1	Metastable augite at high pressure and temperature conditions and its
2	implications for subduction zone dynamics
3	
4	Jingui Xu ^{1, 2, 3} , Dongzhou Zhang ² , Przemyslaw Dera ² , Bo Zhang ^{1, 3} and Dawei Fan ¹
5	
6	¹ Key Laboratory of High Temperature and High Pressure Study of the Earth's
7	Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081,
8	China
9	² Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science
10	and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Bldg,
11	Honolulu, HI 96822, USA
12	³ University of Chinese Academy of Sciences, Beijing, 100049, China
13	Abstract
14	(Ca, Mg)-rich clinopyroxenes are abundant in Earth's upper mantle and subduction
15	zones. Experimental studies on the thermoelastic properties of these minerals at
16	simultaneous high pressure and high temperature are important for constraining of the
17	composition and structure of the Earth. Here, we present a synchrotron-based
18	single-crystal X-ray diffraction study of natural diopside-dominated augite
19	$[(Ca_{0.89}Na_{0.05}Mg_{0.06})(Mg_{0.74}Fe_{0.11}Al_{0.14}Ti_{0.01})(Si_{1.88}Al_{0.12})O_{6.00}] \text{ at } P\&T \text{ to } \sim 27 \text{ GPa}$
20	and 700 K. The experiment simulates conditions in cold subducting slabs, and results
21	indicate that augite is stable over this pressure and temperature range. A third order
22	high-temperature Birch-Murnaghan equation was fit with the

23	pressure-volume-temperature data, yielding the following thermoelastic parameters:
24	$K_{T0} = 111(1)$ GPa, $K_{T'0} = 4.1(1)$, $(\partial K_0 / \partial T)_P = -0.008$ (5) GPa K ⁻¹ and $\alpha_T = 4(1) \times 10^{-5}$
25	K^{-1} +2(3)×10 ⁻⁸ $K^{-2}T$. A strain analysis shows that the compression along the three
26	principal stress directions is highly anisotropic with $\varepsilon_{1:\varepsilon_{2:\varepsilon_{3}=1.98:2.43:1.00}}$.
27	Additionally, high-pressure structural refinements of room-temperature polyhedral
28	geometry, bond lengths and O3-O3-O3 angle were investigated to ~ 27 GPa at
29	ambient temperature. Pressure dependences of polyhedral volumes and distortion
30	indicate that the substitution of Al ³⁺ for Si ⁴⁺ significantly changes the compressional
31	behavior of the TO ₄ -tetrahedron in augite. Density calculations of this augite along a
32	subducting slab geotherm suggest that augite as well as other common clinopyroxenes
33	would promote slab stagnations at transition zone depths if they are metastably
34	preserved in significant quantities.
35	Keywords: pyroxenes, augite, high pressure and temperature, single-crystal X-ray
36	diffraction, subduction zone
37	
38	Introduction
39	Pyroxenes are among the most important rock-forming minerals and are commonly
40	found in both igneous and metamorphic rocks. Oceanic lithosphere consists of about
41	40% pyroxenes and garnet (Frost, 2008). It was believed that pyroxenes transform

42 into denser majorite garnet while oceanic crust subducts into the mantle (Akaogi and

43 Akimoto, 1977). However, recent studies imply that this reaction is inhibited under

44 cold slab conditions, so pyroxenes may survive in deeper parts of the mantle than was

previously thought (Nishi et al., 2008; Nishi et al., 2013; Van Mierlo et al., 2013). 45 Surviving metastable pyroxenes might cause stagnations of some slabs at depths 46 along the 660 km discontinuity, due to their lower densities compared to garnet and 47 broader metastability range compared to the metastable olivine (Agrusta et al., 2014; 48 King et al., 2015; Nishi et al., 2013; Van Mierlo et al., 2013). Therefore, knowledge 49 50 of the properties of pyroxenes to transition zone pressures (≥ 25 GPa) is very important in modeling the subduction zone environments. 51 52 Among the pyroxene group minerals, augite is the most common species and occurs 53 in basalts and gabbros, which are major components of the oceanic crust. Augite is 54 also commonly found in andesites, diorites, peridotites and pyroxenites. Augite is monoclinic (C2/c space group) and has relatively complex crystal chemistry. 55 Pyroxenes have a general formula of $M2M1T_2O_6$. In augite, M1 sites are usually filled 56

with Mg^{2+} , Fe^{2+} , Ti^{3+} and Al^{3+} , M2 are larger polyhedral sites that commonly 57 accommodate Ca^{2+} , Na^+ , Fe^{2+} , and Mg^{2+} , while T sites are occupied predominantly by 58 Si⁴⁺, but typically contains some Al³⁺ (Clark et al., 1969). In contrast with augite, 59 diopside [CaMgSi₂O₆] and hedenbergite [CaFeSi₂O₆] are usually Al-free. Although 60 pyroxene minerals have been extensively investigated at high pressures with the 61 discovery of several new polymorphs (Dera et al., 2013a; Finkelstein et al., 2014; 62 Plonka et al., 2012; Zhang et al., 2012), studies of augite at high pressures and 63 temperatures have been limited. Augite is important to the petrology of subducted 64 slabs, therefore it seems urgent to fill the gap in understanding of the compressional 65 behavior of this mineral at simultaneous high pressures and temperatures. In this 66

67	study, single-crystal X-ray diffraction measurements of natural augite were conducted
68	at 0-26.65(2) GPa at ambient temperature and the crystal structures were refined. The
69	P-V-T relations were measured at pressure-temperature conditions to 24.35(2) GPa
70	and 700 K, and thermal equation of state was determined. We discussed the potential
71	effect of metastable augite on subducting slab dynamics in this report.

72

73 Sample and method

74 Natural augite samples were collected from the Damaping pyroxenite, Zhangjiakou, 75 Hebei Province, China. The crystals were colored light green, and their chemical was 76 estimated as [(Ca_{0.89}Na_{0.05}Mg_{0.06})(Mg_{0.74}Fe_{0.11}Al_{0.14}Ti_{0.01})(Si_{1.88}Al_{0.12})O_{6.00}] based on 77 results of electron microprobe analysis (EMPA). Small chips (size 0.035×0.040 mm) of single-crystal augite with thicknesses less than 0.010 mm were extracted from a 78 79 larger EMPA sample for this study. A single crystal was first mounted onto a polymer micromesh sample holder (MiTeGen) for ambient-condition X-ray diffraction study. 80 One single crystal was used for each high pressure/temperature experiment. A BX90 81 DAC (Kantor et al., 2012) was used for high-pressure measurements at ambient 82 temperature. This DAC was equipped with two type-I diamond (300 µm culets) 83 mounted on Boehler-Almax-type WC seats, which had ± 30 deg. opening angles. A 84 rhenium gasket was used and pre-indented to $\sim 40 \ \mu m$ thickness before a laser drilling 85 of a 190-µm-diameter hole. The augite sample was loaded into the sample chamber 86 with Au powder serving as the pressure calibrant (Fei et al., 2007). At each pressure, 87 Au diffraction patterns were collected before and after sample data collection and the 88

89	average pressure values were used. A small ruby sphere of ${\sim}10~\mu m$ was also loaded
90	and used as the pressure indicator for the gas-loading with Ne as the
91	pressure-transmitting medium using the GSECARS gas-loading system (Rivers et al.,
92	2008). An externally heated DAC (EHDAC) was used for high-pressure and
93	high-temperature experiments. Temperatures up to 700 K were generated by
94	resistive-heating and measured with a K-type thermocouple attached to one of the
95	anvils ${\sim}500~\mu\text{m}$ away from the diamond culet. Likewise, Au powder, a ruby sphere
96	and a single-crystal sample were loaded, and Ne was used for pressure-transmitting
97	medium.
98	All of the X-ray diffraction experiments in this study were carried out at experimental
99	station 13-BM-C of the Advanced Photon Source, Argonne National Laboratory. The
100	incident X-ray beam was monochromated to a wavelength of 0.4340 Å, and
101	collimated to a focal spot size of 15×15 μm^2 . Diffraction images were acquired on a
102	MAR165 CCD detector. Tilting and rotation of the detector and the
103	sample-to-detector distance were calibrated using ambient LaB_6 as the diffraction
104	standard. To obtain adequate number of diffraction for structure refinements, we
105	collected data at 4 different detector positions achieved by rotating the detector on the
106	6-circle goniometer. At D1 position the detector was perpendicular to the incident
107	X-ray direction, D2 was achieved by rotating the detector about the horizontal axis by
108	20°, whereas D3 and D4 were involved rotating about the vertical axis by 10° and
109	-10°, respectively. Wide and stepped φ exposures were collected for single-crystal
110	samples at each <i>P</i> - <i>T</i> point at D1 position, with an exposure time of 2 s/°. Wide

