplementary Appendix 1). All of the analyses returned calcite
169	as the major mineral phase (Fig. 7), however two analyses, $\sim 2 \mu m$ apart, showed minor peaks
170	which correspond to peaks from fluorite. When compared to the EMP analyses (Supplementary
171	Appendix 1, and Supplementary Table 3), no relationship was found between areas which have
172	high fluorine content and those areas which have fluorite spectral lines. This suggests that
173	fluorite surface precipitation probably occurred as patches in the F-rich Fe-calcite and was not
174	the only method by which fluorine was incorporated into the F-rich Fe-calcite analyses. Since no
175	fluorite peaks were found in the other analyzed grains, it seems that F ⁻ adsorption onto Fe-calcite
176	was predominant, and the conditions which favored the surface precipitation of fluorite did not
177	persist throughout the entire period of formation of the F-rich Fe-calcite.

178	The question of how F ⁻ is incorporated in calcite has been further investigated by
179	elemental mapping of a sandstone sample (5408.5 m) with F-rich Fe-calcite cement (Figs. 8 and
180	9). This was to determine if fluorite microcrystals can be seen; if minerals other than calcite were
181	hosts for fluorine; and if textural distribution of fluorine provides evidence for timing of F
182	enrichment. The area mapped (Fig. 8A) has framework grains of quartz, albite and muscovite
183	and an apparently deformed lithic clast largely pseudomorphed by calcite and chlorite. This lithic
184	clast includes a few 5–10 μ m quartz grains, a 40 μ m long muscovite flake, a 10 μ m grain of
185	titania, and (from EDS analysis) some phosphate. Most of the chlorite is fibrous or platy, with a
186	porous, diagenetic appearance (Fig. 8B). Secondary porosity has delicate chlorite fibers (Fig.
187	8B), suggesting that the porosity formed by volume reduction from a precursor, rather than by
188	dissolution of chlorite. The calcite appears sparry with abundant secondary porosity particularly
189	along crystal boundaries (Fig. 8C). The silica overgrowths partly engulf albite and show euhedral
190	faces against residual porosity. Some secondary porosity formed by dissolution along crystal
191	boundaries in the silicate mineral framework (position c in Fig. 8A).
192	In the lithic clast, fluorine is strongly positively correlated with the presence of calcite
193	(Figs. 9B and 9C). Lower abundances of fluorine are present in the chlorite. Morphologically
194	similar late chlorite in another sample with a similar lithic clast (Fig. 4E) also contains fluorine
195	(up to 3 wt. %). Fluorine is also present in the outermost few microns of the framework silicate
196	minerals (Fig. 9B, where the white line marks the edge of quartz and albite). In many cases,
197	especially in the albite, the high fluorine is related to the presence of secondary porosity, but this
198	is not the case in some of the silica overgrowths on the right side of the image (unless the
199	porosity is out of the plane of the thin section). The resolution of the elemental mapping is not
200	sufficient to distinguish between surface adsorption of F ⁻ and surface precipitation of fluorite, but

201 no evidence has been seen for precipitation of fluorite, such as the presence of larger crystals of 202 fluorite in any of the samples. Furthermore, F^- is adsorbed onto chlorite and the margins of 203 framework quartz. In the case of chlorite (Fig. 8B), the F^- may be in the observed μ m-scale 204 porosity, but image resolution is insufficient to determine if there is nano-scale porosity in the 205 quartz (Figs. 8A and 9D). We thus conclude that there is predominantly F^- adsorption rather than 206 fluorite precipitation.

207 Diagenetic zircon

208 The zircon grains from the Newburn H-23 well range in size from $\sim 20 \,\mu m$ to $\sim 40 \,\mu m$ 209 (Fig. 10) and appear to be euhedral or subhedral and clean, with rare dissolution voids and 210 fractures. Crystal outlines in relationship to porosity may be straight (euhedral) (Figs. 10A, 10B, 211 10C, and 10F), partially lobate (Fig. 10F), appearing to partly fill porosity (Figs. 10A, 10B, and 212 10D), and cross cutting framework and cement minerals including chlorite (Figs. 10D and 10F), 213 calcite (Fig. 10B), kaolinite, K-feldspar, and quartz (Figs. 10D and 10H): such textures are 214 commonly present in late diagenetic minerals. On the other hand, at least some of the small 215 euhedral zircons could be detrital framework grains. High magnification images of some of such 216 zircon grains (Fig. 11) show outgrowths (Figs. 11A, 11B, and 11C), dissolution accompanied by 217 dark patches (Fig. 11D), and internal zoning of the main zircon crystal (Fig. 11A). This suggests 218 that although small euhedral zircon grains could be detrital, some have diagenetic outgrowths. 219 LA-ICPMS U-Pb dating of selected zircons was attempted, but no reliable data were obtained 220 because of the small size of the grains and the low content of radiogenic products, indicating a 221 Late Mesozoic age or younger.

