Revision 3

1	The spin state of Fe ³⁺ in lower mantle bridgmanite
2	Ryosuke Sinmyo [*] , Catherine McCammon, Leonid Dubrovinsky
3	Bayerisches Geoinstitut, Universitaet Bayreuth, D-95440 Bayreuth, Germany
4	*Corresponding author. (E-mail: ryosuke.sinmyo@elsi.jp) Now at Earth-Life Science
5	Institute, Tokyo Institute of Technology
6	
7	Abstract
8	Iron- and aluminum-bearing MgSiO ₃ bridgmanite is the most abundant mineral in the
9	Earth's interior; hence its crystal chemistry is fundamental to expanding our knowledge
10	of the deep Earth and its evolution. In this study, the valence and spin state of iron in
11	well characterized Al-free Fe ³⁺ -rich bridgmanite were investigated by means of
12	Mössbauer spectroscopy to understand the effect of ferric iron on the spin state. We
13	found that a minor amount of Fe^{3+} is in the low spin state above 36 GPa and that its
14	proportion does not increase substantially with pressure up to 83 GPa. This observation
15	is consistent with recent experimental studies that used Mössbauer and X-ray emission
16	spectroscopy. In the Earth's deep lower mantle, Fe^{3+} spin crossover may take place at
17	depths below 900 and 1200 km in pyrolite and MORB, respectively. However, the
18	effect of spin crossover on physical properties may be small due to the limited amount

19 of Fe^{3+} in the low spin state.

20

21 Introduction

The crystal chemistry of terrestrial minerals is fundamental to understanding 2223the Earth's interior and its evolution. Iron- and aluminum-bearing MgSiO₃ bridgmanite (Bdg) is the most abundant mineral in the Earth's interior and contains a substantial (up 2425to about 20 at. %) amount of iron, which is the fourth most abundant element in the mantle. Bdg can incorporate a substantial amount of Fe³⁺ (e.g., McCammon 1997; Frost 26et al. 2004), while olivine, the dominant mineral in the upper mantle, accommodates 27essentially no Fe³⁺ (e.g., McCammon 2005). The substitution of Fe³⁺ for Fe²⁺ has a 28large influence on physical and chemical properties of Bdg such as elastic constants, 29iron partition coefficients and electrical/thermal conductivity (Ohta et al. 2010; 2014; 30 Boffa Ballaran et al. 2012; Sinmyo and Hirose 2013; Sinmyo et al. 2014a; Wolf et al. 312015; Yoshino et al. 2016). Moreover, both experiments and theoretical calculations 32suggest that iron in Bdg undergoes spin crossover under deep mantle conditions (Badro 33 et al. 2004; Lin et al. 2012; Potapkin et al. 2013; Mashino et al. 2014). Although iron 34 spin crossover can strongly influence the physical properties of lower mantle minerals, 35e.g., elastic constants and thermal/electrical conductivity (Lundin et al. 2008; Keppler et 36

37	al. 2008; Ohta et al. 2010; Catalli et al. 2011), the pressure of spin crossover in Bdg is
38	not well constrained (see reviews by Lin et al. 2013; McCammon et al. 2013 and
39	references therein). Challenges arise due mainly to the presence of iron in two different
40	valence states (Fe^{2+} and Fe^{3+}), and two different sites in the perovskite structure (8-12
41	coordinated A-site and octahedral B-site). Fe ²⁺ , which is observed to occupy the A-site,
42	undergoes spin crossover from high spin to intermediate spin (McCammon et al. 2008;
43	Lin et al. 2008; Potapkin et al. 2013), although theoretical calculations do not support
44	the existence of the intermediate spin state of Fe^{2+} (Hsu et al. 2011; Metsue and
45	Tsuchiya 2012). There is general consensus that Fe^{3+} remains in the high spin state to at
46	least 100 GPa when it occupies the A-site (Catalli et al. 2010, 2011; Fujino et al. 2012;
47	Lin et al. 2012; Potapkin et al. 2013; Glazyrin et al. 2014; Kupenko et al. 2014), but
48	undergoes spin crossover from high spin to low spin at 20~60 GPa when it occupies the
49	B-site (Catalli et al. 2010; 2011; Fujino et al. 2012; Lin et al. 2012; Kupenko et al.
50	2015). These observations strongly suggest that the spin crossover pressure is
51	dominantly controlled by Fe^{3+} in the B-site. It has been reported that Fe^{3+} occupies the
52	A-site of Bdg regardless of the oxidation state concentration, Al content and pressure
53	(Kudoh et al. 1990; Vanpeteghem et al. 2006; Glazyrin et al. 2014), while some recent
54	studies have reported that Al-free and Fe ³⁺ -bearing Bdg accommodate a detectable

amount of Fe³⁺ in the B-site (Catalli et al. 2011; Lin et al. 2012; Hummer and Fei 2012; 5556Kupenko et al. 2015). Since previous studies have investigated Bdg with a limited amount of Fe³⁺, the electronic state of Fe³⁺ is not well understood, even though the 57electronic state of iron in Al-free Fe³⁺-rich Bdg may have a significant effect on the 58physical/chemical properties of subducted depleted lithospheric mantle with 59harzburgitic bulk composition (Ringwood 1991). Furthermore, it is recognized that 60 61 sample synthesis in the diamond anvil cell by laser heating may cause heterogeneity in chemical composition and/or redox state of the sample (e.g., Fialin et al. 2008; Sinmyo 62 and Hirose 2010). Therefore, to minimize the experimental uncertainty, the $Fe^{3+}/\Sigma Fe$ 63 ratio of samples pre-synthesized using a large volume press should be characterized 64 before the sample is compressed with a diamond anvil cell. Here, our study aims to 65 explore the spin state of iron under lower mantle conditions by investigating the rarely 66 studied, but well defined Al-free Fe^{3+} -rich Bdg, which provides insight into the complex 67 effects of Al^{3+} and Fe^{3+} on the spin state. 68

69

70 **Experimental procedure**

The sample was synthesized using a multi anvil apparatus. A mixture of fine
grained SiO₂ [55.23 wt %] + MgO [37.05 wt %] + ⁵⁷Fe₂O₃ (90% enriched) [7.72 wt %]

73	was ground well for about one hour, and then dried at 1273 K in a furnace for one day.
74	We used Fe_2O_3 as a starting material to maximize Fe^{3+} content in the sample. The final
75	mix was loaded into a gold capsule and then packed into a MgO container. The
76	multi-anvil synthesis used LaCrO ₃ for the heater, and was run for 45 minutes at pressure
77	and temperature conditions of 26 GPa and 1973 K, respectively. The synthesized
78	sample was examined using a field-emission-type scanning electron microscope (SEM)
79	(Leo Gemini 1530) and the chemical composition was determined using an electron
80	microprobe (JEOL JXA-8200) operated at 15 kV and 15 nA. Phase identification was
81	performed by powder X-ray diffraction (XRD) using a FR-D high-brilliance Rigaku
82	X-ray diffractometer with Mo-K α radiation operated at 55 kV and 60 mA.
82 83	X-ray diffractometer with Mo-K α radiation operated at 55 kV and 60 mA. The high-pressure Mössbauer spectroscopic study was conducted using a
83	The high-pressure Mössbauer spectroscopic study was conducted using a
83 84	The high-pressure Mössbauer spectroscopic study was conducted using a diamond anvil cell. Diamonds with 250 µm diameter culets were used as anvils. The
83 84 85	The high-pressure Mössbauer spectroscopic study was conducted using a diamond anvil cell. Diamonds with 250 µm diameter culets were used as anvils. The polycrystalline sample from the multianvil synthesis was loaded into a hole drilled in a
83 84 85 86	The high-pressure Mössbauer spectroscopic study was conducted using a diamond anvil cell. Diamonds with 250 µm diameter culets were used as anvils. The polycrystalline sample from the multianvil synthesis was loaded into a hole drilled in a rhenium gasket. Mössbauer spectroscopy was conducted using a nominal 370 MBq
83 84 85 86 87	The high-pressure Mössbauer spectroscopic study was conducted using a diamond anvil cell. Diamonds with 250 µm diameter culets were used as anvils. The polycrystalline sample from the multianvil synthesis was loaded into a hole drilled in a rhenium gasket. Mössbauer spectroscopy was conducted using a nominal 370 MBq ⁵⁷ Co high specific activity source in a rhodium matrix. The velocity scale was calibrated