111	segment exposures with 10° rotation step were collected at each detector position. The
112	φ scan rotation axis was horizontal and perpendicular to the incident X-ray direction.
113	The ATREX/RSV software package (earlier known as GSE_ADA/RSV, (Dera et al.,
114	2013b)), was used to analyze the diffraction images. The lattice parameters and
115	orientation matrix were determined with the RSV software and the reduced reflection
116	data from the four detector positions were merged together. Unit-cell parameters at
117	each P-T condition are reported in Table 1. Crystal structures of augite at high
118	pressures were refined from the intensity data using SHELXL software via the Olex 2
119	user interface (Dolomanov et al., 2009; Sheldrick, 2007), starting from atomic
120	coordinates of Clark et al. (1969). According to the microprobe chemistry and
121	previously reported augite structure model (Clark et al., 1969), the site occupancies
122	were refined without vacancies. The $M2$ sites were fully occupied by Ca^{2+} , Mg^{2+} and
123	Na ⁺ , Fe ²⁺ , Mg ²⁺ , Ti ³⁺ and Al ³⁺ occupied the $M1$ sites, while the T sites contained Si ⁴⁺
124	and Al ³⁺ . Cations in the same polyhedral site were set to share the same atomic
125	displacement parameters (ADPs) and the same fractional coordinates. The anisotropic
126	ADPs were only used for cations, due to the limited number of unique observations.
127	At ambient pressure the site-occupancy refinement for the $M2$, $M1$ and T sites led to a
128	mean electron number of 19.2, 13.4 and 14.0 which are very close to the numbers
129	calculated on the basis of the chemical data (19.1, 13.8 and 13.9 for $M2$, $M1$ and T
130	sites, respectively). The refined sum of mean electron number is also in general
131	agreement with the microprobe composition, so the cation contents based on the
132	EMPA composition were used in refinements. We also modeled the site distribution

133	of Fe between $M2$ and $M1$ sites, and the result indicated that the $M2$ site is free of Fe.
134	Previous studies suggested that Fe^{3+} could be included in <i>M</i> 1 sites in addition to Fe^{2+} ,
135	based on Mössbauer measurements and other calculation methods, but only in small
136	quantities (Clark et al., 1969). Clark et al. (1969) proposed a method to infer the
137	Fe^{3+}/Fe^{2+} distribution in augite based on the <i>M</i> 1-O distance values. In this approach
138	M1-O distance in augite is assumed to be a simple linear combination of the average
139	M1-O distances observed in various end-member compositions. According to this
140	method and the use of the M1-O values of jadeite [NaAlSi ₂ O ₆], diopside [CaMgSi ₂ O ₆],
141	aegirine [NaFeSi ₂ O ₆] (Clark et al., 1969), hedenbergite [CaFeSi ₂ O ₆] (Zhang et al.,
142	1997) and $[NaTiSi_2O_6]$ (Ullrich et al., 2010) combined with the <i>M</i> 1-O value in this
143	study, we concluded that our augite sample is free of Fe^{3+} . In high-pressure
144	refinements the site occupancy parameters of the cations were fixed based on the
145	EMPA and ambient-pressure structure refinement. Details of the structural
146	refinements, atomic coordinates, bond lengths and angles are reported in Tables 2, 3
147	and 4. Because of the limited opening angle ($\pm 17^{\circ}$) of the EHDAC, the structure
148	refinements were not possible.

149

150 **Results and discussion**

151 Equation of state of augite at 298 K

Figures 1 and 2 present the unit-cell parameters of augite as a function of pressure. V, *a*, *b*, *c* and β angle undergo nonlinear decrease to 26.65(2) GPa with no discontinuity

in the compression curves. A third-order Birch–Murnaghan equation of state (BM3

155	EoS) was fit with the P - V data using the EosFit7c program (Angel et al., 2014). The
156	isothermal bulk modulus (K_{T0}) and its pressure derivative (K'_{T0}) were calculated to be
157	111(1) GPa and 4.1(2). The Eulerian finite strain ($f_E = [(V_0/V)^{2/3}-1]/2$) versus
158	"normalized pressure" ($F_E = P/[3f_E(2f_E+1)^{5/2}]$) plot (Angel, 2000) was also used to
159	analyze the P - V data, and a weighted linear fit yielded an intercept value of 111(1)
160	GPa which is in good agreement with the results indicated by BM3 EoS (Figure 3).
161	The linear moduli of a , b and c were also calculated using the linear BM3 equation
162	(Figure 1) and EosFit7c program. The compressibilities (β) (Angel, 2000) of each axis
163	were calculated (Table 5) yielding $\beta_a:\beta_b:\beta_c=1:1.44:1.11$, which shows that b has the
164	highest compressibility and c is more compressible than a .

165

166 Strain analysis

167 Strain tensor analysis was performed to assess the degree of anisotropy between principal stress directions, because the a- and c-axis are not the principal strain axes 168 while *b*-axis is coincident with one of them. Unit-cell parameters of augite were used 169 to analyze unit strain ellipsoid with win STRAIN (Angel 2015), modified after 170 Ohashi (1982). Table 6 shows the strain values and directions of the three major 171 compression axes at each pressure. In order to visualize the orientation of the strain 172 tensor, we calculated the representation quadratic surface of augite using the method 173 suggested by Knight (2010). As shown in Figure 4, the softest major axis is parallel to 174 the *b*-axis, and the stiffest direction is oriented in the *a*-*c* plane. 175

176

177 Polyhedral compression and distortion

The evolutions of the volume of the M2O₈-polyhedron, M1O₆-octahedron and 178 TO₄-tetrahedron with increasing pressure were investigated and shown in Figures 5 179 and 6. The eight coordinated $M2O_8$ -polyhedron is the most compressible while the 180 TO_4 -tetrahedron is the least. Likewise, the compression of the $M2O_8$ -polyhedron is 181 182 the smoothest, and the TO_4 -tetrahedron is the least smooth. The distortions of these polyhedra were also analyzed (Robinson et al., 1971). As shown in Figure 7 the 183 184 distortion index of the $M2O_8$ -polyhedron decreases quickly with increasing pressure 185 up to ~ 15 GPa, where it becomes less responsive to pressure. This change can be 186 explained by examining evolutions of the bond lengths with pressure. As shown in 187 Figure 8 the longest bonds M2-O3(C2, D2) becomes comparable to other bonds at about 15 GPa. The $M1O_6$ -octahedron has the smallest distortion index, which 188 189 decreases to the minimum at ~ 20 GPa, and then increases again to a value comparable to the ambient distortion (Figures 7 and 9). 190

Pyroxenes are characterized by single chains of tetrahedra that extend parallel to the 191 *c*-axis. These chains have significant rotation freedoms at high pressures, which can 192 be described by the reduction of the O3-O3-O3 angle (Figures 10 and 11). The \angle 193 O3-O3-O3 of augite shows a linear decrease of approximately -0.47° /GPa in the 194 pressure range of 0-8.30(4) GPa, then experiences a minor increase with increasing 195 pressure between 8.30(4) and 11.40(3) GPa (Table 4 and Figure 11). This is similar to 196 197 what was reported for kosmochlor [NaCrSi₂O₆] (Posner et al., 2014), in which the inflection occurs at 31.3 GPa. In augite this "hardening" of rotation of tetrahedral 198

199	chains is accompanied by a volume drop of TO_4 -tetrahedra in augite (Figure 6), which
200	was also observed in kosmochlor (Posner et al., 2014). Above 11.40(3) GPa the \angle
201	O3-O3-O3 decreases again, this time at an approximate rate of (0.37°/GPa), as the
202	TO_4 -tetrahedra become more incompressible (Figure 6). However, the
203	pressure-dependencies of the unit-cell volume and lattice parameters do not exhibit
204	any distinct discontinuities correlated with this curious behavior of the O3-O3-O3
205	angle (Figures 1 and 2).

206

207 Thermal equation of state

The unit-cell parameters of augite at various P-T conditions are given in Table 1, and were used for subsequent calculations. Figure 12 shows the volume data measured at 208, 500 and 700 K. The high-temperature Birch-Murnaghan (HTBM) equation was fit with the P-V-T data. The equation is given by the following form:

212
$$P=(3/2) K_{T0} [(V_{T0}/V)^{7/3} - (V_{T0}/V)^{5/3}] \times \{1+(3/4)(K'_{T0}-4)[(V_{T0}/V)^{2/3}-1]\}$$
(1)

where K_{T0} , $K_{T'0}$ and V_{T0} are bulk modulus, its pressure derivative and the unit cell volume at ambient pressure and temperature (in Kelvin), respectively. The effects of temperature on K_{T0} and V_{T0} are expressed by the follows:

216
$$V_{T0} = V_0 \exp \int_{300}^{T} \alpha_{\rm T} dT$$
 (2)

217
$$K_{T0} = K_0 + (\partial K_0 / \partial T)_P \times (T-298)$$
 (3)

$$218 \quad \alpha_T = \alpha_0 + \alpha_1 T \tag{4}$$

where $(\partial K_0/\partial_T)_P$ and α_T are the temperature derivative of the bulk modulus and the volumetric thermal expansion at ambient pressure.

221	Fitting the <i>P-V-T</i> data to the HTBM (1) yielded $K_{T0} = 111(1)$ GPa, $K_{T'0} = 4.1(1)$,
222	$(\partial K_0 / \partial T)_P = -0.008$ (5) GPa K ⁻¹ and $\alpha_T (K^{-1}) = 4(1) \times 10^{-5} + 2(3) \times 10^{-8} T$. In view of the
223	relatively low temperature range (298-700 K in this study) and limited
224	high-temperature data, α_T is often assumed to be constant over the temperature range
225	i.e. $\alpha_T = \alpha_0$ (e.g., Nishihara et al., 2003; Xu et al., 2016). Therefore, the <i>P</i> - <i>V</i> - <i>T</i> data
226	were also fitted by constraining $\alpha_T = \alpha_0$, which yielded $K_{T0} = 111(1)$ GPa, $K_{T'0} =$
227	4.1(1), $(\partial K_0/\partial T)_P = -0.008$ (5) GPa K ⁻¹ and $\alpha_T(K^{-1}) = 5.1(3) \times 10^{-5}$. The K_{T0} values
228	derived from high-temperature and pressure data are in excellent agreement with that
229	from EoS fit at ambient temperature ($K_{T0} = 111(1)$ GPa).

