Variations of Radon emanation coefficients as a function of physical and mineralogical properties of a suite of naturally-occurring minerals

KATHERINE KRUPP, MARK BASKARAN*, SARAH J. BROWNLEE

Department of Geology, Wayne State University, Detroit, MI-48202

*: Corresponding author (Baskaran@wayne.edu)

American Mineralogist

Revised version

21 February 2017
Abstract

The escape rates of radon gas from rocks and minerals are of great relevance to many branches of geoscience and it is thus important to understand the physical and mineralogical properties that control radon emanation rates. Mechanisms of radon loss from minerals have direct bearing on the reliability of U-Pb and U-Th-He geochronology. Fourteen minerals from three different mineral groups and with localities spanning three continents were selected for this study. The radon emanation coefficients (REC) for each mineral were measured as a function of grain size, temperature, ^{238}U and ^{232}Th activities and total absorbed α-dose, density, and mineral melting temperature. The measured ^{238}U and ^{232}Th activities ranged from 0.01 to 6487 Bq g$^{-1}$ and from below detection limit to 776 Bq g$^{-1}$, respectively. The REC values for unheated, pulverized samples ranged from 0.083 to 7.0%, which is comparable to previously reported ranges (except for zircon). An inverse correlation between grain size and REC was observed. Full annealing of fission tracks resulted in an overall decrease in REC values, suggesting that nuclear tracks could possibly act as conduits for radon release. While activity, alpha dose, density, and melting temperatures are not strongly correlated with REC values, it was observed that minerals with high melting points ($\geq 1400^\circ\text{C}$) have lower REC values, most likely due to inhibition of radon release by compact crystal-lattice structures. This is the first attempt, to our knowledge, to correlate REC values with melting temperature, and this study reports six minerals for which no REC values have been previously reported.

Keywords: Radon emanation, REC, metamict minerals, nuclear track annealing, uranium
INTRODUCTION

The studies of radon emanation rates from soils, rocks, and minerals have a wide range of applications in many branches of geosciences. The escape of radon from rocks and minerals is of importance to geological dating, where it can limit the reliability of U-Pb geochronology (e.g., Heaman and LeCheminant 2000; Corfu 2012; Goa et al. 2014). Radon concentration gradients observed in air (both interstitial soil and atmospheric air in planetary boundary layers and above) and groundwater are widely used as tracers in order to predict earthquakes, locate subsurface uranium ore and hydrocarbon deposits, and study atmospheric transport (Garver and Baskaran 2004; Nazaroff 1992; Levinson et al. 1982; Fleischer and Mogrocampero 1985; Wakita et al. 1991; Fleischer and Turner 1984; Tanner 1964, 1980; Liu et al. 1984; Kritz et al. 1993; Baskaran 2016). Radon is also used as a tracer for quantifying the rate of gas exchange across the air-sea interface (Broecker et al. 1967; Baskaran, 2016). Furthermore, the inhalation of radon and its progeny poses a radiation health hazard, as radon was classified as a human carcinogen (in the same carcinogen group as tobacco smoke, asbestos, and benzene) in 1988 by the International Commission on Radiation Protection (IARC; WHO, 2009). For these reasons, it is important to understand the physical and geological factors that affect radon release rates from rocks, minerals, and soils.

During the alpha decay of 226Ra, both an α-particle with a range of \sim10,000 nm in solids and an energetic 222Rn recoil nucleus are produced. With a recoil energy of 85 keV and a recoil distance of \sim40 nm (e.g., Amin and Rama 1986: 35 nm in clays, 95 nm in water and 64,000 nm in air), the recoil nucleus of 222Rn can collide with other atoms in a mineral’s crystal lattice structure and alter their arrangement (Semkow 1990). In minerals where the radiation dose exceeds \sim1016 α-decay events mg$^{-1}$, the mineral is reported to undergo a
radiation-induced transition from the crystalline to amorphous state (Murakami et al. 1991; Weber et al. 1994). The degree of internal radiation damage to the mineral structure by recoil and fission tracks can affect a mineral’s radon emanation coefficient (REC, also known as coefficient of emanation, escape ratio, escape-to-production ratio, and percent emanation), which is the ratio of radon emitted to radon produced within the mineral. These nuclear tracks can become interconnected and increase the internal surface area of the mineral, promoting further escape of radon atoms. Radon atoms, upon formation from the decay of ^{226}Ra and located primarily within recoil distance, migrate either 1) from the edge of a mineral grain into pore space or pore water, 2) deeper into the mineral grain, 3) into an adjacent grain, or 4) into pore space by indirect or penetration recoil (Semkow 1991). The 40 nm recoil distance of radon atoms implies that only those ^{226}Ra atoms that lie extremely close to the surface (within 100 nm) can contribute directly to radon emanation. However, if there are large internal surface areas formed from weathering, corrosion from chemical reactions, or intensive fracturing on a microscopic scale, then, a fraction of radon atoms located within deeper regions of the mineral could undergo emanation from the grain. It is therefore important to study the escape of radon gas as a function of specific physical properties which could impact the extent of its recoil range and diffusion, including radiation damage, mineral density and melting point.

A large body of REC values of minerals and soils has been published. However, there are only a few naturally occurring minerals for which REC values are available. Of the 3000+ naturally-occurring minerals, it appears that REC values are available for less than 50 minerals (e.g. Turekian et al. 1977; Nazaroff 1992; Garver and Baskaran 2004; Sakoda et al. 2011; Malczewski and Dziurowicz 2015; Eakin et al. 2016). The purpose of this study is to
determine how the radon emanation rates of individual minerals are influenced by 1) grain size, 2) nuclear track annealing, 3) 226Ra concentration and alpha dose, and 4) melting point and density. It is hypothesized that REC values should be inversely correlated to grain size, should decrease with nuclear track annealing, alpha dose, and be inversely related with both melting point and density. This is the first attempt, to our knowledge, to study the relationship between radon emanation and melting temperatures of minerals. Furthermore, this study includes six minerals that have never been used for REC studies and thus contains their first reported REC values.