222

DISCUSSION

223 **F-rich Fe calcite**

The F-rich Fe-calcite is common in the deeper studied samples, late in their paragenesis, and seems to be associated with dissolution, fibrous chlorite lining secondary porosity and late siderite. These observation suggest that the origin of the fluorine enrichment is related to deep burial diagenetic processes.

228 Fluorine tends to concentrate in aragonite when the parent solution is depleted in 229 magnesium, whereas it concentrates in calcite, when the parent solution is enriched in 230 magnesium (Rude and Aller 1991), and as magnesium concentrations rise, so too does the 231 concentration of fluorine in calcite (Kitano and Okumura 1973). Dissolution of aragonite and 232 Mg-calcite during diagenesis releases F⁻ into pore waters, where it may be consumed during the 233 formation of fluorapatite or adsorbed during the reprecipitation of calcium-iron carbonates, Fe-234 oxyhydroxides, and Mn-oxides (Rude and Aller 1991). In the case of calcite and Fe-calcite, F⁻ 235 has been shown to be removed from solution by: a) by adsorption onto the surface of calcite, 236 demonstrated in calcite nano particles, at low F⁻ concentrations (<5 ppm) (Budyanto et al., 2015) 237 and high pH (Padhi and Tokunaga 2015); and b) from the precipitation of fluorite on the surface 238 of the calcite at concentrations greater than 10 ppm (Budyanto et al., 2015) and low pH (Padhi 239 and Tokunaga 2015).

240 Carbonate cements in the Newburn H-23 well show a complex history of formation,

241 dissolution, and re-precipitation. Ankerite, calcite and Mg-calcite are the earliest diagenetic

242 carbonate minerals, which were later replaced by Fe-calcite and F-rich Fe-calcite, and finally by

siderite (Fig. 4). Of these minerals only Fe-calcite contains fluorine >1 wt.%, suggesting that the

244 conditions for fluorine enrichment existed under only particular diagenetic conditions that post-

245	dated the main release of bicarbonate ions associated with maturation of organic matter (Karim
246	et al. 2012), but predating high temperature corrosive brines that precipitated fibrous chlorite,
247	late siderite and sphalerite seen farther up-dip in wells on the Scotian Shelf (Pe-Piper et al.
248	2015).
249	High F ⁻ contents of formation waters are always associated with high Cl ⁻ contents
250	(Worden 1996). At the concentrations of Cl ⁻ estimated from saline fluid inclusions with 20%
251	NaCl _{eq.} (Karim et al., 2012), concentrations of 10-20 ppm of F ⁻ are expected in formation waters
252	The correlation of F ⁻ with Cl ⁻ indicates that the principal source of both halogens to formation
253	waters is from evaporites (Worden 1996). Samples of halite from the salt canopy at the
254	Weymouth A-45 well contain fluorite inclusions (G. Pe-Piper, unpublished data). The strong
255	influence of the Argo salt on formation waters and diagenesis, with hydrocarbon charge during
256	late diagenesis (Pe-Piper et al., 2015), indicate that conditions of F ⁻ concentration >10 ppm and
257	low pH (from organic acids) are likely to have obtained.
258	
259	Diagenetic zircon

The small euhedral zircons with textural relationships suggesting a late diagenetic origin (Fig. 10) may alternatively be volcanogenic, derived from Early Cretaceous volcanoes to the northeast. They are morphologically comparable with the smaller zircons dated by Piper et al. (2012). Zircon would have experienced less dissolution and overgrowth at temperatures ~100 °C than the major framework minerals quartz and feldspar, thus appearing to be of later diagenetic origin. The U-Pb data are consistent with either a diagenetic or detrital origin.

266 Zircon is typically thought of as being a refractory mineral which endures all the stages 267 of diagenesis with minimal effect on its composition and crystal structure. However, several 268 recent studies suggest that zircon may be more susceptible to dissolution and overgrowths than

previously thought. Diagenetic zircon described in the literature (Rasmussen 2005; Bojanowski et al. 2012) shows varying morphologies, some of which resemble the morphologies of zircon of this study. Outgrowths similar to those in Figure 11 have been shown to form as minute irregular crystals attached to detrital zircon grains (Rasmussen 2005, their figs. 3 and 4). These irregular crystals are typically less than 3 µm in size and are commonly in "frilly rims" that partly surround detrital zircon, and can also line the surface of fragments of detrital zircon (Rasmussen 2005, their figs. 5, 6).

276 Detrital zircon grains from low grade metamorphic rocks have darker patches in BSE 277 images, similar to those in our Figure 11D, that represent zones of low temperature dissolution 278 and reprecipitation of metamict zircon. Such zircon alteration has been reported from rocks with 279 a maximum temperature of 300-350°C (Hay and Dempster 2009). The liberated zirconium is 280 mobilized from areas of low temperature alteration and forms outgrowths on the margins of 281 unmodified zircon crystals.