- 91 conditions.
- 92
- 93 **Results**

94	The sample synthesized using the multianvil press was characterized by XRD,
95	Mössbauer spectroscopy and electron microprobe analysis. The electron microprobe
96	analysis yielded a chemical composition of $Mg_{0.971(11)}Fe_{0.064(4)}Si_{0.979(7)}O_3$. The grain size
97	was around 50 μ m in diameter. Although a trace amount of quenched liquid material
98	was observed at the very edge of the sample, it was easily removed from the capsule
99	before selecting the Bdg sample for diamond anvil cell experiments. Most likely due to
100	the partitioning of iron between liquid and Bdg, the iron content in the Bdg was
101	depleted in comparison to the starting material. XRD measurements showed that the
102	obtained sample was a single phase of Bdg. The $\mathrm{Fe}^{3+}\!/\!\Sigma\mathrm{Fe}$ ratio of the perovskite was
103	determined to be 0.53(6) according to Mössbauer measurements at ambient conditions.
104	Based on this result, the chemical composition can be described as
105	$Mg_{0.971}Fe^{2+}_{0.030}Fe^{3+}_{0.034}Si_{0.979}O_3$. The total charge of the cations slightly exceeds six
106	(6.02), which may be due to vacancies in the crystal lattice (Hummer and Fei 2012). A
107	quantitative discussion is not possible, however, since the excess amount (+ 0.3 %) is
108	smaller than the uncertainty in the measurements (~ 1 %).

109	Mössbauer spectra were collected up to 83 GPa at 15 pressure points in total
110	(Fig. 1). The pressure variation of the obtained hyperfine parameters center shift (CS)
111	and quadrupole splitting (QS) are summarized in Figure 2 and Table 1. The spectra at
112	ambient conditions are composed of two components corresponding to Fe^{2+} with higher
113	CS and QS values (hereafter Fe^{2+} #1) and Fe^{3+} with lower CS and QS values (Fe^{3+} #1).
114	The QS values of Fe^{2+} #1 and Fe^{3+} #1 slightly increase with increasing pressure, while
115	their CS values are almost constant (Fig. 2). Above 12 GPa, we observed a component
116	with a high QS value (Fe ²⁺ #2), which corresponds to Fe ²⁺ in the distorted A-site of Bdg
117	(McCammon et al. 2008; Kupenko et al. 2014). The abundance of Fe^{2+} #2 does not
118	change substantially from 12 to 83 GPa (Fig. 3). At higher pressure, an additional
119	component was observed above 36 GPa (Fe ^{$3+$} #2). This new component exhibits almost
120	zero CS and QS similar to the value for Fe^{3+} #1. These hyperfine parameters are
121	comparable to those of the Fe ³⁺ component found in Al, Fe-bearing Bdg at around 40
122	GPa after laser heating (Kupenko et al. 2015). As in the case of the Fe^{2+} #1 and Fe^{3+} #1
123	components, the QS values of Fe^{2+} #2 and Fe^{3+} #2 slightly increase with pressure, in
124	contrast to the constant CS value (Fig. 2). Parallel to the slight increase in abundance of
125	Fe^{3+} #2 with increasing pressure from 40 to 53 GPa, the abundance of Fe^{3+} #1 decreases
126	to compensate, maintaining an essentially constant amount of Fe^{3+} (Fig. 3). The

hyperfine parameters vary with pressure in a highly consistent way during compression and decompression (Fig. 2), and the $Fe^{3+}/\Sigma Fe$ ratio refined independently at each data point remains nearly constant throughout the experiment (Fig. 3).

130

131 **Discussion**

132 Fe³⁺ in Al-free Bdg

It is well known that the $Fe^{3+}/\Sigma Fe$ ratio in Al-bearing Bdg is remarkably high 133(about 0.5) even under low oxygen fugacity conditions (e.g., McCammon 2005). The 134high $Fe^{3+}/\Sigma Fe$ ratio can be explained by a coupled substitution mechanism involving 135Fe³⁺-Al to Mg-Si in Bdg (Frost et al. 2004; McCammon et al. 2004). In this study, the 136 $Fe^{3+}/\Sigma Fe$ ratio was about 0.5 in the Al-free Bdg synthesized from Fe^{3+} -rich starting 137material, which is considerably higher than that for Al-free Bdg synthesized from 138Fe²⁺-dominant material (Frost et al. 2004 McCammon et al. 2004; Sinmyo et al. 2008). 139This observation suggests that $Fe^{3+}/\Sigma Fe$ of Al-free Bdg depends on oxygen fugacity as 140 suggested by McCammon et al. (2004). Indeed, Hummer and Fei (2012) and Mashino et 141al. (2014) reported a $Fe^{3+}/\Sigma Fe$ ratio close to one in Bdg synthesized from Fe^{3+} -rich 142material. Fe^{3+} #1 most likely occupies the A-site of Bdg because ferric iron mostly 143occupies the A-site of Bdg at ambient conditions when the ferric iron concentration is < 144

145	0.04 per formula unit (Hummer and Fei 2012; Sinmyo et al. 2014b). The Fe^{3+} #2
146	component shows moderate QS \sim 1 and low CS \sim 0 (Table 1). These values are
147	consistent with low spin Fe^{3+} in the octahedral sites of the high-pressure phase of
148	FeOOH (Xu et al. 2013), CaFe ₂ O ₄ (Greenberg et al. 2013), rare earth orthoferrites with
149	the perovskite structure (Rozenberg et al. 2005), and Al,Fe-bearing Bdg (Kupenko et al.
150	2015). This observation strongly supports the theoretical work of Hsu et al. (2011), who
151	suggested that Fe ³⁺ is in the low-spin state in the B-site of Bdg.
152	Pioneering work by Fujino et al. (2012) reported that an equilibrium site
153	distribution of iron may be difficult to achieve, even with annealing by laser heating.
154	However, more recent work showed that the site distribution does not change
155	substantially before and after annealing (Glazyrin et al. 2014; Kupenko et al. 2015; Lin
156	et al. 2016). Also, in situ single crystal XRD measurements at high pressure
157	demonstrated that the site occupancy of iron did not change remarkably before, during
158	and after laser heating (Glazyrin et al. 2014). Lin et al. (2016) also showed that the site
159	distribution does not change after annealing, although X-ray emission spectra became
160	sharp after heating. Generally, annealing is important to achieving equilibrium; however
161	at the same time laser heating may cause undesired chemical heterogeneity in the
162	sample (e.g., Sinmyo and Hirose 2010), which can lead to a large uncertainty in