MATERIALS AND METHODS

Fourteen minerals from three different mineral groups (10 silicates, 3 oxides, and 1 phosphate) with localities spanning three different continents were selected for this study. The location, specific gravity, geologic age, and chemical and mineralogical description of all samples are given in Table 1. The specific gravity of the mineral samples ranged from 2.54 – 11.0 (silicates: 2.54 – 5.3; oxides: 4.3 – 11.0; phosphate: 2.9 – 3.5), and the melting temperatures ranged from 1100 - 2827°C (silicates: 1100 -2200°C; oxides: 1356 - 2827°C; phosphate: 1600°C). The estimated age of the mineral samples based on their source formations ranged from 1050-1400 Ma, with the exception of two zircon samples from different locations (Malawi, Africa zircon: 730 ± 20 Ma; Mud Tank, Australia zircon: 732 ± 5 Ma). A single large crystal of each of the mineral samples was crushed and sieved into designated grain size fractions. To study radon emanation rate as a function of grain size, three unheated zircon specimens from different localities were crushed and sieved into four grain size fractions (<63, 63-125, 125-250, and 250-500 µm; these samples were prepared and used in a previous study by Eakin et al. (2016)). In order to study radon emanation as a
function of nuclear track annealing, four minerals were tested in addition to the zircon
samples from three localities, which were selected due to their relatively high concentration
of uranium and thorium (Table 1). The 125-250 μm size fractions were heated to 25
(unheated), 200, 300, 400, 600, and 800°C for 6 hours. Seven additional minerals were
chosen to represent a broad range of melting points and were pulverized to <125 μm.

Activities of 238U and 232Th

The activities of 238U and 232Th in the mineral grains were determined from the
measurements of their progeny, 226Ra and 228Ra, respectively, using a high-purity germanium
well detector coupled to a Canberra DSA-LX multi-channel analyzer, assuming secular
equilibrium between the parents and their progeny. This ultra-low background Ge detector
with ultra-low background hardware enabled us to measure very low 226Ra activities (0.001
Bq g$^{-1}$, equal to 0.6 dpm in 10-g sample and with a dpm/cpm ratio of ~25, we get 40 counts
with an error of 16%). Approximately 0.5 to 10 g of each size fraction, weighed to a
precision of 0.1 mg, was placed in a 10 ml graduated counting vial. Radium-226 was
measured using the 352 keV (214Pb) and 609 keV (214Bi) gamma energy peaks, 228Ra was
assayed using the 338 keV and 911 keV via 228Ac gamma energy peaks, and both of their
mean activities were calculated. The activity obtained by two different gamma-ray lines for
both 226Ra and 228Ra agreed within 1σ. Typical resolution (full-width at half-maximum) was
~1.3 keV at 46 keV and ~2.2 keV at 1.33 MeV. The detector was calibrated with IAEA solid
standards (RGU-1 and RGTh-1) for various geometries. The self-absorption corrections for
the energy of interest were found to be negligible as evidenced by measurements of several
standard reference materials and the close agreement between 226Ra obtained using 352 keV
(214Pb) and 609 keV (214Bi). This was verified by the measurements of 210Po in an aliquot of
sample by dissolving and measuring by alpha spectrometry, under the assumption that 210Po, 210Pb, and 226Ra are in secular equilibrium, as expected in any mineral older than 150 years. The total absorbed alpha dose (Δ, α-decays mg$^{-1}$) was calculated based on activities of each mineral sample using the following equation (Garver and Baskaran 2004):

$$\Delta = 8N_1[e^{\lambda_1t} - 1] + 7N_2[e^{\lambda_2t} - 1] + 6N_3[e^{\lambda_3t} - 1]$$

(1)

where t is the geologic age of each mineral, N_1, N_2, and N_3 are the atoms mg$^{-1}$ of 238U, 235U, and 232Th, respectively, and λ_1, λ_2, and λ_3 are the decay constants (years$^{-1}$) for these respective isotopes. This calculation assumes 1) a closed system (no loss or gain of parent or daughter other than by radioactive decay) and 2) $N_2 = N_1/137.88$ based on the natural abundances of 238U and 235U.

Radon emanation rate determination

Sample masses were aliquoted based on 238U activities and ranged from 0.5-40 g. All samples were sealed off in a polyethylene vessel for three weeks in order to ensure steady state conditions between 226Ra and 222Rn (and its progeny) prior to measurement in the radon detector. The concentration of radon gas emission was measured using the RAD 7 Electronic Radon Detector (Durridge Company, Inc.) which has a calibration accuracy of \pm 5% (Figure 1). The RAD 7 is a solid state alpha detector with a 0.7 liter internal sample cell volume. This instrument detects alpha particles released during radioactive decay and uses a semiconducting material to translate the energy into an electrical signal. The instrument records a spectrum of isotopic abundance based on each isotope’s characteristic alpha decay energy (in MeV). The continuous monitoring feature provides statistically precise readings, and its ability to distinguish between “new radon” and “old radon” (via 218Po versus 214Po detection) prevents from any buildup.
contaminating measurements in closed system setups. This setup consisted of a closed-loop system where the air pumped from the machine was passed through vinyl tubing to the sample vessel, followed by a series of filters and desiccators, and then back to the machine for counting (Figure 1). The relative humidity within the system, which is continually monitored by the RAD 7, was maintained below 10% at all times, and the continuous flow rate of air by the built-in air pump was 1 liter/minute. Cycle and recycle times varied between sets of mineral samples in order to account for large differences in 238U activity. Cycles ranged from 30 to 60 minutes, and the total run time ranged from 24-72 hours. Once uploaded to RAD 7 data acquisition and analysis software (Capture, Durridge Company, Inc.), the default spill factors and sensitivities were replaced with specific values determined by each machine’s calibration to increase the accuracy of the results. Background-subtracted radon measurements for each sample were used to calculate the REC value (%) based on the following equation:

$$REC = \frac{E}{N_{222}} \times 100\%$$ \hspace{1cm} (2)

where N_{222} is the number of 222Rn atoms produced via 226Ra and E is the 222Rn emission rate (222Rn atoms released per minute of RAD 7 run time), and is given by the following equation:

$$E = \frac{C}{\lambda_{222}} \times \frac{v}{10^5}$$ \hspace{1cm} (3)

where C is radon concentration per unit volume of air (Bq m$^{-3}$), v is flow rate (L min$^{-1}$), and λ_{222} is the decay constant for 222Rn (s$^{-1}$) (Malczewski and Dziurowicz 2015).
RESULTS