Analogous dissolution and reprecipitation of existing zircon grains is also reported in anchimetamorphic sedimentary rocks, where it is facilitated by high concentrations of F^{-} , phosphate (PO₄³⁻), and carbonate in hydrothermal fluids at temperatures as low as 270° C (Bojanowski et al., 2012). Irregular outgrowths, similar to those in our Figure 11, form in

286 prehnite-pumpellyite grade shales at 250° C (Rasmussen 2005).

The characteristics of the fluids responsible for the mobilization of zirconium vary. High concentrations of zirconium have been documented in alkaline fluids with pH values of ~10 (Vard and Williams-Jones 1993) and ~12 (Kraynov et al., 1969). Solubility experiments by Aja et al. (1995) on zirconium bearing minerals showed that $Zr(OH)_{4(aq)}$ is the dominant form in which zirconium is transported in solution over a wide variety of pH conditions. However, the

292 mobility of zirconium is promoted by the presence of ligands in solution, principally F⁻ and PO₄³⁻ 293 anions (Gieré 1990), which form complexes with zirconium and allow for the typically immobile 294 element to be transported in solution. F⁻ is particularly effective under acid conditions (Aja et al., 295 1995), as a content of between 0 and 6 wt.% F⁻ in solution increases the solubility of zirconium 296 by its square (Rubin et al., 1993). Decreases in ligand activity within a solution facilitate the 297 removal of zirconium from solution, particularly during the formation of minerals which contain 298 the complexing elements (Gieré 1986, 1990). Aja et al. (1995) suggested that zirconium is transported by F^{-} rich, calcium (Ca²⁺) deficient fluids which precipitate fluorite and zirconium 299 bearing phases when the fluids interact either with Ca²⁺ rich fluids or calcium bearing host rocks 300 301 which destabilize the zirconium and F⁻ complexes. Clay minerals such as kaolinite and chlorite 302 can adsorb F onto their surfaces by exchanging hydroxyl groups (OH) for F at surface active 303 hydroxyl sites (Du et al., 2011). At low concentrations the exchange can only occur if the OH⁻ group is protonated by H⁺ from a low pH solution. However, as concentrations of F⁻ increase to 304 >5 ppm for kaolinite and >100 ppm for chlorite, the exchange no longer requires low pH 305 306 solutions. In the Newburn H-23 well, several late diagenetic minerals contain F^- and PO_4^{3-} anions. 307 including apatite, fluorapatite, fluorite, and F-rich Fe-calcite. Since these anions are major 308 309 ligands for zirconium, precipitation of these minerals may have led to the precipitation of

diagenetic zircon outgrowths. Calcite is present in the majority of studied samples; it is generally

an early formed mineral and is easily dissolved by highly acidic fluids such as the ones required

312 to transport zirconium. Calcite grains in the Newburn H-23 well commonly show dissolution

313 voids, replacement by other minerals, and ragged grain boundaries. The dissolution and

310

311

replacement of these grains would have produced pore fluids rich in Ca^{2+} , and could have mixed

315 with the F^{-} and PO_4^{3-} rich fluids which were complexing zirconium, thereby precipitating apatite,

316 fluorapatite, fluorite, and F-rich Fe-calcite.

317	Chlorite and kaolinite are common pore filling minerals in the Newburn H-23 well. SEM
318	analysis did not detect fluorine in any grains of kaolinite, however several analyses of chlorite
319	grains showed the presence of fluorine (Fig. 9). The acidic solution carrying zirconium and its
517	grains showed the presence of hubble (Fig. 9). The acture solution carrying zircomum and its
320	ligands would have facilitated the exchange of OH ⁻ groups and the adsorption of F ⁻ . Such
321	surficial adsorption onto chlorite and other framework grains may have played a role in the
322	removal of F^{-} ligands from zirconium bearing fluids. Based on the estimate of 10–20 ppm F^{-} in
323	the Scotian Basin brines, the critical concentration of 100 ppm for adsorption of F ⁻ on chlorite
324	was probably achieved only under exceptional local conditions.
325	In summary, two processes led to removal of ligands from solution and consequent
326	precipitation of zircon. (1) Formation of fluorine and phosphorus bearing minerals such as
327	apatite, fluorapatite, fluorite, and F-Fe-calcite via the dissolution of calcite, and interaction of the
328	zirconium bearing fluids with liberated Ca^{2+} ; and (2) the surficial adsorption of F ⁻ onto chlorite
329	and framework grains.
330	The high temperature diagenetic mineral sphalerite is present in all studied stratigraphic
331	levels in the Newburn H-23 well. A salinity of $\sim 17\%$ NaCl _{eq} is required for major transport of
332	zinc in chloride complexes (Hanor, 1996), although some brines with >10% salinity may
333	transport zinc (Giordano, 2002). Crystallization of sphalerite generally occurs at temperatures of
334	140°-200°C (Samson and Russell, 1987). This is a little lower than temperatures in the literature
335	for diagenetic zircons (~270°C) and outgrowths (~250°C) (Rasmussen, 2004; Bojanowski et al.
336	2012).

