1 Revision 1

2	
3	Rowleyite, [Na(NH ₄ ,K) ₉ Cl ₄][V ^{5+,4+} ₂ (P,As)O ₈] ₆ · <i>n</i> [H ₂ O,Na,NH ₄ ,K,Cl], a new mineral
4	with a microporous framework structure
5 6 7 8 9	Anthony R. Kampf ^{1§} , Mark A. Cooper ² , Barbara P. Nash ³ , Thure E. Cerling ³ , Joe Marty ⁴ , Daniel R. Hummer ⁵ , Aaron J. Celestian ¹ , Timothy P. Rose ⁶ , and Thomas J. Trebisky ⁷
10	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los
11	Angeles, CA 90007, USA
12	² Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
13	³ Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
14	⁴ 5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
15	⁵ Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA
10 17	⁷ Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
1/	MM11 Observatory, University of Arizona, 1540 E. Second Street, Tucson, AZ 85721, USA
10	
19	ABSTRACT
20	Rowleyite, [Na(NH4,K)9Cl4][V ^{5+,4+} 2(P,As)O8]6·n[H2O,Na,NH4,K,Cl], is a new mineral species
21	from the Rowley mine, Maricopa County, Arizona, U.S.A. It was found in an unusual low-
22	temperature, apparently post-mining suite of phases that include a variety of vanadates,
23	phosphates, oxalates, and chlorides, some containing NH_4^+ . Other secondary minerals found in
24	association with rowleyite are antipinite, fluorite, mimetite, mottramite, quartz, salammoniac,
25	struvite, vanadinite, willemite, wulfenite, and several other potentially new minerals. Analyzed
26	δ^{13} C values for the antipinite in association with rowleyite are consistent with a bat guano source.
27	Crystals of rowleyite are very dark brownish green (appearing black) truncated octahedra up to
28	about 50 μ m in diameter. The streak is brownish green, the luster is vitreous, very thin fragments

[§] Email: akampf@nhm.org

29	are transparent. The Mohs hardness is about 2, the tenacity is brittle, fracture is irregular, there is
30	no cleavage, and the measured density is 2.23(2) g·cm ⁻³ . Rowleyite is optically isotropic with $n =$
31	1.715(5). Electron microprobe analyses yielded the empirical formula
32	$[(NH_4)_{8.81}Na_{3.54}K_{2.58})_{\Sigma 14.93}Cl_{6.29}(H_2O)_{16}][(V^{5+}_{9.36}V^{4+}_{2.64})_{\Sigma 12}(P_{5.28}As^{5+}_{0.72})_{\Sigma 6}O_{48}]. \text{ Raman and } S_{12}(P_{12})_{\Sigma 14}S_{12}(P_{12})_{\Sigma 14}S$
33	infrared spectroscopy confirmed the presence of NH_4 and H_2O . Rowleyite is cubic, <i>Fd-3m</i> , with <i>a</i>
34	= 31.704(14) Å, $V = 31867(42)$ Å ³ , and $Z = 16$. The crystal structure of rowleyite ($R_1 = 0.040$ for
35	1218 $F_0 > 4\sigma F$ reflections) contains $[V_4O_{16}]^{12+}$ polyoxovanadate units that link to one another via
36	shared vertices with [(P,As)O ₄] ³⁻ tetrahedra to form a 3-D framework possessing large
37	interconnected channels. The channels contain a 3-D ordered $[Na(NH_4,K)_9Cl_4]^{6+}$ salt net, which
38	apparently served as a template for the formation of the framework. In that respect, rowleyite can
39	be considered a salt-inclusion solid (SIS). The rowleyite framework is among the most porous
40	known.
41	
42	Keywords: rowleyite; new mineral species; polyoxovanadate; microporous framework; salt-
43	inclusion solid; crystal structure; Rowley mine, Arizona.
44	
45	INTRODUCTION
46	The Rowley mine, about 100 km southwest of Phoenix, Arizona, USA, is an old Cu-Pb-
47	Au-Ag-Mo-V-baryte-fluorspar mine, which hasn't been worked for ore since 1923. Mineral
48	collectors first took notice of the mine as a source of fine wulfenite crystals around 1945. In early
49	2013, one of the authors (TJT) found ammineite, CuCl ₂ (NH ₃) ₂ , in the vicinity of bat guano at the
50	end of the tunnel on the 125-foot level. A short time later, another of the authors (JM) discovered
51	unusual mineralization 10 to 15 meters up the tunnel from the ammineite occurrence. His