Variations in 238U, 232Th activity, and total absorbed alpha dose

The measured 238U and 232Th activities are listed in Table 1. Uranium-238 activities range from 0.010 to 6487 Bq g$^{-1}$ while 232Th activities range from below detection limit (BDL) to 776 Bq g$^{-1}$. The activities of the zircon minerals ranged from 0.388 to 80.3 Bq g$^{-1}$ of 238U, which is within the wide range of activities reported for zircon minerals (~0.01 to >250 Bq g$^{-1}$) (Eakin et al. 2016). Thorium-232 activities for the zircons ranged from 0.235 to 39.6 Bq g$^{-1}$, which is slightly higher than previously reported values (~0.002 to ~20 Bq g$^{-1}$) (Eakin et al. 2016; Heaman and Parrish 1991). Thorite, euxenite, uraninite, and betafile had the highest activities (238U range = 121 to 6487 Bq g$^{-1}$; 232Th range = 53 to 776 Bq g$^{-1}$). The remaining seven minerals (hornblende, apatite, augite, microcline, albite, quartz, and olivine) had the lowest activities (238U range = 0.010 to 1.52 Bq g$^{-1}$; 232Th range: BDL to 1.08 Bq g$^{-1}$). Note that most common minerals (e.g. feldspar, quartz, and hornblende) have very low 238U and 232Th concentrations (Table 1, 2). No earlier published data was found on the uranium or thorium activities of euxenite, betafile, augite, microcline, albite, or olivine, and thus no comparison is possible. The calculated total absorbed alpha dose for the sample set ranged from 0.0036 to 2300 x1015 decays mg$^{-1}$ (Table 1). The corresponding values for silicates ranged from 0.0036 to 215 x1015, oxides ranged from 217 to 2300 x1015, and the phosphate was 0.480 x1015 decays mg$^{-1}$ (Table 1). Due to the overall similarity in geologic ages across the sample set, variations in alpha dose are primarily a result of variations in 238U and 232Th activities. The oxides have the three largest alpha dose values, and also have the three highest 238U activities.
Radon Emanation Coefficients

The radon emanation coefficients for the analyzed mineral samples are given in Table 3. The REC values for different zircon grain-size fractions range from <0.01 to 0.77% (n=11, mean = 0.35%). Note that the lone REC value of 18.2% is an outlier, and is not included in the discussion. The REC values for <63, 63-125, 125-250, and 250-500 µm size fractions range from 0.27 to 0.77% (n=2, mean=0.53%), 0.21 to 0.72% (n=3, mean=0.44 %), 0.19 to 0.38 % (n=3, mean=0.31 %), and <0.01 to 0.35 % (n=3, mean=0.18 %), respectively. There is an inverse correlation between grain size and REC in all three zircon minerals. The REC values for the series of minerals heated from 200-800°C range from <0.01 to 0.58 % (n=35, mean = 0.16 %), and specific results are illustrated in Figure 2. The REC values resulting from heated mineral samples were generally highest upon heating to 300 or 400°C, and the lowest rates for all minerals (except euxenite) occurred upon heating to 600 or 800°C (Table 3, Figure 2). The Mud Tank zircon samples are excluded from this statement because all heated samples resulted in REC values of <0.01 %. 0.083 ± 0.03 at 25°C, 0.061 ± 0.003 % at 200°C,, 0.053 ± 0.003 % at 300°C,,0.062 ± 0.003 % at 400°C, 0.062 ± 0.003 % at 600°C,, and 0.109 ± 0.003 % at 800°C,

The REC range for a suite of 14 unheated mineral samples of <250µm grain sizes varied from 0.083 to 7.0% (mean=1.67%). This range is comparable to the previously reported range of <0.01 to 0.83% from a collection of 47 different studies comprising a total of 75 minerals (both bulk and pulverized); however, the present study includes a set of minerals that have never been measured before and that are expected to have very little radiative damage, which may be responsible for the higher REC values reported (Sakoda et al. 2011). The REC for unheated silicates of <125-250 µm ranged from 0.19 to 7.0% (n=9, mean=1.89%). For oxides, the REC ranged from 0.083 to 0.177% (n=3, mean=0.14%), and the REC value of the phosphate mineral
was found to be $5.4 \pm 0.1\%$. The silicate group produced a wide range of REC values as well as the highest REC values. The oxide group showed a narrow range of low REC values and is composed of minerals with higher ^{238}U and ^{232}Th activities. Zircon had the lowest REC among all the minerals listed in Table 1, similar to what has been reported elsewhere (Sakoda et al. 2011; Garver and Baskaran, 2004; Eakin et al., 2016). Commonly-occurring minerals such as hornblende and quartz with very low ^{238}U and ^{232}Th activities have mean REC values of 2.2% and 4.3%, respectively, which are higher than the values reported for uraninite and zircon (Table 2, 3). The REC value for quartz ($3.8 \pm 0.5\%$) is similar to the value reported by Sakoda et al. (2010) of $4.6 \pm 0.5\%$; the measured value for hornblende is lower ($0.90 \pm 0.03\%$) compared to the published value of $3.42 \pm 0.38\%$ (Krishnaswami and Seidemann, 1988); and the value for apatite reported in this study is much higher ($5.4 \pm 0.11\%$) compared to 0.5 and 0.8% from a study by Rama (1990a) (Table 2). Some of the minerals included in this experiment are known to commonly occur as accessory minerals (euxenite, zircon, and thorite), which exhibit heterogeneous ^{226}Ra distribution, leading to variable REC values. However, many of these samples were single crystals and were pulverized and thus, this should not be a factor (unless crushing resulted in breaking along cleavage plane and the heterogeneity is preserved in the crushed grains). The range of reported REC of zircon (both in air and solution) vary over six orders of magnitude, while that of uraninite and thorite vary over five and three orders of magnitude, respectively (Table 2).
DISCUSSION