337 Thermal history of the Scotian Basin and its relationship to diagenetic zircon

338	A widespread thermal event in the Scotian Basin during the Aptian-Albian is recorded by
339	volcanism in the Orpheus graben and enhanced heat flow in terrestrial basins (Bowman et al.
340	2012), high homogenization temperature of primary fluid inclusions in quartz overgrowths and
341	carbonate cements (Fig. 12), and by strongly negative $\delta^{13}C$ in carbonate cements of that age
342	(Karim et al. 2012). This event increased the temperature of circulating brines, as shown in
343	calculated trapping temperatures in quartz overgrowths that are as high as 228°C and in
344	carbonate cements as high as 189°C in the Lower Missisauga Formation in the Thebaud well
345	(Karim et al. 2012). This thermal event was likely the result of a regional process in the mantle,
346	probably related to the rifting of Iberia and the Grand Banks (Pe-Piper et al. 2007). This event
347	increased the regional geothermal gradient to 55°C/km (Karim et al. 2012). The presence in the
348	Glenelg field, up-dip from Newburn H-23, of diagenetic sphalerite post-dating carbonate
349	cements, was correlated with Albian-Cenomanian movement on the Balvenie salt Roho system
350	(Pe-Piper et al. 2015).
351	Flow of hot brines was potentially sourced from compaction of sediment in the deep
352	basin and migration along detachment faults, down-to-basin listric faults, and permeable
353	sandstones (Pe-Piper et al. 2015). Seaward of Newburn H-23, the original Triassic rift basin with
354	autochthonous salt lies about 3.5 s below the Albian K095 seismic marker (Fig. 1B: Deptuck et
355	al. 2009), which using an average seismic velocity of 4.0 km/s (Shimeld 2004) gives a burial
356	depth of 7 km. Using a geothermal gradient of 40°C/km based solely on lithospheric cooling and
357	a sea floor temperature of 30°C, as justified by Karim et al. (2012), the temperature of the
358	authochthonous salt would conservatively be 310°C. Using an elevated geothermal gradient of

- 359 55°C/km as suggested by Wierzbicki et al. (2006) and Karim et al. (2012), the authochthonous

360	salt and underlying syn-rift sediments and continental basement rocks would reach temperatures
361	of >400°C, resulting in low-grade metamorphism. At these temperatures, pre-existing zircons
362	would suffer low temperature dissolution as described by Hay and Dempster (2009).
363	Normally at such low-grade metamorphic temperatures, zircon alteration is pervasive in
364	metamict zircon and dissolution-reprecipitation processes occur locally, producing outgrowths
365	on the margins of original zircon crystals (Hay and Dempster 2009). However, in the presence of
366	high F ⁻ ion concentrations from interbedded halite, and under somewhat acid conditions from the
367	maturation of organic matter, zirconium dissolved from zircons will complex with F ⁻ and is
368	capable of long-distance transport in migrating basinal brines (Fig. 12). It produced outgrowths
369	on pre-existing zircons in sandstone at Newburn H-23 (Fig. 11) and may have precipitated
370	neoformed diagenetic zircon crystals (Fig. 10A, E). The formation of outgrowths on zircon
371	grains in metamorphic environments have been suggested to form as the result of a decrease in
372	temperature during retrograde metamorphism (Hay and Dempster 2009). The outgrowths
373	metamorphic rocks are commonly found to be interfingered with muscovite and chlorite,
374	suggesting that they are contemporaneous with or younger than these metamorphic minerals. The
375	formation of similar diagenetic outgrowths of zircon in the Newburn H-23 well may also be an
376	indicator of cooling following a period of elevated geothermal gradient in the Aptian-Albian,
377	during which zirconium was readily released from zircon. The unusual occurrence of diagenetic
378	zircon, at least as outgrowths, in the Newburn H-23 well is the result of two geological
379	conditions: the high heat flow after deep burial of syn-rift clastic sediments and salt, and the
380	presence of halite as a source of F^- ions.

381

IMPLICATIONS

382	This study has shown that hot brines with F ⁻ contents of >10 ppm, derived from deep
383	burial of thick halite successions, can be recognised from high F content of diagenetic ferroan
384	calcite. Such brines are also able to complex with zirconium from dissolved metamict detrital
385	zircon under low grade metamorphic conditions of deep burial to produce diagenetic zircon
386	outgrowths and probably neoformed zircon crystals. Zircon diagenesis is favored by elevated
387	heat flow producing a geothermal gradient >50°C/km, in order to achieve metamorphic
388	temperatures at which zirconium is readily released from zircon. Suitable geological conditions
389	are found where a subsiding rift basin with early evaporites is affected by a subsequent phase of
390	volcanism due to new rifting or subduction.
391	

392

CONCLUSIONS

The Newburn H-23 well is the closest well with samples for diagenetic studies to the deep-water depocenter of the Scotian Basin. It has late-diagenetic fluorine-rich ferroan calcite cement, with <2.5 wt.% fluorine, mostly at a <1 μ m scale presumably by adsorption, but also locally as small fluorite crystals. Fluorine is also apparently adsorbed on the surfaces of some framework minerals and in chlorite. The abundance of fluorine is related to the highly saline formation brines derived from the Argo salt Formation.