163	property measurements. For more detailed knowledge in the future, it is necessary to
164	develop a heating technique with smaller temperature gradient in the sample, such as
165	externally/internally resistive heating.
166	It is notable that independent studies agree that Fe ³⁺ mainly occupies the A-site
167	of Al-free Bdg with moderate Fe^{3+} content (< 0.04 per formula unit) (Lin et al. 2012;
168	Sinmyo et al., 2014b; this study) for samples synthesized at ~25 GPa in a large volume
169	press. Our current results strongly support a small amount of Fe ³⁺ distributed onto the
170	B-site of Bdg under pressure. This suggests that A-site of Bdg is more compressible
171	than the B-site, although it should be examined by a future study.
172	Fe ³⁺ in the low-spin state
172 173	Fe^{3+} in the low-spin state The new component observed above 36 GPa (Fe ³⁺ #2) can be assigned to low
173	The new component observed above 36 GPa (Fe ^{$3+$} #2) can be assigned to low
173 174	The new component observed above 36 GPa (Fe ^{$3+$} #2) can be assigned to low spin Fe ^{$3+$} in the B site based on hyperfine parameters reported by Kupenko et al. (2015).
173 174 175	The new component observed above 36 GPa (Fe ³⁺ #2) can be assigned to low spin Fe ³⁺ in the B site based on hyperfine parameters reported by Kupenko et al. (2015). Fe ³⁺ may have been in the low-spin state when it was distributed onto the B-site of
173 174 175 176	The new component observed above 36 GPa (Fe ³⁺ #2) can be assigned to low spin Fe ³⁺ in the B site based on hyperfine parameters reported by Kupenko et al. (2015). Fe ³⁺ may have been in the low-spin state when it was distributed onto the B-site of bridgmanite as reported by Kupenko et al. (2015). This inference is consistent with
173 174 175 176 177	The new component observed above 36 GPa (Fe ³⁺ #2) can be assigned to low spin Fe ³⁺ in the B site based on hyperfine parameters reported by Kupenko et al. (2015). Fe ³⁺ may have been in the low-spin state when it was distributed onto the B-site of bridgmanite as reported by Kupenko et al. (2015). This inference is consistent with theoretical predictions (e.g., Hsu et al. 2011). Our results show that Fe ³⁺ in the low-spin

experimental studies (Fujino et al. 2012; Lin et al. 2012; Kupenko et al. 2015). It is 181 182known that spin crossover can induce pronounced anomalies in the compressibility of minerals (e.g., Fei et al. 2007; Bykova et al. 2016). However, such an anomaly in Bdg 183 compression has hardly been observed, even with single crystal XRD measurements 184using a soft pressure medium (Boffa Ballaran et al. 2012; Mao et al. 2015). This 185behavior is possibly due to the limited amount of ferric iron undergoing spin crossover 186 at high pressure. Caracas et al. (2014) showed that spin crossover can be detected by 187 fine analysis of XRD patterns collected for iron-rich Mg_{0.5}Fe_{0.5}SiO₃ Bdg. Although 188 Mössbauer spectroscopy is sensitive to the electronic state of iron, a minor amount of 189 Fe^{3+} may not be recognized during analysis of a Fe^{2+} -rich sample. Previous 190 disagreement among studies using XRD, Mössbauer, and X-ray emission spectroscopy 191(XES) can be explained by the low amount of low-spin Fe^{3+} . Notably, the obtained 192proportion of low-spin Fe³⁺ is consistent between XES measurements (Fujino et al. 193 2012) and Mössbauer spectroscopy results (Lin et al. 2012; Kupenko et al. 2015; this 194study) for Bdg synthesized in the multi-anvil press. 195

Figure 4 summarizes the CS and QS values obtained in this study. $Fe^{2+} \#1$ is high spin Fe^{2+} in the A-site (e.g., McCammon et al. 2013). Based on the hyperfine parameters, $Fe^{2+} \#2$ is intermediate spin Fe^{2+} in the A-site (McCammon et al. 2008), or

199	high-spin Fe^{2+} in the A-site with a high QS value (Hsu et al. 2010). CS and QS values of
200	Fe^{3+} #1 are generally similar to Fe^{3+} in the A-site of Al-free Bdg reported at ambient
201	conditions ("M2" and "M3" components in Hummer and Fei 2012). Hyperfine
202	parameters of Fe^{3+} #2 are similar to those for low-spin Fe^{3+} reported in a previous study
203	of Bdg (Kupenko et al. 2015). We note that all of the data by Hummer and Fei (2012)
204	were measured at ambient conditions. It is thus likely that all iron in their study is in the
205	high-spin state, while in our high-pressure study we suggest that the Fe^{3+} #2 component
206	is in the low-spin state. Moreover, the parameters are also quite similar to recently
207	observed values for low-spin Fe^{3+} in Fe_2O_3 at high pressure (Bykova et al. 2016).
208	Theoretical calculations predicted a high QS value (about 2-3 mm/s) for low-spin Fe ³⁺
209	in Bdg (e.g., Hsu et al. 2011). However, our results in relation to Fe^{3+} in Bdg do not
210	show a QS value higher than 1.5 mm/s regardless of the pressure, consistent with results
211	of Lin et al. (2012) and Kupenko et al. (2015). Although the source of this inconsistency
212	is unclear, the results of theoretical calculations may be affected by iron concentration
213	and structural/magnetic configuration (Umemoto et al. 2008).

- 214 Implications
- Figure 5 summarizes the relation between the concentration of Fe^{3+} and the pressure at which the fraction of low-spin iron is saturated in Bdg. We have fitted the

217	saturation pressure empirically as a function of Fe ³⁺ content using an exponential curve.
218	We used data for Bdg synthesized using a large volume press and with known $\mathrm{Fe}^{3+}/\Sigma\mathrm{Fe}$
219	ratio (Jackson et al. 2005; Li et al. 2006; Fujino et al. 2012; Lin et al. 2012; Kupenko et
220	al. 2015). As the Fe^{3+} content increases, the pressure of saturation increases (Fig. 5).
221	This behavior is similar to the previously reported relation between Fe^{2+} content and
222	spin-crossover pressure in (Mg,Fe ²⁺)O ferropericlase (Fei et al. 2007; Yoshino et al.
223	2011). Such a similarity may be due to the general relation between the spin state of
224	iron and the lattice volume altered by the impurity. The amount of Fe^{3+} in the deep
225	Earth depends on the bulk composition of the rock assemblage in the lower mantle,
226	since it is sensitive to Al content and bulk iron content (Nakajima et al. 2012). The
227	concentration of Fe^{3+} in Bdg is reported to be 0.01 - 0.04, 0.04 - 0.06 and 0.15 - 0.30
228	cations pfu in the harzburgite, pyrolite and MORB bulk compositions, respectively
229	(Sinmyo et al. 2011; Nakajima et al. 2012). Spin crossover of Fe ³⁺ may take place at a
230	depth of about 900 km (35 GPa) in pyrolite and 1200 km (50 GPa) in MORB
231	composition according to this study (Fig. 5). It should be deeper in the hotter mantle,
232	since the spin crossover occurs at a higher and wider pressure range at high temperature
233	(Wentzcovitch et al. 2009; Wang et al. 2015). Boffa Ballaran et al. (2012) and Mao et al.
234	(2015) suggested that the elastic properties of Bdg are not substantially altered by iron