230

231 Comparison with previous studies

Due to the compositional complexity of augite, it is necessary to evaluate the effects 232 of cation substitutions on polyhedral compressions. Here we compared the polyhedral 233 compressions of augite and other important clinopyroxene end-members including 234 jadeite [NaAlSi₂O₆], diopside [CaMgSi₂O₆], hedenbergite [CaFe²⁺Si₂O₆] and aegirine 235 [NaFe³⁺Si₂O₆], all of which have C2/c symmetry. In these pyroxenes the M2 site is 236 normally occupied by Ca^{2+} (eight coordinated) and Na^{+} (six coordinated) (Downs, 237 2003), and the Ca²⁺- and Na⁺-polyhedra exhibit about comparable compression below 238 ~8 GPa, above which the Ca^{2+} -polyhedra are more incompressible than Na-polyhedra. 239 Our augite has minor Na and Mg contents in addition to Ca^{2+} occupying the M2 Site, 240 but this substitution does not distinctly change the compression behavior of the 241 Ca^{2+} -dominated polyhedral, as shown in Figure 13(a). In comparison with the M2 site, 242

243	different cations occupying the $M1$ site have distinct effects on the compression of the
244	<i>M</i> 1-octahedon (Figure 13(b)). The <i>M</i> 1 site fully occupied by Al^{3+} is the most
245	incompressible among these clinopyroxenes, while the Mg-octahedron is the most
246	compressible. Fe ²⁺ - and Fe ³⁺ -octahedra have distinctly different compression trends,
247	with the latter being stiffer (McCarthy et al., 2008b), and comparable to the
248	Al ³⁺ -octahedron, while Fe^{2+} is nearer to the Mg ²⁺ -octahedron. The <i>M</i> 1 site of augite
249	in this study is mainly Mg^{2+} -occupied, but has significant contents of Fe^{2+} and Al^{3+} ,
250	and below ~11 GPa the compression of the octahedron is similar to that of
251	Mg^{2+} -octahedron in diopside. Above ~11 GPa, it becomes stiffer and closer to the
252	trend of the Fe^{2+} -octahedron in hedenbergite. The <i>T</i> site is almost fully filled by Si ⁴⁺
253	in most pyroxene minerals, but can contain small amount of Al ³⁺ in augite (e.g., Bindi
254	et al., 2003; Hazen and Finger, 1977). In this study we investigated the effect of the
255	incorporation of Al^{3+} into the <i>T</i> site on the tetrahedral compression. As shown in
256	Figure 13(c), the Al-free end-member $C2/c$ pyroxenes display very similar tetrahedral
257	compression trends, while the compression of the T-tetrahedron augite is notably
258	different, below ~ 13 GPa it also results in the compression trend, however, after that
259	it has a distinct volume drop at ~14 GPa as indicated by the pressure dependences of
260	the O3-O3-O3 angle and the T-O bond lengths (Figures 11 and 14). We also used a
261	second-order BM EOS to calculate the zero-pressure bulk modulus (K_{T0}) values of
262	these T-tetrahedra, and the results suggest that augite has a larger tetrahedral K_{T0}
263	(345(30) GPa) than aegirine (328(22) GPa), hedenbergite (306(16) GPa) and diopside
264	(321(15) GPa), but smaller than jadeite (386(10) GPa). Therefore, the tetrahedral K_{T0}

values of clinopyroxenes depend not only on cations occupying the *T* sites. To summarize, the incorporation of Na⁺ and Mg²⁺ does not significantly change the *M*2-polyhedral compression in augite. The substitutions of Fe²⁺ and Al³⁺ in the *M*1 site, however, cause a distinct *M*1-octahedral compression change after ~11 GPa. The most significant effect of the cation substitution occurs in the *T* site, with an evident tetrahedral volume drop during the compression.

The K_{T0} value of augite (whole crystal) obtained in this work was also compared with 271 272 previous investigations of jadeite, diopside, hedenbergite and aegirine. It is clear that the polyhedral compression is not the only factor that constrains the K_{T0} values of 273 these pyroxenes. Among these C2/c pyroxenes jadeite has the most incompressible 274 *M*1-octahedron and the largest K_{70} value that ranges from 124.5(4) to 136.5(14) GPa 275 (McCarthy et al., 2008a; Nestola et al., 2006; Posner et al., 2014; Zhao et al., 1997), 276 and hedenbergite [CaFe²⁺Si₂O₆] and aegirine [NaFe³⁺Si₂O₆] have nearly identical K_{T0} 277 values (116.1(5)-117(1) GPa) (Downs and Singh, 2006; McCarthy et al., 2008b; 278 Nestola et al., 2006; Zhang et al., 1997; Zhao et al., 1998), even though the 279 Fe^{2+} -octahedron is much more compressible than the Fe^{3+} -octahedron. Previous 280 studies on diopside give a relatively large range of K_{T0} values (104.1(9)-118(1) GPa) 281 (Aleksandrov and Ryzhova, 1961; Levien and Prewitt, 1981; Thompson and Downs, 282 2008; Zhang et al., 1997). In this study, the K_{T0} value (111(1) GPa) of a 283 diopside-dominant augite derived from a BM3 Eos fitting of the P-V data is also 284 within the value range of the pure diopside, although significant Al^{3+} and Fe^{2+} were 285 incorporated in the M1 and T sites. 286

287	Numerous thermal expansion studies have been conducted on pyroxene minerals, and
288	the values of α_T show a large variation range (1.84-9.26×10 ⁻⁵ K ⁻¹) with various
289	compositions and structures (see summarizations in Yang and Prewitt (2000) and
290	Tribaudino and Mantovani (2014)). Augite in this study is diopside-rich and has a α_T
291	value of $5.1(3) \times 10^{-5}$ K ⁻¹ , which is higher than that of previous studies of diopside end
292	member [CaMgSi ₂ O ₆] (3.41-3.44×10 ⁻⁵ K ⁻¹) (Finger and Ohashi, 1976; Richet et al.,
293	1998). The discrepancy is likely due to the compositional difference. Augite in this
294	study has significant contents of Al in the $M1$ and T sites, compared to the end
295	member-diopside. Incorporation of Al was previously regarded as a reason for
296	decrease in the thermal expansion (Tribaudino and Mantovani, 2014).

297

298 Implications

299 Clinopyroxenes are major components of Earth's upper mantle. The (Ca, Mg)-rich clinopyroxenes provide important constraints when modeling the mineralogy of the 300 upper mantle (Frost, 2008). At normal mantle temperature condition clinopyroxes 301 would disappear at transition zone depth because they are dissolved into majorite 302 garnet (Ringwood, 1982). However, clinopyroxenes could survive in subducting slabs 303 to greater depths because the pyroxene-garnet transition would be inhibited at 304 relatively low slab temperatures (Bina, 2013; Nishi et al., 2013; Van Mierlo et al., 305 306 2013). On the other hand, high-pressure experimental studies demonstrate that common Ca and Na-rich clinopyroxenes (with C2/c space group) like diopside 307 308 [CaMgSi₂O₆], hedenbergite [CaFeSi₂O₆] and jadeite [NaAlSi₂O₆] are stable even at

309	very high pressures. Diopside retains its $C2/c$ symmetry to ~50 GPa at room
310	temperature and transforms to the $\beta\text{-}CaMgSi_2O_6$ phase at ~56 GPa (Chopelas and
311	Serghiou, 2002; Plonka et al., 2012). High pressure diffraction and Mössbauer studies
312	of hedenbergite also show that it is stable over 50 GPa until two discontinuities take
313	place at 53 and 68 GPa (Hu et al., 2015; Zhang et al., 1999). Jadeite is also stable at
314	high pressures to 30 GPa (Posner et al., 2014), and the jadeite-diopside solid solution
315	has no phase transition within pressure range of 0-47 GPa (Zhang et al., 2016).
316	Aegirine [NaFe ³⁺ Si ₂ O ₆] also retains its symmetry to ~60 GPa, even though a
317	Na-coordination change induced isosymmetric phase transition takes place at \sim 24
318	GPa (Xu et al., 2016). Based on these studies one can expect that Ca and Na-rich
319	clinopyroxenes within the CaO-Na ₂ O-MgO-Fe ^{$(2+/3+)$} O-Al ₂ O ₃ -SiO ₂ system which are
320	important to the upper mantle and subduction zones, have large pressure ranges of
321	metastabilities (possibly 0-50 GPa at ambient temperature), however extensive studies
322	of the temperature effects are required (e.g., Nishihara et al., 2003; Zhao et al., 1998;
323	Zhao et al., 1997). Among the $C2/c$ clinopyroxenes augite is the most common and
324	occurs in various igneous rocks like basalt, gabbro and peridotite, and also in
325	metamorphic rocks like gneiss, schist and granulite (Banno, 1959; O'Har, 1961; Otten
326	and Buseck, 1987; Rooney et al., 2005; Schlinger and Veblen, 1989; Schorn and
327	Diener, 2016; Takeda et al., 1997; Tracy and Robinson, 1977). In this study the
328	diopside-rich augite was found to be metastable at simultaneously high pressure and
329	temperature to \sim 27 GPa and 700 K. Recently, the topic of metastable preservation of
330	pyroxenes to significant depths in cold slabs has attracted increasing attention, and is

treated as one of the explanations of the stagnations of some subducting slabs near the 331 base of the mantle transition zone (Agrusta et al., 2014; Bina, 2013; King et al., 2015; 332 Nishi et al., 2013; Van Mierlo et al., 2013). The main reason is that pyroxene is the 333 least dense mineral in the pyrolitic assemblage, and the density difference between the 334 slabs and surrounding mantle is a key factor that controls buoyancy, however, other 335 336 factors like viscosity also need to be considered (Agrusta et al., 2014; Nishi et al., 2013). Pyroxenes can survive even at high temperatures, while in contrast, metastable 337 338 olivine can only persist under very cold conditions (Nishi et al., 2008; Nishi et al., 339 2009). Even so, deciphering the effects of metastable pyroxenes on slab dynamics still 340 requires a lot of further measurements, including density and elasticity of relevant 341 minerals at simultaneous high-pressure and temperature conditions. However, such work on pyroxenes is limited (e.g., Akashi et al., 2009; Nishihara et al., 2003; Zhao et 342 343 al., 1998; Zhao et al., 1997), and the pressure range is relatively low compared to transition zone depth. In this study we conducted single-crystal X-ray diffraction 344 measurements on natural augite at simultaneously high-pressure and temperature to 345 \sim 27 GPa and 700 K, simulating conditions within the coldest part of a subducting slab. 346 The diffraction data reveal that augite is metastable within this range of *P*-*T* condition, 347 and the *P*-*V*-*T* data were used to calculate related thermoelastic parameters. 348 To date, numerous seismic studies on subducting slab morphology show that most 349 slabs are denser than the mantle before they sink into the transition zone depths, 350 where the densities of slabs and surrounding mantle become comparable (Figure 15). 351