The unusual occurrence of outgrowths on zircons, and the possible presence of neoformed diagenetic zircon, is the result of zirconium mobility in the presence of >10 ppm concentration of F^- in formation brines. It also required high temperatures (likely ~400°C) in syn-rift clastic sediment interbedded with the Argo salt Formation, resulting from regional high

403	heat flow in the Aptian-Albian, some 60 Ma after initial sea-floor spreading in the basin, that led
404	to low-grade metamorphic dissolution of patches of metamict zircon.
405	
406	Acknowledgements
407	We thank the Canada Nova Scotia Offshore Petroleum Board (CNSOPB) for providing
408	all the samples, and Andrew MacRae for his help in securing the sidewall core samples. We also
409	thank Xiang Yang and Randolph Corney for their advice with the SEM and polished thin
410	sections. Special thanks to David Piper for critically reviewing this paper. The funding for this
411	project was provided by Encana (administrated by the Offshore Energy Research Association,
412	OERA), and the Natural Sciences and Engineering Research Council of Canada (NSERC).
413	R EFERENCES CITED
414	Aja, S.U., Wood, S.A., and Williams-Jones, A.E. (1995) The aqueous geochemistry of Zr and
415	the solubility of some Zr-bearing minerals. Applied Geochemistry, 10, 603-620.
416	Albertz, M., Beaumont, C., Shimeld, J., Ings, S.J., and Gradmann, S. (2010) An investigation of
417	salt tectonics structural styles in the Scotian Basin, offshore Atlantic Canada: 1.
418	Comparison of observations with geometrically simple numerical models. Tectonics, 29,
419	doi:10.1029/2009TC002539.
420	Bojanowski, M.J., Bagin'ski, B., Clarkson, E., Macdonald, R., and Marynowski, L. (2012) Low-
421	temperature zircon growth related to hydrothermal alteration of siderite concretions in
422	Mississippian shales, Scotland. Contributions to Mineralogy and Petrology, 164, 245-259.
423	Bowman, S.J., Pe-Piper, G., Piper, D.J.W., Fensome, R.A., and King, E. L. (2012) Early
424	Cretaceous volcanism in the Scotian Basin. Canadian Journal of Earth Sciences, 49(12),
425	523-1539.

426	Budyanto, S., Kuo, Y., and Liu, J.C. (2015) Adsorption and precipitation of fluoride on calcite
427	nanoparticles: A spectroscopic study. Separation and Purification Technology, 150,
428	325-331.
429	Chevron Corporation et al. (2002) Well History Report for Newburn H-23 at Exploration
430	Licence Area 2359 off the Scotian Shelf, Offshore, Nova Scotia. Available from Canada-
431	Nova Scotia Offshore Petroleum Board.
432	Cummings, D.I., and Arnott., R.W.C. (2005) Growth-faulted shelf-margin deltas: a new (but old)
433	play type, offshore Nova Scotia. Bulletin of Canadian Petroleum Geology, 53, 211-236.
434	Deptuck, M. E., Kendall, K., and Smith, B. (2009) Complex deepwater fold belts in the SW
435	Sable Subbasin, offshore Nova Scotia. Canadian Society of Petroleum
436	Geologists/Canadian Society of Exploration Geophysicists/Canadian Well Logging Society
437	Convention, p. 4, Society of Exploration Geophysicists/Canadian Well Logging Society,
438	Alberta.
439	Du, J., Wu, D., Xiao, H., and Li, P. (2011) Adsorption of fluoride on clay minerals and their
440	mechanisms using X-ray photoelectron spectroscopy. Frontiers of Environmental Science
441	& Engineering in China, 2, 212-226
442	Gieré, R. (1986) Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact
443	aureole: implications for mobility of Ti, Zr and REE. Contributions to Mineralogy and
444	Petrology, 93, 459-470
445	Gieré, R. (1990) Hydrothermal Mobility of Ti, Zr and REE: Examples from the Bergell and
446	Adamello Contact Aureoles (Italy). Terra nova, 2, 60-67.

- 447 Giordano, T.H. (2002) Transport of Pb and Zn by carboxylate complexes in basinal ore fluids
- 448 and related petroleum-field brines at 100°C: The influence of pH and oxygen fugacity.
- 449 Geochemical Transactions, 3(1), 56-72.
- 450 Gould, K., Pe-Piper, G., and Piper, D.J.W. (2010) Relationship of diagenetic chlorite rims to
- 451 depositional facies in Lower Cretaceous reservoir sandstones of the Scotian Basin.
- 452 Sedimentology, 57, 587-610
- 453 Hanor, J.S. (1996) Variations in chloride as a driving force in siliciclastic diagenesis. In L. J.,
- 454 Crossey, R., Loucks, M.W., Totten, and P.A., Scholle, Eds., Siliciclastic diagenesis and
- 455 fluid flow: Concepts and applications, 55, 4-12 p., SEPM Special Publication, Oklahoma.
- 456 Hay, D.C., and Dempster, T.J. (2009) Zircon Behaviour during Low-temperature
- 457 Metamorphism. Journal of Petrology, 50, 571-589.
- 458 Holser, W.T., Clement, G.P., Jansa, L. and Wade, J.A. (1988) Evaporite deposits of the North