235	spin crossover. Moreover, as shown in this study, low-spin Fe^{3+} is a minor component
236	throughout the lower mantle; thus the effect on elasticity is not likely to be visible in
237	seismic observations. However, since electrical conductivity is sensitive to the spin state
238	(Ohta et al. 2010; Yoshino et al. 2011), spin crossover may be detected in geomagnetic
239	observations. Additionally, even though the amount of low-spin Fe ³⁺ may be small, spin
240	crossover can have a non-negligible effect on the partition coefficient of iron between
241	Bdg and ferropericlase (e.g., Lin et al., 2013), which can strongly influence the structure
242	and dynamics of the lower mantle. The plot shown in Fig. 5 suggests that spin crossover
243	in Fe ³⁺ may take place at a depth of about 900 and 1200 km in pyrolite an MORB
244	composition, respectively. Electrical conductivity and the iron partition coefficient
245	could change at such depths due to spin crossover, although available data are currently
246	limited to Fe ³⁺ -bearing bulk compositions such as pyrolite (Ohta et al. 2010; Irifune et
247	al. 2010; Sinmyo and Hirose 2013; Prescher et al. 2014). Recent studies have reported
248	that the redox state of the Earth's mantle may be more heterogeneous than previously
249	thought (Frost and McCammon 2008; Stagno et al., 2013; Kaminsky et al., 2015).
250	Nakajima et al. (2012) showed that the Fe^{3+} content is 0.02 per formula unit higher in
251	Bdg synthesized in a rhenium capsule compared to a diamond capsule. This implies that
252	the spin crossover pressure may differ by ~ 10 GPa between the rhenium-rhenium oxide

253	buffer and the CCO buffer, since the crossover pressure significantly increases with
254	increasing Fe^{3+} content in Bdg (Fig. 5). Redox heterogeneities may be detectable by
255	precise magnetotelluric measurements at lower mantle depths.
256	
257	Acknowledgments
258	R.S. was supported by a Research Fellowship for Postdoctoral Researchers awarded by
259	the Alexander von Humboldt Foundation. We appreciate the constructive review
260	comments of two anonymous reviewers and the editor.
261	
262	References cited
263	Badro, J., Rueff, J.P., Vanko, G., Monaco, G., Fiquet, G., and Guyot, F. (2004)
264	Electronic transitions in perovskite: Possible nonconvecting layers in the lower
265	mantle. Science, 305(5682), 383-386.
266	Boffa Ballaran, T., Kurnosov, A., Glazyrin, K., Frost, D.J., Merlini, M., Hanfland, M.,

- and Caracas, R. (2012) Effect of chemistry on the compressibility of silicate
 perovskite in the lower mantle. Earth and Planetary Science Letters, 333,
 181-190.
- 270 Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., Bykov, M., McCammon, C.,

271	Ovsyannikov, S.V., Liermann, H.P., Kupenko, I., Chumakov, A.I., Rüffer, R.,
272	Hanfland, M., and Prakapenka, V. (2016) Structural complexity of simple Fe_2O_3
273	at high pressures and temperatures. Nature Communications, 7:10661, doi:
274	10.1038/ncomms10661.
275	Caracas, R., Ozawa, H., Hirose, K., Ishii, H., Hiraoka, N., Ohishi, Y., and Hirao, N.
276	(2014) Identifying the spin transition in Fe ²⁺ -rich MgSiO ₃ perovskite from X-ray
277	diffraction and vibrational spectroscopy. American Mineralogist, 99(7),
278	1270-1276.
279	Catalli, K., Shim, SH., Prakapenka, V.B., Zhao, J., Sturhahn, W., Chow, P., Xiao, Y.,
280	Liu, H., Cynn, H., and Evans, W.J. (2010) Spin state of ferric iron in MgSiO ₃
281	perovskite and its effect on elastic properties. Earth and Planetary Science
282	Letters, 289(1-2), 68-75.
283	Catalli, K., Shim, SH., Dera, P., Prakapenka, V.B., Zhao, J., Sturhahn, W., Chow, P.,
284	Xiao, Y., Cynn, H., and Evans, W.J. (2011) Effects of the Fe ³⁺ spin transition on

the properties of aluminous perovskite-New insights for lower-mantle seismic 285heterogeneities. Earth and Planetary Science Letters, 310(3-4), 293-302. 286

- Fei, Y., Zhang, L., Corgne, A., Watson, H., Ricolleau, A., Meng, Y., and Prakapenka, V. 287
- (2007) Spin transition and equations of state of (Mg, Fe)O solid solutions. 288

289	Geophysical	Research	Letters, 34	(17).

- Fialin, M., Catillon, G., and Andrault, D. (2008) Disproportionation of Fe²⁺ in Al-free
- silicate perovskite in the laser heated diamond anvil cell as recorded by electron
- probe microanalysis of oxygen. Physics and Chemistry of Minerals, 36(4),
 183-191.
- Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual

295 Review of Earth and Planetary Sciences, 36, 389-420.

- 296 Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Tronnes, R.G., and Rubie,
- D.C. (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature, 428(6981), 409-412.
- 299 Fujino, K., Nishio-Hamane, D., Seto, Y., Sata, N., Nagai, T., Shinmei, T., Irifune, T.,
- 300 Ishii, H., Hiraoka, N., Cai, Y.Q., and Tsuei, K.-D. (2012) Spin transition of
- ferric iron in Al-bearing Mg-perovskite up to 200 GPa and its implication for the
 lower mantle. Earth and Planetary Science Letters, 317, 407-412.
- 303 Glazyrin, K., Ballaran, T.B., Frost, D.J., McCammon, C., Kantor, A., Merlini, M.,
- Hanfland, M., and Dubrovinsky, L. (2014) Magnesium silicate perovskite and
- 305 effect of iron oxidation state on its bulk sound velocity at the conditions of the
- 306 lower mantle. Earth and Planetary Science Letters, 393, 182-186.

307	Greenberg,	Е.,	Rozenberg,	G.K.,	Xu,	W.,	Pasternak,	M.P.,	McCammon,	С.,	Glazyrin,
-----	------------	-----	------------	-------	-----	-----	------------	-------	-----------	-----	-----------

- 308 K., and Dubrovinsky, L.S. (2013) Mott transition in CaFe2O4 at around 50 GPa.
- 309 Physical Review B, 88, 214109.
- 310 Hsu, H., Umemoto, K., Blaha, P., and Wentzcovitch, R.M. (2010) Spin states and
- hyperfine interactions of iron in (Mg,Fe)SiO₃ perovskite under pressure. Earth
 and Planetary Science Letters, 294, 19-26.
- 313 Hsu, H., Blaha, P., Cococcioni, M., and Wentzcovitch, R.M. (2011) Spin-State
- 314 Crossover and Hyperfine Interactions of Ferric Iron in MgSiO₃ Perovskite.
- 315 Physical Review Letters, 106(11).
- Hummer, D.R., and Fei, Y. (2012) Synthesis and crystal chemistry of Fe³⁺-bearing
- 317 $(Mg,Fe^{3+})(Si,Fe^{3+})O_3$ perovskite. American Mineralogist, 97(11-12), 1915-1921.
- Irifune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C., and Frost, D.J.
- 319 (2010) Iron partitioning and density changes of pyrolite in Earth's lower mantle.
- 320 Science 327, 193-195.
- Jackson, J.M., Sturhahn, W., Shen, G.Y., Zhao, J.Y., Hu, M.Y., Errandonea, D., Bass,
- 322 J.D., and Fei, Y.W. (2005) A synchrotron Mossbauer spectroscopy study of
- 323 (Mg,Fe)SiO₃ perovskite up to 120 GPa. American Mineralogist, 90(1), 199-205.
- 324 Kaminsky, F.V., Ryabchikov, I.D., McCammon, C.A., Longo, M., Abakumov, A. M.,