However, depending on the slab geometry and thermal structure become different,

353	some subducted slabs sink into the lower mantle (e.g., Centre America), while others
354	stagnate (e.g., Tonga) (Fukao and Obayashi, 2013; Fukao et al., 2001; Grand, 2002;
355	Kawakatsu and Yoshioka, 2011; Li et al., 2008; Van der Hilst et al., 1997). Density is
356	the principle factor controlling buoyancy, and the metastable pyroxene is a candidate
357	contributor for slab stagnations (Agrusta et al., 2014; Bina, 2013; King et al., 2015;
358	Nishi et al., 2013; Van Mierlo et al., 2013). To better understand the effect of
359	metastable pyroxenes on the slab dynamics we calculated the density profiles of
360	augite and other common mantle pyroxene minerals along a geotherm that is typical
361	for cold subduction (Ganguly et al., 2009). The third order HTBM equation (formula
362	(1)-(4)) was used, and the minerals and related themoelastic parameters are shown in
363	Table 7. The results comparing the PREM model (Dziewonski and Anderson, 1981)
364	and a Tonga-type slab (Ganguly et al., 2009) are presented in Figure 15. In this Figure
365	$augite \ [(Ca_{0.89}Na_{0.05}Mg_{0.06})(Mg_{0.74}Fe_{0.11}Al_{0.14}Ti_{0.01})(Si_{1.88}Al_{0.12})O_{6.00}] \ and \ aegirine$
366	[NaFe ³⁺ Si ₂ O ₆] are notably denser than other pyroxenes (jadeite [NaAlSi ₂ O ₆], diopside
367	[CaMgSi ₂ O ₆], omphacite [Di ₆₃ Jd ₃₇] and clinoenstatite [Mg ₂ Si ₂ O ₆]) because of their
368	higher Fe contents. At depth above the transition zone these Fe-free pyroxenes have
369	densities closer to PREM pyrolite, while in the transition zone densities of augite and
370	aegirine are more comparable to the PREM. On the other hand, the Tonga-type slab is
371	significantly denser than all of these pyroxenes at depth below ~425 km. One could
372	conclude that the presence of the Fe-rich pyroxenes like augite and aegirine would
373	promote the sinking of slabs into the transition zone at the 410 km discontinuity. At
374	the 660 km boundary as the ringwoodite decomposes into much denser Mg-perovskite

and ferropericlase (Green and Ringwood, 1967; Ito and Takahashi, 1989; Liu, 1976),
the slab and surrounding mantle densities become comparable, based on our
calculations all of these pyroxenes would contribute to the stagnation of the slab if
they are preserved in significant quantities.

379

380 Acknowledgements

This work was performed at GeoSoilEnviroCARS (Sector 13), Partnership for 381 382 Extreme Crystallography program (PX²), Advanced Photon Source (APS), and 383 Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National 384 Science Foundation—Earth Sciences (EAR-1128799) and Department of 385 Energy—Geosciences (DE-FG02-94ER14466). PX^2 program is supported by COMPRES under NSF Cooperative Agreement EAR 11-57758. Use of the 386 387 COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS. This project was 388 supported by the Strategic Priority Research Program (B) of the Chinese Academy of 389 Sciences (XDB 18010401), the National Natural Science Foundation of China (Grant 390 No. 41374107), the Joint Research Fund in Huge Scientific Equipment (U1632112) 391 under cooperative agreement between the National Natural Science Foundation of 392 China and Chinese Academy of Sciences and National Science Foundation under 393 grant EAR1344942. Development of the ATREX software used for data analysis is 394 supported by NSF grant EAR1440005. Use of the Advanced Photon Source was 395 supported by the US Department of Energy, Office of Science, Office of Basic 396

397	Energy Sciences, under Contract No.DE-AC02-06CH11357. J. Xu acknowledges
398	supports from Graduate Student Joint Training Program of the Institute of
399	Geochemistry, Chinese Academy of Sciences.
400	
401	References
402	Agrusta, R., Hunen, J., and Goes, S. (2014) The effect of metastable pyroxene on the
403	slab dynamics. Geophysical research letters, 41(24), 8800-8808.
404	Akaogi, M., and Akimoto, Si. (1977) Pyroxene-garnet solid-solution equilibria in the
405	systems $Mg_4Si_4O_{12}$ - $Mg_3Al_2Si_3O_{12}$ and $Fe_4Si_4O_{12}$ - $Fe_3Al_2Si_3O_{12}$ at high
406	pressures and temperatures. Physics of the Earth and Planetary Interiors,
407	15(1), 90-106.
408	Akashi, A., Nishihara, Y., Takahashi, E., Nakajima, Y., Tange, Y., and Funakoshi,
409	K.i. (2009) Orthoenstatite/clinoenstatite phase transformation in MgSiO3 at
410	high - pressure and high - temperature determined by in situ X - ray
411	diffraction: Implications for nature of the X discontinuity. Journal of
412	Geophysical Research, 114, B04206.
413	Aleksandrov, K., and Ryzhova, T. (1961) The elastic properties of rock forming
414	minerals, pyroxenes and amphiboles. Izv. Acad. Sci. USSR, Geophys. Ser, 9,
415	1339-1344.
416	Angel, R.J. (2000) Equations of state. Reviews in mineralogy and geochemistry,
417	41(1), 35-59.
418	Angel, R.J. (2015) Win_Strain Program for Strain Calculations

(http://www.rossangel.net). 419 Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran 420 module (library) for equation of state calculations. Zeitschrift Fur 421 Kristallographie, 229(5), 405-419. 422 Banno, S. (1959) Aegirinaugites from crystalline schists in Sikoku. Jour. Geol. Soc. 423 424 Japan, 65(770). Bina, C.R. (2013) Mineralogy: Garnet goes hungry. Nature Geosci, 6(5), 335-336. 425 426 Bindi, L., Safonov, O.G., Yapaskurt, V.O., Perchuk, L.L., and Menchetti, S. (2003) 427 Letter. Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, 428 Kokchetav Complex, Kazakhstan: Occurrence, composition and crystal-chemical characterization. American Mineralogist, 88(2-3), 464-468. 429 Chopelas, A., and Serghiou, G. (2002) Spectroscopic evidence for pressure-induced 430 431 phase transitions in diopside. Physics and Chemistry of Minerals, 29(6), 403-408. 432 Clark, J.R., Appleman, D.E., and Papike, J. (1969) Crystal-chemical characterization 433 of clinopyroxenes based on eight new structure refinements. Mineralogical 434 Society of America Special Paper, 2, 31-50. 435 Dera, P., Finkelstein, G.J., Duffy, T.S., Downs, R.T., Meng, Y., Prakapenka, V., and 436 Tkachev, S. (2013a) Metastable high-pressure transformations of 437 orthoferrosilite Fs 82. Physics of the Earth and Planetary Interiors, 221, 15-21. 438 Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M.L., Finkelstein, G.J., 439 Grubor-Urosevic, O., Tschauner, O., Clark, S.M., and Downs, R.T. (2013b) 440

441	High pressure single-crystal micro X-ray diffraction analysis with
442	GSE_ADA/RSV software. High Pressure Research, 33(3), 466-484.
443	Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H.
444	(2009) OLEX2: a complete structure solution, refinement and analysis
445	program. Journal of Applied Crystallography, 42(2), 339-341.
446	Downs, R.T. (2003) Topology of the pyroxenes as a function of temperature,
447	pressure, and composition as determined from the procrystal electron density.
448	American Mineralogist, 88(4), 556-566.
449	Downs, R.T., and Singh, A.K. (2006) Analysis of deviatoric stress from
450	nonhydrostatic pressure on a single crystal in a diamond anvil cell: The case of
451	monoclinic aegirine, NaFeSi ₂ O ₆ . Journal of Physics and Chemistry of Solids,
452	67(9-10), 1995-2000.
453	Dziewonski, A.M., and Anderson, D.L. (1981) Preliminary reference Earth model.
454	Physics of the earth and planetary interiors, 25(4), 297-356.
455	Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007)
456	Toward an internally consistent pressure scale. Proceedings of the National
457	Academy of Sciences of the United States of America, 104(22), 9182-9186.
458	Finger, W., and Ohashi, N.Y. (1976) The thermal expansion of diopside to 800'C and
459	a refinement of the crystal structure at 700" c. American Mineralogist, 61,
460	303-310.
461	Finkelstein, G.J., Dera, P.K., Jahn, S., Oganov, A.R., Holl, C.M., Meng, Y., and
462	Duffy, T.S. (2014) Phase transitions and equation of state of forsterite to 90