459 Atlantic Rift. In W., Manspeizer, Ed., Triassic-Jurassic Rifting: Continental Breakup and

- 460 the Origin of the Atlantic Ocean and Passive Margins, 525-556 p., Elsevier, Amsterdam.
- 461 Karim, A., Pe-Piper, G., and Piper, D.J.W. (2010) Controls on diagenesis of Lower Cretaceous
- 462 reservoir sandstones in the western Sable Subbasin, offshore Nova Scotia. Sedimentary
- 463 Geology, 224, 65-83.
- 464 Karim, A., Hanley, J.J., Pe-Piper, G., and Piper, D.J.W. (2012) Paleohydrogeological and
- thermal events recorded by fluid inclusions and stable isotopes of diagenetic minerals in
- 466 Lower Cretaceous sandstones, offshore Nova Scotia, Canada. AAPG Bulletin, 96(6),
- 467 1147-1169.
- 468 Kendell, K.L. (2012) Variations in salt expulsion style within the Sable Canopy Complex,
- 469 central Scotian margin. Canadian Journal of Earth Sciences, 49, 1504-1522.

- 470 Kidston, A.G., Smith, B., Brown, D.E., Makrides, C. and Altheim, B. (2007) Nova Scotia Deep
- 471 Water Offshore Post-Drill Analysis 1982-2004, 181 p. Canada-Nova Scotia Offshore
- 472 Petroleum Board, Nova Scotia.
- 473 Kitano, Y., and Okumura, M. (1973) Coprecipitation of fluoride with calcium carbonate.
- 474 Geochemical Journal, 7, 37-49.
- 475 Kraynov, S.R., Mer'kov, A.N., Petrova, N.G., Baturinskaya, I.V., and Zharikova V.M. (1969)
- 476 Highly alkaline (pH 12) fluosilicate waters in the deeper zones of the Lovozero massif.
- 477 Geochemistry International USSR, 6(4), 635-640.
- 478 Li, G., Ravenhurst, C., and Zentilli, M. (1995) Implications of apatite fission track analysis for
- the thermal history of the Scotian Basin, offshore Nova Scotia, Canada. Bulletin of
- 480 Canadian Petroleum Geology, 43, 127-144
- 481 OETR (Offshore Energy Technical Research), 2011, Atlas: Play Fairway Analysis, Offshore
- 482 Nova Scotia, Canada. (<u>http://www.webcitation.org/6kTGN6l6m</u>, accessed Sept. 12, 2016).
- 483 Padhi, S., and Tokunaga, T. (2015) Surface complexation modeling of fluoride sorption onto
- 484 calcite. Journal of Environmental Chemical Engineering, 3, 1892-1900.
- 485 Pe-Piper, G., Piper, D.J.W., Jansa, L.F., and de Jonge, A. (2007) Early Cretaceous opening of the
- 486 North Atlantic Ocean: Implications of the petrology and tectonic setting of the Fogo
- 487 Seamounts off the SW Grand Banks, Newfoundland. Geological Society of America
- 488 Bulletin, 119, 712-724
- 489 Pe-Piper, G., Piper, D.J.W., Zhang, Y., and Chavez, I. (2015) Diagenetic barite and sphalerite in
- 490 middle Mesozoic sandstones, Scotian Basin, as tracers for basin hydrology. Bulletin of the
- 491 American Association of Petroleum Geologists, 99, 1281-1313.

- 492 Piper, D.J.W., Pe-Piper, G., Tubrett, M., Triantafyllidis, S., and Strathdee, G. (2012) Detrital
- 493 zircon geochronology and polycyclic sediment sources, Upper Jurassic-Lower Cretaceous
- 494 of the Scotian Basin, southeastern Canada. Canadian Journal of Earth Sciences, 49, 1540495 1557.
- 496 Rasmussen, B. (2005) Zircon growth in very low grade metasedimentary rocks: evidence for

497 zirconium mobility at ~250°C. Contributions to Mineral Petrology, 150, 146-155.