A number of factors affect radon emanation rates, including particle size and shape, internal porosity, the extent of radiation damage within the crystalline structure, the type of distribution of impurities and imperfections in the crystal lattice, and the concentration and distribution of 226Ra (Tanner, 1980; Strong and Levins, 1982; Rama and Moore, 1984; Krishnaswami and Seidemann, 1988; Rama and Moore, 1990a; Garver and Baskaran, 2004; Lawrence et al., 2009; Eakin et al., 2016). For example, in the case of zircon, the effects of alpha-decay damage on zircon were reported to include decrease in density (17%), decrease in hardness, decrease in thermal conductivity, increase in adsorbed water, increase in chemical diffusion, and increased susceptibility (Murakami et al., 1991; Weber et al., 1994). Furthermore, release rates of radon outside of a mineral grain also depend on the surrounding medium (air or water; Tanner, 1964). There are heterogeneities in the distribution of uranium isotopes in U-bearing minerals, where the isotopes are commonly concentrated in certain localized regions of the mineral depending on its mode of formation and whether or not recrystallization occurred (e.g., Sakoda et al., 2010). Furthermore, the progeny of 238U are likely to lie in the recoil tracks along which the mineral is chemically and structurally ruptured (note that 238U reside in crystalline material while the progeny (up to 206Pb) will not be). Rama and Moore (1990a) observed large radon emanation coefficients from crystals of apatite, uraninite and monazite and argued that these results provide evidence for existence of micro-crystallinity and associated network of internal gaps (or pores) that are extremely narrow (nm wide) due to extremely low porosity in these minerals and are connected to the surface. From a diffusion study of 220Rn across nanometer wide holes in common rock minerals, Rama and Moore (1990b) reported that the zones of porosity are circuitous and thus, the effective diffusion length of 220Rn and 222Rn are
~ 3 mm and 30 cm, respectively in granite, compared to the corresponding values in air of 3 cm and 3 m, respectively. Different factors that affect radon emanation rates of minerals are discussed below.

REC variations in water and air

The release rates of radon outside of a mineral grain depend on the surrounding medium (air or water; Tanner, 1964). Radon emanation coefficients obtained in air can be compared to the REC values for the same set of mineral aliquots obtained in water (Eakin et al. 2016) (Table 2). The REC values in water are distinctively higher than that in air (Table 2). Higher values of REC in water are likely due to the presence of water in pore spaces (note that the size of a water molecule is 0.29 nm), which increases the probability that radon atoms will terminate their recoil paths in those spaces due to a shorter stopping distance in water than in air, thus augmenting the direct-recoil fraction. This indicates that radon atoms emanating in air are much more likely to be embedded into adjacent grains.

While minerals such uraninite containing very high ^{238}U concentrations can become amorphous (metamict) due to self-irradiation by decaying actinides, minerals such as zircon (and monazite with high ^{232}Th concentrations) have remarkable stability, although residual atomic displacement damage produced by alpha recoil atoms could accelerate the actinide dissolution affecting the distribution of ^{226}Ra and thereby the release rates of radon. Radon emanation coefficients as high as 12.1% and 23% for the much shorter-lived ^{220}Rn (Barretto, 1973) have been reported, although, in general, the radon emanation coefficients for zircon are much lower (e.g., Eakin et al., 2016). Due to this high REC value, we speculate that the effect of radiation...
damage is to form a mosaic of channels in which water may be introduced to increase the direct-recoil fraction, or along which the mineral may be altered resulting in potential increase in the indirect-recoil and diffusion fractions. It is also documented that recoil tracks are responsible for a portion of the preferential removal of 234U by water entering through these recoil tracks and healing of such tracks by heating could diminish the release of nuclides such as 234U and 226Ra (e.g. Fleischer 1982) which also result in the increase in radon release rates.

REC values as a function of grain size

When the grain size is smaller than radon recoil distance, almost all of the radon released from recoil will escape the grain. The contribution of radon escape from solid state diffusion (assuming that there is preferential diffusion through nanopores or recoil/alpha nuclear tracks or radiation damage inside a grain) is expected to be small due to diffusion length ($= \sqrt{D \tau}$) where D_s is diffusion coefficient of 222Rn in solids, $10^{-25} - 10^{-27}$ m2 s$^{-1}$, summarized in Baskaran, 2016) and τ is mean-life of 222Rn (5.51 d)) is ~ 0.02-0.2 nm. The recoil length of radon atoms is 30-50 nm and hence radon emanation by recoil is in effect a surface phenomenon (upper 50 nm) (Semkow 1991; Malczewski and Dziurowicz 2015). If the volume of the surface layer of a mineral grain is $\sim 0.01\%$ of the total volume, the mean grain size for each fraction tested in this study would result in 222Rn escape by recoil to be less than $\sim 0.0001\%$. However, a consistent inverse relationship was observed between REC and grain size, where REC values increase with decreasing grain size and thus larger surface area per volume (Table 3). This implies that recoil rather than diffusion is responsible for the majority of radon escape from the samples. The
fraction of radon emitted as a result of recoil can be related to the grain size of homogeneous, spherical, defect-free grains is given by (Giletti and Kulp 1954):

\[
F_r = \frac{3}{4} \frac{R}{r_o} - \frac{1}{16} \left(\frac{R}{r_o} \right)^3 \quad \text{for } 2r_o \geq R \tag{4}
\]

where \(F_r \) is the fraction of radon atoms emitted due to recoil, \(R \) is recoil range, and \(r_o \) is the radius of the grain. From equation (4), the fraction of radon atoms emitted as a function of grain size for a recoil range of 50 nm yields an inverse relationship between surface area and the radon emanation rate. However, such a relationship is not commonly reported, primarily because no study has been conducted with grain sizes in the range of 0.05 – 1 \(\mu \)m. For example, REC from a 30 cm x 30 cm x 30 cm cube of granite was reported to be the same as that for a 1-2 mm granite sample (Amin and Rama 1986). Two hypotheses have been proposed to account for the discrepancy between expected and measured radon emanation rates: 1) heterogeneous \(^{226}\)Ra distribution, or 2) a network of nanopores aiding in gas transport within the mineral (Rama and Moore 1984). These nanopores would increase the internal surface area of the mineral, allowing for a higher amount of radon diffusion, resulting in greater emanation in smaller grains due to higher surface area to volume ratios. Furthermore, the zones of nano-porosity have been suggested to form a network that connects to the grain boundary (Rama and Moore 1990). In low-temperature-formation minerals such as quartz and feldspars, the submicronic porosity is reported to be 10-20% while in amphiboles, the entire inner area is leaky and hence radon escape is expected to be higher (Rama and Moore, 1990b). Thus, the radon emanation could depend on the fraction of submicronic porosity (fractional volume of mineral exhibiting submicronic porosity) since the zones of submicron porosity are reported to run both along grain boundaries and across the grains (Rama and Moore 1990b). In order to account for the concentration of
226Ra at grain boundaries, the fraction of radon atoms emitted by recoil (F_{uniform}) is given by (Morawska and Phillips 1993):