463	GPa from single-crystal X-ray diffraction and molecular modeling. American
464	Mineralogist, 99(1), 35-43.
465	Frost, D.J. (2008) The Upper Mantle and Transition Zone. Elements, 4(3), 171-176.
466	Fukao, Y., and Obayashi, M. (2013) Subducted slabs stagnant above, penetrating
467	through, and trapped below the 660 km discontinuity. Journal of Geophysical
468	Research: Solid Earth, 118(11), 5920-5938.
469	Fukao, Y., Widiyantoro, S., and Obayashi, M. (2001) Stagnant slabs in the upper and
470	lower mantle transition region. Reviews of Geophysics, 39(3), 291-323.
471	Ganguly, J., Freed, A.M., and Saxena, S.K. (2009) Density profiles of oceanic slabs
472	and surrounding mantle: Integrated thermodynamic and thermal modeling, and
473	implications for the fate of slabs at the 660km discontinuity. Physics of the
474	Earth and Planetary Interiors, 172(3), 257-267.
475	Grand, S.P. (2002) Mantle shear-wave tomography and the fate of subducted slabs.
476	Philosophical Transactions of the Royal Society of London A: Mathematical,
477	Physical and Engineering Sciences, 360(1800), 2475-2491.
478	Green, D., and Ringwood, A. (1967) The stability fields of aluminous pyroxene
479	peridotite and garnet peridotite and their relevance in upper mantle structure.
480	Earth and Planetary Science Letters, 3, 151-160.
481	Hazen, R.M., and Finger, L.W. (1977) Compressibility and crystal structure of Angra
482	dos Reis fassaite to 52 kbar. Carnegie Institution of Washington Year Book,
483	76, 512–515.
484	Hu, Y., Dera, P., and Zhuravlev, K. (2015) Single-crystal diffraction and Raman

485	spectroscopy of hedenbergite up to 33 GPa. Physics and Chemistry of
486	Minerals, 42, 595-608.
487	Ito, E., and Takahashi, E. (1989) Postspinel transformations in the system Mg2SiO4
488	- Fe2SiO4 and some geophysical implications. Journal of Geophysical
489	Research: Solid Earth, 94(B8), 10637-10646.
490	Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S.,
491	Dubrovinskaia, N., and Dubrovinsky, L. (2012) BX90: A new diamond anvil
492	cell design for X-ray diffraction and optical measurements. Review of
493	Scientific Instruments, 83(12), 125102.
494	Kawakatsu, H., and Yoshioka, S. (2011) Metastable olivine wedge and deep dry cold
495	slab beneath southwest Japan. Earth and Planetary Science Letters, 303(1),
496	1-10.
497	King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the
497 498	King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231-234.
497 498 499	King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231-234.Knight, K.S. (2010) Analytical expressions to determine the isothermal
497 498 499 500	 King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231-234. Knight, K.S. (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for
497 498 499 500 501	 King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231-234. Knight, K.S. (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum
497 498 499 500 501 502	 King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231-234. Knight, K.S. (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529-533.
497 498 499 500 501 502 503	 King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231-234. Knight, K.S. (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529-533. Levien, L., and Prewitt, C.T. (1981) High-pressure structural study of diopside.
497 498 499 500 501 502 503 504	 King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231-234. Knight, K.S. (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529-533. Levien, L., and Prewitt, C.T. (1981) High-pressure structural study of diopside. American Mineralogist, 66(3-4), 315-323.
497 498 499 500 501 502 503 504 505	 King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231-234. Knight, K.S. (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529-533. Levien, L., and Prewitt, C.T. (1981) High-pressure structural study of diopside. American Mineralogist, 66(3-4), 315-323. Li, C., van der Hilst, R.D., Engdahl, E.R., and Burdick, S. (2008) A new global model

507	Geosystems,	9(5)).
-----	-------------	----	----	----

- Liu, L.-G. (1976) The post-spinel phase of forsterite. Nature 262, 770 772.
- 509 McCarthy, A.C., Downs, R.T., and Thompson, R.M. (2008a) Compressibility trends
- 510 of the clinopyroxenes, and in-situ high-pressure single-crystal X-ray 511 diffraction study of jadeite. American Mineralogist, 93(1), 198-209.
- 512 McCarthy, A.C., Downs, R.T., Thompson, R.M., and Redhammer, G.J. (2008b) In
- situ high-pressure single-crystal X-ray study of aegirine, $NaFe^{3+}Si_2O_6$, and the
- role of M1 size in clinopyroxene compressibility. American Mineralogist,
- **515 93(11-12)**, 1829-1837.
- Nestola, F., Ballaran, T.B., Liebske, C., Bruno, M., and Tribaudino, M. (2006)
 High-pressure behaviour along the jadeite NaAlSi2O6-aegirine NaFeSi₂O₆
 solid solution up to 10 GPa. Physics and Chemistry of Minerals, 33(6),
 417-425.
- Nishi, M., Kato, T., Kubo, T., and Kikegawa, T. (2008) Survival of pyropic garnet in
 subducting plates. Physics of the Earth and Planetary Interiors, 170(3),
 274-280.
- Nishi, M., Kubo, T., and Kato, T. (2009) Metastable transformations of eclogite to
 garnetite in subducting oceanic crust. Journal of mineralogical and
 petrological sciences, 104(3), 192-198.
- Nishi, M., Kubo, T., Ohfuji, H., Kato, T., Nishihara, Y., and Irifune, T. (2013) Slow
 Si–Al interdiffusion in garnet and stagnation of subducting slabs. Earth and
 Planetary Science Letters, 361, 44-49.

529	Nishihara, Y., Takahashi, E., Matsukage, K., and Kikegawa, T. (2003) Thermal
530	equation of state of omphacite. American Mineralogist, 88(1), 80-86.
531	O'HAR, M. (1961) Petrology of the Scourie dyke, Sutherland. Mineralogical.
532	Magazine, 32, 848-865.
533	Ohashi Y. (1982) STRAIN, a program to calculate the strain tensor from two sets of
534	unit-cell parameters. In: Hazen R.M., Finger L.W, (eds.) Comparative crystal
535	chemistry, Wiley, New York, pp. 92- 102.
536	Otten, M.T., and Buseck, P.R. (1987) TEM study of the transformation of augite to
537	sodic pyroxene in eclogitized ferrogabbro. Contributions to Mineralogy and
538	Petrology, 96(4), 529-538.
539	Plonka, A.M., Dera, P., Irmen, P., Rivers, M.L., Ehm, L., and Parise, J.B. (2012) β -
540	diopside, a new ultrahigh - pressure polymorph of $CaMgSi_2O_6$ with six -
541	coordinated silicon. Geophysical Research Letters, 39(24).
542	Posner, E.S., Dera, P., Downs, R.T., Lazarz, J.D., and Irmen, P. (2014) High-pressure
543	single-crystal X-ray diffraction study of jadeite and kosmochlor. Physics and
544	Chemistry of Minerals, 41(9), 695-707.
545	Richet, P., Mysen, B.O., and Ingrin, J. (1998) High-temperature X-ray diffraction and
546	Raman spectroscopy of diopside and pseudowollastonite. Physics and
547	Chemistry of Minerals, 25(6), 401-414.
548	Ringwood, A.E. (1982) Phase transformations and differentiation in subducted
549	lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal
550	evolution. The Journal of Geology, 611-643.

551	Rivers, M., Prakapenka, V.B., Kubo, A., Pullins, C., Holl, C.M., and Jacobsen, S.D.
552	(2008) The COMPRES/GSECARS gas-loading system for diamond anvil
553	cells at the Advanced Photon Source. High Pressure Research, 28(3), 273-292.
554	Robinson, K., Gibbs, G., and Ribbe, P. (1971) Quadratic elongation: a quantitative
555	measure of distortion in coordination polyhedra. Science, 172(3983), 567-570.
556	Rooney, T.O., Furman, T., Yirgu, G., and Ayalew, D. (2005) Structure of the
557	Ethiopian lithosphere: Xenolith evidence in the Main Ethiopian Rift.
558	Geochimica et Cosmochimica Acta, 69(15), 3889-3910.
559	Schlinger, C.M., and Veblen, D.R. (1989) Magnetism and transmission electron
560	microscopy of Fe - Ti oxides and pyroxenes in a granulite from Lofoten,
561	Norway. Journal of Geophysical Research: Solid Earth, 94(B10),
562	14009-14026.
563	Schorn, S., and Diener, J.F. (2016) Details of the gabbro-to-eclogite transition
564	determined from microtextures and calculated chemical potential
565	relationships. Journal of Metamorphic Geology. doi: 10.1111/jmg.12220
566	Sheldrick, G.M. (2007) A short history of SHELX. Acta Crystallographica Section A:
567	Foundations of Crystallography, 64(1), 112-122.
568	Shinmei, T., Tomioka, N., Fujino, K., Kuroda, K., and Irifune, T. (1999) In situ X-ray
569	diffraction study of enstatite up to 12 GPa and 1473 K and equations of state.
570	American Mineralogist, 84, 1588-1594.
571	Takeda, H., Yugami, K., Bogard, D., and Miyamoto, M. (1997)
572	Plagioclase-augite-rich gabbro in the Caddo County IAB iron, and the missing

573	basalts associated with iron meteorites. Lunar and Planetary Science
574	Conference, 28, p. 409.
575	Thompson, R.M., and Downs, R.T. (2008) The crystal structure of diopside at
576	pressure to 10 GPa. American Mineralogist, 93(1), 177-186.
577	Tracy, R., and Robinson, P. (1977) Zoned titanian augite in alkali olivine basalt from
578	Tahiti and the nature of titanium substitutions in augite. American
579	Mineralogist, 62(7-8), 634-645.
580	Tribaudino, M., and Mantovani, L. (2014) Thermal expansion in C2/c pyroxenes: a
581	review and new high-temperature structural data for a pyroxene of
582	composition $(Na_{0.53}Ca_{0.47})(Al_{0.53}Fe_{0.47})Si_2O_6$ $(Jd(53)Hd(47))$. Mineralogical
583	Magazine, 78(2), 311-324.
584	Tribaudino, M., Nestola, F., Bruno, M., Ballaran, T.B., and Liebske, C. (2008)
585	Thermal expansion along the $NaAlSi_{(2)}O_{(6)}$ - $NaFe^{(3+)}Si_{(2)}O_{(6)}$ and
586	$NaAlSi_{(2)}O_{(6)}$ - $CaFe^{(2+)}Si_{(2)}O_{(6)}$ solid solutions. Physics and Chemistry of
587	Minerals, 35(5), 241-248.
588	Ullrich, A., Miletich, R., Balic-Zunic, T., Olsen, L., Nestola, F., Wildner, M., and
589	Ohashi, H. (2010) (Na, Ca)(Ti ³⁺ , Mg) Si ₂ O ₆ -clinopyroxenes at high pressure:
590	influence of cation substitution on elastic behavior and phase transition.
591	Physics and Chemistry of Minerals, 37(1), 25-43.
592	Van der Hilst, R., Widiyantoro, S., and Engdahl, E. (1997) Evidence for deep mantle
593	circulation from global tomography. Nature, 386, 578-584.