52	attention was initially drawn to bluish-green specks that proved to be antipinite, $KNa_3Cu_2(C_2O_4)_4$.
53	Both ammineite and antipinite are recently described species from the sea-bird guano deposit at
54	Pabellón de Pica, Chile (Bojar et al., 2010; Chukanov et al., 2015). The suite of phases associated
55	with the antipinite in the Rowley mine includes a remarkable assortment of vanadates,
56	phosphates, oxalates, and chlorides, some of which contain NH_4^+ , and many of which are new.
57	Herein, we describe the first of these new phases, rowleyite, which is named for the locality, the
58	Rowley mine. The polyoxometalate framework structure of rowleyite is noteworthy for being
59	among the most porous known.
60	The new mineral and name were approved by the Commission on New Minerals,
61	Nomenclature and Classification of the International Mineralogical Association (IMA 2016-037).
62	Five cotype specimens of rowleyite are deposited in the collections of the Natural History
63	Museum of Los Angeles County, Los Angeles, California, USA, catalogue numbers 66268,
64	66269, 66270, 66271, and 66272.
65	
66	OCCURRENCE
67	Rowleyite was found on the 125-foot level of the Rowley mine, Theba, Painted Rock
68	district, Maricopa County, Arizona, USA (33°2'57"N 113°1'49.59"W). The Rowley mine is a
69	former Cu-Pb-Au-Ag-Mo-V-baryte-fluorspar mine that exploited veins presumed to be related to
70	the intrusion of an andesite porphyry dike into Tertiary volcanic rocks. The most detailed recent
71	account of the history, geology, and mineralogy of the mine was by Wilson and Miller (1974).
72	The new mineral was found in an unusual low-temperature, apparently post-mining suite
73	of phases that include a variety of vanadates, phosphates, oxalates, and chlorides, some
74	containing NH4 ⁺ . This secondary mineral suite is found growing on baryte-rich matrix and,

75 besides rowleyite includes antipinite, fluorite, mimetite, mottramite, quartz, salammoniac,

struvite, vanadinite, willemite, wulfenite, and several other potentially new minerals. This area of the mine is generally hot and humid. While no bat guano is observed in close proximity to the suite containing rowleyite, 10 to 15 meters further down the tunnel is an area encrusted with bat guano in the proximity of which ammineite has been found.

80 It seems most likely that the source of the ammonium, oxalate, and phosphate in the 81 phases of this unusual suite is an earlier bat guano encrustation (cf. Snow et al., 2014). Other 82 possibilities that we considered were decomposing saguaro cactus (Carnegiea gigantea) on the 83 surface above the mine and decomposed dynamite left from the earlier mining activities. To 84 better assess these possibilities, we conducted a carbon isotope analysis of crystals of antipinite 85 from this mineral assemblage. In particular, it is important to distinguish a dynamite source from 86 natural sources, since an anthropogenic source of material would influence rowlevite's 87 categorization as a mineral species. As rowleyite lacks carbon, associated crystals of antipinite 88 were used for analysis.

89 Purified grains of the antipinite were analyzed using an elemental analyzer (EA) coupled 90 to an isotope ratio mass spectrometer (IRMS). Five replicate analyses were performed on samples 91 ranging from 31 to 44 μ g; the low sample masses reflect the small grain size and relative rarity of 92 the phase. The average δ^{13} C value for the five analyses is -18.0 ± 0.5 permil VPDB. The 93 measured carbon content was 18± 2%, which is consistent with the calculated carbon content of 94 16.3% to within the uncertainty of the analyses.

The calcium oxalate whewellite has been reported from a number of hydrothermal vein systems with a range in δ^{13} C values that overlaps with those of the Rowley mine antipinite (Hofmann and Bernasconi, 1998); however, hydrothermal oxalates were not previously reported

98	in the Rowley vein despite extensive mineralogical investigations (e.g. Wilson and Miller, 1974).
99	Old dynamite formulations used ammonium oxalate as an additive (Thorpe, 1922). The
100	ammonium oxalate was likely produced from oxalic acid, which was historically manufactured
101	by treating sawdust with a strong caustic solution (Von Wagner, 1900). Sawdust from plants that
102	use the C3 photosynthetic pathway have δ^{13} C values that range from -23 to -35 permil with an
103	average near -26 (O'Leary, 1988). If the Rowley mine antipinite was derived from the residue of
104	deteriorated dynamite, it would require a carbon isotope fractionation process that could drive the
105	δ^{13} C values toward more ¹³ C-enriched values.
106	Rivera and Smith (1979) analyzed calcium oxalates from five different cacti species and
107	observed a narrow range in δ^{13} C values between -7.3 and -8.7 permil. Carbon isotope analyses of
108	biomineralization associated with decomposing saguaro cactus in southern Arizona are consistent
109	with this range in values (Garvie, 2003). These reported oxalate δ^{13} C values from cacti have a
110	and an instance single at the first state of the Denslam wine antipin's to

110 carbon isotope signature that is distinct from that of the Rowley mine antipinite.

Bat guano from caves has been observed to have oxalate minerals associated with it (Frost et al., 2008; Mercè Bergadà, 2013). Stable isotope studies of bats from the southwestern USA have been shown to have δ^{13} C values ranging from C₃-dominated to C₄/CAM dominated (O'Leary, 1988), with diets ranging from *ca.* -10 to -25‰ (Des Marais et al., 1980; Fleming et al.

115 1993; Wurster et al., 2007), spanning the observed range of δ^{13} C in the Rowley mine antipinite.

116 Thus, the analyzed δ^{13} C values for the antipinite in association with rowleyite are most consistent 117 with a bat guano source.

118

119

PHYSICAL AND OPTICAL PROPERTIES

120 Crystals of rowleyite are truncated octahedra, up to about 50 µm in diameter, and

121	exhibiting the forms $\{100\}$ and $\{111\}$, up to about 0.1 mm in diameter (Fig. 1). Intergrowths of
122	interpenetrant crystals are common, but no twin law could be ascertained. The megascopic color
123	is very dark brownish green, appearing black; in transmitted light, an olive-green rim is observed
124	to surround a red-brown core. The luster is vitreous and crystals are transparent in very thin
125	fragments. The streak is brownish green. Rowleyite is non-fluorescent in long- and short-wave
126	ultraviolet light. It has a Mohs hardness of about 2, brittle tenacity, irregular fracture, and no
127	cleavage. The density measured by floatation in a mixture of methylene iodide and toluene is
128	2.23(2) g·cm ⁻³ . The calculated density is 2.04 g·cm ⁻³ using the empirical formula for 16 H ₂ O <i>pfu</i> ;
129	2.28 g·cm ⁻³ using the empirical formula for 32 H ₂ O <i>pfu</i> . The mineral is insoluble in H ₂ O at room
130	temperature. In dilute HCl, it immediately turns orange and slowly dissolves.
131	Rowleyite is optically isotropic with $n = 1.715(5)$ measured in white light. Note that the
132	determination of the index of refraction was problematic because different portions of crystal
133	fragments provided very different readings. The value reported is for uniformly olive-green outer
134	rims; however, more fractured red-brown cores had a much lower index of refraction, which was
135	difficult to measure.
136	
137	RAMAN SPECTROSCOPY
138	Raman spectroscopy was conducted on a Thermo Nicolet Almega micro-Raman
139	spectrometer at the Department of Geoscience, University of Arizona. An equant, $\sim 30 \ \mu m$ crystal
140	of rowleyite was measured using an incident wavelength of 532 nm and a laser aperture of 25
141	μ m. Because rowleyite was apparently susceptible to burning by the beam due to the \sim 2 μ m spot
142	size, data was collected for \sim 2 hrs at a reduced laser power of 5.0 mW, which achieved sufficient
143	signal-to-noise ratio without altering the spectrum during data collection.

144	The Raman spectrum of rowleyite is shown in Figure 2. Bands centered on ~830 and
145	$\sim 1000 \text{ cm}^{-1}$ were assigned to V–O and P–O lattice stretches, respectively (Frost et al. 2011,
146	2015). The much stronger intensity of the V–O band is consistent with our microprobe
147	measurements showing more than twice as much V as P on a molar basis. The V-O band in
148	rowleyite is centered at the lower end of the typical 820–900 cm^{-1} frequency range for V–O
149	stretching modes in vanadates with VO ₄ tetrahedra (Frost et al. 2011), as well as the very similar
150	822-973 cm ⁻¹ frequency range for minerals such as cavansite and pentagonite that, like rowleyite,
151	also contain VO ₅ groups (Frost and Xi, 2012). Three distinct bands centered at ~180, 280, and
152	330 cm^{-1} represent vibrations of the entire lattice.
153	
154	INFRARED SPECTROSCOPY
155	Infrared spectroscopy was conducted on a Jasco IMV-4000 Infrared Multichannel
156	spectrometer at the Geophysical Laboratory, Carnegie Institution for Science. An equant
157	rowleyite crystal with diameter $\sim 30 \ \mu m$ was measured using a halogen lamp with an aperture of
158	50 μ m to encompass the entire crystal for minimum background noise. Data was collected for ~6
159	min at a resolution of 8 cm ⁻¹ , and the experimental spectrum was normalized to a blank spectrum
160	collected at identical conditions to remove strong absorption lines from atmospheric gases.
161	The IR spectrum of rowleyite is shown in Figure 3. A suite of overlapping bands occurs
162	in the 2600–3400 cm ⁻¹ range, typical of N–H stretching modes (Pankewitz et al. 2007). A
163	shoulder at \sim 3600 cm ⁻¹ , significantly higher frequency than any N–H vibration, can only be due
164	to O–H stretching and confirms that rowleyite is hydrous. The presence of a 3600 cm ⁻¹ band can
165	be due to a variety of O- and H-bearing molecular species, but because our structural analysis
166	suggests the presence of significant structural H ₂ O in the channels of rowleyite (and because of

167	the presence of the band discussed below), we propose that molecular H_2O is the most logical
168	assignment for the 3600 cm ⁻¹ band. Due to the strong overlap between these high frequency
169	bands, however, it is difficult to assign precise peak positions and postulate distinct structural
170	sites for the H ₂ O and NH ₄ ⁺ . A strong band centered at \sim 1600 cm ⁻¹ is assigned to a combination of
171	O–H and N–H bending modes (Varriale et al. 2011), and a weak band at 1900–2000 cm^{-1} could
172	not be assigned to any obvious feature of the rowleyite structure. Below 1500 cm ⁻¹ , the
173	instrument registered very low transmitted intensity in both the sample and blank spectra, and
174	therefore the normalized spectrum contains only random noise in this region.
175	
176	CHEMICAL ANALYSIS
177	Analyses of rowleyite (5 points over 3 crystals) were performed at the University of Utah
178	on a Cameca SX-50 electron microprobe with four wavelength dispersive spectrometers utilizing
179	Probe for EPMA software. Analytical conditions were 15 keV accelerating voltage, 10 nA beam
180	current, and a beam diameter of 10 μ m. Counting times were 20 seconds on peak and 20 seconds
181	on background for each element, except N for which 40 second counting times were used. Raw
182	X-ray intensities were corrected for matrix effects with a $\phi \rho(z)$ algorithm (Pouchou and Pichoir,
183	1991). Significant damage from the electron beam was observed. Time-dependent intensity
184	corrections were applied to the Na, K, and V analyses. The sensitivity of rowleyite to the electron
185	beam precluded the use of area peak ratios in the determination of nitrogen because of the long
186	counting times that would be required to acquire the spectra. Accordingly, peak intensity ratios
187	were used following the methodology as described by Bastin and Heijligers (1991). The primary
188	standard was synthetic Cr ₂ N with secondary standards of GaN and HfN.

189	Because of the thinness of the olive green rims, the analyses were conducted principally
190	on the red-brown crystal cores, which appear to be significantly higher in P and lower in V than
191	the rim, on which the structure refinement was conducted. H ₂ O was not analysed because of
192	paucity of material. Analytical data are given in Table 1.
193	As noted below in the discussion of the crystal structure, the open porous structure of
194	rowleyite with highly mobile channel constituents means that the electron-microprobe results
195	must be regarded as a semi-quantitative approximation of the composition. The structure
196	determination provides a better indication of the composition, so we have used a combination of
197	EPMA and structural evidence to propose empirical formulas consistent with three different
198	possible channel contents (see structure discussion below).
199	As shown in column 2 of Table 2, the empirical formula (based on 18 P+V+As and with
200	$16 \text{ H}_{2}\text{O} pfu) \text{ is } [(\text{NH}_{4})_{8.81}\text{Na}_{3.54}\text{K}_{2.58})_{\Sigma 14.93}\text{Cl}_{6.29}(\text{H}_{2}\text{O})_{16}][(\text{V}^{5+}_{9.36}\text{V}^{4+}_{2.64})_{\Sigma 12}(\text{P}_{5.28}\text{As}^{5+}_{0.72})_{\Sigma 6}\text{O}_{48}]. \text{ The } (1600 \text{ H}_{2}\text{O})_{16}](1600 H$
201	simplified structural formula is $[Na(NH_4,K)_9Cl_4][V^{5+,4+}_2(P,As)O_8]_6 \cdot n[H_2O,Na,NH_4,K,Cl]$. The
202	Gladstone-Dale compatibility (Mandarino, 2007) $1 - (K_p/K_c)$ is -0.166 (poor) for 16 H ₂ O <i>pfu</i> and
203	0.029 (excellent) for 32 H_2O <i>pfu</i> .
204	
205	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
206	Powder X-ray studies were carried out using a Rigaku R-Axis Rapid II curved imaging
207	plate microdiffractometer with monochromatized Mo $K\alpha$ radiation. A Gandolfi-like motion on the
208	φ and ω axes was used to randomize the sample. Observed <i>d</i> -values and intensities were derived
209	by profile fitting using JADE 2010 software (Materials Data, Inc.). Because of the difficulty in
210	separating a pure sample, all recorded powder diffraction patterns exhibited extra peaks and/or
211	some observed peaks of significantly greater intensity than the corresponding calculated peaks.

212	This may also reflect structural differences between the olive-green crystal rims (used for the
213	structure determination) and the red-brown crystal cores. The powder data are presented in Table
214	3. Unit-cell parameters refined from the powder data using JADE 2010 with whole pattern fitting
215	are: $a = 31.73(2)$ Å and $V = 31946(60)$ Å ³ .
216	Single-crystal X-ray studies were carried out on an olive-green fragment removed from
217	the rim of a crystal. The complete Ewald sphere of data (including some duplicates) was
218	collected using 60s per 0.3° frame with a crystal-detector distance of 5 cm. The unit-cell
219	dimensions were obtained by least-squares refinement of 4095 reflections with $I > 10\sigma I$. A total
220	of 236208 reflections were integrated. Systematically absent reflections are consistent with the
221	space group <i>Fd</i> -3 <i>m</i> . Empirical absorption corrections (SADABS; Sheldrick, 2015) were applied
222	and equivalent reflections were merged. The structure was solved by direct methods using
223	SHELXS-2013 and the structure was refined using SHELXL-2013 (Sheldrick, 2015). Data
224	collection and refinement details are given in Table 4, atom coordinates and displacement
225	parameters in Table 5, selected bond distances in Table 6, site assignments in Table 7, and a
226	bond-valence analysis in Table 8.
227	
228	DISCUSSION
229	Site assignments in the framework
230	The crystal structure of rowleyite contains two V sites that are fully occupied by dominant
231	$V^{5\scriptscriptstyle +}$ and subordinate $V^{4\scriptscriptstyle +}$ in a disordered fashion. Each V site is coordinated by five O atoms in a
232	square pyramidal coordination. There is a short vanadyl (V=O) bond (~1.6 Å) to the apical
233	oxygen and four longer equatorial bonds (~1.8–2.0 Å) to basal oxygens of the pyramid, otherwise
234	referred to as a [1+4] coordination; this coordination environment is common for both $V^{5+}O_5$ and

235	$V^{4+}O_5$ polyhedra. An estimate of the average valence of V can be derived for a VO ₅ polyhedron
236	from its average equatorial bond distance (<i>R</i>) using the equation $\langle Z \rangle = 25.99 - 11.11(R)$ in
237	mixed-valent structures (Schindler <i>et al.</i> , 2000). In rowleyite, $\langle V1-O_{eq} \rangle = 1.910$ Å and $\langle V2-$
238	$O_{eq} > = 1.907$ Å, and the average V valences are 4.77 and 4.80 vu, respectively, indicating a
239	strong dominance of V^{5+} over V^{4+} at both sites, and a high degree of $V^{5+} - V^{4+}$ disorder between
240	the two sites. There is a single P site tetrahedrally coordinated by four O atoms; the refined
241	electron scattering at this site is in excess of 15 electrons [<i>i.e.</i> 17.16(9) e] and the observed $\leq P$ -
242	O> distance of 1.557 Å is slightly greater than the anticipated 1.54 Å value from the added
243	respective radii ($^{IV}P^{5+} = 0.17$, O = 1.37 Å; Shannon, 1976). A small amount of As was
244	encountered during electron-microprobe analysis (4.07 wt.% As ₂ O ₅), and is assigned to the P site
245	to account for the excess size and electron density observed there. Site-occupancy refinement at
246	the P site utilizing the P and As scattering factors gives a P site composition of $(P_{0.88}As_{0.12})$ and a
247	calculated mean bond length of 1.560 Å, in close agreement with the observed value.
248	

249 Site-assignments in the channels

250 The observed electron scattering in the channels displays a range of character from 251 reasonably small and uniform anisotropic displacement parameters to very large and varied 252 values, suggesting reasonably well-ordered (positionally) constituents along with very disordered 253 and possibly *mobile* constituents. Centered around the channel position at (1/8, 1/8, 1/8) is a 254 complex salt cluster comprised of two A sites and two Cl sites (Figure 4). The A sites are inferred to be occupied by 75% NH_4^+ and 25% K^+ ions (via K/N site-occupancy refinement), and the Cl 255 256 sites by Cl. The A1 site is coordinated by nine O atoms and two Cl atoms with $\langle A1-\phi \rangle = 3.147$ Å and the A2 site is coordinated by four O atoms and four Cl atoms with $\langle A2-\phi \rangle = 3.167$ Å. In the 257

258	structure of lucabindiite, the M site coordinated by twelve O atoms has an observed $$
259	distance of 3.127 Å and is occupied by $K_{0.51}(NH_4)_{0.49}$; this is in general agreement with the
260	observed $\langle A-O \rangle$ distances in rowleyite and the observation that K ⁺ and NH ₄ ⁺ have similar ionic
261	radii (Garavelli et al., 2013, Holleman & Wiberg, 2001). The bond valence analysis reveals that
262	these channel cations (NH4 ⁺ , K ⁺ , Na ⁺) all contribute small, but significant, valence contributions
263	to the O atoms of the surrounding vanadium-phosphate framework. The Cl3 site is positioned \sim 3
264	Å from the V1 and V2 sites in a <i>trans</i> position relative to the short vanadyl bond. The refined
265	site-scattering at the Cl3 site of 13.0(2) electrons is in agreement with a Cl dominant site that is
266	inferred to be occupied by $(Cl_{2.29}\square_{0.71})$ pfu [i.e. occupation at the nearby X6 and X7 sites
267	necessitates complimentary vacancy at Cl3]. Additionally, there are twelve channel X sites that
268	show highly varied occupancy and displacement character. The X sites electron density were
269	included in the structural model to help constrain a lower limit to the total channel content; we
270	recognize that additional highly mobile channel constituents absent in our structural model may
271	also be present in rowleyite.
272	
273	Description of the structure
274	The VO ₅ square pyramids link at their bases (<i>via</i> corner-sharing) to form $[V_4O_{16}]$ units
275	(Figure 5), and the remaining basal oxygens of the square pyramids interconnect to other $[V_4O_{16}]$
276	units via shared vertices with [(P,As)O ₄] tetrahedra (Figure 6) to form a 3-D framework
277	possessing large interconnected channels (Figs. 7 and 8).
278	Centered at the channel position (1/8, 1/8, 1/8) in the rowleyite structure is the $[A_9Cl_4]^{5+}$

- 279 {actually $[(A_9Cl_4)_2]^{10+}$ } salt cluster with the composition $[(NH_4)_{6.74}K_{2.26}Cl_4]$ pfu (Figs. 4 and 9).
- 280 The Cl atoms are positioned at the corners of a cube; distances from the center position

281	(1/8,1/8,1/8) to Cl1 and Cl2 are 3.71 and 3.51 Å, respectively, and no significant electron density
282	is located at the $(1/8, 1/8, 1/8)$ position. The A2 sites are positioned at the vertices of an octahedron
283	lying outside each of the faces of the inner Cl cube. The outer A1 sites are positioned at the
284	vertices of a 14-faced polygon comprised of the forms cube + octahedron, with the faces of each
285	form parallel to the inner Cl-cube and A2-octahedron forms, respectively. These $[A_9Cl_4]^{5+}$ salt
286	clusters link tetrahedrally to four more such clusters through Na^+ ions (positioned over the
287	octahedral faces of the 14-faced polygon that have Cl1 atoms lying below) along the channels to
288	form a 3-D ordered [Na(NH ₄ ,K) ₉ Cl ₄] salt net that carries a 6^+ charge <i>pfu</i> . The twelve X sites
289	represent approximate electron-scattering values and positions for the channel occupants (<i>i.e.</i>
290	NH ₄ , K, Na, Cl, H ₂ O). Assigning specific atomic identity to these sites is problematic
291	considering: the large number of X sites, their partial occupations, and highly variable degree of
292	positional uncertainty (which includes numerous close approaches preventing mutual
293	occupation). From the bond valence analysis of the ordered portion of the structure (Table 8), it is
294	apparent that the anions O1, O2, and O4 remain slightly underbonded, and some of the X sites are
295	expected to provide additional bond valence to these anions. We have listed all of the closer $O-X$
296	distances in Table 6, and not surprisingly, all involve X sites that are proximal to these anions
297	(<i>i.e.</i> O1, O2, O4).
298	Rowleyite belongs to the polyoxometalate (POM) group of chemical compounds, and
299	more specifically, it contains $[V_4O_{16}]$ polyoxovanadate (POV) units. The synthetic compound
300	$Cs_{3.64}Na_{1.40}(V_4O_8)(AsO_4)_2Cl_{3.04}$ is the closest structural synthetic POV to rowleyite (Queen <i>et al.</i> ,
301	2010). In this synthetic, all V is pentavelent. The $[V_4O_{16}]$ units are linked similarly by AsO ₄
302	tetrahedra to form a [V ₂ AsO ₈] framework, which is topologically equivalent to that in rowleyite.

303 Rowleyite can also be considered a phosphovanadate with a zeolite-like framework structure.

304 Among minerals, rowleyite is most similar to phosphovanadylite-Ba and phosphovanadylite-Ca, 305 (Ba,Ca)[P₂(V,Al)₄(O,OH)₁₆]·12(H₂O) (Kampf *et al.*, 2013), which also are phosphovanadates 306 with a zeolite-like framework structure; however, the phosphovanadylite structure has a very 307 different linkage of VO₆ octahedra.

308

309 Framework porosity

310 The rowleyite framework is among the most porous known. It contains two types of cages (Figure 10). A small cage centered at 1/8, 1/8, 1/8 hosts the $[A_9Cl_4]^{5+}$ salt cluster and a large cage 311 312 centered at 3/8, 3/8, 3/8 hosts the X sites. A measure of the porosity is the framework density, 313 defined as the total number of regular polyhedra (tetrahedra, octahedra, and square pyramids) per 1.000 Å³. Rowlevite has a framework density of 9.8 polyhedra/1000 Å³, which we believe is the 314 315 lowest of any naturally occurring crystalline framework material. By comparison, tschörtnerite 316 (Baerlocher, 2007) with a framework density of 12.1 has the lowest framework density of all 317 natural zeolites, and traskite (Malinovskii et al., 1976) with a framework density of 11.7 has the 318 lowest framework density of all natural heterosilicates. Phosphovanadylite-Ba and 319 phosphovanadylite-Ca (Kampf et al., 2013), other minerals with a phosphate-vanadate 320 framework, have a framework density of 13. Among synthetic materials, we are only aware of 321 one type of compound with a lower framework density, the chalcogenide zeolite analog UCR-20 322 with a decorated sodalite-type structure (and its related structures UCR-21, 22, and 23; Zheng, et 323 al. 2002), which have framework densities of 4.6 polyhedra/1000 Å³. 324 In the rowlevite structure, the large cages are connected via a 12-membered ring with a diameter of 9.7 Å, and the large and small cages are also connected via a 12-membered ring, but

the apical oxygens of three VO_5 square pyramids point into this 12-membered ring, thus limiting its effective ring diameter to 4.1 Å.

328

329 *Chemical formula based on the structure determination*

330 The average V valence of 4.78 vu derived from the average V–O_{eq} distances (Schindler *et* 331 *al.*, 2000), and P/As ratio derived from site-occupancy refinement, gives

 $[(V_{9,36}^{5+}V_{2,64}^{4+})_{\Sigma_{12}}(P_{5,28}As_{0,72})_{\Sigma_{6}}O_{48}]$ pfu for the rowleyite framework, which carries a net charge 332 333 of 8.64– pfu. The ordered channel [Na(NH₄,K)₉Cl₄] salt component carries a 6+ charge pfu. The 334 Cl3 site gives a refined occupancy consistent with $(Cl_{2,29}\square_{0,71})$ pfu and provides a 2.29– charge. 335 Summing these constituent charge contributions leaves 4.93 to be balanced by the various X site 336 constituents. We can infer a lower limit to the total occupation of the channels using the total 337 refined site-scattering from the structure refinement, and couple this with an estimated relative 338 proportioning of the various X site occupants from the electron-microprobe results. In the case of 339 rowlevite (an open porous structure with mobile channel constituents), the electron-microprobe 340 results must be regarded as a semi-quantitative approximation of the chemistry –the sample was 341 subjected to high vacuum, and then punished under the electron beam; rowleyite before and 342 during electron-microprobe analysis are surely differing compounds with respect to channel 343 content within the analytical volumes investigated. In contrast, the rowlevite crystal investigated 344 by single-crystal X-ray diffraction likely remained intact during acquisition of the X-ray intensity 345 data (no degradation of the crystal was evidenced experimentally). Using the observed weight 346 fractions of the channel constituents (NH₄, K, Na, Cl) from electron-microprobe analysis, we 347 calculated atomic proportions and then scaled the result to give a total 8.64+ charge to balance 348 the 8.64- framework charge. This gives (NH₄)_{8.24}Na_{3.31}K_{2.41}Cl_{5.32} pfu ; however, the Cl content is