$$F_{\text{uniform}} = 0.5 \times (1 + \frac{R}{d})$$

(5)

where d is the diameter of the mineral grain. The range of grain diameters used in this study produced an F value approximating 0.5 for each size fraction (note that the variations in calculated REC values remain more or else constant for grain sizes of 63 and 500 µm), which would produce a constant REC value for the samples tested. Therefore, another mechanism such as nanopores or radiation damage which could increase the surface area to volume ratio with decreasing grain size compared to a defect-free grain must be responsible for the REC values reported in this study.

REC values as a function of temperature

It is known that alpha recoil tracks anneal much more readily than fission tracks when a mineral is subjected to elevated temperatures. Hasheminezhad and Durrani (1983) determined that 100% annealing of alpha tracks in biotite occurred at a finite temperature, with activation energy of 1.4 eV. The corresponding activation energy for fission tracks is much higher, and thus, a much higher temperature is required for complete annealing (Hasheminezhad and Durrani 1983). In our study, in five of the seven heated minerals, an increase in REC between 300 and 400°C is observed which may correspond to complete annealing of α-recoil tracks. It was demonstrated that the heating of zircon minerals over an extended period of time (>24 h) can change the crystal structure through annealing of α-recoil and fission tracks (Yamada et al.)
The network of interconnected fission and α-recoil tracks in uranium and thorium-bearing minerals is proposed to result in the formation of channels serving as conduits for ^{222}Rn gas escape. Partial annealing of all the tracks (at low temperatures, mostly α-recoil tracks) may temporarily relieve “congestion” (analogous to a traffic jam) which could lead to higher REC values prior to full fission track annealing. However, Eakin et al. (2016) also reported decrease in REC with partial annealing in one of the three zircon samples studied. Garver and Baskaran (2004) showed that for monazite, zircon, and uraninite, the REC values followed the trend: $200^\circ\text{C} > 100^\circ\text{C} > 600^\circ\text{C}$. In the case of zircon, the least amount of variation in the REC value was reported at different degrees of heating (Garver and Baskaran 2004, Eakin et al. 2016). From the differences in the amount of radon released from a zircon sample heated twice (with a time gap of about a month) at 975°C for 48 hours, Eakin et al. (2016) suggested that diffusion parameters are changed due to annealing of radiation damage. When the heating temperature approaches the total annealing temperature, the nuclear track-induced channels are likely removed, resulting in lower REC values. The REC value of Mud Tank zircon, upon any degree of heating, was <0.01%, perhaps due to the low activity of the mineral and lack of significantly interconnected fission tracks. The euxenite sample lacked any trend in REC values with an increase in temperature. Euxenite, a complex uranium yttrium oxide with many substitution sites within its chemical formula (termed the “trash can mineral”) is likely influenced by other chemical or physical properties from the higher concentrations of other elements present which are affecting the radon emanation rates. Furthermore, complete recrystallization of euxenite could occur at much greater than 1000°C at laboratory conditions and timescales and therefore the degree of annealing for each sample likely varied, especially if any minerals experienced
long term annealing by geothermal events in the natural environment, independent of laboratory
annealing (Murakami et al. 1991).

REC values as a function of U-Th concentration and alpha dose

The minerals in this study show an R^2 value of 0.53 (polynomial fit) for REC versus
activity concentrations of ^{238}U and 0.49 for REC versus alpha dose, indicating a weak linear
relationship between REC and both parameters (Figure 3, Figure 4). There is no relationship
between REC and the activity of ^{238}U, ^{232}Th, or alpha dose in a recent study by Eakin et al.
(2016) on zircons; however, an inverse relationship was observed between REC and radiation
dose by Malczewski and Dziurowicz (2015). Variations in mineral composition and lattice
structure will likely affect radon emanation along with radiation dose. For example, the uraninite
sample in the Malczewski and Dziurowicz study (2015) had the highest ^{238}U activity and
radiation dose but the lowest REC value, similar to this study. The authors proposed that due to
uraninite’s simple and compact oxide structure, this mineral is essentially dose-independent. All
of the oxides in this study produced low REC values despite their high ^{238}U concentrations.

Silicates have more complex crystal lattice structures, and also exhibited a higher variability of
REC despite lower activity, further suggesting the influence of mineral structure and
composition on radon emanation rates (Figures 3, 4).

REC dependence on melting point and density
The melting point and density of a mineral depends on the covalent bonding energy and the lattice arrangement of atoms within that mineral. It is anticipated that those minerals with high melting point and density will likely have lower radon emanation coefficients. Based on the variability of REC with activity, alpha dose, and nuclear track annealment, it is likely that the physical structure of a mineral is influential in the degree of radon emanation. A mineral’s density and melting point are directly related, as both parameters are based on how tightly-packed the atoms of the mineral are. A more compact internal mineral structure should inhibit the mobility of radon atoms and thus lower emanation rates. Figure 5 and Figure 6 show the REC versus density and melting point for the minerals in this study. Neither parameter correlates significantly with REC ($R^2=0.17$ for REC versus density; $R^2=0.044$). Minerals with similar densities but a wide range of activity concentrations show a correspondingly wide range of REC values, which span over three orders of magnitude (Table 1, 3; Figure 5). This variability is reduced at the lowest and highest extents of density (the uraninite sample has the highest density and lowest REC value, and the mineral samples with densities of <2 showed relatively high REC values). When REC is compared to minerals with melting points of 1400°C and higher, the R^2 value increases to 0.52 (with the exclusion of betafite, $R^2=0.77$), indicating a much stronger correlation (Figure 6). It is thus proposed that minerals with lower melting points (and densities) are prone to more variable lattice structures by radiative damage or other physical defects, resulting in a wider range of REC values, whereas higher density minerals such as uraninite exhibit REC values that are more strongly controlled and limited by their physical structure.
Understanding the physical and mineralogical processes which control radon emanation from minerals is essential to obtain reliable $^{238}\text{U}-^{206}\text{Pb}$ and U-He ages on individual minerals. Furthermore, the results presented in this article are important and relevant for understanding the mechanism of ^{222}Rn loss from different minerals and have potential implications for the discordant ages obtained from $^{206}\text{Pb}/^{228}\text{U}/^{207}\text{Pb}/^{235}\text{U}/^{208}\text{Pb}/^{232}\text{Th}$ pairs. Furthermore, the radon release rate from continents/ocean surface has direct bearing on the production of rates of ^{210}Pb from the decay of ^{210}Pb and hence applications of ^{210}Pb and ^{222}Rn as atmospheric circulation tracers require a thorough understanding of the factors that control the release rates of ^{222}Rn from soils and minerals.