- Rubin, J.N., Henry, C.D., and Price, J.G. (1993) The mobility of zirconium and other "immobile"
 elements during hydrothermal alteration. Chemical Geology, 110, 29-47.
- 500 Rude, P.D, and Aller, R.C. (1991) Fluorine mobility during early diagenesis of carbonate
- 501 sediment: An indicator of mineral transformations. Geochimica et Cosmochimica Acta,
- 502 55, 2491-2509.
- 503 Samson, I.M., and Russell, M.J. (1987) Genesis of the Silvermines zinc-lead-barite deposit,
- 504 Ireland: Fluid inclusion and stable isotope evidence. Economic Geology, 82(2), 371-394
- 505 Shimeld, J. (2004) A comparison of salt tectonic subprovinces beneath the Scotian Slope and
- 506 Laurentian Fan. In P. Post, D. Olson, K. Lyons, S. Palmes, P. Harrison, and N. Rosen,
- 507 Eds., Salt-sediment interactions and hydrocarbon prospectivity: Concepts, applications,
- and case studies for the 21st century, 24th Annual Gulf Coast Section SEPM Foundation
- 509 Bob F. Perkins Research Conference Proceedings, p. 502-532, SEPM Foundation, Texas,
- 510 doi:10.5724/gcs.04.24.0502.
- 511 Vard, E., and Williams-Jones, A.E. (1993) A fluid inclusion study of vug minerals in dawsonite-
- altered phonolite sills, Montreal, Quebec: implications for HFSE mobility. Contributions to
- 513 Mineralogy and Petrology, 113, 410–423

514	Wade, J.A., and MacLean, B.C. (1990) Aspects of the geology of the Scotian Basin from recent
515	seismic and well data. In M.J. Keen and G.L. Williams Eds., Geology of the Continental
516	Margin of Eastern Canada, p. 167–238, Geological Survey of Canada, Ottawa, Canada.
517	Wade, J.A., Williams, G.L., and MacLean, B.C. (1995) Mesozoic and Cenozoic stratigraphy,
518	eastern Scotian Shelf: new interpretations. Canadian Journal of Earth Sciences, 32(9),
519	1462-1473.
520	Weston, J.F., MacRae, R.A., Ascoli, P., Cooper, M.K.E., Fensom, R.A., Shaw, D., and Williams,
521	G.L. (2012) A revised biostratigraphic and well-log sequencestratigraphic framework for
522	the Scotian Margin, offshore eastern Canada. Canadian Journal of Earth Sciences, 49,
523	1417-1462.
524	Wierzbicki, R., Dravis, J., Al-Aasm, I., and Harland, N. (2006) Burial dolomitization and
525	dissolution of upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova
526	Scotia, Canada. American Association of Petroleum Geology, 90, 1843-1861
527	Williamson, M.A. (1995) Overpressures and hydrocarbon generation in the Sable Sub-basin,
528	offshore Nova Scotia. Basin Research, 7, 21-34.
529	Worden, R.H. (1996) Controls on halogen concentrations in sedimentary formation waters.
530	Mineralogical Magazine, 60, 259-274.
531	Zhang, Y., Pe-Piper, G., and Piper, D.J.W. (2014) Sediment geochemistry as a provenance
532	indicator: unravelling the cryptic signatures of polycyclic sources, climate change,
533	tectonism and volcanism. Sedimentology, 61(2), 383-410.
534 535	

536	FIGURE CAPTIONS
537	Fig. 1: A: Isopach map of the Scotian Basin showing location of Newburn H-23 well and
538	inferred paleorivers and volcanic centers in the Early Cretaceous. Base map modified from Wade
539	and MacLean (1990), volcanic centers from Bowman et al. (2012), and paleorivers and major
540	faults from Zhang et al. (2014). B: Cross section of part of the Scotian Basin showing geological
541	setting of the Newburn H-23 well. Stratigraphic interpretation from Deptuck et al. (2009) based
542	on 3-D seismic data.
543	
544	Fig. 2: Stratigraphic column of the Mesozoic rocks of the Scotian basin. Modified from Weston
545	et al. (2012).
546	
547	Fig. 3: Stratigraphic column for the Newburn H-23 well from the top of the targeted "turbidite"
548	interval showing litho- and biostratigraphy, lithology (from cuttings descriptions and wireline
549	logs), paleo-water-depth estimates from microfossil assemblages, gamma ray log, sidewall core
550	sample locations, and presence of key minerals. (Data from Chevron et al. 2002; Kidston et al.
551	2007; OETR 2011; Weston et al. 2012). brt = barite; F-Fe cal = fluorine-rich ferroan calcite; sp =
552	sphalerite; zrn og = zircon outgrowths.
553	

554 Fig. 4: Representative BSE images of textures of Fe-calcite and other carbonates from the

555 Newburn H-23 well. Framework quartz grains appear dark. A: Fe-calcite engulfs albite, K-

feldspar, and quartz, perhaps in an original feldspathic lithic clast, and is partly replaced by

- siderite [4353.5 m]. B: Calcite and Mg-calcite with microporosity are replaced by Fe-calcite.
- 558 Siderite fills a dissolution void in Fe-calcite [5213.5 m]. C: Ankerite engulfs albite, probably