Van Mierlo, W., Langenhorst, F., Frost, D., and Rubie, D. (2013) Stagnation of

595	subducting slabs in the transition zone due to slow diffusion in majoritic
596	garnet. Nature Geoscience, 6(5), 400-403.
597	Xu, J., Kuang, Y., Zhang, B., Liu, Y., Fan, D., Li, X., and Xie, H. (2016) Thermal
598	equation of state of natural tourmaline at high pressure and temperature.
599	Physics and Chemistry of Minerals, 43(5), 315-326.
600	Xu, J., Zhang, D., Fan, D., Downs, RT., Hu, Y., Dera, P. (2016) Isosymmetric
601	pressure-induced bonding increase changes compression behavior of
602	clinopyroxenes across jadeite-aegirine solid solution in subduction zones.
603	Journal of Geophysical Research: Solid Earth (Under review)
604	Yang, H., and Prewitt, C.T. (2000) Chain and layer silicates at high temperatures and
605	pressures. Reviews in Mineralogy and Geochemistry, 41(1), 211-255.
606	Zhang, D., Hu, Y., and Dera, P.K. (2016) Compressional behavior of omphacite to
607	47 GPa. Physics and Chemistry of Minerals, 1-9.
608	Zhang, J.S., Dera, P., and Bass, J.D. (2012) A new high-pressure phase transition in
609	natural Fe-bearing orthoenstatite. American Mineralogist, 97(7), 1070-1074.
610	Zhang, L., Ahsbahs, H., Hafner, S.S., and Kutoglu, A. (1997) Single-crystal
611	compression and crystal structure of clinopyroxene up to 10 GPa. American
612	Mineralogist, 82(3), 245-258.
613	Zhang, L., Stanek, J., Hafner, S., Ahsbahs, H., Grünsteudel, H., and Metge, J. (1999)
614	57Fe nuclear forward scattering of synchrotron radiation in hedenbergite
615	CaFeSi2O6 at hydrostatic pressures up to 68 GPa. American Mineralogist,
616	84(3), 447-453.

617	Zhao, Y., Dreele, R.V., Zhang, J., and Weidner, D. (1998) Thermoelastic Equation of
618	State of Monoclinic Pyroxene: CaMgSi2O6 Diopside. The Reviewof High
619	Pressure Science and Technology, 7, 25-27.
620	Zhao, Y., Von Dreele, R.B., Shankland, T.J., Weidner, D.J., Zhang, J., Wang, Y., and
621	Gasparik, T. (1997) Thermoelastic equation of state of jadeite NaAlSi ₂ O ₆ : An
622	energy - dispersive Reitveld Refinement Study of low symmetry and multiple
623	phases diffraction. Geophysical Research Letters, 24(1), 5-8.
624	
625	
626	Figure 1 Normalized unit cell volume and lattice parameters $(a, b \text{ and } c)$ of augite as
627	a function of pressure at room temperature. The error bars of the data points are
628	smaller than the symbols.
629	Figure 2 Pressure dependence of β angle at ambient temperature. The error bars of
630	the data points are smaller than the symbols.
631	Figure 3 Eulerian strain-normalized pressure $(F_E - f_E)$ plot of unit cell volume.
632	Figure 4 The orientation of the representation quadric for the isothermal
633	compressibility tensor of augite at 26.65 GPa, viewd down b .
634	Figure 5 Pressure dependences of $M1O_6$, $M2O_8$ and TO_4 polyhedral volumes. The
635	error bars of the data points are smaller than the symbols.
636	Figure 6 Pressure dependences of the polyhedral and unit-cell volumes. The error
637	bars of the data points are smaller than the symbols.
638	Figure 7 Pressure dependences of distortion indices of different polyhedral.

639	Figure 8 Pressure dependences of the $M2$ -O bond lengths in $M2O_8$ polyhedron.
640	Figure 9 Pressure dependences of the $M1$ -O bond lengths in $M1O_6$ polyhedron
641	Figure 10 An illustration of the O3-O3-O3 angle.
642	Figure 11 Tetrahedral chains kinking as described by O3-O3-O3 angle as a function
643	of pressure.
644	Figure 12 The unit-cell volume as a function of pressure and temperature.
645	Figure 13 Polyhedral volumes as a function of pressure in jadeite (Posner et al., 2014),
646	aegirine (McCarthy et al., 2008b), hedenbergite (Zhang et al., 1997), diopside
647	(Thompson and Downs, 2008) and augite (This study). (a), (b) and (c) are
648	M2-polyhedron, M1-octahedron and T-tetrahedron, respectively.
649	Figure 14 Pressure dependences of the <i>T</i> -O bond lengths in <i>T</i> O ₄ polyhedron.
650	Figure 15 Calculated density profiles of augite as well as other common
651	clinopyroxenes to ~800 km, and the PREM (Dziewonski and Anderson, 1981) model
652	and the density profile of a Tonga-type slab (Ganguly et al., 2009) are also showed.
653	(Color online).

<i>T</i> (K)	P (GPa)	a (Å)	b (Å)	<i>c</i> (Å)	β (°)	$V(Å^3)$	ρ (g/cm ³)
298	0.0001	9.719(1)	8.880(1)	5.2636(4)	106.11(1)	436.4(1)	3.327
298	1.05(5)	9.718(3)	8.808(4)	5.2497(7)	105.96(1)	432.0(3)	3.361
298	3.65(7)	9.644(3)	8.747(4)	5.2108(7)	105.64(1)	423.3(2)	3.430
298	6.55(4)	9.569(3)	8.671(4)	5.1712(7)	105.37(1)	413.7(2)	3.510
298	8.30(4)	9.527(3)	8.640(4)	5.1516(7)	105.24(1)	409.2(2)	3.549
298	11.40(3)	9.474(3)	8.560(4)	5.1184(7)	105.06(1)	400.8(2)	3.623
298	14.25(2)	9.429(3)	8.479(4)	5.0894(7)	104.92(1)	393.1(2)	3.694
298	17.55(1)	9.383(3)	8.399(4)	5.0615(7)	104.75(1)	385.7(2)	3.765
298	20.35(2)	9.339(3)	8.354(4)	5.0409(7)	104.66(1)	380.5(2)	3.816
298	23.85(1)	9.300(3)	8.283(4)	5.0120(7)	104.56(1)	373.7(2)	3.886
298	26.65(2)	9.265(3)	8.229(4)	4.9882(7)	104.45(1)	368.3(2)	3.943
500	6.05(2)	9.613(4)	8.740(8)	5.1876(23)	105.88(5)	419.2(5)	3.464
500	6.65(2)	9.600(4)	8.720(7)	5.1809(21)	105.96(5)	417.0(4)	3.482
500	7.15(1)	9.596(4)	8.710(4)	5.1725(19)	106.01(4)	415.5(4)	3.495
500	7.78(2)	9.550(4)	8.697(6)	5.1679(15)	105.30(3)	414.0(4)	3.508
500	8.25(1)	9.577(4)	8.688(9)	5.1612(20)	106.04(5)	412.7(5)	3.519
500	12.20(2)	9.460(3)	8.638(13)	5.1204(13)	105.22(2)	402.4(6)	3.609
500	23.60(1)	9.326(5)	8.453(23)	5.0101(18)	106.82(3)	378.1(4)	3.841
700	5.40(1)	9.615(3)	8.816(6)	5.2162(7)	105.79(1)	425.5(3)	3.413
700	6.20(3)	9.578(3)	8.825(6)	5.2064(8)	105.67(1)	423.7(3)	3.427
700	7.00(3)	9.592(3)	8.770(6)	5.1947(6)	105.90(1)	420.3(3)	3.455
700	8.35(4)	9.568(3)	8.749(6)	5.1782(6)	106.00(1)	416.7(3)	3.485
700	9.45(5)	9.520(4)	8.710(6)	5.1664(7)	105.33(1)	413.1(3)	3.515

Table 1 Unit cell parameters and densities of augite at various temperatures and pressures

700	10.85(3)	9.495(3)	8.675(4)	5.1484(6)	105.24(1)	409.2(2)	3.549
700	11.70(3)	9.525(4)	8.659(5)	5.1407(7)	106.17(1)	407.2(3)	3.566
700	13.05(1)	9.471(4)	8.594(7)	5.121(16)	105.03(3)	402.5(4)	3.608
700	19.95(2)	9.432(3)	8.485(10)	5.0558(14)	106.42(2)	388.1(5)	3.742
700	24.35(1)	9.302(4)	8.386(16)	5.0217(18)	104.67(3)	379.0(7)	3.831