325	Turner, S., and Heidari H. (2015) Oxidation potential in the Earth's lower
326	mantle as recorded by ferropericlase inclusions in diamond. Earth and Planetary
327	Science Letters, 417, 49-56.
328	Keppler, H., Dubrovinsky, L.S., Narygina, O., and Kantor, I. (2008) Optical Absorption
329	and Radiative Thermal Conductivity of Silicate Perovskite to 125 Gigapascals.
330	Science, 322(5907), 1529-1532.
331	Kudoh, Y., Prewitt, C.T., Finger, L.W., Darovskikh, A., and Ito, E. (1990) Effect of iron
332	on the crystal structure of (Mg,Fe)SiO3 perovskite. Geophysical Research
333	Letters, 17(10), 1481-1484.
334	Kupenko, I., McCammon, C., Sinmyo, R., Prescher, C., Chumakov, A.I., Kantor, A.,
335	Rüffer, R., and Dubrovinsky, L. (2014) Electronic spin state of Fe,Al-containing
336	MgSiO ₃ perovskite at lower mantle conditions. Lithos, 189, 167-172.
337	Kupenko, I., McCammon, C., Sinmyo, R., Cerantola, V., Potapkin, V., Chumakov, A.I.,
338	Kantor, A., Rüffer, R., and Dubrovinsky, L. (2015) Oxidation state of the lower
339	mantle: In situ observations of the iron electronic configuration in bridgmanite at
340	extreme conditions. Earth and Planetary Science Letters, 423, 78-86.
341	Li, J., Sturhahn, W., Jackson, J.M., Struzhkin, V.V., Lin, J.F., Zhao, J., Mao, H.K., and
342	Shen, G. (2006) Pressure effect on the electronic structure of iron in

343	(Mg,Fe)(Si,Al)O ₃ perovskite: a combined synchrotron Mossbauer and X-ray
344	emission spectroscopy study up to 100 GPa. Physics and Chemistry of Minerals,
345	33(8-9), 575-585.
346	Lin, JF., Watson, H., Vanko, G., Alp, E.E., Prakapenka, V.B., Dera, P., Struzhkin,
347	V.V., Kubo, A., Zhao, J., McCammon, C., and Evans, W.J. (2008)
348	Intermediate-spin ferrous iron in lowermost mantle post-perovskite and
349	perovskite. Nature Geoscience, 1(10), 688-691.
350	Lin, JF., Alp, E.E., Mao, Z., Inoue, T., McCammon, C., Xiao, Y., Chow, P., and Zhao,
351	J. (2012) Electronic spin states of ferric and ferrous iron in the lower-mantle
352	silicate perovskite. American Mineralogist, 97(4), 592-597.
353	Lin, JF., Speziale, S., Mao, Z., and Marquardt, H. (2013) Effects of the electronic spin
354	transitions of iron in lower mantle minerals: implications for deep mantle
355	geophysics and geochemistry. Reviews of Geophysics, 51(2), 244-275.
356	Lin, JF., Mao, Z., Yang, J., Liu, J., Xiao, Y., Chow, P., and Okuchi T. (2016)
357	High-spin Fe^{2+} and Fe^{3+} in single-crystal aluminous bridgmanite in the lower
358	mantle. Geophysical Research Letters, 43(13), 6952-6959.
359	Lundin, S., Catalli, K., Santillan, J., Shim, S.H., Prakapenka, V.B., Kunz, M., and Meng,
360	Y. (2008) Effect of Fe on the equation of state of mantle silicate perovskite over

361	1 Mbar. Physics of the Earth and Planetary Interiors, 168(1-2), 97-102.
362	Mao, Z., Lin, JF., Yang, J., Inoue, T., and Prakapenka, V.B. (2015) Effects of the Fe ³⁺
363	spin transition on the equation of state of bridgmanite. Geophysical Research
364	Letters, 42(11), 4335-4342.
365	Mashino, I., Ohtani, E., Hirao, N., Mitsui, T., Masuda, R., Seto, M., Sakai, T.,
366	Takahashi, S., and Nakano, S. (2014) The spin state of iron in Fe ³⁺ -bearing
367	Mg-perovskite and its crystal chemistry at high pressure. American Mineralogist,
368	99(8-9), 1555-1561.
369	McCammon, C. (1997) Perovskite as a possible sink for ferric iron in the lower mantle.
370	Nature, 387(6634), 694-696.
371	McCammon, C.A. (2005) Mantle oxidation state and oxygen fugacity: Constraints on
372	mantle chemistry, structure, and dynamics. In R.D. van der Hilst, J.D. Bass, J.
373	Matas, and J. Trampert, Eds., Earth's Deep Mantle: Structure, Composition, and
374	Evolution, p. 219-240. American Geophysical Union, Washington, D.C.
375	McCammon, C.A., Lauterbach, S., Seifert, F., Langenhorst, F., and van Aken, P.A.
376	(2004) Iron oxidation state in lower mantle mineral assemblages - I. Empirical
377	relations derived from high-pressure experiments. Earth and Planetary Science
378	Letters, 222(2), 435-449.

379	McCammon, C., Kantor, I., Narygina, O., Rouquette, J., Ponkratz, U., Sergueev, I.,
380	Mezouar, M., Prakapenka, V., and Dubrovinsky, L. (2008) Stable
381	intermediate-spin ferrous iron in lower-mantle perovskite. Nature Geoscience,
382	1(10), 684-687.
383	McCammon, C., Glazyrin, K., Kantor, A., Kantor, I., Kupenko, I., Narygina, O.,
384	Potapkin, V., Prescher, C., Sinmyo, R., Chumakov, A., Rüffer, R., Sergueev, I.,
385	Smirnov, G., and Dubrovinsky, L. (2013) Iron spin state in silicate perovskite at
386	conditions of the Earth's deep interior. High Pressure Research, 33(3), 663-672.
387	Metsue, A., and Tsuchiya, T. (2012) Thermodynamic properties of (Mg,Fe ²⁺)SiO ₃
388	perovskite at the lower-mantle pressures and temperatures: an internally
389	consistent LSDA+U study. Geophysical Journal International, 190(1), 310-322.
390	Muir, J.M.R., and Brodholt, J.P., (2015) Elastic properties of ferropericlase at lower
391	mantle conditions and its relevance to ULVZs. Earth and Planetary Science
392	Letters, 417, 40-48.
393	Nakajima, Y., Frost, D.J., and Rubie, D.C. (2012) Ferrous iron partitioning between
394	magnesium silicate perovskite and ferropericlase and the composition of
395	perovskite in the Earth's lower mantle. Journal of Geophysical Research-Solid
396	Earth, 117.