The presented results indicate that specific factors such as grain size, heating, and melting point can have a direct bearing on the amount of radon released. In addition, nanopores or radiative damage in minerals can amplify the relationship between REC emanation and grain size. Radiation damage promotes the release of radon due to an increased internal surface area of minerals. Here we propose that partial annealing of fission tracks can increase radon emanation rates by relieving congestion within crystal lattices, while full annealing decreases emanation rates by eliminating pathways for radon release. The results of this study indicate that high density minerals produce the lowest REC values and low density minerals produce higher REC values; however, the trend is not consistently observed and thus other chemical and physical properties complicate this relationship. Minerals with higher melting points ($\geq 1400^\circ\text{C}$) are inversely related to REC values, as expected based on mineral density. Minerals with a lower melting point and density are prone to greater chemical and physical variability, and for these reasons, REC values are also subject to a greater degree of variability.
Radon isotopes that have longer half-lives have a higher probability of being lost before decaying to their progeny, so we expect longer half-lives to equate to higher REC values, and following from linear diffusion theory, it is anticipated that the REC for 219Rn, 220Rn and 222Rn will be in rough proportion to the square root of their half-lives (i.e., 1.0:3.7:290). Significant deviations from these expected values could aid in probing the heterogeneity in the distribution of their precursors (223Ra, 224Ra and 226Ra, respectively). Therefore, our future studies are focused in understanding the factors and processes that cause variations in the RECs values for 219Rn and 220Rn.

Acknowledgements: This work was performed as an undergraduate research project supported by an REU in NSF grant (OCE-1237059, PI: MB). We thank the two anonymous reviewers for their insightful reviews.
References

List of Figure Captions

Figure 1. RAD 7 experimental set-up. Air is pumped from RAD-7 into the sample vessel in a closed-loop by vinyl tubing, followed by an air filter to prevent mineral grains from migrating through the system, and a desiccator. Air is then returned into RAD-7 for counting.

Figure 2: Radon emanation coefficient (% average value used for plots) as a function of temperature. The linear fit is given for the full dataset as well as a partial dataset (which excludes REC values at 200° and 300°C). Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size). Mud Tank zircon dataset is not included due to below detection level of radon emanation upon heating.

Figure 3: A plot of radon emanation coefficient as a function of ^{238}U activity for all unheated minerals. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).

Figure 4: A plot of radon emanation coefficient versus total absorbed alpha dose for all unheated mineral samples. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).

Figure 5. The radon emanation rate as a function of density for all unheated minerals of <250 µm. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).

Figure 6: The radon emanation coefficient as a function of melting point (data in Table 3) for 1) all unheated minerals (red), 2) mineral samples with melting points ≥ 1400°C (blue), and 3) for minerals with melting points ≥1400°C, excluding betaite (green). There is no significant correlation for the whole sample set, but for minerals with ≥ 1400°C melting temperature, there is a significant correlation.
Table 1. Location, specific gravity, melting point, activities of measured 238U and 232Th, and calculated total absorbed alpha dose on a suite of minerals. Uncertainties are propagated from counting statistics.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Locality</th>
<th>Chemical Formula</th>
<th>Specific Gravity (Melting Point, °C)</th>
<th>Estimated Age (Ma)</th>
<th>238U Activity (Bq g$^{-1}$)</th>
<th>232Th Activity (Bq g$^{-1}$)</th>
<th>Total Alpha Dose ($\times 10^{15}$) (decays mg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euxenite</td>
<td>Chaffee County, Colorado</td>
<td>(Y,Ca,Ce,U,Th)(Nb,Ti,Ta)$_2$O$_6$</td>
<td>4.85 (1356°)</td>
<td>ca. 14001</td>
<td>395 ± 2</td>
<td>180 ± 1</td>
<td>217 ± 2</td>
</tr>
<tr>
<td>Uraninite</td>
<td>Bancroft, Ontario, Canada</td>
<td>UO$_2$</td>
<td>11 (28272)</td>
<td>ca. 11503</td>
<td>6487 ± 49</td>
<td>446 ± 3</td>
<td>2300 ± 29</td>
</tr>
<tr>
<td>Betafite</td>
<td>Bancroft, Ontario, Canada</td>
<td>(Ca,U)$_2$(Ti,Nb,Ta)$_2$O$_6$(OH)</td>
<td>4.3 (16023)</td>
<td>ca. 11503</td>
<td>2283 ± 17</td>
<td>53 ± 1</td>
<td>786 ± 17</td>
</tr>
<tr>
<td>Thorite</td>
<td>Bancroft, Ontario, Canada</td>
<td>(Th,U)SiO$_4$</td>
<td>5.3 (12003)</td>
<td>ca. 11503</td>
<td>121 ± 1</td>
<td>776 ± 5</td>
<td>215 ± 3</td>
</tr>
<tr>
<td>Zircon</td>
<td>Malawi, Africa</td>
<td>ZrSiO$_4$</td>
<td>4.67 (22003)</td>
<td>730 ± 207</td>
<td>8.87 ± 0.07</td>
<td>4.13 ± 0.10</td>
<td>2.4 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Bancroft, Ontario, Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mud Tank, Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horblende</td>
<td>Bancroft, Ontario, Canada</td>
<td>(Ca,Na)$_2$-(Mg,Fe,Al)_2$(Si,Al)O$_2(OH,F)_2$</td>
<td>2.9-3.5 (11003)</td>
<td>ca. 12003</td>
<td>1.52 ± 0.01</td>
<td>0.308 ± 0.006</td>
<td>0.61 ± 0.01</td>
</tr>
<tr>
<td>Augite</td>
<td>Bancroft, Ontario, Canada</td>
<td>(Ca,Na)(Mg,Fe$^{2+}$,Al,Fe$^{3+}$,Ti)[(Si,Al)O$_6$]</td>
<td>3.19-3.56 (14003)</td>
<td>ca. 12003</td>
<td>0.069 ± 0.001</td>
<td>0.021 ± 0.001</td>
<td>0.035 ± 0.002</td>
</tr>
<tr>
<td>Microcline</td>
<td>Bancroft, Ontario, Canada</td>
<td>KAlSi$_3$O$_8$</td>
<td>2.54-2.63 (12503)</td>
<td>ca. 12003</td>
<td>0.465 ± 0.004</td>
<td>0.021 ± 0.002</td>
<td>0.17 ± 0.02</td>
</tr>
<tr>
<td>Albite</td>
<td>Madawaska, Ontario, Canada</td>
<td>NaAlSi$_3$O$_8$</td>
<td>2.76 (11003)</td>
<td>ca. 12003</td>
<td>0.0103 ± 0.0003</td>
<td>0.0010 ± 0.0004</td>
<td>0.0039 ± 0.0016</td>
</tr>
<tr>
<td>Quartz</td>
<td>Bancroft, Ontario, Canada</td>
<td>SiO$_2$</td>
<td>2.65 (16003)</td>
<td>ca. 12003</td>
<td>0.0177 ± 0.0005</td>
<td>BDL*</td>
<td>0.00629 ± 0.00025</td>
</tr>
<tr>
<td>Olivine (via</td>
<td>Jackson county, North Carolina</td>
<td>(Fe, Mg)$_2$SiO$_4$</td>
<td>3.22-4.39 (18003)</td>
<td>1100-130011</td>
<td>0.010 ± 0.001</td>
<td>BDL</td>
<td>0.00356 ± 0.00050</td>
</tr>
<tr>
<td>Dunite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apatite</td>
<td>Bancroft, Ontario, Canada</td>
<td>Ca$_4$(PO$_4$)$_2$(F,OH,Cl)</td>
<td>2.9-3.5 (16003)</td>
<td>ca. 12003</td>
<td>0.64 ± 0.01</td>
<td>1.08 ± 0.01</td>
<td>0.480 ± 0.01</td>
</tr>
</tbody>
</table>

*Below detection limit.

Table 2. Comparison of the activities of 238U, 232Th, and radon emanation coefficients in different size fractions determined in this study with the values reported in literature.*

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Locality</th>
<th>Estimated Age (MA)</th>
<th>Size Fraction (μm)</th>
<th>U-238 (Bq/g)</th>
<th>Th-232 (Bq/g)</th>
<th>Radon Emanation Coefficient (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uraninite</td>
<td>Wilberforce, Ontario</td>
<td>1000 ± 200</td>
<td><63</td>
<td>5829 ± 69</td>
<td>376.7 ± 7.32</td>
<td>0.53 ± 0.01</td>
<td>Garver et al. 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000-2000</td>
<td>0.53 ± 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklo, Gabon</td>
<td>NA</td>
<td>1968 ± 50</td>
<td>bulk</td>
<td>9465 ± 216</td>
<td>5.1 ± 2</td>
<td>0.000049</td>
<td>Malczewski et al. 2015</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.9</td>
<td>Rama 1990a</td>
</tr>
<tr>
<td>Bancroft, Ontario</td>
<td>ca. 1150</td>
<td>125-250</td>
<td>6487 ± 49</td>
<td>446 ± 3</td>
<td>0.18 ± 0.001</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Zircon</td>
<td>Malawi, Africa</td>
<td>730 ± 20</td>
<td>125-250</td>
<td>8.87 ± 0.07</td>
<td>4.13 ± 0.1</td>
<td>2.21 ± 0.23</td>
<td>Eakin et al. 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125-250</td>
<td>0.37 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bancroft, Ontario</td>
<td>1050 ± 12</td>
<td>125-250</td>
<td>80.27 ± 0.58</td>
<td>39.58 ± 0.87</td>
<td>2.11 ± 0.35</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Mud Tank, Australia</td>
<td>732 ± 5</td>
<td>125-250</td>
<td>0.388 ± 0.008</td>
<td>0.235 ± 0.027</td>
<td>1.76 ± 0.64</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Goias, Brazil</td>
<td>2900 ± 200</td>
<td><63</td>
<td>50.1 ± 0.5</td>
<td>4.6 ± 0.1</td>
<td>1.04 ± 0.01</td>
<td>Garver et al. 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000-2000</td>
<td>0.47 ± 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3.831 ± 2.986</td>
<td>NA</td>
<td>0.01 ± 0.00</td>
<td>Rama 1990a</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.2 – 4.8</td>
<td>Barretto 1973</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorite</td>
<td>Tory Hill, Ontario</td>
<td>1000 ± 200</td>
<td><63</td>
<td>104 ± 2</td>
<td>869 ± 9</td>
<td>5.38 ± 0.08</td>
<td>Garver et al. 2004</td>
</tr>
<tr>
<td>Cardiff Twp, Canada</td>
<td>1250 - 1340</td>
<td>bulk</td>
<td>120 ± 9</td>
<td>1054 ± 22</td>
<td>0.077</td>
<td>Malczewski et al. 2015</td>
<td></td>
</tr>
<tr>
<td>Bancroft, Ontario</td>
<td>ca. 1150</td>
<td>125-250</td>
<td>121 ± 1</td>
<td>776 ± 5</td>
<td>0.60 ± 0.01</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Apatite</td>
<td>NA</td>
<td><5000</td>
<td>0.25 – 0.095</td>
<td>NA</td>
<td>0.5-25</td>
<td>Rama 1990a</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bancroft, Ontario</td>
<td>1200</td>
<td><125</td>
<td>0.64 ± 0.01</td>
<td>1.08 ± 0.01</td>
<td>5.4 ± 0.11</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Hornblende</td>
<td>NA</td>
<td>212-425</td>
<td>0.0106 ± 0.0005</td>
<td>NA</td>
<td>3.42 ± 0.38</td>
<td>Krishnaswami 1988</td>
<td></td>
</tr>
<tr>
<td>Bancroft, Ontario</td>
<td>1200</td>
<td><125</td>
<td>1.52 ± 0.01</td>
<td>0.308 ± 0.006</td>
<td>0.90 ± 0.03</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>Austria</td>
<td>250-500</td>
<td>0.800 ± 0.03</td>
<td>NA</td>
<td>4.6 ± 0.5</td>
<td>Sakoda et al. 2010</td>
<td></td>
</tr>
<tr>
<td>Bancroft, Ontario</td>
<td>1200</td>
<td><125</td>
<td>0.0177 ± 0.0005</td>
<td>BDL</td>
<td>3.8 ± 0.46</td>
<td>This study</td>
<td></td>
</tr>
</tbody>
</table>

*Sakoda et al., 2011; Nazaroff, 1992.
NA: Not available.
Table 3. Radon emanation coefficients determined on different grain sizes at different temperatures in a suite of minerals. Uncertainties are propagated from counting statistics.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Grain size (μm)</th>
<th>Temperature (°C)</th>
<th>REC (%)</th>
<th>Sample</th>
<th>Grain size (μm)</th>
<th>Temperature (°C)</th>
<th>REC (%)</th>
<th>Sample</th>
<th>Grain size (μm)</th>
<th>Temperature (°C)</th>
<th>REC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zircon (Malawi)</td>
<td>125-250</td>
<td>25</td>
<td>0.37 ± 0.02</td>
<td>Thorite</td>
<td>125-250</td>
<td>25</td>
<td>0.60 ± 0.01</td>
<td>Hornblende</td>
<td><125</td>
<td>25</td>
<td>0.90 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.28 ± 0.02</td>
<td>Apatite</td>
<td>300</td>
<td>0.58 ± 0.01</td>
<td>Augite</td>
<td>7.0 ± 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.47 ± 0.03</td>
<td>Microcline</td>
<td>600</td>
<td>0.21 ± 0.01</td>
<td>Albite</td>
<td>0.35 ± 0.76*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.19 ± 0.03</td>
<td></td>
<td>800</td>
<td>0.25 ± 0.01</td>
<td>Quartz</td>
<td>3.8 ± 0.5*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zircon (Bancroft)</td>
<td>125-250</td>
<td>25</td>
<td>0.19 ± 0.01</td>
<td>Euxenite</td>
<td>125-250</td>
<td>25</td>
<td>0.083 ± 0.003</td>
<td>Olivine</td>
<td>2.7 ± 0.7*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63-125</td>
<td>25</td>
<td>0.40 ± 0.02</td>
<td></td>
<td>200</td>
<td>0.061 ± 0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250-500</td>
<td>25</td>
<td>0.35 ± 0.02</td>
<td></td>
<td>300</td>
<td>0.053 ± 0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zircon (Mud Tank)</td>
<td>125-250</td>
<td>25</td>
<td>0.13 ± 0.01</td>
<td>Uraninite</td>
<td>125-250</td>
<td>25</td>
<td>0.177 ± 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>0.17 ± 0.01</td>
<td></td>
<td>800</td>
<td>0.044 ± 0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.29 ± 0.01</td>
<td></td>
<td>400</td>
<td>0.062 ± 0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63-125</td>
<td>25</td>
<td>0.21 ± 0.01</td>
<td></td>
<td>600</td>
<td>0.061 ± 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250-500</td>
<td>25</td>
<td>0.18 ± 0.01</td>
<td></td>
<td>800</td>
<td>0.038 ± 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| *high error is due to low radon concentration.*
Figure 1

(A) RAD-7
(B) Direction of air flow
(C) Sample vessel
(D) Air filter
(E) Dessicator
Bancroft Zircon

\[y = 0.236 - 0.000186x \quad R= 0.73; \quad P= 0.10 \]

\[y = 0.203 - 0.000152x \quad R= 0.77; \quad P= 0.23 \]

Malawi Zircon

\[y = 0.379 - 0.000148x \quad R= 0.44; \quad P= 0.39 \]

\[y = 0.442 - 0.000223x \quad R= 0.63; \quad P= 0.36 \]

Betafite

\[y = 0.127 - 0.000110x \quad R= 0.75; \quad P= 0.09 \]

\[y = 0.180 - 0.000148x \quad R= 0.97; \quad P= 0.03 \]

Euxenite

\[y = 0.0590 + 0.0000327x \quad R= 0.44; \quad P= 0.38 \]

\[y = 0.0691 + 0.000022x \quad R= 0.32; \quad P= 0.68 \]
Figure 2: Radon emanation coefficient (%) as a function of temperature. The linear fit is given for the full dataset as well as a partial dataset (which excludes REC values at 200° and 300°C). Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size). Mud Tank zircon dataset is not included due to below detection level of radon emanation upon heating.
Figure 3: A plot of radon emanation coefficient as a function of 238U activity for all unheated minerals. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).

$y = 0.897x^{-0.228}$

$R^2 = 0.53; P = 0.34$
Figure 4: A plot of radon emanation coefficient versus total absorbed alpha dose for all unheated mineral samples. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).
Figure 5: The radon emanation rate as a function of density for all unheated minerals of <250 μm. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).
Figure 6: The radon emanation coefficient as a function of melting point (data in Table 3) for 1) all unheated minerals (red), 2) mineral samples with melting points ≥ 1400°C (blue), and 3) for minerals with melting points ≥1400°C, excluding betafite (green). There is no significant correlation for the whole sample set, but for minerals with ≥ 1400°C melting temperature, there is a significant correlation.

\[y = 3.17 - 0.000898x \quad R^2 = 0.044; P= 0.47 \]
\[y = 10.3 - 0.00417x \quad R^2 = 0.52; P= 0.028 \]
\[y = 12.5 - 0.00503x \quad R^2 = 0.77; P= 0.0043 \]