Pressure (GPa)	0.0001	1.05(5)	3.65(7)	6.55(4)	8.30(4)	11.40(3)
<i>R</i> _{int} (%)	5.19	7.21	6.24	5.57	5.75	5.56
R_1 (all reflections, %)	3.69	3.77	3.82	3.40	2.93	2.61
<i>R</i> ₁ (Fo>4sig(Fo), %)	3.69	3.77	3.82	3.40	2.93	2.61
wR_2 (all reflections, %)	9.35	10.31	9.45	8.92	7.52	6.69
Goodness of fit	1.052	1.073	0.996	1.061	1.067	1.047
No. of total reflections	3196	564	625	592	556	537
No. of reflections (Fo> 4sig(Fo))	749	181	197	182	154	145
No. of fitting parameters	32	32	32	32	32	32
Pressure (GPa)	14.25(2)	17.55(1)	20.35(2)	23.85(1)	26.65(2)	
Pressure (GPa) <i>R_{int}</i> (%)	14.25(2) 5.50	17.55(1) 6.31	20.35(2) 5.85	23.85(1) 5.34	26.65(2) 7.20	
Pressure (GPa) R_{int} (%) R_1 (all reflections, %)	14.25(2) 5.50 3.46	17.55(1) 6.31 4.26	20.35(2) 5.85 3.23	23.85(1) 5.34 4.02	26.65(2) 7.20 4.23	
Pressure (GPa) R_{int} (%) R_1 (all reflections, %) R_1 (Fo> 4sig (Fo), %)	14.25(2) 5.50 3.46 3.46	17.55(1) 6.31 4.26 4.22	20.35(2) 5.85 3.23 3.23	23.85(1) 5.34 4.02 4.02	26.65(2) 7.20 4.23 4.23	
Pressure (GPa) R_{int} (%) R_1 (all reflections, %) R_1 (Fo> 4sig (Fo), %) wR_2 (all reflections, %)	14.25(2) 5.50 3.46 3.46 8.22	17.55(1) 6.31 4.26 4.22 9.98	20.35(2) 5.85 3.23 3.23 7.61	23.85(1) 5.34 4.02 4.02 9.96	26.65(2) 7.20 4.23 4.23 10.51	
Pressure (GPa) R_{int} (%) R_1 (all reflections, %) R_1 (Fo> 4sig (Fo), %) wR_2 (all reflections, %)Goodness of fit	14.25(2) 5.50 3.46 3.46 8.22 1.091	17.55(1) 6.31 4.26 4.22 9.98 1.062	20.35(2) 5.85 3.23 3.23 7.61 1.077	23.85(1) 5.34 4.02 4.02 9.96 1.032	26.65(2) 7.20 4.23 4.23 10.51 1.030	
Pressure (GPa) R_{int} (%) R_1 (all reflections, %) R_1 (Fo> 4sig (Fo), %) wR_2 (all reflections, %)Goodness of fitNo. of total reflections	14.25(2) 5.50 3.46 3.46 8.22 1.091 534	17.55(1) 6.31 4.26 4.22 9.98 1.062 509	20.35(2) 5.85 3.23 3.23 7.61 1.077 487	23.85(1) 5.34 4.02 4.02 9.96 1.032 501	26.65(2) 7.20 4.23 4.23 10.51 1.030 488	
Pressure (GPa) R_{int} (%) R_1 (all reflections, %) R_1 (Fo> 4sig (Fo), %) wR_2 (all reflections, %)Goodness of fitNo. of total reflectionsNo. of reflections (Fo> 4sig (Fo))	14.25(2) 5.50 3.46 3.46 8.22 1.091 534 142	17.55(1) 6.31 4.26 4.22 9.98 1.062 509 128	20.35(2) 5.85 3.23 3.23 7.61 1.077 487 113	23.85(1) 5.34 4.02 4.02 9.96 1.032 501 117	26.65(2) 7.20 4.23 4.23 10.51 1.030 488 105	

Table 2 Structural refinement details of augite at different pressures to 26.65 GPa

Pressure (GPa)	0.0001	1.05(5)	3.65(7)	6.55(4)	8.30(4)	11.40(3)	14.25(2)	17.55(1)	20.35(2)	23.85(1)	26.65(2)
M2											
X	0	0	0	0	0	0	0	0	0	0	0
У	0.30145(8)	0.3018(3)	0.3028(3)	0.3038(3)	0.3049(3)	0.3056(2)	0.3070(3)	0.3076(4)	0.3085(3)	0.3093(4)	0.3105(4)
Z	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
Uiso	0.0102(2)	0.0134(8)	0.0129(7)	0.0123(6)	0.0123(8)	0.0132(8)	0.0085(7)	0.0093(9)	0.0090(7)	0.0118(8)	0.0110(11)
M1											
Х	0	0	0	0	0	0	0	0	0	0	0
У	0.9074(1)	0.9079(5)	0.9083(4)	0.9091(4)	0.9105(4)	0.9111(3)	0.9109(4)	0.9117(6)	0.9121(5)	0.9117(5)	0.9107(7)
Z	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
Uiso	0.0090(2)	0.0143(11)	0.0134(9)	0.0127(9)	0.0154(11)	0.0163(10)	0.0104(8)	0.0119(10)	0.0112(10)	0.0108(10)	0.0129(13)
Т											
X	0.28717(7)	0.2867(2)	0.2869(2)	0.2869(2)	0.2868(2)	0.2867(1)	0.2865(2)	0.2866(3)	0.2860(2)	0.2848(3)	0.2863(3)
У	0.09319(6)	0.0944(3)	0.0944(2)	0.0947(2)	0.0953(3)	0.0958(2)	0.0965(3)	0.0966(3)	0.0975(3)	0.0980(3)	0.0989(4)
Z	0.2290(1)	0.2281(2)	0.2278(2)	0.2270(2)	0.2273(2)	0.2273(2)	0.2277(2)	0.2287(3)	0.2285(3)	0.2287(3)	0.2303(4)
Uiso	0.0066(1)	0.0097(7)	0.0102(6)	0.0103(7)	0.0121(8)	0.0095(7)	0.0081(6)	0.0093(8)	0.0097(7)	0.0096(10)	0.0100(10)
01											
X	0.1147(2)	0.1146(5)	0.1143(5)	0.1135(4)	0.1125(5)	0.1122(3)	0.1132(5)	0.1118(7)	0.1120(5)	0.1106(7)	0.1098(8)
У	0.0865(2)	0.0868(8)	0.0880(7)	0.0878(6)	0.0889(8)	0.0879(6)	0.0887(6)	0.0909(7)	0.0898(6)	0.0904(8)	0.0895(9)
Z	0.1397(3)	0.1405(7)	0.1398(5)	0.1393(6)	0.1394(5)	0.1393(4)	0.1391(7)	0.1396(9)	0.1408(7)	0.1396(8)	0.1379(10)
Uiso	0.0095(3)	0.0094(9)	0.0093(7)	0.0100(7)	0.0095(7)	0.0091(6)	0.0084(8)	0.0093(11)	0.0108(11)	0.0115(14)	0.0082(16)
02											
Х	0.3619(2)	0.3610(7)	0.3592(5)	0.3591(5)	0.3592(6)	0.3577(4)	0.3568(5)	0.3567(7)	0.3564(6)	0.3554(6)	0.3577(7)
У	0.2517(2)	0.2512(8)	0.2539(7)	0.2563(6)	0.2576(8)	0.2602(7)	0.2591(6)	0.2609(7)	0.2618(7)	0.2654(9)	0.2710(11)
Z	0.3192(4)	0.3203(8)	0.3216(6)	0.3230(6)	0.3249(6)	0.3273(4)	0.3269(6)	0.3314(8)	0.3324(7)	0.3327(8)	0.3346(10)
Uiso	0.0113(3)	0.0138(11)	0.0125(8)	0.0117(8)	0.0125(8)	0.0117(6)	0.0103(9)	0.0109(11)	0.0152(12)	0.0145(13)	0.0092(17)

Table 3 Fractional coordinates and displacement parameters of atoms in augite at different pressures

03

Х	0.3516(2)	0.3522(6)	0.3533(5)	0.3540(4)	0.3553(5)	0.3559(4)	0.3562(5)	0.3553(6)	0.3576(6)	0.3565(7)	0.3576(8)
у	0.0183(2)	0.0198(7)	0.0214(6)	0.0224(6)	0.0235(7)	0.0227(5)	0.0254(7)	0.0263(7)	0.0281(6)	0.0283(8)	0.0309(10)
Z	0.9952(3)	0.9938(6)	0.9906(6)	0.9877(5)	0.9872(5)	0.9859(4)	0.9854(7)	0.9838(9)	0.9846(8)	0.9847(9)	0.9867(10)
Uiso	0.0101(3)	0.0101(9)	0.0106(7)	0.0106(7)	0.0085(7)	0.0090(6)	0.0094(8)	0.0083(11)	0.0087(11)	0.0095(11)	0.0048(14)

 Table 4 Selected bond lengths (Å) and angles (°), polyhedral volume (Å³) and distortion parameters of augite at ambient and high pressures to