559	from an original feldspar framework grain. Fe-calcite surrounds and replaces ankerite and					
560	engulfs quartz overgrowths (position a) [5213.5 m]. D: Fibrous chlorite cuts F-rich Fe-calcite. F-					
561	rich Fe-calcite engulfs quartz overgrowths (position a) [5403.6 m]. E: F-rich Fe-calcite engulfs					
562	quartz overgrowths (position a). Chlorite cuts F-rich Fe-calcite and engulfs silt-sized quartz					
563	[5403.6 m]. F: Calcite and F-rich Fe-calcite have dissolution voids filled by chlorite. Calcite has					
564	been partly replaced by F-rich Fe-calcite [5407 m]. The contact between calcite and F-rich Fe-					
565	calcite is marked by the dashed line.					
566						
567	Fig. 5: Bi-plots of calcite analyses using EMP data showing A: chemical definition of Calcite,					
568	Fe-calcite and Low Mg-calcite; B: variation of F with Mg; C: variation of F with Fe.					
569						
570	Fig. 6: Ternary diagram of calcite EMP data from the Newburn H-23 well. A: Analyses plotted					
571	on a fluorine, iron, and magnesium ternary diagram in element wt.%. B: Analyses plotted on a					
572	CaCO ₃ , FeCO ₃ , and MgCO ₃ ternary diagram in mole%.					
573						
574	Fig. 7: Raman spectra analyses (RSA) of F-rich Fe-calcite [5403.6 m]. Compare with reference					
575	spectral lines for calcite (dashed grey lines) and fluorite (dashed black lines). A-C: Backscattered					
576	electron images showing location of spots used for RSA analyses (1) to (7). Dots indicate					
577	locations of EMP analyses (green= F-Cal; blue = F-Fe-Cal; magenta= Chl); dark minerals are					
578	various calcites, bright minerals are mostly chlorite.					
579						
580	Fig. 8: BSE images from sample 5408.5 m showing a lithic clast which has been affected by late					
581	cementation of F-calcite and chlorite. The location of the elemental mapping of Fig. 9 is shown.					

	582	In image (A), a =	= euhedral face of g	uartz overgrowth:	b = Fe-calcite	postdates a	uartz
--	-----	-------------------	----------------------	-------------------	----------------	-------------	-------

583 overgrowth; c = secondary dissolution along quartz grain boundaries. (B) Detail of lithic clast,

showing porosity and platy and fibrous habits of chlorite. (C) Detail of Fe-calcite showing sparry
habit and porosity.

586

587 Fig. 9: BSE image A: and quantitative element mapping images B-I: from SEM-EDS analysis of

sample 5408.5 m showing the distributions of F, CaO, SiO₂, FeO, Al₂O₃, TiO₂, K₂O and Na₂O.

589 See location in Fig. 8. The color bar in the elemental maps is scaled to the quantitative EDS

analysis (wt.%). The intergranular boundaries are marked by solid white line.

591

592 Fig. 10: Representative BSE images of textural relationship of zircon to other minerals. A:

593 Sample 4313.5m. Zircon with sharp crystal outlines against silicate mineral and a dissolution

void. Trachytic lithic clast (position a). **B:** Sample 5213.5m. Zircon appears to cut framework

595 grains and F-calcite. C: Sample 5403.6m. Zircon with straight crystal outlines towards chlorite

596 (position a). **D:** Sample 5403.6m. Euhedral faces of zircon in contact with quartz and probably

597 engulfs chlorite (position a) and with euhedral crystal outlines towards both. E: Sample

598 5408.5m. Zircon fills pore and engulfs quartz. F: Sample 5961.7m. Zircon with straight crystal

599 outlines in contact with quartz and pore. G: Sample 5961.7m. Zircon cuts chlorite and is

600 euhedral against porosity. **H:** Sample 5961.7m. Zircon fills pore and engulfs quartz. **I:** Sample

601 5962m. Zircon and drilling mud (DM) fill porosity.

602

Fig. 11: High magnification BSE images of zircon grains. **A:** Sample 4313.5m. Zircon grain

showing a dark rim which is probably an outgrowth of diagenetic zircon. **B:** Sample 5403.6m.

605	Zircon grain showing outgrowths (arrows), some of which are in contact with quartz (dashed
606	line). C: Sample 5961.7m. Zircon grain showing abundant outgrowths (arrows). D: Sample
607	5961.7m. Zircon grain with abundant dissolution voids and dark patches which correspond to
608	areas with dissolution voids.
609	
610	Fig. 12. Summary transect from Newburn H-23 to the Glenelg and Thebaud fields, showing
611	inferred thermal evolution and flow of formation waters. Measured average homogenization
612	temperatures for fluid inclusions from Karim et al. (2012): calculated entrapment temperatures
613	taking into account confining pressure tend to be tens of degrees higher. Albian geothermal
614	gradient of 40°C/km based on assumption of simple lithospheric cooling after Triassic rifting;
615	55°C/km estimated by Karim et al. (2012) from fluid inclusion studies and data of Bowman et al.
616	(2012).

Calcite occurrence	Mg-Calcite (low F <1%)	Calcite (low F <1%)	Fe-Calcite (low F <1%)	Fe-Calcite (high F >1%)
4353.5m			0	0
5213.5m				
5403.6m			\bigtriangleup	Δ
5407m	٠	•	\diamond	\$
5408.5m			\bigtriangledown	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5957

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5957

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld