Revision 1.

Uranium bearing opals: Products of U-mobilization, diffusion and transformation processes

Michael Schindler1*, Mostafa Fayek2, Britanney Courchesne1, Kurt Kyser3 and Frank C. Hawthorne2

1. Department of Earth Sciences, Laurentian University, Sudbury, ON, Canada, P3E 2C6
2. Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2
3. Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada

*corresponding author
Understanding the retention mechanism of U by amorphous silica (i.e. opal) in the environment is of great importance to nuclear-waste disposal because opals can retain U for millions of years. Uraniferous opals from Spor Mountain and the Thomas Range, Utah, USA, are examined in terms of their mineralogical, chemical and isotopic compositions. Uranium-rich zones composed of most likely vorlanite, CaUO₄, occur in fibrous opal-CT (termed lussatite) along the interface of the phase with microcrystalline quartz. Red- to black coloured precipitates of vorlanite also occur in the interstices between fibers and grains in lussatite and massy opals, respectively. The high abundance of vorlanite in certain growth zones can be explained by the diffusion of Ca and U along boundaries of layers, grains and fibers and by the release of Ca and U through the transformation of opal-A into opal-CT and from opal-CT into microcrystalline quartz. Similar O-isotope compositions of opal-CT and associated microcrystalline quartz indicate that crystallization processes and deposition of subsequent layers of opal occurred from fluids of similar origin and T. Differences in the isotope and chemical composition between uraniferous opals/microcrystalline quartz, the SiO₂ polymorph moganite, and pyrolusite indicate the past-occurrence of various alteration processes involving fluids of different composition and T. The results of this study indicate that assemblages of opal and microcrystalline quartz can retain U for millions of years as long as confined pore spaces between different generations of opal and quartz or between growth features of opal provide space for the nucleation and adsorption of U-bearing phases and species.
INTRODUCTION

Amorphous silica plays an important role in the retention of radionuclides and metals in aquifer, tailings and soils (e.g. Allard et al 1999; Schindler et al. 2009a; Schindler and Hochella 2015) and can play an important role in the retention of radionuclides in the surroundings of a potential nuclear waste repository (Lichtner and Eigenberg, 1994; Smellie and Karlsson 1999; Techer et al. 2006; Shao et al. 2013). For example, opal has been identified as one of the predominant secondary phases that forms during the alteration of volcanic tuff, a formerly proposed host rock for the repository of high-level nuclear waste at Yucca Mountain, Nevada, USA (Ewing and von Hippel, 2009, Long and Ewing, 2004, MacFarlane and Ewing, 2006). Field studies at the latter location and experimental studies on volcanic tuff have shown that amorphous silica (opal) and calcite are the dominant secondary minerals that form within fractures during evaporation of meteoric water (e.g. Szabo and Kyser, 1990, Paces et al., 2001, Whelan et al., 2002) and through circulation of water in tuff under low-T conditions (< 100ºC), respectively (Dobson et al., 2003). Amorphous silica could also occur at the interface between altered cementitious material and siliceous host rocks of a multi-barrier repository system at a potential nuclear-waste disposal site. Alteration of cementitious material in a repository would result in hyper-alkaline solutions with pH values above 10.5 which could persist over an extended time frame within the repository (10⁵-10⁶ years; Braney et al., 1993; Schwyn et al., 2012; Smith et al. 2015). Propagation of the hyper-alkaline solutions into the siliceous host rocks would result in the dissolution of silicate minerals, the neutralization of the solutions toward lower pH-values (pH < 9), and precipitation of Ca-silica-bearing phases, including (amorphous) silica along their flow path (Lichtner and Eigenberg, 1994; Smellie and Karlsson 1999; Techer et al. 2006; Shao et al. 2013).

Geochronological studies of U-bearing opals at Yucca Mountain and Spor Mountain, Utah, USA, show that amorphous silica can retain U over millions of years (Zielinski et al. 1977; Ludwig et al. 1980; Paces et al. 2001, 2004) and indicate the significance of amorphous silica...
precipitates on long-term retention of U. However, despite many field and experimental studies on the speciation, adsorption and incorporation of U into opal, agate, chalcedony and amorphous silica (Dugger et al. 1964; Zielinski 1980; Ludwig et al. 1980; Michard et al.; 1996; Moll et al. 1998; Reich et al. 1998; Allard et al. 1999; Sylwester et al. 2000; Calas et al. 2008; Soderholm et al. 2008; Schindler et al. 2010; Othmane et al. 2013; Massey et al. 2014; Götze et al. 2015; Schindler et al. 2015), the underlying mechanisms for the incorporation and retention of U by amorphous silica is not yet fully understood.

Previous studies on the adsorption and incorporation of U into amorphous silica

Uranyl-ions have a higher affinity to sorb on silanol groups than many other divalent cations (Dugger et al. 1964, Tran et al. 1999). Maximum adsorption of uranyl-bearing aqueous species on amorphous silica occurs in the pH range 5 to 7 (Michard et al. 1996; Baik and Hahn 2001). The amount of adsorbed uranyl species commonly increases with the number of silica colloids and decreases with the total concentration of U in solution (Baik and Hahn 2001).

Adsorption of uranyl ions on amorphous silica in NaCl solution increases with T in the range 5 to 25°C but decreases between 25 and 65 °C, whereas their adsorption constantly increases with T in a Na₂CaO₃ solution (Ames et al. 1983). Zielinski (1980) showed that the co-precipitation of amorphous silica with uranyl ions can result in the enrichment of U in the precipitate by factors of 400 to 1000 relative to the concentrations of U in solution.

Adsorbed uranyl ions on the surface of amorphous silica commonly share two O atoms with silica tetrahedra, resulting in an edge-sharing (bidentate) adsorption complex (Massey et al. 2014). Here, the bidentate adsorption complexes =SiO₂UO₂ and =SiO₂UO₂OH species seem to predominate under weak acidic solutions whereas the ternary surface complex (=SiO₂UO₂OHCO₃) occurs predominantly in the pH range 8.0-8.8 (Gabriel et al. 2001). The crystal-chemical environment of U in amorphous silica varies with the U concentration and the pH in solution as well as with the presence of Fe and Al-(hydr)oxide impurities within the
amorphous silica precipitate. For example, Allard et al. (1999) and Soderholm et al. (2008) identified polymerized uranyl-species in silica gels with elevated concentrations of U (up to 40 wt%) whereas Schindler et al. (2015) showed the common association of uranyl- and arsenate species in amorphous Fe-Al-silica precipitates.