397	Ohta, K., Hirose, K., Ichiki, M., Shimizu, K., Sata, N., and Ohishi, Y. (2010) Electrical
398	conductivities of pyrolitic mantle and MORB materials up to the lowermost
399	mantle conditions. Earth and Planetary Science Letters, 289(3-4), 497-502.
400	Ohta, K., Yagi, T., and Hirose, K. (2014) Thermal diffusivities of MgSiO ₃ and
401	Al-bearing MgSiO ₃ perovskites. American Mineralogist, 99(1), 94-97.
402	Potapkin, V., McCammon, C., Glazyrin, K., Kantor, A., Kupenko, I., Prescher, C.,
403	Sinmyo, R., Smirnov, G.V., Chumakov, A.I., Rüffer, R., and Dubrovinsky, L.
404	(2013) Effect of iron oxidation state on the electrical conductivity of the Earth's
405	lower mantle. Nature Communications, 4.
406	Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for
407	analyzing energy-domain Mossbauer spectra from conventional and synchrotron
408	sources. Journal of Applied Crystallography, 45, 329-331.
409	Prescher, C., Langenhorst, F., Dubrovinsky, L.S., Prakapenka, V.B., and Miyajima, N.
410	(2014) The effect of Fe spin crossovers on its partitioning behavior and
411	oxidation state in a pyrolitic Earth's lower mantle system. Earth and Planetary
412	Science Letters, 399, 86-91.
413	Ringwood, A.E. (1991) Phase transformations and their bearing on the constitution and

414 dynamics of the mantle. Geochimica et Cosmochimica Acta, 55, 2083-2110.

415	Rozenberg,	G.K.,	Pasternak,	M.P.,	Xu,	W.M.,	Dubrovinsky,	L.S.,	Carlson,	S.,	and
-----	------------	-------	------------	-------	-----	-------	--------------	-------	----------	-----	-----

- 416 Taylor, R.D. (2005) Consequences of pressure-instigated spin crossover in
- 417 RFeO₃ perovskites; a volume collapse with no symmetry modification.
- 418 Europhysics Letters, 71, 228–234.
- 419 Sinmyo, R., and Hirose K. (2010) The Soret diffusion in laser-heated diamond-anvil
- 420 cell. Physics of the Earth and Planetary Interiors, 180, 172-178.
- 421 Sinmyo, R., and Hirose, K. (2013) Iron partitioning in pyrolitic lower mantle. Physics
 422 and Chemistry of Minerals, 40(2), 107-113.
- 423 Sinmyo, R., Ozawa, H., Hirose, K., Yasuhara, A., Endo, N., Sata, N., and Ohishi, Y.
- 424 (2008) Ferric iron content in (Mg,Fe)SiO₃ perovskite and post-perovskite at
- deep lower mantle conditions. American Mineralogist, 93(11-12), 1899-1902.
- 426 Sinmyo, R., Hirose, K., Muto, S., Ohishi, Y., and Yasuhara, A. (2011) The valence state
- 427 and partitioning of iron in the Earth's lowermost mantle. Journal of Geophysical
 428 Research-Solid Earth, 116.
- 429 Sinmyo, R., Pesce, G., Greenberg, E., McCammon, C., and Dubrovinsky, L. (2014a)
- 430 Lower mantle electrical conductivity based on measurements of Al, Fe-bearing
- 431 perovskite under lower mantle conditions. Earth and Planetary Science Letters,
- 432 393, 165-172.

433	Sinmyo, R., Bykova, E., McCammon, C., Kupenko, I., Potapkin, V., and Dubrovinsky,
434	L. (2014b) Crystal chemistry of Fe ³⁺ -bearing (Mg, Fe)SiO ₃ perovskite: a
435	single-crystal X-ray diffraction study. Physics and Chemistry of Minerals, 41(6),
436	409-417.
437	Stagno, V., Ojwang, D.O., McCammon, C.A., and Frost, D.J. (2013) The oxidation
438	state of the mantle and the extraction of carbon from Earth's interior. Nature,
439	493, 84-88.
440	Umemoto, K., Wentzcovitch, R.M., Yu, Y.G., and Requist, R. (2008) Spin transition in
441	(Mg,Fe)SiO ₃ perovskite under pressure. Earth and Planetary Science Letters,
442	276(1-2), 198-206.
443	Vanpeteghem, C.B., Angel, R.J., Ross, N.L., Jacobsen, S.D., Dobson, D.P., Litasov,
444	K.D., and Ohtani, E. (2006) Al, Fe substitution in the MgSiO ₃ perovskite
445	structure: A single-crystal X-ray diffraction study. Physics of the Earth and
446	Planetary Interiors, 155(1-2), 96-103.
447	Vilella, K., Shim, S.H., Farnetani, C.G., Badro, J., (2015) Spin state transition and
448	partitioning of iron: Effects on mantle dynamics. Earth and Planetary Science
449	Letters, 417, 57-66.
450	Wang, X., Tsuchiya, T., and Hase, A. (2015) Computational support for a pyrolitic

451	lower mantle containing ferric iron. Nature Geoscience, 8(7), 556-559.
452	Wentzcovitch, R.M., Justo, J.F., Wu, Z., da Silva, C.R.S., Yuen, D.A., and Kohlstedt, D.
453	(2009) Anomalous compressibility of ferropericlase throughout the iron spin
454	cross-over. Proceedings of the National Academy of Sciences of the United
455	States of America, 106(21), 8447-8452.
456	Wolf, A.S., Jackson, J.M., Dera, P., and Prakapenka, V.B. (2015) The thermal equation
457	of state of (Mg, Fe)SiO ₃ bridgmanite (perovskite) and implications for lower
458	mantle structures. Journal of Geophysical Research-Solid Earth, 120
459	Xu, W., Greenberg, E., Rozenberg, G.K., Pasternak, M.P., Bykova, E., Boffa-Ballaran,
460	T., Dubrovinsky, L., Prakapenka, V., Hanfland, M., Vekilova, O.Y., Simak, S.I.,
461	and Abrikosov, I.A. (2013) Pressure-induced hydrogen bond symmetrization in
462	iron oxyhydroxide. Physical Review Letters 111, 175501.
463	Yoshino, T., Ito, E., Katsura, T., Yamazaki, D., Shan, S., Guo, X., Nishi, M., Higo, Y.,
464	and Funakoshi, K. (2011) Effect of iron content on electrical conductivity of
465	ferropericlase with implications for the spin transition pressure. Journal of
466	Geophysical Research-Solid Earth, 116.
467	Yoshino, T., Kamada, S., Zhao, C., Ohtani, E., Hirao, N. (2016) Electrical conductivity
468	model of Al-bearing bridgmanite with implications for the electrical structure of

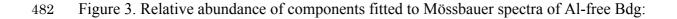
469 the Earth's lower mantle. Earth and Planetary	V Science Letters.	434, 208-219.
---	--------------------	---------------

470

471 Figure captions

- Figure 1. Selected Mössbauer spectra of Al-free Fe³⁺-rich Bdg at different pressures and room temperature. Experimental data are indicated by solid circles while the fitted curve is shown by the thick solid line. Components are shaded as indicated in part (c) and the
- 475 fitting residual is shown beneath each spectrum.

476


477 Figure 2. Pressure dependence of center shift (CS) and quadrupole splitting (QS) for (a)

478 Fe^{2+} and (b) Fe^{3+} in Al-free Bdg. Right and left pointing triangles indicate data taken

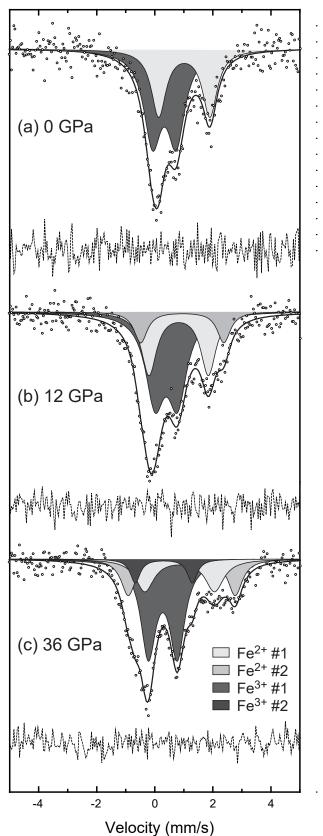
479 during compression and decompression, respectively. Our results are largely consistent

480 with previously reported values for Al-free Bdg (Potapkin et al. 2013).

