1 REVISION 2

2

- 3 Secondary minerals associated with Lassen fumaroles and hot springs: implications for
- 4 Martian hydrothermal deposits

5

6

- 7 Lindsay J. McHenry^{1•}
- 8 George L. Carson¹
- 9 Darian T. Dixon^{1,2}
- 10 Christopher L. Vickery¹

11

- ¹Department of Geosciences, University of Wisconsin-Milwaukee, 3209 N. Maryland
- 13 Ave., Milwaukee, WI 53211, U.S.A.
- ¹⁴ ² Present address: Geology Department, Western Washington University, 516 High St,
- 15 Bellingham, WA 98225.

16

17 Corresponding author: <u>lmchenry@uwm.edu</u>. 1 414 229-3951

18

19 For submission to American Mineralogist

- 21 Abstract
- 22 The active hot springs, fumaroles, and mud pots of the southwestern Lassen hydrothermal
- 23 system include a variety of alteration environments, which produce a range of

24 hydrothermal mineral assemblages. Analysis of water, mineral precipitates, altered 25 sediment, and rock samples collected at and near these features at Sulphur Works, 26 Bumpass Hell, Little Hot Springs Valley, and Growler and Morgan Hot Springs reveals 27 conditions ranging from $\sim 100^{\circ}$ C acid-sulfate fumaroles (e.g. Sulphur Works and 28 Bumpass Hell) to near-neutral hot springs (e.g. Growler and Morgan), and includes both 29 oxidizing and reducing conditions. Resulting hydrothermal minerals include a wide variety of sulfates (dominated by Al-sulfates, but also including Fe²⁺, Fe³⁺, Ca, Mg, and 30 31 mixed-cation sulfates), sulfides (pyrite and marcasite), elemental sulfur, and smectite and 32 kaolinite clays. Most altered samples contain at least one silica phase, most commonly 33 quartz, but also including cristobalite, tridymite, and/or amorphous silica. Quartz and 34 other silica phases are not as abundant in the less altered rock samples, thus their 35 abundance in some hydrothermally altered sediment samples suggests a detrital origin, or 36 formation by hydrothermal alteration (either modern or Pleistocene); this requires a high 37 degree of diagenetic (or epigenetic) maturation. These results support a previously 38 identified model that the Lassen hydrothermal system involves the de-coupling of a vapor 39 phase (which becomes acidic as it oxidizes near the surface, producing acid-sulfate 40 fumaroles at higher elevations at Sulphur Works and Bumpass Hell) from the residual 41 near neutral thermal waters that emerge as hot springs at lower elevations (Growler and 42 Morgan). Because both acid-sulfate fumarole and near-neutral sinter-producing hot 43 springs have been invoked to explain the silica-rich deposits observed by the Mars 44 Exploration Rover Spirit near Home Plate in the Columbia Hills on Mars, Lassen can 45 serve as a useful terrestrial analog for comparison.

47 Keywords: Mars, hydrothermal alteration, sulfate minerals, element mobility

48	Introduction and Background
49	The Lassen Hydrothermal System
50	The Lassen hydrothermal system in Northern California is the largest active
51	hydrothermal field in the Cascades, with widespread fumaroles, hot springs, and mud
52	pots (e.g. Ingebritsen et al., 2016). These fluids and gases represent varied temperature,
53	pH, and oxidation conditions, and interact with the dacitic to andesitic host rocks,
54	producing a range of alteration minerals related to variable hydrothermal conditions.
55	
56	Cascade volcanic activity in the Lassen area began ~3.5 Ma ago, with both short-lived
57	calc-alkaline volcanism and longer-term volcanism associated with a series of five
58	volcanic centers, which included both silicic and andesitic products. These longer-lived
59	volcanic centers (Yana, Maidu, Dittmar, Latour, and the still active Lassen) developed
60	hydrothermal systems at various stages during their histories (e.g. John et al., 2005, 2009)
61	but often late, as circulating groundwater was heated by cooling silicic magma at depth
62	(Muffler and Clynne, 2015). Volcanism associated with the Lassen Volcanic Center
63	started about 825,000 years ago with the Rockland caldera complex (825,000 - 611,000
64	yrs) followed by the Brokeoff Volcano ($550,000 - 350,000$ yrs), and finally the Lassen
65	dome field (~ $315,000 - 0$ yrs). In addition to the currently active Lassen hydrothermal
66	system, two relict hydrothermal systems have been identified associated with Brokeoff
67	Volcano. Current active hydrothermal activity is in places superimposed upon the eroded
68	and exposed remnants of these older hydrothermal systems, which can complicate efforts
69	to isolate the effects of the modern hydrothermal system.

71	Currently, acid sulfate fumarole and/or hot water discharge areas include Bumpass Hell,
72	Sulphur Works, the Pilot Pinnacle area, and Little Hot Springs Valley in the southwestern
73	part of the park (with Growler and Morgan Hot Springs several kilometers south beyond
74	the park boundaries), along with Devil's Kitchen, Boiling Springs Lake, Drakesbad Hot
75	Spring, and Terminal Geyser to the southeast (Figure 1). Most are steam-heated acid-
76	sulfate systems, though Drakesbad, Growler, and Morgan Hot Springs discharge more
77	neutral, chlorine-rich hydrothermal fluids and lower Sulphur Works and upper Little Hot
78	Springs Valley have some bicarbonate-dominated springs in addition to their acid-sulfate
79	fumaroles and hot springs (Muffler et al., 1982; Thompson et al., 1985; Clynne et al.,
80	2003). Most of the hydrothermal waters are isotopically consistent with exchanged local
81	meteoric waters suggesting a local source, though some signatures of mantle-derived
82	volatiles (CO ₂ , H ₂ S, N ₂) are observed at Sulphur Works (Janik and McLaren, 2010). The
83	current study focuses on the southwestern hydrothermal system.
84	
85	Prior studies of the Lassen hydrothermal system support a model that links the steam-
86	driven acid-sulfate areas (e.g. Bumpass Hell) and the near-neutral, Cl-rich hot springs
87	(e.g., Morgan and Growler). Muffler et al. (1982), Janik and McLaren (2010), and
88	Ingebritsen et al. (2016) propose a model in which the same heated reservoir of meteoric
89	water is separated at depth by boiling, which partitions the sulfur (as H ₂ S), CO ₂ , and
90	other trace gases into the vapor phase that rises towards the surface. The H_2S is oxidized
91	forming H_2SO_4 as it approaches the surface, and emerges as acid sulfate fumaroles and

springs at higher elevations. Boiling leaves behind hot, neutral pH water enriched in Cl

92

93 that emerges as hot springs at lower elevations (Figure 2). This separation occurs due to

94	differences in solubility of different constituents in thermal water; Cl ⁻ is more soluble in
95	the liquid phase (hot water), whereas CO ₂ , H ₂ S, and other trace gases are strongly
96	partitioned into the vapor phase (steam) (e.g. White et al., 1971). In this model (as
97	applied to the Lassen hydrothermal system), both silica sinter deposits and acid-leached
98	fumarolic residues form from the same system, albeit in much different locations. Little
99	Hot Springs Valley is more complex, with near-neutral pH travertine-depositing hot
100	springs near its headwaters and a combination of acid-sulfate fumaroles and both acidic
101	and near-neutral hot springs further down the drainage.
102	
103	These active hydrothermal centers have altered the surrounding and underlying rock,
104	which for Sulphur Works and Little Hot Springs Valley consists largely of landslide
105	blocks derived from rocks upslope. These blocks are predominantly andesite and in some
106	cases previously hydrothermally altered, either from recent interaction with the modern
107	hydrothermal system (hydrothermal activity extends about 1 km north (upslope) of
108	Sulphur Works) or by previous episodes of hydrothermal alteration associated with
109	Brokeoff Volcano. This older alteration can include pyrite, alunite, kaolinite,
110	pyrophyllite, dickite, and a range of silica phases including quartz (John et al., 2006).
111	Bumpass Hell host rocks include both dacite and andesite (Clynne et al., 2008). Less
112	altered host rocks are also present at a distance (typically tens of meters) from the
113	hydrothermally altered areas, thereby allowing comparison between fresh and altered
114	rock compositions to help reconstruct the patterns and processes of alteration. These
115	patterns, however, could result from multiple episodes of alteration and might not be
116	related exclusively to the active hydrothermal system.

117

118 Hydrothermal deposits in the Columbia Hills, Mars

119 Hydrothermal environments were likely common on Mars (due to evidence of early 120 aqueous activity (e.g. Hynek et al., 2010) and a long record of volcanic activity (e.g. 121 Phillips et al., 2001; Bibring et al., 2006; Robbins et al., 2011), and such environments 122 could have remained habitable long after the surface cooled and desiccated (e.g. Walter 123 & Des Marais, 1993; Schulze-Markuch et al., 2007). However, some hydrothermal 124 environments are more habitable than others, and being able to distinguish between the 125 deposits of hostile acid-sulfate fumarole and more accommodating near-neutral hot 126 spring environments can provide clues to habitability. On Earth life exists in both 127 environments, but the biomass and microbial diversity of near-neutral hot springs can be 128 orders of magnitude higher than that of acid-sulfate fumaroles, while the biota of 129 fumaroles tends to be limited to highly specialized thermophilic extremophiles (e.g. 130 Goorissen et al., 2003; Krebs et al., 2014) which may have evolved from organisms 131 suited to more neutral environments (Yen et al., 2008). Very acidic conditions could pose 132 significant limitations on models for the origin of life (Knoll et al., 2005). Additionally, 133 silica sinters readily encrust biological remains and preserve biologically-mediated 134 textures, preserving a record of past life (e.g. Konhauser et al., 2001; Geptner et al., 2005; 135 Ruff et al., 2016). 136

Opal-A and sulfate-rich deposits in outcrops and soils in Gusev crater's Columbia Hills,
investigated in situ by the Mars Exploration Rover (MER) Spirit, are interpreted to have
formed under a range of hydrothermal conditions. Proposed hydrothermal environments

140	include acid-sulfate fumaroles (e.g. Squyres et al., 2007, 2008; Schmidt et al., 2009),
141	warm acid-sulfate hot springs (Squyres et al., 2008), or near-neutral Cl-rich hot springs
142	(Ruff et al., 2011). Evidence supporting a hydrothermal origin for these deposits includes
143	elevated silica contents (likely a result of sinter precipitation or acid leaching), Ti
144	contents (more consistent with acid leaching), and elevated S, Cl, and Br concentrations
145	often associated with hydrothermal fluids (Squyres et al., 2008; Schmidt et al., 2008; Yen
146	et al., 2008). The presence of Fe-sulfate minerals and the relative abundance of Cl and S
147	(consistent with partitioning between a liquid and vapor phase) suggest acid-sulfate
148	hydrothermal fluids (Squyres et al., 2007, 2008), potentially fumaroles (Squyres et al.,
149	2007; Schmidt et al., 2009), though the depletion of less volatile elements in the altered
150	rock may have required liquids for transport (Squyres et al., 2008). The apparent
151	transport of non-volatile elements (e.g. Al, Na, Fe) in the altered deposits suggests a high
152	water:rock ratio in the Si-rich soils (e.g. Eastern valley soils: Morris et al., 2008, Squyres
153	et al., 2008), but apparently isochemical alteration of other rocks (e.g. Watchtower class,
154	where bulk compositions remain basaltic despite the formation of secondary minerals
155	including goethite, palagonite, and hematite: Morris et al., 2008) suggests lower water-
156	rock ratios (Wang et al., 2008), consistent with vapor phase (potentially fumarolic)
157	alteration.
158	

159 Ruff et al. (2011) argue that the silica-rich deposits adjacent to Home Plate in the

160 Columbia Hills are not consistent with leaching by acid-sulfate fumaroles, but rather

- 161 resulted from precipitation of a silica-rich sinter (dominated by Opal-A) from near-
- 162 neutral fluids. Ruff et al. (2011) and Ruff and Farmer (2016) also use morphology,

163	textures, and stratigraphic position to support a silica-rich sinter origin; the nodular
164	texture associated with high-Si "outcrops" (e.g. Elizabeth Mahon) examined by Spirit
165	more closely resembles terrestrial sinters than acid-sulfate-related residues. Because there
166	are also acid-sulfate related hydrothermal minerals in the vicinity, this would necessitate
167	a diverse set of hydrothermal conditions, either from multiple episodes of hydrothermal
168	activity with different characteristics, or a single, varied hydrothermal system. The
169	interpretation of these deposits depends on our ability to distinguish between the products
170	of alteration under varied hydrothermal conditions, which can be addressed in part by
171	studying analog environments on Earth.
172	
173	Lassen as a Mars analog
174	The Lassen hydrothermal system provides a wide range of hydrothermal environments,
175	including fumaroles, acid-sulfate hot springs and mud pots, and near-neutral, Cl-rich hot
176	springs. This provides an opportunity to assess the diversity of alteration products
177	produced under varied conditions by a single hydrothermal system as it interacts with
178	volcanic rocks, thereby providing a useful comparison to the hydrothermal deposits in
179	the Columbia Hills on Mars.
180	

181 **Objectives**

182 The objectives of this work are to (1) document the hydrothermal phases present at and

- 183 near Lassen fumaroles and hot springs, (2) relate these phases to temperature, pH,
- 184 oxidation state, and other intensive variables of Lassen hydrothermal fluids, (3) assess
- 185 element mobility (leaching, enrichment) during hydrothermal alteration at Lassen, and (4)

- 186 compare these deposits to proposed hydrothermal deposits in the Columbia Hills of
- 187 Gusev crater, Mars.
- 188
- 189

Methods

190 Field methods

191 Fumarole and hot spring sampling was conducted in September-October of 2012, 2013, 192 2014, and 2016. Samples were collected at Sulphur Works, Bumpass Hell, Little Hot 193 Springs Valley, and Growler and Morgan Hot Springs. Samples were selected based on 194 color, texture, and context to cover the entire range of alteration and precipitate deposits 195 observed. Soft precipitates and altered soils were scooped into sample bags; host rocks 196 and coatings on harder rocks were collected using a rock hammer. The appearance and 197 position relative to the nearest thermal feature were described for each sample, along with 198 temperature at the sample site (for samples collected in 2013 and 2014). For samples 199 collected adjacent to liquid water, the temperature and pH of the water were also 200 measured using a thermometer and either pH paper or a Hydrolab Sonde. In 2014, four 201 narrow "pits" were excavated in Little Hot Springs Valley using a hand trowel, to assess 202 variation with depth. All solid samples and their locations are briefly described in Table 203 1; for samples collected in contact with or directly adjacent to liquid water (as indicated 204 in the sample description), the pH of that water is also listed associated with the solid 205 sample. Figure 3 shows examples of sampling sites, with samples indicated. Samples 206 from the four Little Hot Springs Valley pits are attributed to Pits 1-4, with sample depth 207 indicated.

208

209	Water samples were also collected or analyzed in situ using a Hydrolab Sonde (in 2013
210	and 2014). For standing or flowing water under 50° C, the Hydrolab Sonde was inserted
211	directly into the water for in-situ analysis. For water over 50° C, water was collected in a
212	jar that had been rinsed several times with the water to be sampled (pre-contaminated)
213	and allowed to cool (sealed, and full to minimize interaction with the atmosphere) to
214	below 50° C, at which time the Hydrolab Sonde was inserted into the jar for analysis. The
215	Hydrolab data includes pH (accuracy \pm 0.2 pH units), temperature (T, at time of analysis,
216	\pm 0.1 °C), specific conductivity (SpCond, \pm 0.5% of reading + 0.001 mS/cm), resistivity
217	(Res, k Ω /cm), oxidation/reduction potential (ORP, ± 20 mV), salinity (Sal, ± 0.2 parts per
218	thousand), and total dissolved solids (TDS, g/L) (Table 2). The pH sensor on the
219	Hydrolab Sonde failed during the 2014 expedition, thus some pH values reported from
220	that year are approximated from pH papers of overlapping ranges.
221	
222	Laboratory methods
223	Sample preparation and data interpretation for X-ray Diffraction (XRD). Samples
224	were air dried in the lab in aluminum trays for several days. Soft precipitate samples and
225	altered soil samples were then hand-ground in an agate mortar and pestle without liquid

- 226 or heat, to prevent the alteration of temperature-sensitive or soluble minerals. Thin, hard
- 227 coatings were removed and powdered using a dental drill, and rock samples were
- 228 powdered using a tungsten carbide shatterbox. Samples were mounted as random
- 229 powders for X-Ray Diffraction (XRD) and analyzed using a Bruker D8 Focus XRD (Cu
- 230 tube, $0.02^{\circ} 2\theta$ step size, $2 60^{\circ} 2\theta$, 1 second/step) following the methods described in
- 231 McHenry (2009). Mineral phases were identified using Bruker's EVA software, using the

232 International Centre for Diffraction Data Powder Diffraction Files (ICDD PDF) 2 233 database for comparison. This software matches the diffraction pattern measured by the 234 instrument (peak positions and relative peak heights) against the patterns derived from 235 mineral phases for which structural information is available in the database, suggesting 236 likely matches which can be assessed by the user. Qualitative relative abundances were 237 estimated using relative peak heights, and are reported in Tables 3 and 4 as abundant, 238 common, between common and rare, rare, or absent. 239 240 Sample preparation and data interpretation for X-ray Fluorescence. Most alteration, 241 sediment, and substrate samples were also prepared for X-ray Fluorescence (XRF) 242 analysis. Samples were dried overnight at 105° C, then 1 +/-0.003 grams of powdered 243 sample were combined with 10 ± 0.003 grams of a 50:50 lithium metaborate/ tetraborate 244 flux (with integrated LiBr non-wetting agent) and ~1 gram of ammonium nitrate 245 (oxidizer) and fused for ~20 minutes using a Claisse M4 fluxer. Loss on Ignition (LOI) 246 was determined by heating ~ 0.5 grams of each sample (precisely weighed) in a pre-247 ignited ceramic crucible in a muffle furnace at 1050°C for 15 minutes. Where limited 248 material was available, the powdered sample discarded following XRD analysis was used 249 for LOI. Fused beads were then analyzed for major and minor elements using a Bruker 250 S4 Pioneer Wavelength Dispersive (WD) XRF. Data were calibrated using a calibration 251 curve derived from 11 USGS rock standards. More detailed methods, including method-252 related error estimates, can be found in McHenry (2009), updated in Byers et al. (2016). 253

254 The fused bead analyses do not include sulfur (it is partially lost under the fusion 255 conditions used), thus pressed pellets were also analyzed for representative samples for 256 which sufficient material was available. Then, 7.5 grams of dried sample was combined 257 with three Bruker GeoQuant wax binder pellets (0.94 g total) using a shatterbox for 30 258 seconds. This powder was then pressed in a 40 mm die using an Atlas T25 press at 25 259 tons for 1 minute. More details on the methods employed are provided in Byers et al. 260 (2016). These pressed pellets were then analyzed using the Bruker S4 Pioneer, and 261 calibrated using a calibration curve derived from 6 USGS rock standards. Because the 262 precision and reproducibility of the analyses are better for the fused beads (see McHenry 263 et al., 2011), only the sulfur value from the pressed pellet analysis is provided, with the 264 remaining elements reported from the fused bead analysis of the same sample. Note that 265 the reported totals include the elements (as oxides) determined from the fused beads and 266 the LOI value (and not the SO₃ concentration), because SO₃ is partially lost during the 267 fusion (and LOI) process.

268

269 Sample preparation for microscopy (petrographic and SEM)

Select samples of coated rocks, rock coatings, and altered rocks were sent out for
petrographic thin sectioning (polished surface). Thin sections were first examined and
photographed using a petrographic microscope to identify minerals and determine
textures. Four thin sections were then carbon coated and analyzed using a Hitachi S-4800
Field Emission Scanning Electron Microscope (FE-SEM) equipped with a Bruker
Quantax Energy Dispersive Spectroscopy (EDS) system. Secondary electron and

276 Backscattered electron (SE and BSE) imaging provided textural and general

- 277 compositional information, while EDS provided qualitative elemental abundances to aid
- 278 in mineral identification.
- 279
- 280

Results

281 Water samples

282 Surface waters associated with the Lassen hydrothermal system vary in temperature, pH,

and other parameters, as measured using pH paper, a thermometer, and/or the Hydrolab

- sonde (see Table 2). Sulphur Works bubbling hot springs were acidic (pH 2.07-2.33) and
- hot (T 68°-84°C), and varied from oxidizing to slightly reducing (both positive and
- 286 negative ORP values). Bumpass Hell hot springs were acidic (pH 2.02-2.39), warm to hot
- 287 (T 27.1°-88.6°C), and for the most part, reducing. Little Hot Springs Valley showed more
- varied conditions, with both near-neutral hot springs (pH 6.4-6.6, T 65.7-91.0°C) and
- acidic hot springs (pH 1.70-2.20; T 75.0-82.0°C), though all waters were reducing.
- 290 Growler and Morgan Hot Springs, to the south of Lassen Volcanic National Park, were
- 291 near-neutral (pH 7.0-8.1), warm to hot (T 49.6-93.5°C), reducing, and more saline
- 292 (salinity 5.3-6.2 parts per thousand).

293

294 **XRD results**

295 Phases identified in the XRD patterns include a wide range of secondary minerals, listed

296 in Tables 3 (non-sulfates) and 4 (sulfates). Most of the sediment and altered rock samples

- also contain some primary igneous minerals, mainly augite and plagioclase (classified in
- 298 Table 3 as "substrate"). Few sample contain minor K-feldspar, possibly adularia. Silica
- 299 phases, including quartz, tridymite, cristobalite, and amorphous silica, are also

300	widespread and abundant in the altered materials. The sulfate minerals are dominated by
301	Al-rich phases (principally alunogen and alunite) and Fe-rich phases (including jarosite),
302	but also include mixed cation varieties and gypsum. Clay minerals (smectite and/or
303	kaolinite) are also abundant and widespread. Other phases of note include hematite,
304	goethite, pyrite, marcasite, calcite, and halite. Figure 4 shows representative XRD plots
305	for a variety of sample types.

306

307 Silica phases. Quartz is one of the most abundant minerals in most altered samples from 308 Sulphur Works (e.g. L-SW-12-14, Figure 4A), whereas a few samples have amorphous 309 silica or cristobalite and/or tridymite in addition to or instead of quartz. These silica 310 phases (along with microquartz and chalcedony) can be distinguished using their XRD 311 patterns, though less crystalline varieties (e.g. opal-A, opal-C, silicic glasses) show 312 "humps" with few, broad, or no peaks (Graetsch, 1994). At Sulphur Works, only the host 313 rock sample and the three samples of pure alunogen crystal precipitates from the very 314 surface do not contain a silica phase. The lack of quartz in the andesitic Sulphur Works 315 rock sample and its absence or near absence in the three additional less-altered host rock 316 samples collected in 2016 indicates that this phase must be secondary in the altered 317 samples and not a primary igneous mineral, though it might have been derived from 318 previously altered materials resulting from Pleistocene hydrothermal systems (John et al., 319 2006). At Bumpass Hell quartz is less common; although all samples contain at least one 320 silica phase, it can be quartz, cristobalite, tridymite, amorphous silica, or a combination 321 of these (e.g. L-12-BH-3). Quartz is less abundant or absent in the samples with abundant 322 sulfide minerals. Samples from Little Hot Springs Valley did not contain tridymite or

323	cristobalite and only rarely contain amorphous silica, but most samples contained
324	abundant quartz except for calcite-dominated travertines associated with near-neutral
325	bicarbonate hot springs near the headwaters (samples L-LV-14-25, 27, and 29). Near
326	Growler and Morgan Hot Springs, amorphous silica dominates (e.g. L-13-G-2, Figure
327	4D), with quartz and cristobalite observed in only one sample (from a nearby fumarole,
328	which also contained alunite, jarosite, and other sulfate phases typically associated with
329	acidic fluids).
330	
331	Sulfates, sulfides, and native sulfur. Sulfate minerals were observed in all areas of the
332	hydrothermal system, and covered a range of compositions. Al-sulfates were most
333	common (and diverse), though Fe-sulfates were also abundant in some samples. Gypsum
334	was rare, found only in a few samples from Little Hot Springs Valley and Growler and
335	Morgan Hot Springs, often associated with more neutral fluids (e.g. L-13-G-2, Figure
336	4D). Mg-sulfates were not observed, except for possible pickeringite in a few samples
337	from Little Hot Springs Valley (e.g. L-LV-14-16, Figure 4C).
338	
339	Sulfides (pyrite and marcasite) were identified in few samples from Bumpass Hell (e.g.
340	L-12-BH-5, Figure 4B) and Little Hot Springs Valley (associated with more reducing
341	water conditions, indicated by a negative ORP), and absent from samples collected at
342	other sites in this study. Elemental sulfur was observed in some samples collected
343	directly adjacent to fumarole vents at Sulphur Works, Bumpass Hell, and Little Hot
344	Springs Valley.

345

346 XRF results

347	The XRF data for all precipitate, sediment, rock, and substrate samples analyzed are
348	reported in Tables 5 (major elements) and 6 (trace elements). The compositions of the
349	less altered rock samples from Sulphur Works (andesite), Bumpass Hell (weakly altered
350	dacite), and Little Hot Springs Valley (andesite) provide a starting point for determining
351	patterns of element mobility during alteration. Analyses of the three less altered rock
352	samples were plotted on the Le Bas et al. (1986) total alkali-silica diagram to determine
353	rock type; this determination agrees with prior characterization of volcanic rocks from
354	these sites (e.g. Clynne et al., 2008). The substrate sample for Bumpass Hell (L-12-BH-8)
355	was weakly altered, therefore we used an analysis of the Bumpass dacite from Clynne et
356	al. (2008) for comparison. Altered rock and sediment samples from Sulphur Works (acid-
357	sulfate fumarole environment) tend to be elevated in SiO ₂ and depleted in Na ₂ O, MgO,
358	K_2O , and CaO relative to the less altered and esitic substrate (Figures 5 and 6). TiO ₂ and
359	Zr are residually enriched in most but not all altered rock and sediment samples. The
360	concentrations of Fe (all Fe reported as Fe ₂ O ₃) and Al ₂ O ₃ can be enriched, depleted, or
361	preserved depending on which authigenic phases dominate the assemblage.
362	

363 **Petrographic and SEM results**

364 A textural analysis of samples using thin sections illustrates the biogenic nature of some

- 365 precipitated silica coatings, especially at Growler Hot Spring (Figures 7 and 8). EDS
- analysis confirms that the thicker coatings (L-13-G-2 and 3) are mostly silica, with minor
- 367 inclusions of other minerals (a Cl-bearing phase, a Mg-Ca phase, most likely dolomite,
- 368 and likely detrital grains of pyroxene). A coating in a sample from Little Hot Springs

Valley (L-LV-14-14) contains layers of both silica and gypsum. L-BH-12-2 represents an
altered rim of a dacitic block, in which minerals on the outside are more degraded than
those on the interior. Silica phases occur within the groundmass; according to the XRD
results, quartz, tridymite, and cristobalite are all present in this altered rim (the interior
was not analyzed by XRD for comparison).

374

375

Discussion

376 Relationship between alteration minerals and hydrothermal conditions

377 The mineral associations identified can be related to the environmental conditions 378 observed. For example, the more oxidizing conditions observed associated with the acid-379 sulfate fumaroles at Sulphur Works produce sulfates and native sulfur but fewer sulfide minerals, and Fe-bearing alteration phases are dominated by those with Fe^{3+} (e.g. 380 381 jarosite). In contrast, the more reducing Bumpass Hell fumaroles and hot springs produce 382 a wider range of alteration products, including abundant sulfides (pyrite and marcasite), but less abundant sulfates (though the observed Fe-bearing sulfates are Fe³⁺ phases). The 383 384 sulfides were most abundant in fine-grained dark "foams" floating in hot springs and are 385 clearly authigenic precipitates rather than residues from previous hydrothermal episodes. 386 Near-neutral, more saline fluids at Growler Hot Spring are associated with amorphous 387 silica sinter precipitates, with minor gypsum and halite (Figure 4D), two phases that are 388 absent at the sites with more acidic, less saline fluids (e.g. Sulphur Works and Bumpass 389 Hell). Except for gypsum, sulfate minerals observed in this study show an association 390 with acidic conditions. In this study calcite was observed exclusively in travertines 391 associated with the near-neutral thermal waters of upper Little Hot Spring Valley.

392

393 Ephemeral phases- annual variation at Sulphur Works

394	Many of the sulfate minerals observed in the Lassen hydrothermal areas are water soluble
395	and not stable for long time periods under the temperate but wet conditions at Lassen. We
396	collected samples from the same fumarole at Sulphur Works (pictured in Figures 2A and
397	9) during each of our three sampling visits and noted significant changes in the
398	appearance and extent of the precipitated alunogen crystals. In 2012 (sample L-SW-12-4)
399	these precipitates included bundles of fibrous alunogen several cm in length, while in
400	2013 (L-13-SW-1) and 2014 (L-SW-14-03) the same deposit consisted of much smaller
401	crystals and had a much more powdery appearance. XRD analyses revealed only
402	alunogen in 2012 and 2013 samples, and alunogen plus halotrichite and/or pickeringite in
403	2014 samples. While no copiapite was observed in this study, it is possible that this
404	highly unstable Fe-bearing sulfate mineral (e.g. Bigham and Nordstrom, 2000) was
405	initially present, but degraded rapidly as the deposit dried or even after sampling prior to
406	XRD analysis. We noted that the fumarole was less active (emitting less steam) in 2014
407	than in the prior two years, perhaps due to locally drier conditions at the same time of
408	year. These soluble precipitated phases are sensitive to the vigor of the associated
409	fumarole (which was visibly less active in 2014 than in 2012), and to local surface water
410	availability. Day and Allen (1925) first noted seasonal and annual variations in the vigor
411	of Lassen hydrothermal activity.
412	

413 Quartz vs. amorphous silica

414	The presence of crystalline silica phases (quartz, cristobalite, and/or tridymite) in addition
415	to (or instead of) amorphous silica reflects the dacitic to andesitic compositions of the
416	host rock, and could also reveal a significant level of mineralogical maturation. Quartz
417	can be present in dacitic to andesitic substrate material (and has been previously
418	documented in Bumpass Hell dacites), and cristobalite and tridymite can both be formed
419	as high-temperature vapor phases filling vesicles and groundmass microcavities in silicic
420	volcanic rocks (e.g. Pallister et al., 2008). The quartz, tridymite, and cristobalite-rich
421	samples in our study often lacked other primary igneous phases (feldspars and pyroxene),
422	suggesting a secondary or detrital origin for these silica phases, though in altered rock
423	sample L-BH-12-2 a crystalline silica phase is identified in the groundmass associated
424	with plagioclase and pyroxene phenocrysts (Figures 7 and 8). Additionally, the XRD
425	patterns for the less altered rock samples (all of which contained plagioclase and
426	pyroxene minerals) lacked or nearly lacked silica phases. Another possibility is that these
427	silica phases derived from previously altered rocks from the Pleistocene hydrothermal
428	systems, in which quartz is common (e.g. John et al., 2006).
429	
430	One instance in which quartz appears to have originated within the modern hydrothermal
431	environment (rather than from Pleistocene hydrothermal alteration, or through igneous
432	processes) is sample L-LV-14-14. This sample comes from a rock that appeared to have
433	acquired its silica-rich coating in the local environment, as it was found in a stream
434	among many other similar rocks with white coatings on the surfaces facing upwards into
435	the stream (as if they were coated in situ, rather than having been previously coated and
436	transported to this site). The only silica phase identified in the XRD results for this

437 coating is quartz (no amorphous "hump" was observed). SEM analysis (Figure 8) reveals
438 a silica-rich coating with intervals of gypsum, which was also recognized using XRD.
439

440 Previous studies have found that quartz takes ~10,000 years to form from opal-A 441 originally formed in silica sinter environments (e.g. Herdianita et al., 2000), an 442 unreasonably long time frame for currently active fumaroles and hot springs at Lassen. 443 Rodgers et al. (2002, 2004) found that opal-A (formed initially as a silica residue of acid-444 sulfate fumarolic alteration of volcanics) matured to quartz within several thousand to 445 several tens of thousands of years in the Taupo and other volcanic zones of New Zealand, 446 assisted in part by elevated temperatures. However, Lynne et al. (2007) found that in 447 sinter hot spring environments in the Taupo Volcanic Zone, quartz can develop from 448 opal-A on much shorter time scales (centuries, rather than millennia), more consistent 449 with the likely time frame associated with the silicic deposits observed at Lassen. Lynne 450 et al. (2006) further found that opal-A in silica sinters later exposed to fumarolic 451 conditions can begin the transformation to chalcedonic quartz within months. In all these 452 studies, quartz (or chalcedonic quartz) forms from opal-A in a series of steps involving 453 opal-C and opal-CT (e.g. Rodgers et al., 2004), and none involved tridymite or 454 cristobalite (which typically form stably only at higher temperatures, though both have 455 been observed in trace amounts in modern Icelandic sinter: Preston et al., 2008). 456 457 At Lassen, silica phases formed by older hydrothermal systems that affected Brokeoff

437 At Lassen, since phases formed by older hydrothermal systems that affected Brokeoff
 458 Volcano and which have had much longer times (100,000s of years) to recrystallize could
 459 confuse this interpretation, especially for Sulphur Works and upper Little Hot Springs

- 460 Valley where landslide-deposited blocks of this previously altered material make up part
- 461 of the host rock.
- 462

463 Oxidizing vs. reducing environments

464 The variety of hydrothermal minerals observed is closely tied to variable conditions of 465 alteration. At Sulphur Works, where hydrothermal fluids are more oxidizing, sulfur-466 bearing phases are limited to elemental sulfur (near the center of active fumaroles) and 467 sulfate minerals, at least at and near the surface at fumaroles. At Bumpass Hell, where 468 more reduced waters are also present, sulfur-bearing phases include abundant sulfide 469 minerals. Most sulfide-bearing samples also contained minor sulfates (alunite, alunogen, 470 and/or rhomboclase). While some of these sulfide- and sulfate-bearing assemblages could 471 be tied to older episodes of hydrothermal activity, the fine-grained dark sulfide "foam" 472 floating in reducing hot springs also contains some sulfate minerals, likely resulting from 473 oxidation of newly precipitated sulfides in the modern hydrothermal environment. 474 Additionally, the presence of fine-grained sulfide minerals at depth (10s of cm; e.g. L-475 LV-14-23 in Little Hot Springs Valley, Figure 3D) but not at the surface in currently 476 active hydrothermal areas with reducing fluid conditions suggests the precipitation of 477 these phases in the modern environment. Interaction with oxygenated surface water (or 478 the atmosphere) leads to a shallow oxidation front, with fine-grained sulfides present 479 below. The near-neutral and slightly more saline conditions present at Growler Hot 480 Spring resulted in the precipitation of halite along with amorphous silica sinter and minor 481 gypsum.

The species of *Archaea*, bacteria, and algae in the Lassen hydrothermal area play a significant role in the origin of the acid-sulfate systems (e.g. Siering et al., 2006). The redox conditions of the Lassen hydrothermal system are in part due to the actions of sulfur and iron reducing and oxidizing bacteria, which affects the redox state of the fluids even before they reach the surface and are exposed directly to the atmosphere (Siering et al., 2006; Arroyo et al., 2015).

489

490 Element mobility during hydrothermal alteration

491 Most major elements show evidence for leaching, when fumarole-altered samples are

492 compared to less altered rocks (Figures 5, 6, and 10). MgO, CaO, Na₂O, and K₂O are

493 universally depleted, whereas Fe₂O₃ and Al₂O₃ can be either depleted or enriched

494 depending on the secondary mineral assemblage. SiO₂ is enriched in most samples. These

trends are consistent with open-system acid-sulfate leaching, which removes the more

496 mobile cations from the system, residually enriching silica (and in some cases titanium).

497 Samples that retain their Al₂O₃ appear to be either the least altered samples (for example,

498 sediments that retain original substrate mineral assemblages, including augite and

499 plagioclase) or samples with significant clay components.

500

501 Figures 5 and 6 show alteration trends in the form of spider diagrams for the major

502 elements for the altered samples, normalized to the Zr concentration of a local less altered

503 rock sample for three areas (Sulphur Works, Bumpass Hell, and Little Hot Springs

504 Valley). Zr was chosen for normalization because it showed the least variation between

samples at Sulphur Works and is typically conserved during weathering and

506	hydrothermal alteration (e.g. Summa and Verosub, 1992). This was accomplished by
507	normalizing individual major elements using the ratio of Zr in a sample to the ratio of Zr
508	in the most relevant (least altered) rock sample. This normalization to Zr causes some
509	difficulty for Bumpass Hell, where two precipitate samples have exceptionally high Zr
510	(and thus appear more "leached" in the spider diagram). Zirconium is below detection for
511	the precipitated Growler Hot Springs sinter deposits, which are therefore not plotted with
512	the other sites.
513	
514	Silica sinter vs. acid-sulfate silica enrichment. Different parts of the Lassen
515	hydrothermal system exhibit both acid leaching or sinter deposition, which can both
516	produce silica-rich deposits. In acid leached deposits, silica is residually enriched as
517	other, more soluble cations are removed. These altered samples also typically contain
518	elevated TiO_2 concentrations, because Ti is also less mobile under all but the most acidic
519	conditions (e.g. Gray and Coolbaugh, 1994). Altered sediment samples L-LV-14-05 from
520	Little Hot Springs Valley and L-BH-12-3 from Bumpass Hell are classic examples of this
521	type of alteration, consisting of quartz \pm anatase with elevated Si, Ti, and Zr
522	concentrations (Figure 10A). In contrast, in near-neutral hot water environments, silica is
523	precipitated from high temperature fluids, forming texturally discrete coatings on
524	otherwise unrelated substrate rock. These deposits (as exemplified by sample L-13-G 3,
525	which consists mostly of amorphous silica with clear evidence of biogenic precipitation:
526	Figures 7 and 8) are characterized by high SiO ₂ and low TiO ₂ contents (Figure 10B),
527	because Ti is not readily transported by these fluids due to its low solubility. The two
528	isocon diagrams in Figure 10 compare these representative samples of acid-sulfate

529	leached (A) or silica sinter precipitated (B) material against less altered rocks collected at
530	or near the site, to illustrate trends in major element depletion and enrichment for these
531	two end members. We recognize that the locally available less altered rock may not
532	reflect the composition of the rocks from which the hydrothermal fluids originated,
533	however this comparison is still useful for distinguishing between the products of acid-
534	sulfate leaching and sinter precipitation in situations (such as on Mars) when the original
535	environment is unknown.
536	
537	Implications
538	Mineralogical and geochemical comparison between Lassen and Martian
539	hydrothermal alteration
540	Direct comparison between the Lassen hydrothermal area and the Columbia Hills on
541	Mars is complicated by several factors, including a significant difference in substrate
542	composition (dacite and andesite versus high-Fe basalt), the availability of water
543	(abundant snow and rainfall at Lassen), and the availability of free oxygen in the
544	atmosphere to help oxidize surface mineral deposits. While the atmospheric conditions on
545	Mars at the time of formation of the Columbia Hills hydrothermal deposits are poorly
546	constrained, conditions were likely much drier than those of Lassen today. These
547	differences are likely to manifest as: 1) more abundant Al-sulfate phases and less
548	abundant Fe-sulfate phases at Lassen compared to Mars based on bulk compositional
549	differences, 2) better preservation potential for soluble phases on Mars compared to
550	Lassen, because of less availability of surface water, and 3) a dominance of opal-A
551	(rather than more crystalline silica phases) in Martian silica-rich deposits compared to

Lassen hydrothermal deposits, due to either pre-existing crystalline silica in the Lassen
volcanic rocks and soils, or to limited water availability and colder temperatures on Mars,
limiting diagenetic maturation (e.g. Ruff et al., 2011).

555

556	The quartz, tridymite, and cristobalite detected in some hydrothermally-altered Lassen
557	samples could relate to earlier episodes of high-temperature alteration or to the more
558	silica-rich composition of the host rocks (unlike at Gusev crater), though tridymite has
559	recently been identified in silica-rich mudstones investigated by the Mars Science Lab
560	Curiosity rover at Gale crater (Buckskin outcrop of the Murray Formation: Morris et al.,
561	2016). This Buckskin occurrence of abundant well-crystalline tridymite has been
562	interpreted as evidence for silicic volcanism because of the high temperatures typically
563	associated with tridymite formation on Earth, though a fumarolic origin for the original
564	silica enrichment (later heated to allow for tridymite formation) cannot be ruled out (see
565	Getahun et al., 1996, for a terrestrial example), and minor tridymite has been identified
566	associated with silica sinters in Iceland (Preston et al., 2008).
567	
568	The higher concentrations of iron in Mars basalts (especially in the Columbia Hills: 13.2
569	-21.3 wt. % Fe ₂ O ₃ T, McSween et al., 2006) compared to the Lassen dacites and
570	andesites likely contributes to the greater abundance of Fe-sulfate phases observed near
571	Home Plate. Lassen hydrothermal sulfates are instead dominated by Al-rich phases,
572	though minor Fe-sulfates are present. The high solubility of certain Fe-sulfates (e.g.
573	copiapite: Bigham and Nordstrom, 2000) could also affect their relative abundances on a
574	colder, drier Mars and a warmer, wetter Lassen. Mg-sulfate minerals are exceedingly rare

575	at Lassen, likely because of their high solubility (Spencer, 2000), the availability of
576	surface water to remove dissolved cations from the system, and the relatively low
577	concentrations of Mg in the unaltered dacitic and andesitic country rocks.
578	
579	The presence of silica-rich hydrothermal deposits formed by both acid-sulfate leaching
580	(e.g. Sulphur Works and Bumpass Hell) and near-neutral silica sinter precipitation
581	(Growler Hot Spring) provides a useful test for competing hypotheses regarding the
582	formation of the silica-rich soils observed by the Spirit Rover (Squyres et al., 2008; Yen
583	et al., 2008; Ruff et al., 2011). At Lassen, the Growler Hot Springs silica sinter is
584	enriched in silica but significantly depleted in Ti and all other elements compared to the
585	rocks on which they precipitate, while those formed through acid-sulfate leaching in
586	fumarolic environments show enriched (or at least unchanged) Ti concentrations due to
587	residual enrichment of relatively immobile elements.
588	
589	Ti concentrations in silica-rich soils and outcrops near Home Plate on Mars do not appear
590	to be significantly depleted compared to nearby igneous substrate rocks (Squyres et al.,
591	2008; Ruff et al., 2011), with the 90% SiO_2 Kenosha Comets light-toned soil sample
592	showing a 50% enrichment in TiO_2 compared to average basaltic soil (Yen et al., 2008).
593	TiO ₂ is also enriched in Fuzzy Smith, a silica-rich float rock from Home Plate (Ming et
594	al., 2008). These examples would be consistent with the acid-sulfate leaching examples
595	from Lassen. However, some experimental studies have shown that Ti can precipitate (as
596	anatase) from neutral to alkaline solutions sufficiently concentrated in Cl (e.g. Nam et al.,

- 597 1998; Kim et al., 1999); thus, the moderate concentration of Ti alone is insufficient to598 exclude a sinter origin for the Home Plate silica-rich deposits.
- 599

599	
600	If some or all the Home Plate silica-rich deposits did form under near-neutral silica sinter
601	conditions, the Lassen hydrothermal system could serve as an analog for how these
602	conditions can occur as part of the same hydrothermal system as nearby acid-sulfate
603	fumaroles. Sulfate-rich deposits in the vicinity of Home Plate are more consistent with
604	formation under acid-sulfate conditions (e.g. Squyres et al., 2007; Schmidt et al., 2008,
605	2009). While the specific sulfate minerals present in the sulfur-rich soils near Home Plate
606	(e.g. Paso Robles soils) cannot be determined using the tools available to the Spirit rover,
607	interpretation of Mössbauer, APXS, and PanCam data shows that Fe^{3+} and Mg^{2+} rich
608	sulfates likely dominate, along with some possible Ca-sulfate phases (Yen et al., 2008). A
609	hydrothermal system like that at Lassen could allow for both types of deposit to form
610	simultaneously within the same system (though at different locations), without the need
611	to invoke multiple hydrothermal events.
612	
613	
614	Acknowledgements
615	The authors would like to thank the National Park Service for permission to access and

sample hydrothermal areas within Lassen Volcanic National Park, Michael Magnuson at
Lassen park for helping with our permits, safety plan, and site selection, and landowner
Peter H. Seward for permission to access and sample Growler and Morgan Hot Springs.
We also thank Teri Gerard, who assisted with 2012 and 2013 fieldwork and early

620	laboratory analyses, Gabrielle Walters for field assistance in 2012, the Gartons for
621	generously offering the use of their cabin as a base of operations during fieldwork, Weon
622	Shik Han for the use of his Hydrolab Sonde, and Harris Byers for his help developing the
623	XRF sulfur calibration. This paper was greatly improved after insightful and constructive
624	feedback from Steven Ruff, Michael Clynne, and David John. This work was funded by
625	grants from the National Space Grant College and Fellowship Program though the
626	Wisconsin Space Grant Consortium.
627	
628	References
629	Arroyo, F.A., Siering, P.L, Hampton, J.S., McCartney, A., Hurst, M.P., Wolfe, G.V., and
630	Wilson, M.S. (2015). Isolation and characterization of novel iron-oxidizing autotrophic
631	and mixotrophic bacteria from Boiling Springs Lake, an oligotrophic, acidic geothermal
632	habitat. Geomicrobiology Journal, 32, 140-157.
633	
634	Bibring, JP., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet,
635	B., Mangold, N., Pinet, P., Forget, F., and the OMEGA team (2006) Global mineralogical
636	and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400-
637	404.
638	
639	Bigham, J.M., and Nordstrom, D.K. (2000). Iron and aluminum hydroxysulfates from
640	acid sulfate waters. In: Alpers, C.N. et al., Eds. Sulfate Minerals. Reviews in Mineralogy
641	and Geochemistry, V. 40, Mineralogical Society of America, Washington, D.C. pp. 351-
642	403.

644	Byers, H., McHenry, L.J., and Grundl, T.J. (2016) Forty-nine major and trace element
645	concentrations measured in Soil Reference Materials NIST SRM 2586, 2587, 2709a,
646	2710a and 2711a using ICP-MS and Wavelength Dispersive-XRF. Geostandards and
647	Geoanalytical Research, 40, 433-445.
648	
649	Clynne, M.P., Muffler, L.J.P., Siems, D.F., Taggart, J.E. Jr., and Bruggman, P. (2008)
650	Major and EDXRF trace element chemical analyses of volcanic rocks from Lassen
651	Volcanic National Park and vicinity, California. U.S. Geological Survey Open-File
652	Report 2008-1091.
653	
654	Clynne, M.A., Janik, C.J., and Muffler, L.J.P. (2003) "Hot water" in Lassen Volcanic
655	National Park- Fumaroles, steaming ground, and boiling mudpots. U.S. Geological
656	Survey Fact Sheet 101-02.
657	
658	Day, A.L., and Allen, E.T. (1925) The Volcanic Activity and Hot Springs of Lassen
659	Peak. The Carnegie Institution of Washington, Washington, 190pp.
660	
661	Geptner, A.R., Ivanovskaya, T.A., and Pokrovskaya, E.V. (2005). Hydrothermal
662	fossilization of microorganisms at the Earth's surface in Iceland. Lithology and Mineral
663	Resources, 40, 505-520.
664	

665	Getahun, A., Reed, M.H., and Symonds, R. (1996) Mount St. Augustine volcano
666	fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of
667	its formation process. Journal of Volcanology and Geothermal Research, 712, 73-107.
668	
669	Goorissen, H.P., Boschker, H.T., Stams, A.J., and Hansen, T.A. (2003). Isolation of
670	thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud
671	pools, and characterization of Desulfotomaculum solfataricum sp. nov. International
672	Journal of Systematic and Evolutionary Microbiology, 53, 1223-1229.
673	
674	Graetsch, H. (1994). Structural characteristics of opaline and microcrystalline silica
675	minerals. In: Hearney, P.J., Prewitt, C.T., Ginnes, G.V., Eds. Silica: Physical behavior,
676	geochemistry, and materials applications. Reviews in Mineralogy V. 29. Mineralogical
677	Society of America, Washington, D.C., 209-232.
678	
679	Gray, J.E., and Coolbaugh, M.F. (1994). Geology and geochemistry of Summitville,
680	Colorado; an epithermal acid sulfate deposit in a volcanic dome. Economic Geology, 89,
681	1906-1923.
682	
683	Herdianita, N.R., Browne, P.R.L., Rodgers, K.A., and Campbell, K.A. (2000)
684	Mineralogical and textural changes accompanying ageing of silica sinter. Mineralium
685	Deposita, 35, 48–62.

- 687 Hynek, B.M., Beach, M., and Hoke, M.R.T. (2010) Updated global map of Martian
- valley networks and implications for climate and hydrologic processes. Journal of
- 689 Geophysical Research, 115, E09008.
- 690
- 691 Ingebritsen, S.E., Bergfield, D., Clor, L.E., and Evans, W.C. (2016). The Lassen
- hydrothermal system. American Mineralogist, 101, 343-353.
- 693
- Janik, C.J., and McLaren, M.K. (2010) Seismicity and fluid geochemistry at Lassen
- 695 Volcanic National Park, California: Evidence for two circulation cells in the
- hydrothermal system. Journal of Volcanology and Geothermal Research, 189, 257-277.

697

- John, D.A., Rytuba, J.J., Breit, G.N., Clynne, M.A., and Muffler, L.J.P. (2005)
- 699 Hydrothermal alteration in Maidu Volcano: A shallow fossil acid-sulfate magmatic-
- 700 hydrothermal system in the Lassen Peak area, California in Rhoden, H.N., Steininger,
- 701 R.C., and Vikre, P.G., eds., Geological Society of Nevada Symposium 2005: Window to
- 702 the World, Reno, Nevada, May 2005, 295-313.
- 703

```
John, D.A., Breit, G.N., Lee, R.G., Dilles, J.H., Muffler, L.P., and Clynne, M.A. (2006)
```

- 705 Fossil magmatic-hydrothermal systems in Pleistocene Brokeoff Volcano, Lassen
- Volcanic National Park, California. American Geophysical Union, Fall Meeting 2006,
- 707 abstract #V53A-1745.

- John, D.A., Breit, G.N., Lee, R., Dilles, J.H., Calvert, A.T., Muffler, L.J.P., Clynne,
- 710 M.A., and Rye, R.O. (2009) Pleistocene magmatic-hydrothermal systems in the Lassen
- 711 region, northeastern California. Geological Society of America Abstracts with Programs,
- 712 41(7), 525.
- 713
- Kim, S.-J., Park, S.-D., Jeong, Y.H., and Park, S. (1999) Homogeneous precipitation of
- 715 TiO₂ ultrafine powders from aqueous TiOCl₂ solution. Journal of the American Ceramic
- 716 Society, 82, 927-932.
- 717
- 718 Knoll, A.H., Carr, M., Clark, B., Des Marais, D.J., Farmer, J.D., Fischer, W.W.,
- 719 Grotzinger, J.P., McLennan, S.M., Malin, M., Schröder, C., Squyres, S., Tosca, N.J., and
- 720 Wdowiak, T. (2005). An astrobiological perspective on Meridiani Planum, Earth and
- 721 Planetary Science Letters, 240, 179 189.
- 722
- Konhauser, K.O., Phoenix, V.R., Bottrell, S.H., Adams, D.G., and Head, I.M. (2001).
- 724 Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some

725 Precambrian siliceous stromatolites. Sedimentology, 48, 415-433.

- 726
- 727 Krebs, J.E., Vaishampayan, P., Probst, A.J., Tom, L.M., Marteinsson, V.T., Andersen,
- 728 G.L., and Venkateswaran, K. (2014). Microbial Community Structures of Novel
- 729 Icelandic Hot Spring Systems Revealed by PhyloChip G3 Analysis. Astrobiology, 14,
- 730 229-240.

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., and IUGS Subcommission

733	on the Systematics of Igneous Rocks (1986) A chemical classification of volcanic rocks
734	based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750.
735	
736	Lynne, B.Y., Campbell, K.A., Perry, R.S., Browne, P.R.L., and Moore, J.N. (2006).
737	Acceleration of sinter diagenesis in an active fumarole, Taupo volcanic zone, New
738	Zealand. Geology, 34, 749-752.
739	
740	Lynne, B.Y, Campbell, K.A., James, B.J., Browne, P.R.L., and Moore, J. (2007)
741	Tracking crystallinity in siliceous hot-spring deposits. American Journal of Science, 307,
742	612-641.
743	
744	McHenry, L.J. (2009) Element mobility during zeolitic and argillic alteration of volcanic
745	ash in a closed-basin lacustrine environment: Case study Olduvai Gorge, Tanzania.
746	Chemical Geology, 265, 540-552.
747	

- 748 McHenry, L.J., Chevrier, V., and Schröder, C. (2011) Jarosite in a Pleistocene East
- 749 African saline-alkaline paleolacustrine deposit: Implications for Mars aqueous
- 750 geochemistry. Journal of Geophysical Research, 116, E04002.
- 751

- 752 McSween, H.Y., Ruff, S.W., Morris, R.V., Bell, J.F.III, Herkenhoff, K., Gellert, R.,
- 753 Stockstill, K.R., Tornabene, L.L., Squyres, S.W., Crisp, J.A., Christensen, P.R.,

754	McCoy, T.J., Mittlefehldt, D.W., and Schmidt, M. (2006) Alkaline volcanic rocks from
755	the Columbia Hills, Gusev crater, Mars. Journal of Geophysical Research, 101, E09S91.
756	
757	Ming, D.W., Gellert, R., Morris, R.V., Arvidson, R.E., Brückner, J., Clark, B.C., Cohen,
758	B.A., d'Uston, C., Economou, T., Fleischer, I., and others (2008) Geochemical properties
759	of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray
760	Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research,
761	113, E12S39.
762	
763	Morris, R.V., Klingelhöfer, G., Schröder, C., Fleischer, I., Ming, D.W., Yen, A.S.,
764	Gellert, R., Arvidson, R.E., Rodionov, D.S., Crumpler, L.S., and others (2008) Iron
765	mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev
766	crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration
767	Rover. Journal of Geophysical Research, 113, E12S42.
768	
769	Morris, R.V., Vaniman, D.T., Blake, D.F., Gellert, R., Chipera, S.J., Rampe, E.B., Ming,
770	D.W., Morrison, S.M., Downs, R.T., Treiman, A.H., and others (2016) Silicic volcanism
771	on Mars evidenced by tridymite in high-SiO ₂ sedimentary rock at Gale crater.
772	Proceedings of the National Academy of Sciences, 113, 7071–7076.
773	
774	Muffler, L.J.P., and Clynne, M.A. (2015) Geologic field-trip guide to Lassen Volcanic
775	National Park and vicinity, California. USGS Scientific Investigations Report 2015-5067.

777	Muffler, L.J.P., Nehring, N.L., Truesdell, A.H., Janik, C.J., Clynne, M.A., and
778	Thompson, J.M. (1982) The Lassen Geothermal System. Proceedings of the Pacific
779	Geothermal Conference, 1982. University of Auckland, New Zealand, pp. 349-356.
780	
781	Nam, HD., Lee, BH., Kim, SJ., Jung, CH., Lee, JH., and Park, S. (1998)
782	Precipitation of ultrafine crystalline TiO ₂ powders from aqueous TiCl ₄ solution by
783	precipitation. Japanese Journal of Applied Physics, 37, 4603-4608.
784	
785	Pallister, J.S., Thornber, C.R., Cashman, K.V., Clynne, M.A., Lowers, H.A., Mandeville,
786	C.W., Brownfield, I.K., and Meeker, G.P. (2008) Petrology of the 2004–2006 Mount St.
787	Helens lava dome- implications for magmatic plumbing and eruption triggering, chap. 30
788	in Sherrod, D.R., Scott, W.E., and Stauffer, P.H., eds. A volcano rekindled: the renewed
789	eruption of Mount St. Helens, 2004–2006: U.S. Geological Survey Professional Paper
790	1750, p. 647–702.
791	
792	Phillips, R.J., Zuber, M.T., Solomon, S.C., Golombek, M.P., Jakosky, B.M., Banerdt,
793	W.B., Smith, D.E., Williams, R.M.E., Hynek, B.M., Aharonson, O., and Hauck, S.A.
794	(2001). Ancient geodynamics and global-scale hydrology of Mars. Science, 291, 2587-

796

795

2591.

Preston, L.J., Benedix, G.K., Genge, M.J., and Sephton, M.A. (2008). A multidisciplinary
study of silica sinter deposits with applications to silica identification and detection of
fossil life on Mars. Icarus, 198, 331–350.

800

801	Robbins, S.J.; Di Achille, G., and Hynek, B.M. (2011). The volcanic history of Mars:
802	High-resolution crater-based studies of the calderas of twenty volcanoes. Icarus, 211,
803	1179-1203.
804	
805	Rodgers, K.A., Cook, K.L., Browne, P.R.L., and Campbell, K.A. (2002). The
806	mineralogy, texture and significance of silica derived from alteration by steam
807	condensate in three New Zealand geothermal fields. Clay Minerals, 37, 299-322.
808	
809	Rodgers, K.A.; Browne, P.R.L., Buddle, T.F., Cook, K.L., Greatrex, R.A., Hampton,
810	W.A., Herdianita, N.R., Holland, G.R., Lynne, B.Y., Martin, R., Newton, Z., Pastars, D.,
811	Sannazarrob, K.L., and Teece, C.I.A. (2004) Silica phases in sinters and residues from
812	geothermal fields of New Zealand. Earth Science Reviews, 66, 1-61.
813	
814	Ruff, S.W., Farmer, J.D., Calvin, W.M., Herkenhoff, K.E., Johnson, J.R., Morris, R.V.,
815	Rice, M.S., Arvidson, R.E., Bell, J.F.III, Christensen, P.R., and Squyres, S.W. (2011)
816	Characteristics, distribution, origin, and significance of opaline silica observed by the
817	Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, E00F23.
818	
819	Ruff, S.W., and Farmer, J.D. (2016). Silica deposits on Mars with features resembling hot
820	spring biosignatures at El Tatio in Chile. Nature Communications, 7, 13554. doi:
821	10.1038/ncomms13554.

- 823 Schmidt, M.E., Ruff, S.W., McCoy, T.J., Farrand, W.H., Johnson, J.R., Gellert, R., Ming,
- 824 D.W., Morris, R.V., Cabrol, N., Lewis, K.W., and Schroeder, C. (2008) Hydrothermal
- 825 origin of halogens at Home Plate, Gusev Crater. Journal of Geophysical Research, 113,
- 826 E06S12.

- 828 Schmidt, M.E., Farrand, W.H., Johnson, J.R., Schröder, C., Hurowitz, J.A., McCoy, T.J.,
- 829 Ruff, S.W., Arvidson, R.E., Des Marais, D.J., Lewis, K.W., Ming, D.W., Squyres, S.W.,
- 830 and de Souza, P.A.Jr. (2009) Spectral, mineralogical, and geochemical variations across
- 831 Home Plate, Gusev Crater, Mars indicate high and low temperature alteration. Earth and
- 832 Planetary Science Letters, 281, 258-266.
- 833
- 834 Schulze-Makuch, D., Dohm, J.M., Fan, C., Fairén, A.G., Rodriguez, J.A.P., Baker, V.R.,
- and Fink, W. (2007). Exploration of hydrothermal targets on Mars. Icarus, 189, 308-324.
 836
- 837 Siering, P., Clarke, J.M., and Wilson, M.S. (2006) Geochemical and biological diversity
- of acidic, hot springs in Lassen Volcanic National Park: Geomicrobiology, 23, 129-141.
- 839
- 840 Spencer, R.J. (2000). Sulfate minerals in evaporite deposits. In: Alpers, C.N. et al., Eds.
- 841 Sulfate Minerals. Reviews in Mineralogy and Geochemistry, V. 40, Mineralogical
- 842 Society of America, Washington, D.C. pp. 173-192.
- 843

0 T D U	844	Squyres, S.W	., Aharonson,	O., Clar	k, B.C.	Cohen,	B.A.,	Crum	pler, L	de Souza	, P./	١
---	-----	--------------	---------------	----------	---------	--------	-------	------	---------	----------	-------	---

- 845 Farrand, W.H., Gellert, R., Grant, J., Grotzinger, J.P., and others (2007) Pyroclastic
- activity at Home Plate in Gusev Crater, Mars. Science, 316, 738-742.
- 847
- 848 Squyres, S.W., Arvidson, R.E., Ruff, S., Gellert, R., Morris, R.V., Ming, D.W.,
- 849 Crumpler, L., Farmer, J.D., Des Marais, D.J., and Yen, A. (2008) Detection of silica-rich
- 850 deposits on Mars. Science, 320, 1063-1067.
- 851
- 852 Summa, L.L., and Verosub, K.L. (1992) Trace element mobility during early diagenesis
- 853 of volcanic ash: applications to stratigraphic correlation. Quaternary International, 13-14,
- 854 149-157.
- 855
- 856 Thompson, J.M. (1985) Chemistry of thermal and nonthermal springs in the vicinity of
- 857 Lassen Volcanic National Park. Journal of Volcanology Geothermal Research, 25, 81-
- 858 104.

- 860 Walter, M.R., and Des Marais, D.J. (1993). Preservation of biological information in
- thermal spring deposits: developing a strategy for the search for fossil life on Mars.
- 862 Icarus 101: 129-143.
- 863
- 864 Wang, A., Bell J.F.III, Li, R., Johnson, J.R., Farrand, W.H., Cloutis, E.A., Arvidson,
- 865 R.E., Crumpler, L., Squyres, S.W., and McLennan, S.M. (2008) Light-toned salty soils

- and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in
- 867 Columbia Hills. Journal of Geophysical Research, 113, E12S40.
- 868
- 869 White, D.E., Muffler, L.J.P., and Truesdell, A.H. (1971) Vapor-dominated hydrothermal
- systems compared with hot-water systems. Economic Geology, 66, 75-97.
- 871
- Yen, A.S., Morris, R.V., Clark, B.C., Gellert, R., Knudson, A.T., Squyres, S.,
- 873 Mittlefehldt, D.W., Ming, D.W., Arvidson, R., McCoy, T., and others (2008)
- 874 Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils.
- 875 Journal of Geophysical Research, 113, E06S10.
- 876
- 877 Tables
- 878 Table 1: Samples descriptions and locations
- 879 Table 2: Hydrolab results for in-situ water analysis
- 880 Table 3: XRD results: non-sulfate minerals
- 881 Table 4: XRD results: sulfate minerals
- 882 Table 5: XRF results: major elements
- 883 Table 6: XRF results: trace elements
- 884
- 885 Figure Captions
- 886 Figure 1. Map of the southwest corner of Lassen Volcanic National Park, with sample
- sites indicated by stars. Little Hot Springs Valley samples were collected between the

upper (U) and lower (L) sites indicated. Growler and Morgan Hot Springs are beyond the
park boundary (indicated by the thin, green line) to the south.

890

Figure 2. Model for hydrothermal fluid circulation within the Lassen hydrothermal system. The geothermal waters of the Lassen system are largely of meteoric origin, heated at depth by interaction with hot rock or magma. Hot water rises towards the surface and boils, segregating into acid-sulfate steam that feeds the higher elevation fumaroles, and residual near-neutral hot water that emerges at lower elevation hot springs. Figure based on model portrayed by Clynne et al., 2003 and described by Janik and McLaren, 2010.

898

899 Figure 3. Photos showing representative collection sites, with sample positions indicated. 900 **A**. Sulphur Works fumarole. Temperature decreases with increasing distance from the 901 center, and the surficial precipitate changes from one dominated by elemental sulfur near 902 the steam vent to alunogen further out. Sample L-SW-12-2 is from the outer rind of the 903 large rock in the center (which measures ~50 cm in length). **B**. Bumpass Hell outflow 904 stream. The dark color on the margins (and the thin film on the surface of the water) 905 comes from sulfide minerals (pyrite and marcasite, sample L-BH-12-5) precipitating out 906 of the reduced fluids as they are exposed to the surface. C. Travertine deposit in upper 907 Little Hot Springs Valley, with abundant calcite-coated plant remains (sample L-LV-14-908 29). D. Bubbling mud pots in Little Hot Springs Valley. E. Fumarole alteration in lower 909 Little Hot Springs Valley (samples L-LV-14-21, 22, and 23). Dark grey color is 910 associated with more reducing conditions and the presence of abundant sulfide minerals

- 911 (marcasite, in L-LV-14-23). F. Growler Hot Spring, with silica sinter, gypsum, and
- 912 halite-coated rocks (samples L-13-G-02 and 03).
- 913
- 914 Figure 4. Representative XRD plots, with main identified peaks labeled. Minerals: A =
- 915 alunogen, Al = alunite, Am = amorphous (position of "hump" consistent with opal-A), C
- 916 = cristobalite, G = gypsum, H = halotrichite ($Fe^{2+}Al_2(SO_4)_4 \cdot 22H_2O$), Ha= halite, J =
- 917 jarosite, K = kaolinite, Kl = kalinite (KAl(SO₄)₂ \cdot 11H₂O), M = marcasite, P =
- 918 pickeringite (MgAl₂(SO₄)₄ \cdot 22H₂O), Pl = plagioclase (substrate), Py = pyrite, Q = quartz,
- 919 S = sulfur, Sm = smectite, V = voltaite ($K_2Fe^{2+}{}_5Fe^{3+}{}_3Al(SO_4)_{12} \cdot 18H_2O$). A. L-SW-12-14
- 920 (Sulphur Works, white to yellow "popcorn-like" precipitate near fumarole). The sample
- 921 is dominated by quartz and contains sulfates (jarosite and alunogen), clays (kaolinite and
- 922 smectite), and a minor amount of plagioclase, likely residual from the substrate. B. L-12-
- 923 BH-5 (dark "scum" on margins of hot stream pictured in Figure 3B). Pyrite and marcasite
- 924 indicate dominantly reducing conditions, while the presence of minor alunite and
- 925 alunogen reveals incipient oxidation (or mixing between different sources). Silica is
- 926 present as both cristobalite and quartz. C. L-LV-14-16. This sample contains a variety of
- 927 sulfate minerals; note that halotrichite (H) and pickeringite (P), which differ from each
- 928 other primarily based on substitution of Fe and Mg, were not distinguishable by XRD and
- 929 are thus both included as possibilities. **D.** L-13-G-2 (precipitate on rocks at Growler Hot
- 930 Spring, pictured in Figure 3F). The pattern is dominated by an amorphous "hump," with
- 931 moderate amounts of gypsum and halite.
- 932

933	Figure 5. Spider diagrams showing alteration trends for Little Hot Springs Valley, based
934	on major elements. Samples are normalized to Zr (the least variable element at Sulphur
935	Works), and then normalized against the relevant substrate sample. (A) LHSV "pit"
936	samples (variation with depth). Sample L-LV-14-05 is a Si, Ti, and Zr rich acid-sulfate
937	leached sample, with depletions in most other elements. (B) Lower LHSV spring-related
938	precipitates and rock coatings. Sample L-LV-14-18 is a red mud with high (35.6%) Fe_2O_3
939	and almost no diffraction peaks, likely consisting of amorphous Fe-bearing phases
940	(perhaps nanophase Fe oxides or hydroxides). Sample L-LV-14-14 is a coating that
941	contains both quartz and gypsum, resulting in elevated SiO_2 and $CaO.$ C) Lower LHSV
942	outcrop samples (Figure 3E).
943	
944	Figure 6: Spider diagrams showing alteration trends for Sulphur Works and Bumpass
945	Hell, based on major elements. Samples are normalized to Zr (the least variable element
946	at Sulphur Works), and then normalized against the relevant substrate sample. (A)
947	Sulphur Works, 2013 transect of sediment samples across a fumarole apron. (B) Sulphur
948	Works, altered rock and sediments samples within a fumarole apron (Figure 3A). Sample
949	L-SW-12-2 is the altered rim of a rock near the center of an active fumarole, the rest are
950	sediment and crust samples at varying distances from the vent. (C) Bumpass Hell. The
951	published composition of LC81-810 (an unaltered Bumpass Hell dacite, Clynne et al.,
952	2008) was used for normalization, as the least altered substrate sample we collected (L-
953	BH-12-8) still showed incipient alteration. Most elements are significantly depleted
954	compared to the substrate; in some cases (e.g. L-BH-12-3) this apparent depletion is
955	exaggerated because of anomalously high Zr concentrations.

956

957	Figure 7. Thin section photomicrographs for select samples, emphasizing the textures and
958	context of silica-rich coatings. (A) Sample L-BH-12-2: plane-polarized light (PPL,
959	above) and cross-polarized light (XPL, below) images. The field of view shows a subtle
960	transition from the less altered interior (darker colored, left) to the more altered exterior
961	(lighter colored, right) of an alteration rind. (B) Sample L-LV-14-14: PPL (above) and
962	XPL (below). Shows the abrupt contact between a silica and gypsum-bearing precipitated
963	crust (left) and the underlying andesitic host rock (right). (C) Sample L-13-G-2: PPL
964	(above) and XPL (below). Shows abrupt contact between finely-laminated silica
965	precipitate coating (sinter) and underlying andesitic substrate. (D) Sample L-13-G-2:
966	PPL, 4x magnification (above) and 20x magnification (below). Textures show layering of
967	the precipitated amorphous silica at the larger scale and the presence of biological
968	materials at the finer scale.
969	
970	Figure 8. Backscattered Electron (BSE) Scanning Electron Microscope (SEM) images of
971	select thin sections. (A and B) BSE image of L-LV-14-14. Shows the abrupt contact
972	between the underlying andesitic host rock (including plagioclase: Pl) and the overlying
973	layered silica (Si) and gypsum (G)-rich precipitated crust. XRD data for this sample
974	indicates only quartz as a silica-rich phase. (C) L-13-G-2. Finely laminated silica-rich
975	precipitate overlying andesitic rock. Small, brighter grains within the sinter coating
976	include pyroxene and potential dolomite. (D and E) L-13-G-3. Thin, hollow, silica-rich

977 features within this sinter coating show evidence for biological activity. (F) L-BH-12-2.

- 978 The slightly altered rim of a Bumpass Hell rock sample, showing phenocrysts of
- 979 pyroxene and plagioclase with silica-rich phases in the groundmass.
- 980
- 981 Figure 9. A. Field photographs of the same fumarole at Sulphur Works taken in
- 982 September 2012, 2013, and 2014, with sample locations indicated. The coarse-grained,
- fibrous alunogen sampled in 2012 was less abundant and finer grained in the following
- 984 years; these soluble sulfate precipitates are ephemeral and dependent on the presence of
- 985 surface water. **B.** XRD plots for the alunogen deposit, sampled in 2012 (L-SW-12-4),
- 986 2013 (L-13-SW-1), and 2014 (L-SW-14-03). In 2014, halotrichite and/or pickeringite (H)
- 987 was identified in addition to alunogen (A).
- 988

989 Figure 10. Isocon plots. A. Isocon plot for Bumpass Hell acid-sulfate altered sample (L-

- 990 BH-12-3) compared to the published composition of LC81-810 (a minimally altered
- Bumpass Hell dacite, Clynne et al., 2008). Elements are scaled such that all can be

plotted within the same diagram (e.g., the wt. % of SiO₂ was divided by two for both the

993 altered sample and the substrate). The scaling factors used are indicated next to the name

994 of each oxide; all are in wt.% except for Zr which is in ppm. Elements plotting above the

995 1:1 line are enriched relative to the substrate, while elements below are depleted. In this

996 case, SiO₂, TiO₂, and Zr are all enriched, while most other elements are depleted. This is

- 997 consistent with acid-sulfate alteration, during which these immobile elements are
- 998 residually enriched while more mobile elements are leached from the system. B. Isocon
- 999 plot of Growler Hot Spring silica sinter (sample L-13-G-03) compared to andesitic rock
- sample L-LV-14-28. As expected for a precipitated silica sinter, only SiO₂ is enriched.

- 1001 The lack of Ti enrichment helps to distinguish precipitated from residual SiO₂-rich
- 1002 deposits.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 3

Figure 4

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 8

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Tabl	e 1: Sediment	t, precipi	tate, substrate, and rock sample descriptions and locations			GPS (WGS	84)	
Site	Name	Sample	Sample description	ן (°C) ו	рН	Ν	W	Elev (m)
Sulp	hur Works							
	L-SW-12-1	precip	Yellow sulfur crystals, 1.7 m from center			40.45024	121.53542	2157
	L-SW-12-2	rock	Coating on rock near center of fumarole					
	L-SW-12-3	sed	Light brown crust, near rock at center					
	L-SW-12-4	precip	White, coarse, fibrous crystals, 1 m from center					
	L-SW-12-5	precip	Crystalline, yellow-orange, 0.7 m from center					
	L-SW-12-6	sed	Red-orange crust over grey sediment, 4.7 m from center					
	L-SW-12-7	sed	Light pink/grey crust, 5 m from center of fumarole					
	L-SW-12-10	precip	fibrous white, yellow, and red crystals, 1 m from mud pot	68.5	2.1			
	L-SW-12-11	precip	Orange and white crystals, next to stream from mud pot					
	L-SW-12-12	precip	White, orange, yellow, brown xtals, next to mud pot stream					
	L-SW-12-13	precip	Black, grey, white, red small xtals, next to mud pot stream					
	L-SW-12-14	precip	White, yellow popcorn-like xtals, on slope below mud pots					
	L-SW-12-15	sed	Grey muddy sediment, on slope below mud pots					
	L-SW-12-16	precip	White, fluffy crystals near bubbling mud pot					
	L-SW-12-17	precip	Yellow-white crystals on black substrate, near mud pot					
	L-SW-12-18	subst	Less altered substrate sample					
	L-13-SW-1	precip	White crystal coating, 1 m from vent	77.0				
	L-13-SW-2	sed	Beige, altered sediement surrounding vent	90.6				
	L-13-SW-3	sed	Orange, less crystalline material away from vent	25.9				
	L-13-SW-4	sed	Light grey sediment 3 cm below orange material	30.2				
	L-13-SW-7	sed	red/pink sediment	33.2		40.44927	121.53437	2126
	L-13-SW-8	subst	Minimaliy altered andesitic substrate sample					
	L-SW-14-2	precip	elemental sulfur/ tan sediment near steam vent	86.4	3.0	40.45025	121.53533	2154
	L-SW-14-3	precip	white crystals/ precipitate, 2 m from vent	66.6				
	L-SW-14-4	precip	orange crystals over off-white mud, 2 m from vent	46.6				
	L-SW-14-5	precip	white, crusty precipitate on rocks near vent	73.0				
	L-SW-16-05	subst	Darker substrate block upslope from altered area			40.45054	121.53434	2104
	L-SW-16-06	subst	Lighter, more weathered block upslope from altered area					
	L-SW-16-10	subst	Altered dacite upslope from modern altered area			40.44745	121.53407	2113
Bum	pass Hell							
	L-BH-12-1	precip	Orange, yellow xtals over grey mud, near bubbling stream	81.0	2.5	40.45773	121.50183	2470
	L-BH-12-2	rock	Grey, altered rock near hot stream	65.0	2.4			
	L-BH-12-3	rock	Grey, altered rock w. few tiny, green crystal, from steaming pit					
	L-BH-12-4	precip	White, powdery minerals near edge of cool acid pool	17.5	3.0	40.45823	121.50078	2507
	L-BH-12-5	precip	Dark grey "foam" from edges of hot stream	27.1	2.2	40.45699	121.50052	2498
	L-BH-12-6	rock	Pink and white altered rock					
	L-BH-12-7	rock	Soft, powdery material over rotten dacite substrate			40.45747	121.50279	2506
	L-BH-12-8	subst	Slightly altered dacitic substrate			40.46394	121.50976	2512

pH of nearby thermal water, for samples adjacent to (or in contact with) hot springs, mud pots

Table 1, continu	led				GPS (WGS	84)	
Site Name	Sample	e Sample description	т (°С)	рН	N	W	Elev (m)
Little Hot Spring	gs Valley						
L-LV-14-2	sed	light grey/beige sediment from 40-cm pit 1	94.0	2.0	40.45586	121.51801	2170
L-LV-14-3	sed	grey mud from mud pot					
L-LV-14-4	sed	red/purple/orange sediment near surface of pit 2	44.0				
L-LV-14-5	sed	white/cream sediment at 50 cm depth in pit 2	92.0		40.45564	121.51829	2173
L-LV-14-6	sed	orange sediment near surface of pit 3	43.1				
L-LV-14-7	sed	lavender mud at base of 37 cm pit 3	92.0				
L-LV-14-9	precip	white precipitated crystals at surface	89.3		40.45603	121.51814	2181
L-LV-14-10) sed	red mud in stream	35.8				
L-LV-14-12	L sed	yellow/orange mud, 23 cm deep in pit 4	31.2		40.45596	121.51825	2172
L-LV-14-13	3 sed	Dark grey/black mud at bottom of pool	91.0		40.45290	121.51724	2121
L-LV-14-14	1 precip	white precipitated crystal rock coating in stream					
L-LV-14-15	5 rock	thick rock coating		1.7	40.45219	121.51673	2115
L-LV-14-16	5 precip	thick, yellow crystalline rock coating	80.0				
L-LV-14-17	7 precip	white, crinkly "ribbon" precipitate	71.0				
L-LV-14-18	3 sed	Red mud from flowing hot spring	82.0	1.7			
L-LV-14-20) coat	White, thick coating on rocks near bubbling hot spring	85.2	2.5			
L-LV-14-22	L sed	Red and orange, clayey sediment near top	47.6				
L-LV-14-22	2 sed	light grey/purple with some yellow-orange clayey sediment	89.4				
L-LV-14-23	3 sed	Dark grey, clayey sediment at base	92.6				
L-LV-14-25	5 precip	off-white precipitate with many twigs, near hot spring			40.46143	121.52254	2284
L-LV-14-26	5 subst	Minimally altered andesitic substrate					
L-LV-14-27	7 precip	soft, white, flaky crust near hot spring	52.2	7.2			
L-LV-14-28	3 rock	Altered substrate- red, orange, white, yellow					
L-LV-14-29	9 precip	Formerly active travertine, white with many voids			40.46035	121.52097	2251
Growler (G) and	l Morgan (M) Hot Springs					
L-13-G-2	precip	Sinter- white, hard coating on wet rocks near hot spring	93.5	8.1			
L-13-G-3	precip	Sinter- white, hard coating on dry rocks near hot spring	93.5	8.1			
L-13-M-1	precip	White and black dendritic material, 2 m from hot spring	49.6	7.0	40.38574	121.51468	1526
L-13-M-2	precip	White, crusty crystals above pool, 0.9m from pool			40.38577	121.51467	1523
L-13-M-3	precip	Orange, red tinted soft small crystals, edge of pool					
L-13-M-4	precip	White and black dendritic material, 2 m from hot spring					
L-13-M-6	precip	Crust from edge of pool, layered white, yellow-orange	49.3	7.0	40.38273	121.51419	1536

Table 2: Hydrolab results

		T (in situ)	т, °С*	рН	рН	ORP	SpCond	Res	Sal	TDS
		°C	(HL)	(paper)	(HL)	mV	uS/cm	kΩ-cm	ppt	g/l
Sulphur Wo	rks									
L-13-SW-5	hot spring	84.0	40.32		2.07	216	7206	0	4.01	4.6
L-13-SW-6	stream	8.8			6.71		267	4	0.13	0.3
L-SW-14-01	bubbling mud pot	82.0	16.13	2.3	3.24	-95	3069	0	1.66	2.0
Bumpass He	ll									
I_13_B_01		8.0			3 03	212	716	1	0 37	05
L-13-B-01	Hot acid nool	65.0	39 77		2 36	212	4334	0	2 37	2.9
L-13-B-02	cooler pool	19.7	33.77		2.50	-113	6012	0	2.37	2.0
L 13 D 03	warmer nool	40.2			2.13	-228	8005	0	1 1 A	5.0
L 13 D 04	nvrite stream	40.2 27 1			2.02	-190	4437	0	2 43	2.8
L-13-B-06	hottest pool	86.2	31 76		2.20	-175	5465	0	3 01	35
L-13-B-07	stream	88.6	32.95		2.39	-223	4342	0	2.37	2.8
Little Hot Sp	rings Valley									
L-LV-14-01	bubbling hot spring	80.3	16.34	2.0	2.60	-99	5924	0	3.27	3.8
L-LV-14-08	bubbling mud pot	82.0	16.67	2.0	2.68	-160	6170	0	3.41	3.9
L-LV-14-12	bubbling hot spring	91.0	16.48	6.4	6.82	-314	409	2	0.20	0.3
L-LV-14-19	flowing hot spring	75.0	16.69	1.7	2.44	-153	9054	0	5.10	5.8
L-LV-14-24	hot spring	65.7	48.83	6.6	7.48	-488	1314	1	0.69	0.8
Growler/Mc	organ									
Growler Morgan	bubbling hot spring warm spring	93.5	37.82 49.26		8.09 7.01	-258 -229	10963 9459	0 0	6.23 5.34	7.0 6.1

* Only samples under 50°C can be analyzed in situ by hydrolab. T (in situ) = temperature at time of collection. T (HL) = temperature at the time of hydrolab analysis, if different.

ORP: Oxidation/reduction potential. SpCond: specific conductivity. Res: resistivity.

Sal: salinity. TDS: total dissolved solids. Ppt = parts per thousand.

Table 3: Non-sulfate phases identified by XRD

		Amorphous	Quartz	Cristobalite	Tridymite	Halite	Sulfur	Pyrite	Marcasite	Hematite	Anatase	Calcite	Kaolinite	Smectite	Substrate
Sulphur Works															
L-SW-12-1	precip	-	XXX	-	-	-	XXX	-	-	-	-	-	-	-	-
L-SW-12-2	rock	XXX	-	-	-	-		-	-	-	-	-	-	-	Х
L-SW-12-3	sed	-	XXX	-	-	-	Х	-	-	-	-	-	-	-	-
L-SW-12-4	precip	-	-	-	-	-		-	-	-	-	-	-	-	-
L-SW-12-5	precip	-	XXX	-	-	-	Х	-	-	-	-	-	-	-	-
L-SW-12-6	sed	-	XXX	Х	-	-	-	-	-	Х	-	-	Х	Х	-
L-SW-12-7	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	+	-
L-SW-12-10	precip	-	XXX	+	+	-	-	-	-	-	-	-	-	-	-
L-SW-12-11	precip	-	XXX	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-12	precip	-	XXX	+	-	-	-	-	-	-	-	-	-	-	+
L-SW-12-13	precip	XX	XXX	XX	-	-	-	-	-	-	-	-	-	-	Х
L-SW-12-14	precip	-	XXX	-	-	-	-	-	-	-	-	-	Х	+	+
L-SW-12-15	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	+	+
L-SW-12-16	precip	Х	XX	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-17	precip	XX	XXX	-	-	-	-	-	-	-	-	-	-	-	-
L-13-SW-1	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-13-SW-2	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	-	-
L-13-SW-3	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	Х	-
L-13-SW-4	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	Х	-
L-13-SW-7	sed	-	-	XX	-	-	-	-	-	-	-	-	-	-	XXX
L-13-SW-8	subst	-	-	-	-	-	-	-	-	-	-	-	-	-	XXX
L-SW-14-02	precip	-	XXX	-	-	-	XXX	-	-	-	-	-	-	-	-
L-SW-14-03	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-14-04	precip	-	XXX	-	-	-	-	-	-	-	-	-	-	XXX	-
L-SW-14-05	precip	-	XXX	-	-	-	-	-	-	-	-	-	-	+	-
L-16-SW-05	subst	-	-	-	-	-	-	-	-	-	-	-	-	Х	XXX
L-16-SW-06	subst	-	+	-	-	-	-	-	-	-	-	-	-	Х	XXX
L-16-SW-10	subst	-	+	-	-	-	-	-	-	-	-	-	-	-	ХХХ

XXX = abundant. XX = common. X= rare to common. + = rare Precip: precipitate; sed: sediment; subst: less altered substrate.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Table 3, continued

		Amorphous	Quartz	Cristobalite	Tridymite	Halite	Sulfur	Pyrite	Marcasite	Hematite	Anatase	Calcite	Kaolinite	Smectite	Substrate
Bumpass Hell			•	•	•	_	•,	_	_			•	_	•,	• ,
L-BH-12-1	precip	XX	-	-	-	-	XX	XX	+	-	-	-	-	-	-
L-BH-12-2	rock	-	XX	XX	XX	-	-	-	-	-	-	-	-	+	XX
L-BH-12-3	precip	XX	Х	XXX	Х	-	-	-	-	-	-	-	-	-	-
L-BH-12-4	precip	Х	Х	Х	XXX	-	-	-	-	-	-	-	-	-	-
L-BH-12-5	precip	-	Х	XX	-	-	Х	XXX	Х	-	-	-	Х	-	-
L-BH-12-6	precip	-	XXX	-	-	-	-	-	-	-	-	-	+	+	-
L-BH-12-7	precip	Х	+	XXX	+	-	-	-	-	-	-	-	-	-	+
L-BH-12-8	subst	-	-	ХХ	-	-	-	-	-	-	-	-	-	-	XXX
Little Hot Spring	s Valley														
L-LV-14-2	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	+	-
L-LV-14-3	sed	-	XXX	-	-	-	-	-	-	-	-	-	XX	-	-
L-LV-14-4	sed	-	XXX	-	-	-	-	-	-	+	-	-	-	Х	-
L-LV-14-5	sed	-	XXX	-	-	-	-	-	-	-	+	-	-	+	-
L-LV-14-6	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	Х	-
L-LV-14-7	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	Х	-
L-LV-14-9	precip	-	XX	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-10	sed	-	XX	-	-	-	-	-	-	-	-	-	+	Х	-
L-LV-14-11	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	Х	+
L-LV-14-13	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	Х	Х
L-LV-14-14	precip	-	XX	-	-	-	-	-	-	-	-	-	-	Х	Х
L-LV-14-15	rock	-	XX	-	-	-	-	-	-	-	-	-	-	Х	ΧХ
L-LV-14-16	precip	Х	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-17	precip	-	Х	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-18	sed	+	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-20	coat	Х	-	-	-	-	XXX	-	-	-	-	-	-	-	Х
L-LV-14-21	sed	+	XXX	-	-	-	-	-	-	-	-	-	-	XX	-
L-LV-14-22	sed	-	XXX	-	-	-	-	-	-	-	-	-	-	+	-
L-LV-14-23	sed	+	Х	-	-	-	-	-	XX	-	-	-	+	XXX	-
L-LV-14-25	precip	-	-	-	-	-	-	-	-	-	-	XXX	-	+	-
L-LV-14-26	subst	-	-	-	-	-	-	-	-	-	-	-	-	+	XXX
L-LV-14-27	precip	-	-	-	-	-	-	-	-	-	-	XXX		+	-
L-LV-14-28	rock	-	XXX	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-29	precip	-	+	-	-	-	-	-	-	-	-	XXX	-	+	-

Table 3, continued

		Amorphous	Quartz	Cristobalite	Tridymite	Halite	Sulfur	Pyrite	Marcasite	Hematite	Anatase	Calcite	Kaolinite	Smectite	Substrate
Growler (G) and	Morgan	(M) H	lot Sp	orings	5										
L-13-G-2	precip	XXX	-	-	-	XX	-	-	-	-	-	-	-	-	-
L-13-G-3	precip	XXX	-	-	-	-	-	-	-	-	-	-	-	-	-
L-13-M-1	precip	XXX	-	-	-	-	-	-	-	-	-	-	-	-	Х
L-13-M-2	precip	XXX	-	-	-	-	-	-	-	-	-	-	-	-	Х
L-13-M-3	precip	-	XXX	XX	-	-	-	-	-	-	-	-	-	-	Х
L-13-M-4	precip	XXX	-	-	-	-	-	-	-	-	-	-	-	-	Х
L-13-M-6	precip	XXX	Х	-	-	ХХ	-	-	-	-	-	-	-	-	Х

Table 4: Sulphate phases identified using XRD

		Alunite	Alunogen	Natroalunite	Kalinite	Tschermigite	Tamarugite	Voltaite	Jarosite	Lonecreekite	Quenstedtite	Rhomboclase	Halotrichite/ Pickeringite	Wroewolfeite	Gypsum
		KAl ₃ (SO ₄) ₂ (OH) ₆	$Al_2(SO_4)_3 \cdot 17H_2O$	(Na,Ca _{0.5} ,K)Al ₃ (SO ₄) ₂ (OH) ₆	$KAI(SO_4)_2 \cdot 11H_2O$	(NH ₄)Al(SO ₄) ₂ · 12H ₂ O	NaAl $(SO_4)_2 \cdot 6H_2O$	$K_2 Fe^{2+} Fe^{3+} AI(SO_4)_{12} \cdot 18H_2 C$	KFe ³⁺ ₃ (SO ₄) ₂ (OH) ₆	$(NH_4)Fe^{3+}(SO_4)_2 \cdot 12H_2O$	${\rm Fe}^{3^{+}}({\rm SO}_{4})_{3}\cdot 11{\rm H}_{2}{\rm O}$	(H ₅ O ₂)Fe ³⁺ (SO ₄) ₂ · 2H ₂ O	$(Mg, Fe^{2+})Al_2(SO_4)_4 \cdot 22H_2O$	Cu ₄ (SO ₄)(OH) ₆ • 2(H ₂ O)	$CaSO_4 \cdot 2H_2O$
Sulphur Works															
L-SW-12-1	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-2	rock	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-3	sed .	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-4	precip	-	XXX	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-5	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-6	sed	-	Х	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-7	sed	-	-	-	-	-	-	-	+	-	-	-	-	-	-
L-SW-12-10	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-11	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-12	precip	-	+	-	-	-	-	-	-	Х	-	-	-	-	-
L-SW-12-13	precip	-	Х	-	-	-	+	-	-	-	-	-	-	-	-
L-SW-12-14	precip	-	+	-	-	-	-	-	Х	-	-	-	-	-	-
L-SW-12-15	sed .	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-12-16	precip	-	Х	-	-	XXX	-	-	-	-	-	-	-	-	-
L-SW-12-17	precip	-	+	-	-	XX	-	-	-	+	-	-	-	-	-
L-13-SW-1	precip	-	XXX	-	-	-	-	-	-	-	-	-	-	-	-
L-13-SW-2	sed	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-13-SW-3	sed	-	Х	-	-	-	-	-	-	-	-	-	-	-	-
L-13-SW-4	sed	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-13-SW-7	sed	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-13-SW-8	subst	-	-	-	-	-	-	-	-	-	-	-	-	-	-

XXX = abundant. XX = common. X= rare to common. + = rare Precip: precipitate; sed: sediment; subst: less altered substrate.

Table 4, continued

		Alunite	Alunogen	Natroalunite	Kalinite	Tschermigite	Tamarugite	Voltaite	Jarosite	Lonecreekite	Quenstedtite	Rhomboclase	Halotrichite/ Pickeringite	Wroewolfeite	Gypsum
Sulphur Works,	continued	ł				-	-		-						
L-SW-14-02	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-14-03	precip	-	XXX	-	-	-	-	-	-	-	-	-	XXX	-	-
L-SW-14-04	precip	-	Х	-	-	-	-	-	-	-	-	-	-	-	-
L-SW-14-05	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-16-SW-05	subst	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-16-SW-06	subst	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-16-SW-10	subst	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bumpass Hell															
L-BH-12-1	precip	-	-	-	-	_	_	-	-	_	-	х	_	_	-
L-BH-12-2	rock	-	-	-	-	_	-	-	-	_	-	-	-	-	-
L-BH-12-3	precip	-	-	-	-	_	-	-	-	-	-	-	-	-	-
L-BH-12-4	precip	-	-	Х	-	-	_	-	-	_	-	-	-	-	-
L-BH-12-5	precip	Х	+	-	-	-	-	-	-	-	-	Х	-	-	-
L-BH-12-6	precip	-	-	-	-	-	_	-	-	_	-	-	-	-	-
L-BH-12-7	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-12-BH-8	subst	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Little Hot Spring	s Valley	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-2	sed	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-3	sed	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-4	sed	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-5	sed	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-6	sed	+	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-7	sed	Х	Х	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-9	precip	-	XX	-	-	-	-	-	-	-	-	-	XX	-	-
L-LV-14-10	sed	-	-	-	-	-	-	-	+	-	-	-	+	-	-
L-LV-14-11	sed	-	+	-	-	-	-	-	+	-	+	-	-	-	-
L-LV-14-13	sed	-	+	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-14	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	XXX
L-LV-14-15	rock	-	+	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-16	precip	-	-	-	XX	-	-	XX	-	-	-	-	XX	-	XX
L-LV-14-17	precip	-	XXX	-	Х	Х	ΧХ	-	-	-	-	-	XX	-	ХХ

Table 4, continued

		Alunite	Alunogen	Natroalunite	Kalinite	Tschermigite	Tamarugite	Voltaite	Jarosite	Lonecreekite	Quenstedtite	Rhomboclase	Halotrichite/ Pickeringite	Wroewolfeite	Gypsum
Little Hot Spring	s Valley,	contin	nued												
L-LV-14-18	sed	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-20	coat	-	Х	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-21	sed	-	Х	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-22	sed	Х	+	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-23	sed	-	XX	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-25	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-26	subst	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-27	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-LV-14-28	rock	-	-	-	-	-	-	-	-	-	-	-	-	Х	-
L-LV-14-29	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Growler (G) and	Morgan	(M) H	ot Sp	rings	;										
L-13-G-2	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	Х
L-13-G-3	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-13-M-1	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-13-M-2	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	Х
L-13-M-3	precip	XXX	-	-	-	-	-	-	Х	-	-	-	-	-	-
L-13-M-4	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L-13-M-6	precip	-	-	-	-	-	-	-	-	-	-	-	-	-	XX

Site Sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 SO3 Sulphur Works L-SW-12-2 rock 78.67 0.65 6.50 2.36 0.05 2.07 1.08 1.02 2.21 0.09 NA L-SW-12-3 sed 61.63 1.10 1.15 0.34 ND 0.33 0.20 0.05 0.08 0.08 7.57 L-SW-12-3 sed 56.55 0.95 17.72 13.98 0.01 0.77 0.17 0.05 0.43 0.32 9.14 L-SW-12-7 sed 59.39 1.09 14.33 9.67 0.01 0.60 0.14 0.08 0.73 0.37 0.80 L-SW-12-15 sed 86.72 0.83 5.35 1.49 0.01 0.50 0.51 0.49 0.91 0.11 NA L-SW-12-15 sed 86.72 0.83 5.35 1.49 0.01 0.50 0.51 0.49 0.91 0.11 NA L-SW-12-15	
Sulphur Works L-SW-12-2 rock 78.67 0.65 6.50 2.36 0.05 2.07 1.08 1.02 2.21 0.09 NA L-SW-12-3 sed 61.63 1.10 1.15 0.34 ND 0.33 0.20 0.05 0.08 0.08 7.57 L-SW-12-6 sed 56.55 0.95 17.72 13.98 0.01 0.77 0.17 0.05 0.43 0.32 9.14 L-SW-12-7 sed 59.39 1.09 14.33 9.67 0.01 0.60 0.14 0.08 0.73 0.37 0.80 L-SW-12-15 sed 86.72 0.83 5.35 1.49 0.01 0.50 0.51 0.49 0.91 0.11 NA L-SW-12-18 rock 76.31 0.68 9.14 0.10 ND 0.13 0.06 0.42 1.42 0.19 6.22 L-13-SW-2 sed 88.07 1.32 2.80 0.35 ND 0.24 0.08 0.07 0.37 0.07 NA L-1	LOI Sum
L-SW-12-2rock78.670.656.502.360.052.071.081.022.210.09NAL-SW-12-3sed61.631.101.150.34ND0.330.200.050.080.087.57L-SW-12-6sed56.550.9517.7213.980.010.770.170.050.430.329.14L-SW-12-7sed59.391.0914.339.670.010.600.140.080.730.370.80L-SW-12-15sed86.720.835.351.490.010.500.510.490.910.11NAL-SW-12-18rock76.310.689.140.10ND0.130.060.421.420.196.22L-13-SW-2sed88.071.322.800.35ND0.240.080.070.370.07NAL-13-SW-3sed65.891.0715.066.590.010.830.090.081.280.271.45L-13-SW-4sed68.741.1819.580.890.011.140.080.061.510.15NAL-13-SW-7sed66.170.9116.115.140.012.930.17ND0.250.34NAL-13-SW-8sub58.280.8616.226.460.104.036.013.561.890.240.05L-SW-14-04prec<	
L-SW-12-3sed61.631.101.150.34ND0.330.200.050.080.087.57L-SW-12-6sed56.550.9517.7213.980.010.770.170.050.430.329.14L-SW-12-7sed59.391.0914.339.670.010.600.140.080.730.370.80L-SW-12-15sed86.720.835.351.490.010.500.510.490.910.11NAL-SW-12-18rock76.310.689.140.10ND0.130.060.421.420.196.22L-13-SW-2sed88.071.322.800.35ND0.240.080.070.370.07NAL-13-SW-3sed65.891.0715.066.590.010.830.090.081.280.271.45L-13-SW-4sed68.741.1819.580.890.011.140.080.061.510.15NAL-13-SW-7sed66.170.9116.115.140.012.930.17ND0.250.34NAL-13-SW-8sub58.280.8616.226.460.104.036.013.561.890.240.05L-SW-14-04prec57.811.0116.947.11ND1.030.070.040.960.354.30L-SW-14-04pre	4.33 99.18
L-SW-12-6sed56.550.9517.7213.980.010.770.170.050.430.329.14L-SW-12-7sed59.391.0914.339.670.010.600.140.080.730.370.80L-SW-12-15sed86.720.835.351.490.010.500.510.490.910.11NAL-SW-12-18rock76.310.689.140.10ND0.130.060.421.420.196.22L-13-SW-2sed88.071.322.800.35ND0.240.080.070.370.07NAL-13-SW-3sed65.891.0715.066.590.011.830.090.081.280.271.45L-13-SW-4sed68.741.1819.580.890.011.140.080.061.510.15NAL-13-SW-7sed66.170.9116.115.140.012.930.17ND0.250.34NAL-13-SW-8sub58.280.8616.226.460.104.036.013.561.890.240.05L-SW-14-04prec57.811.0116.947.11ND1.030.070.040.960.354.30L-SW-14-04prec57.810.601.780.00ND0.450.450.220.55L-SW-14-04prec57.81	33.31 98.37
L-SW-12-7 sed 59.39 1.09 14.33 9.67 0.01 0.60 0.14 0.08 0.73 0.37 0.80 L-SW-12-15 sed 86.72 0.83 5.35 1.49 0.01 0.50 0.51 0.49 0.91 0.11 NA L-SW-12-18 rock 76.31 0.68 9.14 0.10 ND 0.13 0.06 0.42 1.42 0.19 6.22 L-13-SW-2 sed 88.07 1.32 2.80 0.35 ND 0.24 0.08 0.07 0.37 0.07 NA L-13-SW-3 sed 65.89 1.07 15.06 6.59 0.01 0.83 0.09 0.08 1.28 0.27 1.45 L-13-SW-4 sed 68.74 1.18 19.58 0.89 0.01 1.14 0.08 0.06 1.51 0.15 NA L-13-SW-4 sed 68.74 1.18 19.58 0.89 0.01 1.14 0.08 0.06 1.51 0.15 NA L-13-SW-7 sed <td>8.28 99.43</td>	8.28 99.43
L-SW-12-15 sed 86.72 0.83 5.35 1.49 0.01 0.50 0.51 0.49 0.91 0.11 NA L-SW-12-18 rock 76.31 0.68 9.14 0.10 ND 0.13 0.06 0.42 1.42 0.19 6.22 L-13-SW-2 sed 88.07 1.32 2.80 0.35 ND 0.24 0.08 0.07 0.37 0.07 NA L-13-SW-3 sed 65.89 1.07 15.06 6.59 0.01 0.83 0.09 0.08 1.28 0.27 1.45 L-13-SW-4 sed 68.74 1.18 19.58 0.89 0.01 1.14 0.08 0.06 1.51 0.15 NA L-13-SW-7 sed 66.17 0.91 16.11 5.14 0.01 2.93 0.17 ND 0.25 0.34 NA L-13-SW-8 sub 58.28 0.86 16.22 6.46 0.10 4.03 6.01 3.56 1.89 0.24 0.05 L-SW-14-04 prec <td>12.12 98.78</td>	12.12 98.78
L-SW-12-18 rock 76.31 0.68 9.14 0.10 ND 0.13 0.06 0.42 1.42 0.19 6.22 L-13-SW-2 sed 88.07 1.32 2.80 0.35 ND 0.24 0.08 0.07 0.37 0.07 NA L-13-SW-3 sed 65.89 1.07 15.06 6.59 0.01 0.83 0.09 0.08 1.28 0.27 1.45 L-13-SW-4 sed 68.74 1.18 19.58 0.89 0.01 1.14 0.08 0.06 1.51 0.15 NA L-13-SW-7 sed 66.17 0.91 16.11 5.14 0.01 2.93 0.17 ND 0.25 0.34 NA L-13-SW-8 sub 58.28 0.86 16.22 6.46 0.10 4.03 6.01 3.56 1.89 0.24 0.05 L-3SW-8 sub 58.28 0.86 16.22 6.46 0.10 4.03 6.01 3.56 1.89 0.24 0.05 L-SW-14-04 prec <td>3.31 100.37</td>	3.31 100.37
L-13-SW-2 sed 88.07 1.32 2.80 0.35 ND 0.24 0.08 0.07 0.37 0.07 NA L-13-SW-3 sed 65.89 1.07 15.06 6.59 0.01 0.83 0.09 0.08 1.28 0.27 1.45 L-13-SW-4 sed 68.74 1.18 19.58 0.89 0.01 1.14 0.08 0.06 1.51 0.15 NA L-13-SW-7 sed 66.17 0.91 16.11 5.14 0.01 2.93 0.17 ND 0.25 0.34 NA L-13-SW-8 sub 58.28 0.86 16.22 6.46 0.10 4.03 6.01 3.56 1.89 0.24 0.05 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30	11.87 100.51
L-13-SW-3 sed 65.89 1.07 15.06 6.59 0.01 0.83 0.09 0.08 1.28 0.27 1.45 L-13-SW-4 sed 68.74 1.18 19.58 0.89 0.01 1.14 0.08 0.06 1.51 0.15 NA L-13-SW-7 sed 66.17 0.91 16.11 5.14 0.01 2.93 0.17 ND 0.25 0.34 NA L-13-SW-8 sub 58.28 0.86 16.22 6.46 0.10 4.03 6.01 3.56 1.89 0.24 0.05 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30	5.75 99.29
L-13-SW-4 sed 68.74 1.18 19.58 0.89 0.01 1.14 0.08 0.06 1.51 0.15 NA L-13-SW-7 sed 66.17 0.91 16.11 5.14 0.01 2.93 0.17 ND 0.25 0.34 NA L-13-SW-8 sub 58.28 0.86 16.22 6.46 0.10 4.03 6.01 3.56 1.89 0.24 0.05 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30	10.88 102.19
L-13-SW-7 sed 66.17 0.91 16.11 5.14 0.01 2.93 0.17 ND 0.25 0.34 NA L-13-SW-8 sub 58.28 0.86 16.22 6.46 0.10 4.03 6.01 3.56 1.89 0.24 0.05 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30	6.32 99.83
L-13-SW-8 sub 58.28 0.86 16.22 6.46 0.10 4.03 6.01 3.56 1.89 0.24 0.05 L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30	7.48 99.67
L-SW-14-04 prec 57.81 1.01 16.94 7.11 ND 1.03 0.07 0.04 0.96 0.35 4.30	1.38 99.20
	15.15 100.62
F-2AA-17-02 LOCK 32'13 0'03 1'V8 0'03 IND 0'12 0'02 0'03 0'15 0'08 0'2'	2.28 100.56
L-SW-16-05 sub 55.36 1.16 16.25 7.57 0.07 3.62 6.85 3.48 1.69 0.42 NA	4.50 101.20
L-SW-16-06 sub 55.39 1.07 15.20 6.47 0.07 2.62 5.55 2.79 1.72 0.39 NA	10.05 101.52
L-SW-16-10 sub 61.92 0.80 16.16 5.26 0.05 2.05 2.96 2.68 1.92 0.19 NA	7.59 101.76
Bumpass Hell	
L-BH-12-1 prec 55.25 0.32 1.51 10.67 ND 0.26 0.09 0.08 0.19 0.05 NA	28.76 97.29
L-BH-12-2 rock 63.72 0.51 16.31 4.69 0.05 2.26 3.84 3.54 2.04 0.16 NA	2.17 99.45
L-BH-12-3 prec 91.61 1.49 1.78 0.20 0.00 0.16 0.09 0.22 0.11 0.05 NA	5.35 101.31
L-BH-12-4 prec 75.62 1.07 9.44 0.71 0.00 0.25 0.51 0.66 1.60 0.12 NA	10.5 100.62
L-12-BH-5 prec 34.65 1.24 8.89 23.74 0.03 0.34 0.07 0.09 0.43 0.13 30.32	27.20 96.96
L-BH-12-6 prec 85.70 0.47 6.47 1.10 ND 0.32 0.07 0.04 0.35 0.08 NA	2.99 97.68
L-12-BH-7 prec 76.62 0.77 9.85 2.40 0.00 1.00 0.63 1.21 1.28 0.10 NA	6.12 100.21
L-12-BH-8 sub 61.75 0.65 15.64 5.46 0.09 2.86 4.80 3.71 2.00 0.15 0.02	0.62 97.89
LC81-810* sub 64.52 0.52 16.86 4.37 0.08 2.66 5.20 4.08 2.03 0.16 NA	0.09 100.13
Little Hot Springs Valley	
L-LV-14-04 sed 64.01 1.43 13.42 11.09 0.01 0.79 0.09 0.08 1.70 0.29 0.05	6.53 99.61
L-LV-14-05 sed 93.98 3.13 1.02 0.49 ND 0.19 0.08 0.04 0.06 0.05 NA	0.82 100.10
L-LV-14-06 sed 61.64 0.92 17.13 8.35 0.01 1.05 0.12 0.29 2.31 0.26 NA	7.95 100.19
L-LV-14-07 sed 60.95 1.19 18.82 4.38 0.01 0.54 0.08 0.20 1.51 0.28 NA	11.50 99.67
L-LV-14-13 sed 63.73 0.78 14.17 5.09 0.09 1.43 2.14 1.65 1.86 0.11 3.45	7.90 99.07
L-LV-14-14 prec 48.28 0.34 8.26 3.35 0.04 1.33 12.77 1.31 0.92 0.13 0.82	11.92 88.79
L-LV-14-15 rock 56.21 0.84 18.98 8.43 0.08 2.50 1.87 1.45 1.81 0.25 0.60	6.94 99.48
L-LV-14-18 sed 33.00 0.36 7.94 35.63 0.01 0.42 0.36 0.50 0.91 3.83 2.57	16.08 99.15
L-LV-14-21 sed 65.38 0.88 18.56 5.36 0.01 0.72 0.05 0.09 1.18 0.07 0.27	7.81 100.21
L-LV-14-22 sed 72.57 1.00 9.88 1.78 ND 0.24 0.07 0.10 1.45 0.17 5.44	14.27 101.71
L-LV-14-23 sed 49.72 0.77 23.41 5.77 0.05 2.95 0.04 0.03 0.27 0.75 4.17	17.47 101.33
L-LV-14-26 sub 55.50 0.84 16.67 7.17 0.18 4.74 7.34 3.41 1.65 0.22 0.00	0.71 98.55
L-LV-14-28 rock 70.23 0.79 15.12 5.09 ND 0.09 0.24 0.04 0.16 0.37 0.80	8.23 100.65
Growler and Morgan Hot Springs	
L-13-G-2 prec 71.00 0.04 1.12 0.30 0.01 0.40 3.17 5.29 0.84 0.03 NA	9.16 91.36
L-13-G-3 prec 90.80 0.04 1.14 0.33 0.01 0.23 0.55 0.53 0.26 0.03 0.05	6.38 100.31
L-13-M-1 prec 81.56 0.27 3.98 1.74 0.03 0.70 1.45 1.67 0.85 0.05 NA	6.23 98.57
L-13-M-2 prec 29.08 0.10 3.85 0.84 0.01 0.58 5.06 20.16 1.29 0.04 NA	38 14 99 19
L-13-M-3 prec 52.79 1.00 11.11 8.76 0.01 0.91 0.36 0.44 2.15 0.30 NA	50.14 55.15

able E: Bulk major element composition of Lasson budgetberged elements as measure by VDE sut % evide

L-13-M-4 82.18 0.27 4.47 1.96 0.01 0.74 1.34 1.32 0.78 0.06 NA 5.46 98.65 prec L-13-M-6 prec 66.12 0.29 5.55 2.15 0.03 0.87 3.25 4.16 1.02 0.07 3.32 13.45 97.02

Prec: precipitate, sed: sediment, sub: less-altered subtrate. All Fe reported as Fe_2O_3 , all S reported as SO_3 . ND = not detected. NA = not analyzed.

* = data for Bumpass Hell dacite from Clynne et al., 2008.

Table 6: Bulk tra	ice eleme	nt compo	osition o	of Lasse	n sampl	les, as n	neasure	d by XF	RF, ppm
Site Sample		Zr	V	Zn	Ni	Cr	Ce	Sr	Ва
Sulphur Works									
L-SW-12-2	rock	214	47	ND	ND	ND	186	96	1008
L-SW-12-3	rock	245	ND	ND	ND	ND	184	128	312
L-SW-12-6	sed	202	281	ND	ND	116	247	252	665
L-SW-12-7	sed	222	264	ND	ND	106	252	207	1299
L-SW-12-15	5 sed	168	55	ND	ND	44	170	109	470
L-SW-12-18	3 rock	192	58	ND	ND	ND	99	452	888
L-13-SW-2	sed	254	53	ND	ND	ND	190	68	1057
L-13-SW-3	sed	203	228	ND	ND	84	199	99	597
L-13-SW-4	sed	226	163	ND	ND	73	193	111	846
L-13-SW-7	sed	173	155	43	ND	67	494	288	446
L-13-SW-8	sub	154	154	65	74	105	208	442	579
L-SW-14-04	1 prec	189	188	ND	ND	74	ND	142	584
L-SW-14-05	5 rock	201	ND	ND	ND	ND	152	125	258
L-SW-16-05	5 sub	157	196	75	72	163	73	744	729
L-SW-16-06	5 sub	156	168	ND	74	160	74	652	656
L-SW-16-10) sub	179	139	ND	30	96	87	411	855
Bumpass Hell									
L-BH-12-1	prec	97	ND	ND	78	ND	217	65	427
L-BH-12-2	rock	125	91	56	35	71	219	431	561
L-BH-12-3	prec	680	ND	ND	ND	ND	ND	ND	1741
L-BH-12-4	prec	289	70	ND	ND	43	118	198	549
L-12-BH-5	prec	204	69	58	232	84	ND	231	499
L-BH-12-6	prec	116	68	ND	ND	ND	101	170	418
L-12-BH-7	prec	270	60	33	ND	45	ND	249	1291
L-12-BH-8	sub	160	121	81	31	77	155	465	601
LC81-810*	sub	146	NA	ND	ND	ND	NA	522	608
Little Hot Spring	s Valley								
L-LV-14-04	sed	297	195	ND	ND	60	168	107	572
L-LV-14-05	sed	662	ND	ND	ND	ND	ND	ND	1609
L-LV-14-06	sed	178	277	ND	ND	87	ND	121	677
L-LV-14-07	sed	252	138	ND	ND	69	144	503	897
L-LV-14-13	sed	182	96	53	ND	56	ND	265	629
L-LV-14-14	prec	67	53	36	ND	ND	120	894	445
L-LV-14-15	rock	192	147	113	85	58	ND	217	479
L-LV-14-18	sed	82	160	56	ND	ND	ND	202	360
L-LV-14-21	sed	163	146	ND	ND	73	ND	ND	509
L-LV-14-22	sed	196	60	ND	101	ND	ND	186	941
L_LV_14_2	3 sed	148	183	ND	ND	86	143	82	297

	L-LV-14-26	sub	132	193	69	42	98	144	430	551
	L_LV_14_28	rock	140	145	ND	ND	74	ND	672	1702
Growler and Morgan Hot Springs										
	L-13-G-2	prec	ND	ND	ND	ND	ND	ND	162	ND
	L-13-G-3	prec	ND	ND	ND	ND	ND	ND	27	ND
	L-13-M-1	prec	52	ND	ND	ND	ND	ND	175	189
	L-13-M-2	prec	ND	ND	ND	ND	ND	150	259	47
	L-13-M-3	prec	170	212	24	ND	128	147	839	492
	L-13-M-4	prec	55	ND	ND	ND	ND	ND	158	214
	L-13-M-6	prec	51	34	ND	ND	ND	165	274	183

Units = ppm. Prec= precipitate, sed= sediment, sub= less altered substrate.

ND = not detected.

* = data for Bumpass Hell dacite from Clynne et al., 2008.