Studies on the speciation of U in U-bearing opals from the Opal Butte Mine in Oregon, USA (U concentrations in the lower mgkg\(^{-1}\) range) also showed the presence of bidentate U-silica adsorption complexes (Massey et al. 2014). Conversely higher concentrations of U in opaline rock coatings (in the weight percent range) occur in close association with Ca (Schindler et al. 2010) as a result of the occurrence of nano-crystals of vortlanite, CaUO\(_4\), within silica layers enriched in U (Othmane et al. 2013).

Geological and mineralogical background on the occurrence of opal at Spor Mountain

The Spor Mountain district is situated along the western ring-fracture system of the Thomas caldera in Utah, USA, which is part of a group of at least three Oligocene volcanic subsidence structures that together form an east- to west-trending belt of igneous rocks and related mineral deposits. The Thomas Range consists of three groups of volcanic rocks that overlie a Paleozoic sedimentary sequence near Spor Mountain (Lindsey, 1977; Lindsey, 1979; Lindsey et al., 1975; Shawe, 1972). The youngest of the group are the alkali-rhyolite tuffs and flows of the Spor Mountain Formation, which erupted approximately 21 Ma ago, and the Topaz Mountain Rhyolite, which erupted 7.6 Ma ago (Lindsey, 1979). The Spor Mountain Formation consists of two informal members: the lower beryllium tuff member and an upper rhyolite lava-flow member. The tuffaceous breccias and stratified tuffs at Spor Mountain contain Be ore formed as a result of explosive F- and lithophile-rich volcanism that brought ash, carbonate fragments and other lithics to the surface through vent structures in the underlying Paleozoic dolomite rocks (Foley et al. 2012). Hydrothermal fluids are thought to have leached Be from volcanic glass in the tuff and precipitated bertrandite, Be\(_4\)(Si\(_2\)O\(_7\))(OH)\(_2\), where the hydrothermal fluid reacted with carbonate.
in lithic-rich sections of the tuff. Hydrothermal alteration of the tuff and volcanic glass resulted in the leaching of other elements such as U (typically >10 mg kg\(^{-1}\) U). Subsequent interaction of these fluids with dolomite clasts produced layered nodules composed of calcite, Mn-oxides, uraniferous opal and fluorite (Foley et al. 2012).

Uraniferous opals occur in 1-2 cm wide fracture fillings in tuffs of the Thomas Range but occur most commonly in the crystal tuff member of the Joy Tuff at the Autunite No. 8 prospect on the east side of Topaz Mountain and in the beryllium tuff member of the Spor Mountain Formation (Ludwig et al. 1980). Calcite, quartz, fluorite, weeksite and perhaps other secondary U minerals are commonly associated with the opal (Zielinski et al. 1977). The opals often show strong zoning of U, which suggests large fluctuations in the supply, rate, or conditions of U precipitation. However, the origin and T of the fluids that resulted in the formation of the uraniferous opals remain uncertain. Foley et al. (2012) argued that if silica, calcite and fluorite were the major phases in equilibrium with the fluids, a likely mechanism for controlling the rate of precipitation of the opals was change in temperature or pressure in fluids of hydrothermal origin. On the other hand, O-isotope compositions of opals at the Autunite No. 8 locality suggest a meteoric-groundwater source with T of 36 °C or less (Henry, 1979). Geochronological studies on the uraniferous opals from Topaz and Spor Mountain showed that groundwater or hydrothermal fluids started to deposit successive opaline layers 21 m.y. ago, during or soon after eruption of the host Spor Mountain Formation and beryllium-fluorite mineralization, and this deposition has continued episodically until 3 m.y. ago (Ludwig et al. 1980).

The goals of this study are (1) to characterize the mineralogical, chemical and isotopic composition of uraniferous opals from Spor Mountain and the Thomas Range, Utah, USA., (2) to determine the origin of the fluids that resulted in their formation and (3) to better understand how the distribution of U in opals is affected by transformation processes from opal A via opal CT to microcrystalline quartz.
MATERIALS AND METHODS

The opal samples were provided by R. Zielinski and D. Lindsey from the U.S. Geological Survey and were previously characterized by Ludwig et al. (1980) in terms of their U concentration and U-Pb age (Table 1). One altered rhyolite and three uraniferous opal samples are examined in this study using a combination of Electron Microprobe analysis (EMPA), Laser Ablation ICP-MS, Secondary-Ion Mass spectroscopy (SIMS), X-ray Photoelectron Spectroscopy, Scanning Electron Microscopy (SEM), X-ray powder diffraction and Raman Spectroscopy. Table 1 lists the sample location, paragenesis, appearance, U-Pb age and the analytical methods used to characterize each sample.

Scanning Electron Microscopy (SEM), Electron MicroProbe Analysis (EMPA) and X-Ray Diffraction (XRD)

Scanning Electron Microscopy (SEM) was done using a JEOL 6400 SEM operated at 20 kV and with a beam current of ~ 1 nA. The microscope is equipped with both backscattered (BSE) and secondary electron (SE) detectors and an Energy Dispersive X-ray Spectrometer (EDS) and is located in the Central Analytical Facility (CAF) at Laurentian University.

The samples M3N and DL-U18B were characterized with a Cameca SX-100 in the Ontario GeoScience Laboratories (Table 1). A wavelength-dispersive spectrometer (WDS) was used to collect data for Na, Mg, Al, Si, K, Ca, Mn, Fe and U at 20kV and 10nA using a focused beam. A PAP correction (Pouchou and Pichoir, 1985) was applied to all data and a decomposition study was done to monitor count-rate changes over time.