481

483 (a) Fe^{2+} ; (b) Fe^{3+} . The dashed line shows the initial abundance of Fe^{2+} and Fe^{3+} .

484


Figure 4. Variation of CS and QS values for Bdg. Circles, this study; squares, Al-free
Bdg at ambient conditions (Hummer and Fei 2012); diamonds, Al-bearing Bdg under 12

- 77 GPa (Kupenko et al. 2015). The diameters of the circles are proportional to the
pressure at which the values were obtained (i.e., larger diameters correspond to higher
pressures).

490

Figure 5. Relation between Fe^{3+} concentration (in cations per formula unit) and the saturation pressure of low-spin Fe^{3+} in Bdg (see text for details). The grey line is an empirical fit to the data for Bdg samples synthesized using a large volume press where $Fe^{3+}/\Sigma Fe$ ratios were experimentally determined. Red symbols, Al-free Bdg; blue symbols, Al-bearing Bdg. Filled symbols indicate the data used for fitting (Color online). "Harzburgite", "Pyrolite" and "MORB" denote possible concentrations of Fe^{3+} in Bdg in harzburgitic, pyrolitic and basaltic rock, respectively (see text for details).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5917

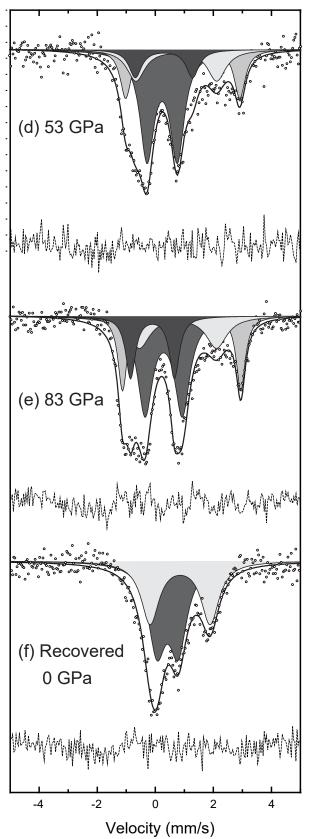
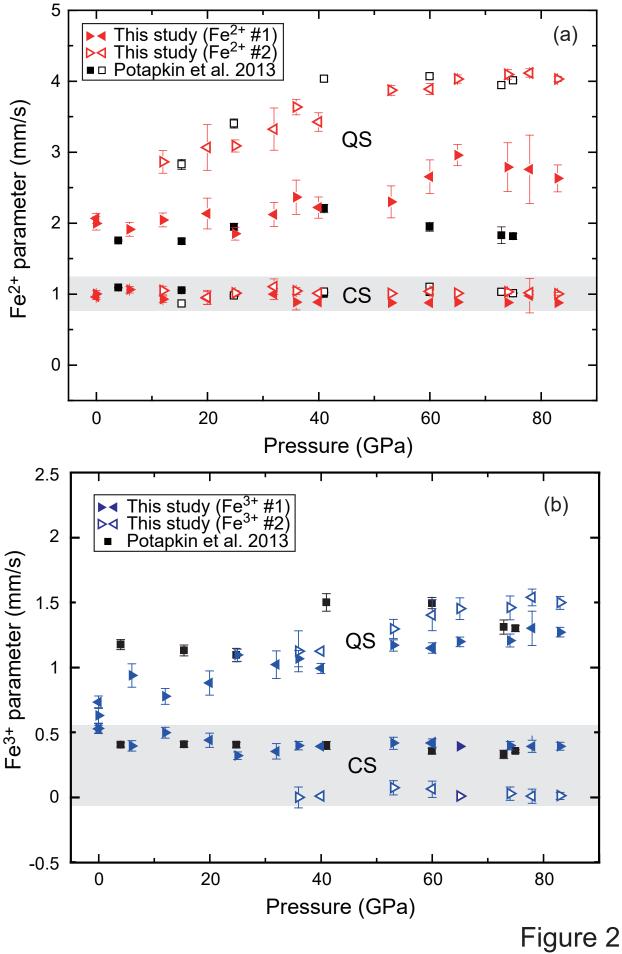
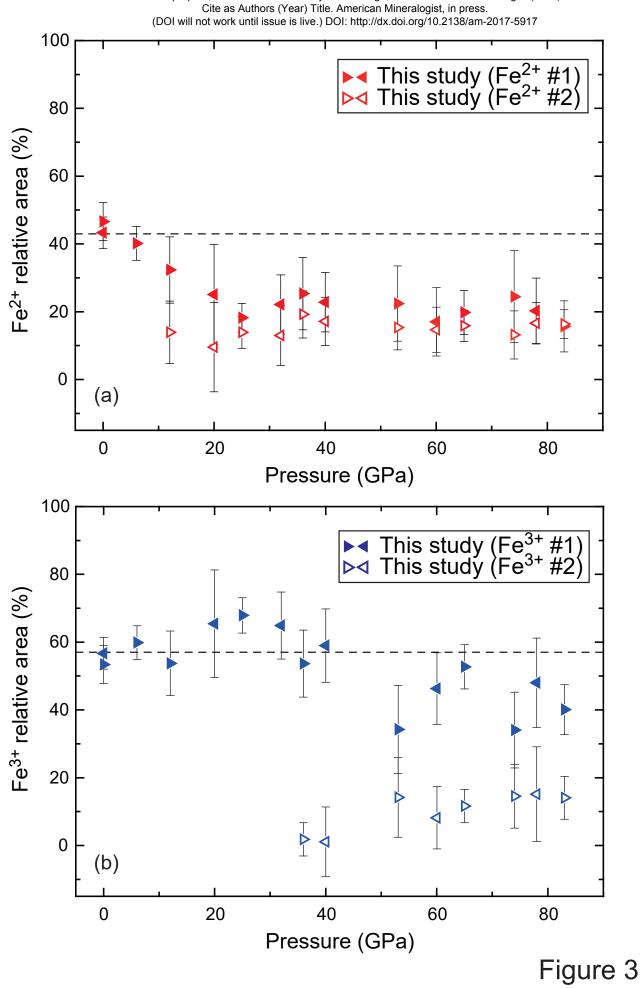
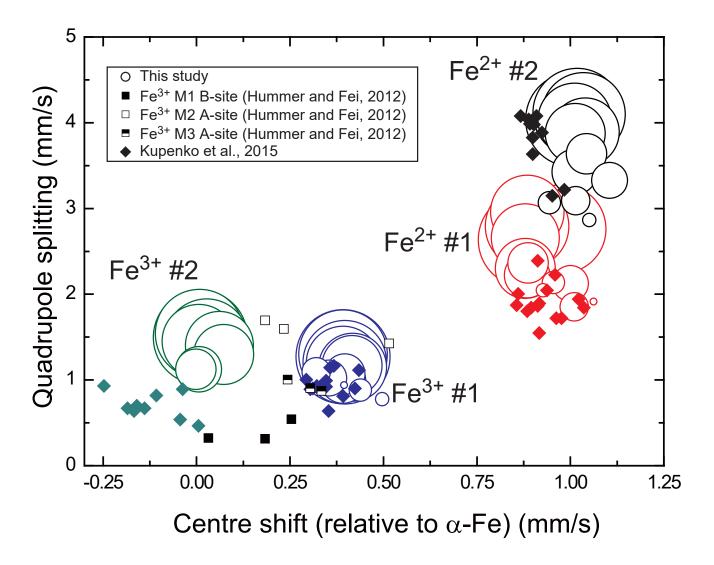