 26.65 GPa. Note: Nomenclature after Zhang et al., (1997).

(a) $M2O_8$ polyhedron

Pressure (GPa)	0.0001	1.05(5)	3.65(7)	6.55(4)	8.30(4)	11.40(3)	14.25(2)	17.55(1)	20.35(2)	23.85(1)	26.65(2)
M2-O1(A1, B1)	2.341(2)	2.336(4)	2.327(6)	2.312(6)	2.297(6)	2.288(5)	2.279(6)	2.241(7)	2.242(7)	2.222(9)	2.222(7)
M2-O2(C2, D2)	2.362(2)	2.347(6)	2.332(4)	2.321(3)	2.311(4)	2.302(3)	2.297(3)	2.275(4)	2.268(4)	2.270(5)	2.262(5)
M2-O3(C1, D1)	2.552(2)	2.549(6)	2.540(5)	2.526(5)	2.514(6)	2.487(4)	2.476(6)	2.470(7)	2.454(7)	2.439(8)	2.427(7)
M2-O3(C2, D2)	2.709(2)	2.680(6)	2.626(5)	2.578(5)	2.545(5)	2.518(4)	2.478(5)	2.451(6)	2.414(6)	2.401(7)	2.370(7)
Mean bond length	2.4909	2.4779	2.4564	2.4342	2.4169	2.3988	2.3825	2.3595	2.3446	2.3328	2.3203
Volume	25.5418	25.2239	24.6351	23.9899	23.5001	22.9983	22.6351	22.0410	21.6447	21.3856	21.0754
Distortion index	0.05605	0.05503	0.05158	0.04835	0.04658	0.04317	0.03964	0.04286	0.03814	0.03725	0.03362

(b) $M1O_6$ octahedron

Pressure (GPa)	0.0001	1.05(5)	3.65(7)	6.55(4)	8.30(4)	11.40(3)	14.25(2)	17.55(1)	20.35(2)	23.85(1)	26.65(2)
M1-O1(A1, B1)	2.114(2)	2.099(7)	2.087(6)	2.059(6)	2.042(6)	2.014(5)	2.010(6)	1.994(8)	1.973(4)	1.960(5)	1.948(5)
M1-O1(A2, B2)	2.045(2)	2.047(3)	2.033(3)	2.018(3)	2.011(3)	2.000(2)	1.993(3)	1.984(4)	1.983(7)	1.965(9)	1.948(8)
M1-O2(C1, D1)	2.029(2)	2.035(8)	2.020(6)	1.997(6)	1.991(7)	1.980(6)	1.976(6)	1.966(8)	1.957(8)	1.931(8)	1.875(8)
Mean bond length	2.0627	2.0604	2.0469	2.0246	2.0147	1.9978	1.9931	1.9813	1.9709	1.9520	1.9239
Volume	11.6003	11.5679	11.3341	10.9632	10.7989	10.5231	10.4555	10.2593	10.0957	9.7793	9.3356
Distortion index	0.01649	0.01248	0.01317	0.01126	0.00907	0.00598	0.00571	0.00524	0.00473	0.00716	0.01696
Quadratic elongation λ	1.0062	1.0056	1.0061	1.0063	1.0066	1.0070	1.0065	1.0075	1.0074	1.0094	1.0117
Bond angle variance σ^2	19.6504	18.5428	19.9639	20.9821	21.9413	23.3730	22.2517	25.7723	25.4550	32.2050	39.1661

(c) TO_4 tetrahedron

Pressure (GPa)	0.0001	1.05(5)	3.65(7)	6.55(4)	8.30(4)	11.40(3)	14.25(2)	17.55(1)	20.35(2)	23.85(1)	26.65(2)
T-O1(C1)	1.612(2)	1.609(5)	1.604(5)	1.600(4)	1.603(5)	1.598(3)	1.581(5)	1.587(7)	1.574(6)	1.570(8)	1.594(9)
T-O2(C1)	1.595(2)	1.572(8)	1.577(6)	1.583(6)	1.585(7)	1.586(6)	1.556(6)	1.560(7)	1.554(8)	1.566(9)	1.586(8)

T-O3(C1)	1.667(1)	1.667(5)	1.665(4)	1.661(4)	1.663(4)	1.661(3)	1.653(4)	1.645(5)	1.647(5)	1.638(6)	1.621(6)
T-O3(C2)	1.688(2)	1.695(5)	1.685(5)	1.674(4)	1.677(5)	1.664(4)	1.666(5)	1.651(6)	1.667(6)	1.660(7)	1.671(7)
Mean bond length	1.6403	1.6359	1.6327	1.6297	1.6321	1.6273	1.6142	1.6107	1.6103	1.6085	1.6180
Volume	2.2457	2.2253	2.2155	2.2027	2.2113	2.1904	2.1384	2.1261	2.1212	2.1145	2.1532
Distortion index	0.02248	0.02779	0.02582	0.02331	0.02326	0.02165	0.02826	0.02314	0.02873	0.02516	0.01711
Quadratic elongation λ	1.0062	1.0074	1.0062	1.0062	1.0065	1.0070	1.0071	1.0064	1.0077	1.0074	1.0068
Bond angle variance σ^2	26.4038	30.2510	25.6264	26.1053	27.2935	28.7848	28.8200	25.9136	31.4456	30.9482	28.9754

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

03-03-03	166.0(1)	164.9(3)	163.6(3)	162.9(3)	162.1(4)	162.7(3)	160.8(4)	160.2(4)	158.9(4)	158.8(4)	157.0(4)
----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Table 5 Linear BM3 fitting parameters and axial compressibilities of the lattice

	а	Ь	С
M ₀ (GPa)	362(24)	250(12)	327(6)
M'	18(4)	9(1)	16(1)
$\beta_0(\text{GPa}^{-1})$	0.0028(2)	0.0040(2)	0.00306(6)

parameters *a*, *b* and *c*

Table 6 Eulerian Strain tensor at different pressures

Pressure	Eulerian fini	te strain along e	ach major axis	Dir	ections of the	major axes re	epresented by	their angle	s with <i>a</i> -, <i>b</i> - a	and c-axes of t	he unit cell la	attice
(GPa)	(Negative	values indicate c	compression)									
	"Soft" axis in	b-axis(ɛ2)	"Hard" axis in	"Soft"	axis in a-c pla	ane(ɛ1)		b -axis($\varepsilon 2$)		"Hard"	' axis in <i>a-c</i> p	lane(E3)
	<i>a</i> - <i>c</i> plane(ε 1)		<i>a-c</i> plane(ϵ 3)									
0.0001	-0.0029(2)	-0.0081(5)	0.0009(3)	58.5(0.0)	90.0(0.0)	164.5(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	148.5(0.0)	90.0(0.0)	105.5(0.0)
1.05(5)	-0.0122(2)	-0.0151(5)	-0.0033(3)	45.3(0.0)	90.0(0.0)	150.9(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	135.3(0.0)	90.0(0.0)	119.1(0.0)
3.65(7)	-0.0216(2)	-0.0238(5)	-0.0080(3)	42.4(0.0)	90.0(0.0)	147.8(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	132.4(0.0)	90.0(0.0)	122.2(0.0)
6.55(4)	-0.0265(2)	-0.0274(5)	-0.0106(3)	40.7(0.0)	90.0(0.0)	145.9(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	130.7(0.0)	90.0(0.0)	124.1(0.0)
8.30(4)	-0.0337(2)	-0.0367(5)	-0.0145(3)	41.8(0.0)	90.0(0.0)	146.8(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	131.8(0.0)	90.0(0.0)	123.2(0.0)
11.40(3)	-0.0399(2)	-0.0461(5)	-0.0181(3)	42.7(0.0)	90.0(0.0)	147.6(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	132.7(0.0)	90.0(0.0)	122.4(0.0)
14.25(2)	-0.0462(2)	-0.0556(5)	-0.0213(3)	43.0(0.0)	90.0(0.0)	147.8(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	133.0(0.0)	90.0(0.0)	122.2(0.0)
17.55(1)	-0.0511(2)	-0.0609(5)	-0.0247(3)	42.2(0.0)	90.0(0.0)	146.8(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	132.2(0.0)	90.0(0.0)	123.2(0.0)
20.35(2)	-0.0569(2)	-0.0694(5)	-0.0283(3)	43.6(0.0)	90.0(0.0)	148.2(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	133.6(0.0)	90.0(0.0)	121.8(0.0)
23.85(1)	-0.0619(2)	-0.0760(5)	-0.0313(3)	44.4(0.0)	90.0(0.0)	148.8(0.0)	90.0(0.0)	0.0(0.0)	90.0(0.0)	134.4(0.0)	90.0(0.0)	121.2(0.0)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Mineral	V_0 (Å ³)	K_{T0} (GPa)	K_{T0}'	$\partial K_0 / \partial_T$	$\alpha_0 \times 10^{-5}$	$\alpha_1 \times 10-8 (K^{-1})$
Jadeite ^a	403.32(8)	124.5(4.0)	5.0(fixed)	-0.016(5)	2.56(22)	0.26(18)
Aegirine ^b	431.5(1)	118(3)	4.2(3)	-0.016(5)	2.64(13)	0
Diopside ^c	438.67(6)	109(4)	4.8(6)	-0.021(4)	2.32(5)	1.88(7)
Omphacite ^d	424.7(7)	126(1)	4.0(fixed)	-0.015(4)	2.2(1)	0
Clinoenstatite ^e	405.0(2.6)	106.9(25.9)	5.3(3.9)	-0.021(10)	2.01(44)	2.1(1.1)
References: a-Zhao et al. (1997); b-Tribaudino et al. (2008) and Xu et al. (2016), note that $\partial K_0/\partial T$ was						
assumed to be the same as in jadeite (no data of $\partial K_0 / \partial T$ for aegirine is currently available); c-Zhao et al.						
(1998); d-Nishihara et al. (2003); e-Shinmei et al. (1999)						

 Table 7 Thermoelastic properties of high pressure minerals used for density calculations.