Powder X-ray diffraction was done with a Philips PW 1729 X-ray diffractometer using Co Kα radiation (1.79 Å) at a voltage and current of 40Kv and 30mA, respectively. Spectra from smear-mounted powdered samples were collected over a scan range of 10-70° 2θ with a step size of 0.02 ° 2θ and a dwell time of 2 s.
Conventional stable isotope analyses of the UO$_2$ standards

The oxygen isotopic composition of pyrolusite, MnO$_2$ was isotopically characterized by conventional methods at Queen’s University, Canada to calibrate it for potential use as an SIMS standard. Oxygen was liberated from multiple fractions of finely powdered (<350 μm) material derived from a single crystal by using the BrF$_5$ technique of Clayton and Mayeda (1963) and analyzed via dual inlet on a Thermo-Finnigan Delta Plus XP isotope ratio mass spectrometer (IRMS). Oxygen isotopic compositions are reported in units of ‰ relative to Vienna Standard Mean Ocean Water (V-SMOW). Replicate analyses for δ18O are reproducible to ±0.1‰, and the δ18O value of NIST-28 quartz is 9.6‰. The oxygen yield for the MnO$_2$ crystal was 10.7±0.2 micro moles of O/mg and multiple measurements (3) gave a δ18O value of -6.8±0.3 ‰.

Secondary Ion Mass Spectrometer (SIMS)

Prior to SIMS analysis, the mounts were re-polished and cleaned to remove the carbon coatings and subsequently coated with Au. The mounts were placed in stainless-steel sample holders, and the entire assembly was then placed in the SIMS sample lock and held at high vacuum for a minimum of 8 h prior to the start of the analysis. The oxygen isotopic composition and relative fluorine concentrations of uraniferous opals, the in-house pyrolusite standard, and crystals and finely disseminated pyrolusite (MnO$_2$) was measured with a CAMECA ims 7f. Secondary-Ion Mass Spectrometer (SIMS) at the University of Manitoba using a Cs$^+$ primary beam with extreme energy filtering of 200 eV. The ~2 nA primary-ion beam was focused to a 10 x 20 μm spot using a 100 μm aperture in the primary column. The Brazil quartz standard has a δ18O$_{V\text{-SMOW}}$ value of 15.1±0.3‰. The spot-to-spot reproducibility on the quartz standard was ±0.6‰ (1σ). The overall precision and accuracy for each isotope analysis include errors arising from counting statistics of each individual analysis, calibration to a known standard, and uncertainty in deadtime corrections arising from variable count rates. In general, the overall...
precision is ±1‰ (2σ), including the spot-to-spot reproducibility of the in-house pyrolusite standard. Values are reported in units of ‰ relative to Vienna-Standard Mean Ocean Water (V-SMOW) (Table 2).

Uranium and silica concentrations were also obtained with the CAMECA 7f. A ~7 nA primary ion beam of O⁺, accelerated at 12.5 kV, was focused to a 30 x 30 μm spot using a 100 μm aperture in the primary column. The sample accelerating voltage was +7.95 kV, with electrostatic analyzer in the secondary column set to accept +8.00 kV. The entrance and exit slits were narrowed to obtain flat-top peaks at a mass resolving power of about 1300. Ions were detected with a Balzers SEV 1217 electron multiplier coupled with an ion-counting system with an overall deadtime of 31 ns. The following species were detected sequentially by switching the magnetic field: ³⁰Si⁺ and ²³⁸U⁺. A typical analysis lasted ~5 minutes, comprising 15 cycles of analysis. NIST 610, 612 and 614 glass standards were used to construct calibration curves and correct for instrumental mass fractionation.

X-ray Photoelectron Spectroscopy

The near-surface chemical composition of the sample M3N was characterized with a Kratos Axis Ultra X-ray Photoelectron Spectrometer (XPS) at the University of Manitoba which is equipped with a magnetic-confinement charge-compensation system. The advantages of this system for insulators (e.g. uranyl minerals) have been described in detail by Schindler et al. (2009b, c). Spectra of the U 4f electrons were collected at high resolution using monochromatic AlKα radiation (1486.6 eV) and the charge-compensation system. Spectra were recorded using 20 sweeps, scan rates per sweep of 200 ms with analyzer pass-energies of 160 eV (U 4f), and large spot sizes and with an aperture size of 110 μm. Resolution for the different pass energies, spot sizes and aperture are listed in detail in Schindler et al. (2009b, c). Shirley background corrections (Shirley 1972) and Gaussian-Lorentzian peak shapes of 60 ± 10% were used to fit
the U 4f spectra. The electrostatic sample-charging (which was not completely compensated by
the charge neutralizer) was corrected by setting the binding energy of the C 1s electrons of
adventitious C-H species on the sample surface equal to 285 eV (Wagner et al., 1979,
Handbook of X-ray photoelectron spectroscopy). The presence and relative proportions of
U⁶⁺ and U⁴⁺ were determined by peak fitting of the U 4f\textsubscript{7/2} spectra using the software Vision 2.2.6.
The FWHM values of the bands in the U 4f spectrum vary in the range 1.70-2.00 eV, but were
constrained to be equal in each individual spectrum. More details on fitting of the U 4f\textsubscript{7/2} spectra
and standard deviations of the binding energies and relative proportions of the U bands are
given by Schindler et al. (2009b).

Laser Ablation Inductively Coupled Plasma Spectroscopy

The major and trace-element composition of opal DL-N22 was measured by laser
ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using a New Wave Nd-
YAG 213 nm laser coupled to a quadrupole Thermo X II mass spectrometer. Ablation was done
in a He atmosphere and Ar was mixed to the carrier gas before it entered the ICP-MS. Line
scans were recorded with a spot size of 10 µm, respectively, using a repetition rate of 10 Hz and
an energy density of 11 Jcm-2. The synthetic glass standard NIST610, which contains a nominal
trace-element abundance of ~500 mgkg-1 was used as the external standard. The standard was
ablated under the same conditions at the beginning of each analytical run, intermittently during
acquisition, and at the end of each sample. Detection limits for elements depend on the
experimental setting of the laser scan and are listed for a similar experimental setting in
Durocher and Schindler (2011). Line scans were designed to traverse the different zones of the
opal. Integration areas were selected based on chemical differences between the coatings and
matrix composition as obtained by SEM-EDS analyses. The breadth of each integration area
was determined by monitoring the inflection points of the rise and fall of the Ca and Si peaks.
Laser Ablation ICP-MS data are usually quantified by calibrating the counts per second (CPS)
with respect to an internal standard as well as an external standard (e.g. NIST glasses).
However, as the samples analyzed in this study are heterogeneous and partly hydrated, no
single element could be used as a suitable standard, so only external standards were used.
Molar ratios of the elements were calculated from the total counts obtained and the known
concentrations in the NIST glass. These were then used to calculate element concentrations by
normalizing the sum of the moles to 100%, the underlying assumption being that the samples
dominantly contains Si and Ca (as was observed in SEM-EDS analyses). The mole-proportion
of H₂O and F⁻ was estimated on the basis of the number of F⁻ and H₂O groups per Ca and Si in
fluorite and opal-CT. This procedure resulted in a semi-quantitative data set based on the
uncertainty of the amount of fluorite and (H₂O) present in the opal.

Raman spectroscopy
Raman spectra recorded at Laurentian University were obtained over the range of 100 to
4000 cm⁻¹ and collected in backscattered mode with a HORIBA JobinYvon XPLORA
spectrometer interfaced with an Olympus BX 41 microscope, 100x magnification (estimated
spot size of 2 µm), a 1200 cm⁻¹ grating and an excitation radiation of λ = 532 nm. Calibration
was done using the 521 cm⁻¹ line of a silicon wafer.

RESULTS
Altered tuff from Spor Mountain (sample RD)
Altered tuff at Spor Mountain and the Thomas range is the host rock of the uraniferous
opals and is predominantly composed of K-feldspar, montmorillonite, fluorite, opal-CT and the
Mn-oxides crytomelane and pyrolusite (Fig. 1a, Table 1). The latter minerals occur as strongly
altered crystals and as fine precipitates in a fluorite matrix (Fig. 1b), whereas opal-CT is either
intergrown with montmorillonite or contains small inclusions of the clay mineral. Hence, the O-
isotope compositions of opal-CT and montmorillonite could not be unequivocally determined.
The O-isotope compositions of altered crystals and finely disseminated pyrolusite were measured and found to be very similar with δ^{18}O values of -8.6±0.8 and -8.9±1.6‰, respectively. The δ^{18}O value for the finely disseminated pyrolusite will be used to further explore the T of formation for the uraniferous opal and associated silica modifications (see below).

Sample DL-U18B from the Thomas Range

The sample DL-U18B is composed of white to violet-coloured U-bearing opals (mainly opal-CT) in close association with microcrystalline quartz, moganite and K-feldspar (Fig. 1c). Its average U concentration is 0.1 wt% (on the basis of 24 spot analyses) whereas violet-colored areas can contain up to 0.3 wt% U (Table 2). Variations in chemical composition of the opal-CT are shown in chemical distribution maps for Ca and U and SEM images in backscatter mode, which indicate the common occurrence of U and Ca (Figs. 1d-e, 2a-b), especially along boundaries between zones enriched and depleted in both elements. The common occurrence of U and Ca can be also recognized in a plot with the concentrations of U versus Ca (Fig. 1f). The background concentrations for Ca are ~7 mmol (i.e. the concentrations for Ca when the concentrations of U are below the detection limit, Fig. 1f) and may be the result of traces of fluorite or adsorbed Ca species in the opaline matrix. Uranium concentrations, δ^{18}O values (11 measurements) and Raman spectra (8 spectra) were recorded along a traverse across two zone boundaries enriched in U and Ca (labelled A1-A6 and B1-B2 in Fig. 2a-d). In the Raman spectra (Fig. 2d), the main peaks for opal-CT occur between 200 and 420 cm⁻¹ (labelled OP) and those for quartz (Q) and moganite (M) at 465 and 501 cm⁻¹, respectively (e.g. Kingma and Hemly 1994, Ilieva et al. 2007 and references therein). Closer inspection of the latter spectra (Fig. 2d) and the chemical distribution map for U (Fig. 2b) indicate that higher concentrations of U occur in areas predominantly composed of opal-CT (areas A2 and A4), whereas areas composed of predominantly quartz and moganite are depleted in U relative to opal-CT (A1, A5-
A6, B1-B2). Contrary the values for δ¹⁸O are similar in areas predominantly composed of quartz and opal-CT (A1-A6, Table 2) but drop to lower values towards the area composed of mainly moganite (B1-B2). The area labelled B1 may be considered as a transition zone between quartz and moganite as the corresponding Raman spectrum does not display well resolved peaks for either quartz or moganite (Fig. 2d) and its δ¹⁸O values are slightly lower and higher than in the areas predominantly composed of quartz and moganite, respectively (Fig. 2c; Table 2).

The structural components of cristobalite and tridymite in opal-CT can be identified in the Raman spectra (Fig. 3a-c; e.g. Ilieva et al. 2007) and X-ray diffraction pattern (Fig. 3d; for details see Flörke et al., 1991; Graetsch,1994; Lynne and Campbell, 2004). In XRD pattern for opal-CT, intensity bands at 4.1 and 2.5 Å are representative of cristobalite and tridymite stacking sequences (Flörke et al., 1991). The band at 4.1 Å is commonly composed of a peak at 4.1 Å and a shoulder at 4.2-4.3 Å corresponding to the (101) and (-4-04) d-spacings in cristobalite and tridymite, respectively. However, the use of Co Kα rather than Cu Kα radiation (smaller radius of the Ewald sphere) allowed a better resolution of the cristobalite and tridymite structural components in the band at 4.1 Å (Fig. 3d). Raman spectrum for area A4 and the XRD spectra for the samples M3N, DL-U18B and DL-N22 indicate the presence of both structural components in the opal-CT whereby the Raman spectrum suggests a higher proportion of the tridimite component in area A4 (Fig. 3a) and the XRD bands higher proportions of the cristobalite component in the bulk materials (Fig. 3d).

Opal-CT commonly forms two texturally distinct modifications: fibrous opal-CT, termed lussatite, forms bundles of fibres (upper nm-scale) whereas massy opal-CT comprises of small thin platelets forming lapispheric aggregates between 1 and 10 μm in diameter. High-resolution optical images of an area in proximity to the examined traverse indicate that opal-CT occurs as bands of lussatite which are over- and underlain by bands of microcrystalline quartz (Fig. 4a). An image taken at higher magnification indicates that the interface between lussatite and quartz...
is sharp at the micrometer scale (Fig. 4b). Small red-coloured crystals occur along this interface or are embedded in the fibrous matrix of the lussatite in proximity to the interface (Fig. 4b).

Sample M3N from Spor Mountain

Opal sample *M3N* consists of a core of purple fluorite and opal-CT (~80 mg kg⁻¹ U), which is surrounded by a white opal-CT with minor fluorite (~200 ppm U) and an outer shell of a yellowish-brown fluorescent opal-CT (Ludwig et al. 1980). A fragment of the outer shell (Fig. 5a) contains on average 3011 mg kg⁻¹ U with areas reaching concentrations up to 6342 mg kg⁻¹ U (Table 2). Chemical-distribution maps show a close association of U and Ca in clusters within the silica matrix of the outer shell (Figs. 5b, c). Quantitative analyses of 24 EMPA measurements indicate a linear correlation between the concentrations of both elements (Fig. 5e) with background concentrations for Ca of 5 mmol⁻¹. Uranium concentrations, F/O CPS ratios and δ¹⁸O values were measured along a traverse in one of the corners of the sample (Fig. 5). Although the concentrations of U and values for δ¹⁸O vary significantly (U varies between 1600 and 2600 mg kg⁻¹ and δ¹⁸O between 11 and 20 ‰), they do not correlate along the traverse (Figs. 5f and g). Raman spectra (not shown) and XRD pattern (Fig. 3d) indicate the presence of only opal-CT and a high-resolution optical image reveals the presence of massy opal (Fig. 4a). Closer inspection of the latter image reveals the presence of black-coloured precipitates in the interstices between the blade-like grains of the opal.

Figure 6 shows U4f 7/2 spectra of sample *M3N* and of a yellow and green uraniferous opal from Pena Blanca which also contain Ca and U in a 1:1 ratio (Schindler *et al.* 2010). The envelopes for the opals from Pena Blanca depict a maximum and shoulder at 393.5 and ~391.5 eV, respectively. Maximum and shoulder were fitted with bands representing U⁶⁺ and U⁴⁺/U⁵⁺ components in the surface structure of the opals, respectively. Note that the satellite peaks for U⁶⁺, U⁵⁺ and U⁴⁺ were not resolved in the U 4f spectra for the opals, a common observation for samples containing U concentrations below ~3 wt% (Schindler *et al.* 2009b). Contrary to the
spectra for the opals from Pena Blanca, the envelope of the U4f 7/2 spectrum for sample M3N
does not show any shoulder at the lower binding energy-side and its envelope was thus fitted
with only one band representing U⁶⁺.

Sample DL-N22 from Spor Mountain
Sample DL-N22 contains white to purple zones in which the proportion of fluo
tite increases with the intensity of the violet colour. Bertrandite and a finely disseminated Mn-oxide
were detected with XRD (> 5 modal %) and SEM in the bluish-black outer rim of the sample
(Fig. 7a, 8c), respectively. Inspection of the LA-ICP-MS line-scan pattern for Si, Ca (Fig. 7b) and
Mn (not shown) indicates that the sample may be divided into three chemically distinct zones
(Figs. 7a, b): Zone A with a white shade contains more Si than Ca (mole %), zone B is violet
and contains equal proportions of Si and Ca, and zone C is bluish-black and contains
predominantly fluorite. Quantification of the LA-ICP-MS data (see above) indicates that zone B
contain the highest concentrations in U with 1200 mgkg⁻¹ U followed by zones A and C with U =
860 and 790 mgkg⁻¹, respectively. Closer inspection of the line scans indicates that the interface
between zones B and C (encircled) is enriched in U relative to the central parts of the latter
zones. The similarities in the pattern for the line scans of Ca and U (Fig. 7b) as well as a
correlation between the concentrations for Ca [wt%] and U [mgkg⁻¹] (Fig. 8a) indicate a close
association between U and Ca. Uranium concentrations, F / O CPS ratios and δ¹⁸O values were
recorded along a traverse from zone A to the interface between zones B and C (Fig. 7c-e). The
oxygen isotopic composition remains relatively constant along the traverse whereas the
concentrations of U and the CPS ratios of F / O are higher closer to the interface between zones
B and C. Interestingly, maximum values for the concentrations of U and the CPS ratios of F / O
do not coincide, suggesting that higher concentrations of U are not necessarily associated with
areas enriched in fluorite, bertrandite and an unidentified Mn-oxide intergrown in zone C (Fig.
8c). A plot of the concentration of Mn versus U indicates an inverse correlation for Mn-
concentrations above 0.8 wt% (Fig. 8b), suggesting that areas enriched in MnOx are depleted in U relative to areas enriched in opal. Raman spectra (not shown), XRD pattern (Fig. 3d) and optical image (Fig. 4a) indicate again the occurrence of a massy modification of opal-CT that contains small red-black coloured precipitates in the interstices of the blade-like grains.

Degree of structural ordering in the examined of opal-CT

The full width at half-maximum intensity (FWHM) of the ~4 Å diffraction band can be used as a guide to the degree of lattice order/disorder within each silica phase, with narrower FWHM values indicative of greater degree of ordering (Elzea et al., 1994; Graetsch et al., 1994). Typical FWHM values for opal-A are 1.31 ± 0.02, for opal-CT 0.27 ± 0.06 and 0.05 ± 0.01 for opal-C. Following this guide, the FWHM values listed in Figure 3d indicate that lussatite in sample DL-U18b has the lowest degree of disorder followed by the massy opals in the samples M3N and DL-N22.

DISCUSSION

U speciation and mineralogy in the opals

Ludwig et al. (1980) noted the absence of uraninite in fillings around the Be-ore deposits at the Thomas range and Spor Mountain, and concluded that U occurred exclusively in the hexavalent state during the formation of the uraniferous opal. Their conclusion is in accord with the result of the U 4f7/2 spectrum for the M3N sample which also indicates the exclusive occurrence of U6+ in the surface structure of the opal sample (Fig. 5a).

The close association of U and Ca is apparent in all three samples (Figs. 1, 5 and 7). The regression analyses for the data from samples M3N and DL-U18B indicate that an increase or decrease in the concentrations for U and Ca follow an elemental ratio of 1 : 1. The following observations suggest that the Ca-U6+-bearing phase in the three opal samples is predominantly composed of crystals of vorlanite.
(1) The occurrence of red-black coloured crystals or precipitates in the Ca-U-rich zones of the samples *DL-U18B* and *DL-N22*;

(2) The occurrence of black precipitates and U⁶⁺ in the interior and surface structure of the opal *M3N*, respectively;

(3) Vorlanite forms black crystals which appear brownish-red in thin sections (Galuskin et al. 2011);

(4) There are no known Ca-uranyl-silicate minerals with a Ca: U ratio of 1 : 1;

(5) Uranium-enriched rims with Ca: U ratios of 1 : 1 also exist in opaline rock coatings on volcanic tuff at Pena Blanca, in which vorlanite nanocrystals occur (see above; Calas et al. 2008; Schindler et al. 2010; Othmane et al. 2013).

Vorlanite, cubic CaUO₄, is a rare calcium uranate (Othmane et al. 2013). It has a fluorite-type structure and is thus isostructural with uraninite. The structure contains U⁶⁺ in [8]-coordination with the O atoms equidistant. Othmane et al. (2013) argued that vorlanite formed in a low-T environment from Ca-U rich solution during opal maturation as the latter opals formed around 30 °C on the surface of the volcanic tuff at Pena Blanca (Calas et al. 2008; Schindler et al. 2010). Experimental studies on the formation of phases in the U(VI)-Ca²⁺-SiO₂-H₂O system indicate that calcium uranates form at pH values above pH 8 (Ritherdon et al. 2003). On the basis of thermodynamic data listed for CaUO₄ (Navrotsky et al. 2013) and the dissolution reaction CaUO₄ + 2H₂O ↔ Ca²⁺ + (UO₂)²⁺ + 4H⁺ the calculated solubility constant for vorlanite is log K = -152.2, which is much lower than the solubility constants of other Ca-uranyl minerals such as becquerelite (log K = 42.08) and uranophane (log K = 7.9) (Gorman-Lewis et al. 2008). The absence of vorlanite in many vadose zones of U-ore deposits, U mine tailings and U-contaminated sites indicate, however, that its formation is kinetically less favoured than those of e.g. becquerelite and uranophane.
Origin and Nature of the fluids that resulted in the alteration of the rhyolite and the formation of the opals

It is commonly believed that amorphous silica and fluorite at Spor Mountain and the Thomas Range precipitated from hydrothermal fluids which became supersaturated with respect to both phases during cooling and/or interaction with earlier-formed phases (Ludwig et al. 1980, Lindsey 1982, Foley et al. 2012). This argument is based on the fact that decreasing stability of F-bearing aqueous species during cooling of hydrothermal fluids commonly results in supersaturation and precipitation of F-bearing minerals (depending on other factors such as ionic strength and the presence of other complexing agents in solution; Nordstrom and Jenne 1977). The occurrence of altered crystals and finely disseminated pyrolusite with similar O-isotope composition (Fig. 1b) suggests that (I) the isotope composition and T of the Ca-F-bearing fluids did not significantly change from the initial deposition of the pyrolusite to the dissolution and reprecipitation of the Mn-oxide mineral and thus during multiple alteration processes of the rhyolite or (II) the isotope composition of a first generation of pyrolusite crystals was overprinted by the isotope composition of subsequent fluids which reprecipitated the mineral within a fluorite matrix. In any case, if silica-rich water caused the alteration, dissolution and reprecipitation of the pyrolusite and the formation of opal CT, quartz and moganite at both locations, the T of their formation can be calculated using the measured δ¹⁸O values for the opals, quartz, moganite and pyrolusite, and the amorphous silica-H₂O, oxygen-isotope fractionation factor of Kita et al. (1985) and the pyrolusite-H₂O oxygen-isotope fractionation factor of Zheng (1991).

The traverse across two U-enriched boundaries on the surface of opal sample DL-U18B indicates a plateau with an average value for δ¹⁸O of 19.8 ‰ (zones A1-A6), followed by a drop toward 9.6 ‰ (zones B1-B2; Fig. 2c; Table 2). Using the average δ¹⁸O-value of -8.9‰ for the finely disseminated pyrolusite, the corresponding temperatures for the formation of the silica phases in the zones A1-A6 and B2 are of 0±10°C and 114±10°C respectively. The later T
seems reasonable as thermodynamic modeling predict a decreasing solubility of amorphous silica in fluids at Spor Mountain at T below 130°C (Wood 1992). The exceptionally low temperature calculated for the formation of opal-CT and quartz in the zones A1-A6 suggests, however, that these silica phases did not form from or equilibrate with the fluids that dissolved and re-precipitated the pyrolusite. Furthermore, the abrupt change in the mineralogy, O-isotope composition and concentration of U between the zones predominantly composed of moganite (B2) and those of quartz and opal-CT (A1-A6) indicate that these two mineral assemblages must have been formed from fluids of different T, isotope composition and U concentration.

Model for the formation of opal-CT, quartz and moganite in sample DL-U18B.

Hardening of freshly-precipitated silica from low-T aqueous solution results commonly in the formation of opal A which transforms into microcrystalline quartz in the sequence opal-A → opal-CT/-C → microcrystalline quartz (Williams et al., 1985; Flörke et al., 1991; Cady et al., 1996; Lynne & Campbell, 2004). This transformation sequence is the most widely known mechanism for the formation of chert rocks, with the initial silica precipitate converting to crystalline quartz (Iijima and Tada, 1981; Knauth, 1994; Hattori et al., 1996). In volcanic environments, however, opal-CT/-C can form directly from high T fluids without the formation of the opal-A precursor. The transformation of opal-A into opal-C/CT and microcrystalline quartz has been recognised as a series of complex dissolution-precipitation events (Stein and Kirkpatrick, 1976; Williams et al., 1985; Williams and Crerar,1985; Hendry and Trewin. 1995).

Moganite is a monoclinic SiO$_2$ polymorph (Miehe and Graetsch, 1992), which is a common component in microcrystalline opaline and quartz modifications such as agate, chalcedony, chert, and flint (Heaney and Post 1992).

The occurrence of a mineralogical transition zone associated with a sudden change in the δ18O value (zone B1) between areas composed predominantly of moganite (zone B2) and quartz (zone A6) (Fig. 2) suggests that both minerals were formed at different stages. Contrary,
similar δ^{18}O values for opal-CT and quartz in the zones A1-A6 indicate that the deposition of subsequent bands of opal-CT and their transformation into quartz in the zones A1, A5-A6 occurred in the presence of fluids of similar O-isotope composition and T. The occurrence of quartz in bands over- and underlying bands of opal-CT may be explain with the deposition of either opal-CT (at high T) or opal-A (at low T) at various stages and the transformation of earlier formed opal-CT into microcrystalline quartz.

Models for the formation of the U enriched rims, zones and clusters in the opals

The internal structure of sintered silica reflects the mechanism of coalescence of the silica nanospheres during dehydration of the colloidal silica. In a diffusion-limited aggregation of nanoparticles, the contact regions between the nanospheres became curved, and strings of peanut-shaped units or spherical particles are generated (VanDamme, 2000). Local curvatures, layering and spherical clusters of silica occur in all samples (Figs. 1, 2, 5, 7). The curvatures and layers observed in samples DL-U18B and DL-N22 indicate that layers of opal-CT formed at a later stage adapted to the morphology of the earlier formed layers of opal-CT/microcrystalline quartz.

High-resolution optical images suggest that vorlanite formed in the interstices between either individual grains or fibers of massy opal-CT and lussatite, respectively, or along the interfaces between layers of earlier and later formed phases (Fig. 4); i.e. between the interfaces of the zones A1-A2 and A4-A5 in DL-U18B (Fig. 2) and B and C in DL-N22 (Fig. 7). The latter type of occurrences may be explained with three different types of formation mechanisms:

I. Diffusion of Ca and uranyl species occurred preferentially along interfaces of opal-CT to quartz (A1-A2, A4-A5 in DL-U18B, Fig. 2, 4b) and opal-CT to fluorite (B-C in DL-N22; Fig. 7) and between fibers and bladed grains of lussatite and massy opal, respectively (Fig. 3a and 5b and c) as these interfaces contains larger pore spaces.
than the interior of fibers and grains of lussatite and massy opal (e.g. Fischer 1951), respectively;

II. Uranyl- and Ca species entered the system at a later stage along the interfaces A2-A3, A3-A4 (in DL-U18b) and A-B (in DL-N22) and subsequently diffused parallel to the grains and fibers of the massy opal and lussatite towards the interfaces A1-A2, A4-A5 (in DL-U18B) and B-C (in DL-N22). The lower porosity of the microcrystalline quartz (A1, A5-A6 in DL-U18B) and fluorite-bertrandite zone layers (C in DL-N22) acted then as diffusion barrier which resulted in the subsequent nucleation of vorlanite.

III. Uranyl- and Ca aqueous species were released during the transformation of opal-A to opal-CT (all samples) and opal-CT to quartz (DL-U18B) and accumulated in the interstices of layers and grains during the transformation process.

Similar average O-isotope compositions of the opals and in particular in the zones A1 to A6 in DL-U18B (Fig. 2c) and A to C in DL-N22 (Fig. 7c; Table 2) suggest that Ca and U-bearing aqueous species were transported by the same fluids as the deposited opals. Hence, mechanism II seems unlikely. Mechanism I most likely resulted in the accumulation of vorlanite along the interfaces A1-A3, A4-A5 (sample DL-U18B, Fig. 2b, 3b) and B-C (DL-N22; Fig. 7b). A combination of mechanisms I and III may have resulted in the accumulation of vorlanite along the interfaces of fibers and grains in lussatite and massy opal-CT in the samples DL-U18B, DL-N22 and M3N, respectively (Fig. 3a, 5b and c).

Implications

The work of Ludwig et al. (1980) and Paces et al. (2001, 2004) indicate that secondary opals in volcanic environments can preserve U inclusions over millions of years. The results of our study indicates that retention and mobilization of U within silica precipitates strongly depend on transformation reactions between the phases opal A → opal-C/CT → microcrystalline quartz.
Our study further suggest that U can be retained for millions of years if it becomes trapped between different generations of opaline layers or between grains and fibers of opal modifications at relative stable P-T conditions and low fluid activities. However, transformation of opal to microcrystalline quartz can also result in the release of U when the associated dissolution-reprecipitation reaction occurs during interaction with high T fluids in an open system. The retention mechanism of U by amorphous silica in the environment seems not to resemble mechanisms observed in experimental studies as the majority of U occurs along boundaries between different generations or growth features of amorphous silica. Hence, a quantitative relation between the retention of U by amorphous silica and time can be established only through (a) more studies of naturally occurring uraniferous opals, and (b) experimental studies that involve the formation of different generations of U-bearing amorphous silica.

ACKNOWLEDGMENTS

This work was supported by Discovery Grants to MS, MF, KK and FCH from the Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs to MF and FCH, and CFI grants to FCH. We are indebted to Robert Zielinski and Dave Lindsey for providing the opal samples, to Michael Freund for the use of the XPS spectrometer in his laboratory at the University of Manitoba, and Ryan Sharpe for his help with collecting the SIMS data.

REFERENCES CITED

uraniferous secondary silica as a guide for describing uranium mobility, in: Short Papers

Geology, 75, 592–602.
Table 1. Uraniferous opal samples, their location, paragenesis, appearance, U-Pb age and the analytical method used for each sample.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>appearance</th>
<th>paragenesis</th>
<th>U-Pb age(^t)</th>
<th>Analytical methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL-U18B</td>
<td>Autunite No. 8 Prospect, Thomas Range</td>
<td>Distinct zones of fibrous opal CT (lussatite) quartz, morganite violet in U rich zones</td>
<td>quartz, moganite K-feldspar vorlanite</td>
<td>3.81 m.y.</td>
<td>EMPA, SIMS, XRD, Raman</td>
</tr>
<tr>
<td>DL-N22</td>
<td>Roadside Be Mine, Beryllium tuff member of Spor Mountain</td>
<td>Massy opal CT, mottled texture, Distinct zoning; violet in U-rich zones</td>
<td>fluorite bertrandite vorlanite Mn-oxide</td>
<td>14 ± 3 m.y</td>
<td>LA-ICP-MS, SIMS, Raman, XRD</td>
</tr>
<tr>
<td>M3N</td>
<td>Monitor Be Prospect, Beryllium tuff member of Spor Mountain</td>
<td>Yellow massy opal CT, mottled texture, nodule</td>
<td>fluorite vorlanite</td>
<td>8.06-8.9 m.y</td>
<td>EMPA, SIMS, XPS, Raman, SEM</td>
</tr>
<tr>
<td>Rd</td>
<td>Altered tuff associated with the beryllium ore.</td>
<td>Violet</td>
<td>K-feldspar montmorrilonite pyrolisite cryptomelane fluorite opal-CT</td>
<td>21 m.y.</td>
<td>SEM, XRD, SIMS</td>
</tr>
</tbody>
</table>