Figure 1

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5917



Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 4

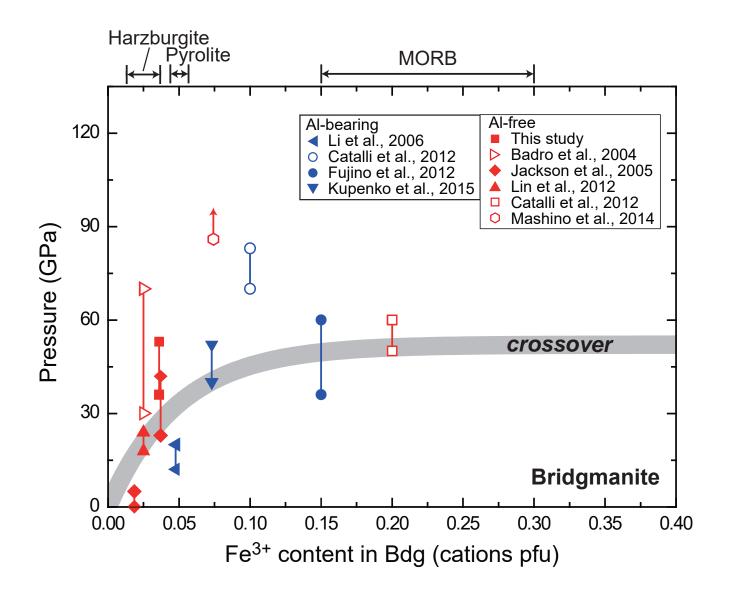


Figure 5

ressure (GPa)	Component	CS (mm/s)	FWHM (mm/s)	Area (%)	QS (mm/s)	Fe ³⁺ /total Fe (%
Compression			· · · · · ·			· · · · · · · · · · · · · · · · · · ·
0	${\rm Fe}^{2+}$ #1	1.00(5)	0.75(15)	47(6)	2.00(9)	53
	Fe ³⁺ #1	0.53(4)	0.66(13)	53(6)	0.63(6)	
6	Fe ²⁺ #1	1.06(5)	0.77(13)	40(5)	1.91(10)	60
	Fe ³⁺ #1	0.40(4)	0.92(13)	60(5)	0.94(9)	
12	Fe ²⁺ #1	0.93(5)	0.64(21)	32(10)	2.05(10)	54
	Fe ²⁺ #2	1.05(6)	0.55(26)	14(9)	2.86(16)	
	Fe ³⁺ #1	0.50(4)	0.79(13)	54(10)	0.78(6)	
25	Fe ²⁺ #1	1.01(4)	0.46(15)	14(5)	1.85(9)	68
	Fe ²⁺ #2	1.01(4)	0.54(13)	18(4)	3.09(9)	
	Fe ³⁺ #1	0.32(3)	0.95(11)	68(5)	1.09(5)	
36	Fe ²⁺ #1	0.89(11)	0.92(42)	25(11)	2.36(24)	55
	Fe ²⁺ #2	1.04(5)	0.61(19)	19(7)	3.64(11)	
	$Fe^{3+} #1$	0.40(3)	0.67(11)	54(10)	1.07(6)	
	Fe^{3+} #2	0.00(8)	0.19(41)	2(5)	1.12(16)	
53	$Fe^{2+} #1$	0.88	0.93(40)	26(11)	2.30(22)	54
	Fe^{2+} #2	1.01	0.47(12)	19(6)	3.87(7)	
	$Fe^{3+} #1$	0.42(5)	0.56(16)	37(12)	1.17(4)	
	Fe^{3+} #2	0.07(6)	0.45(18)	18(11)	1.29(7)	
65	$Fe^{2+} #1$	0.88	0.67(27)	20(6)	2.96(15)	64
05	Fe^{2+} #2	1.01	0.37(10)	16(5)	4.03(6)	01
	$Fe^{3+} #1$	0.39	0.63(7)	53(7)	1.20(4)	
	Fe^{3+} #2	0.01	0.37(15)	12(5)	1.45(8)	
74	Fe^{2+} #1	0.88	1.06(60)	28(13)	2.79(34)	55
/4	Fe^{2+} #2	1.04(3)	0.37(13)	17(7)	4.10(7)	55
	Fe^{3+} #1	0.40(3)	0.50(12)	37(11)	1.21(5)	
	Fe^{3+} #2	0.40(3)	0.43(17)	18(9)	1.21(3)	
83	Fe #2 Fe^{2+} #1	0.03(3)	0.43(17)		2.63(19)	61
83	Fe #1 Fe^{2+} #2		. ,	19(7) 20(4)		01
	Fe^{-} #2 Fe^{3+} #1	1.01(2)	0.37(6)	20(4)	4.03(4)	
		0.39(3)	0.62(9)	43(7)	1.27(4)	
	${\rm Fe}^{3+}$ #2	0.01(3)	0.40(10)	18(6)	1.50(5)	
ecompression 78	Fe ²⁺ #1	0.98(24)	0.77(41)	20(10)	2.76(48)	62
78	Fe #1 Fe^{2+} #2	. ,	· · ·			63
		1.02(3)	0.38(10)	17(6)	4.12(6)	
	$Fe^{3+} #1$	0.39(5)	0.70(12)	48(13)	1.30(13)	
<i>(</i> 0	Fe^{3+} #2	0.01(6)	0.37(21)	15(14)	1.54(6)	(2)
60	$Fe^{2+} #1$	0.88	0.82(38)	20(12)	2.56(78)	62
	$Fe^{2+} #2$	1.04(4)	0.37(6)	18(9)	3.94(8)	
	$Fe^{3+} #1$	0.42(3)	0.62(9)	44(21)	1.19(15)	
	Fe^{3+} #2	0.06(6)	0.40(10)	18(24)	1.43(9)	<i>c</i> a
40	$Fe^{2+} #1$	0.88	0.68(27)	23(9)	2.22(15)	60
	Fe^{2+} #2	1.01	0.56(21)	17(7)	3.43(13)	
	Fe^{3+} #1	0.39	0.65(10)	59(11)	0.99(4)	
	Fe^{3+} #2	0.01	0.64(456)	1(10)	1.12	
32	$Fe^{2+} #1$	1.00(8)	0.53(23)	22(9)	2.12(17)	65
	Fe^{2+} #2	1.10(11)	0.65(45)	13(9)	3.33(30)	
	Fe^{3+} #1	0.35(6)	0.85(16)	65(10)	1.02(11)	
20	Fe ²⁺ #1	0.95(10)	0.61(37)	25(15)	2.14(22	65
	Fe ²⁺ #2	0.94(9)	0.49(48)	10(13)	3.07(32)	
	Fe ³⁺ #1	0.44(6)	0.74(12)	65(16)	0.88(9)	
0	${\rm Fe}^{2^+} \#1$	0.96(4)	0.75(12)	43(5)	2.07(7)	57
	Fe ³⁺ #1	0.53(3)	0.74(11)	57(5)	0.73(5)	

Values in italics were held fixed during fitting