1. From Ludwig et al. (1980)
<table>
<thead>
<tr>
<th>Opal sample and zones</th>
<th>U min. and max. [mgkg(^{-1})]</th>
<th>U average [mgkg(^{-1})]</th>
<th>(\delta^{18}O)-value min. and max. [‰]</th>
<th>(\delta^{18}O)-value Average [‰]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL-U18B (EMPA)</td>
<td>50-3093</td>
<td>1038</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Lissotite A2-A4</td>
<td>960-2000</td>
<td>1370</td>
<td>19.6-20.5</td>
<td>20.0</td>
</tr>
<tr>
<td>Quartz, A1, A5-A6 (SIMS)</td>
<td>66-668</td>
<td>320</td>
<td>18.4-20.8</td>
<td>19.5</td>
</tr>
<tr>
<td>Moganite (M) + transition zone (TR); B1-B2, (SIMS)</td>
<td>54 (M)</td>
<td>54 (M)</td>
<td>9.6 (M)</td>
<td>9.6 (M)</td>
</tr>
<tr>
<td>M3N Massy opal</td>
<td>EMPA: 75-6342</td>
<td>3011</td>
<td>12.7-19.9</td>
<td>16.5</td>
</tr>
<tr>
<td>SIMS: 1617-2739</td>
<td>2148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL-N22 Massy opal</td>
<td>LA-ICP-MS:</td>
<td></td>
<td>15.8-22.3</td>
<td>18.9</td>
</tr>
<tr>
<td>480-1572</td>
<td>907</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMS: 278-1545</td>
<td>710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altered pyrolusite crystals</td>
<td>n.a</td>
<td>n.a</td>
<td>-7.9 - -9.5</td>
<td>-8.6</td>
</tr>
<tr>
<td>Finely disseminated pyrolusite</td>
<td>n.a</td>
<td>n.a</td>
<td>-7.1 - -10.2</td>
<td>-8.9</td>
</tr>
</tbody>
</table>
Figure Captions

FIGURE 1. a) Optical image of an altered rhyolite (sample Rd); the area mainly composed of fluorite is labelled \(F_l \); (b) SEM in BSE mode of altered crystals (cr) and disseminated (di) pyrolusite in a fluorite matrix; (c) Optical image of the opal sample \(DL-U18B \). Infillings of fluorite-bearing opals are white to violet; (d)-(e) chemical distribution maps of (d) Ca and (e) U in the sample; (f) the concentration of U versus Ca on the basis of 24 spot analyses with an electron microprobe.

FIGURE 2. (a) Selected positions of the SIMS spot analyses along the traverse from A1 to B2; (b) chemical distribution map for U indicating the location of selected spot analyses (labelled A2, A3, A4, A5-A6, B1-B2); (c) measured \(\delta^{18}O \) values along the traverse, values corresponding to the spots A1, A6, B1 and B2 are labelled; (d) Raman spectra taken at eight different locations, which occur in proximity to selected SIMS spot analyses; characteristic peaks for opal-CT, quartz and moganite are labelled \(Op \), \(Q \) and \(M \), respectively.

FIGURE 3. (a) Raman spectrum of area A4 which is predominantly composed of opal-CT; (b)-(c) Raman spectra of (b) cristobalite (\(Cr \)) and (c) tridymite (\(Tr \)), modified from Ilieva et al. 2007; (d) XRD powder diffraction pattern of the opal-CT samples \(M3N \), \(DL-U18B \) and \(DL-N22 \); the patterns are labelled accordingly; vertical bars indicate peaks and shoulders corresponding to the structural components cristobalite \((Cr) \) and tridymite \((Tr) \); d-spacings of the different components and FWHM of the bands are indicated.
FIGURE 4. High resolution optical images of the opal modifications DL-U18B, M3N and DL-N22; the images are labelled accordingly; bands of fibrous opal-CT, microcrystalline quartz and moganite are labelled in the optical image for DL-U18B as Op, Q and M, respectively. (b) high resolution optical image of the interface between the zones A1 and A2 of the examined traverse in sample DL-U18B; the high abundance of red crystal along the interface is clearly visible.

FIGURE 5. (a) Optical image of the yellowish-brown outer shell of the opal sample M3N, a traverse of spot analyses is labelled with a black line and the letters A and B; (b)-(c) chemical-distribution maps of (b) Ca and (c) U; (d) optical image indicating a traverse of spot analyses from A to B; (e) concentration of U versus Ca on the basis of 24 spot analyses with an electron microprobe; (f)-(g) Position of the spot analyses along the traverse from A to B versus the respective (f) concentration of U and (g) δ¹⁸O value.

FIGURE 6. U 4f⁷/² spectra of opal sample M3N and a yellow and greenish opalline rock-coating sample from Nopal 1, Pena Blanca, Mexico; the location of the bands for the U⁶⁺ and U⁵⁺/U⁴⁺ components are indicated with vertical bars.

FIGURE 7. (a) Optical image of opal sample DL-N22; a traverse from A to C measured as a line scan with LA-ICP-MS is indicated; a traverse of spot analyses were measured with SIMS from A to B; three different zones can be recognized from the colour of the opal (labelled A, B and C), the corresponding elemental relation between U and Ca in the silica-rich zones and the mineralogical composition in the silica-depleted zone are indicated; (b) LA-ICP-MS line scans for U, Ca and Si along the traverse from A to B and to C; an U-enriched boundary between zone B and C is encircled; (c)-(e) Position of the spot analyses along the traverse from A to B versus the respective (c) concentration of U, (d) δ¹⁸O value and (e) F/O CPS ratio.
FIGURE 8. (a)-(b) plot of the concentrations of (a) Ca versus U and (b) Mn versus U on the basis of the quantification of different sections in LA-ICP-MS line scans; (c) chemical-distribution maps of F, Ca and Mn in the fluorite-pyrolusite enriched zone of DL-U18B; the maps are labelled with the corresponding element.
Figure 1

Ca [mmol] = 1.2 \times U [mmol] + 7
(R^2 = 0.74)
Figure 3
Figure 5
Figure 6

Relative Intensity [cps]

Binding energy [eV]

Yellow opal Pena Blanca

Green opal Pena Blanca

M3N

6+ 5+/4+
Figure 7

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 8