349 somewhat low in comparison to the minimal Cl value of $Cl_{6,29}$ pfu inferred from the structure (Cl 350 content at the X sites is unknown). We adjusted the wt% Cl to conform with $Cl_{6.29}$ and then 351 applied a slight proportional increase to the (NH₄, K, Na) values, preserving the 8.64 + pfu charge. 352 The electron scattering difference between total refined channel scattering (498 e) and scaled 353 channel constituents from EMPA (370 e, excluding H), is consistent with approximately 16 H₂O *pfu*. This result derived from the combination of structure refinement (*i.e.* framework V^{5+}/V^{4+} and 354 355 P/As; and total channel electrons) and electron-microprobe (approximate channel constituent proportioning) appears in the 2nd column of Table 2. Relative to the measured index of refraction 356 357 of 1.70, this result gives a Gladstone-Dale calculated value of 1.62, suggesting that unaccounted 358 channel content remains. We attribute this 'missing' channel component to: (i) instability of 359 rowleyite during sample preparation and analysis by electron-microprobe and (ii) highly 360 disordered and mobile channel occupation during X-ray diffraction measurement. For 361 comparison in Table 2, we have included rowleyite chemical models that contain increased 362 channel constituents: (i) column 3 includes double the amount of H₂O; (ii) column 4 includes 363 10% additional (NH₄, K, Na) and 50% more H_2O , with additional Cl to charge balance. Both 364 scenarios (column 3 and 4) represent plausible adaptations to the observed analytical data, and 365 give calculated index of refraction values in closer agreement with that observed, while scenario 366 4 has the additional advantage that it provides a calculated density matching the measured 367 density. Given the complexities in ascertaining the true total channel composition in rowleyite 368 experimentally, we think it most prudent to define rowleyite with emphasis placed upon the ordered components. The framework contains V^{5+} dominant over V^{4+} and P dominant over As. 369 and minor oxidation differences during crystallization are likely to yield varying V^{5+}/V^{4+} ratios 370

371	which will couple to variations in charged channel constituents. The following chemical formula
372	encompasses these aspects: $[Na(NH_4,K)_9Cl_4][V^{5+,4+}_2(P,As)O_8]_6 \cdot n[H_2O,Na,NH_4,K,Cl].$
373	
374	IMPLICATIONS
375	In recent years, there has been a great deal of research focusing on the design of POM
376	frameworks because of their potential technological uses related, in particular, to their
377	mesoporosity and catalytic activity, electronic and ionic transport, ferro- or ferrimagnetism, and
378	photoluminescence. Queen et al. (2010) reported on the first family of salt-inclusion solids (SISs)
379	with mesoporous frameworks comprised of interlinked POV clusters. One of these,
380	$Cs_{3.64}Na_{1.40}(V_4O_8)(AsO_4)_2Cl_{3.04}$, has a $[V_2^{5+}AsO_8]$ framework that is essentially the same as the
381	$[V^{5+,4+}_{2}(P,As)O_{8}]$ framework in rowleyite. Queen et al. noted that the use of salts as templates
382	allowed the creation of porous materials at high temperatures (>600°C). In this respect, it is of
383	special interest to note that within the POV framework of rowleyite is a 3-D ordered
384	[Na(NH ₄ ,K) ₉ Cl ₄] salt net. It can be presumed that this salt net served as a template for the
385	formation of the highly porous $[V^{5+,4+}_2(P,As)O_8]$ framework in rowleyite; however, the
386	occurrence of rowleyite in an relatively low-temperature mineral assemblage suggests that salt-
387	templating can also be a viable approach for the synthesis of porous framework structures at
388	temperatures much lower than 600°C.
389	
390	ACKNOWLEDGEMENTS

Reviewers xxx and yyy are thanked for constructive comments, which improved the
manuscript. Frank Hawthorne is thanked for providing use of the X-ray diffractometer at the
University of Manitoba for collection of the structure data. Keith Wentz, claim holder of the

394	Rowley mine, is thanked for allowing underground access for the study of the occurrence and the
395	collecting of specimens. This study was funded, in part, by the John Jago Trelawney Endowment
396	to the Mineral Sciences Department of the Natural History Museum of Los Angeles County.
397	
398	References
399	Baerlocher, C., McCusker, L.B., and Olson, D.H. (2007) Atlas of Zeolite Framework Types, 6th
400	Edition. Elsevier Science, 404 p.
401	Bastin, G.F., and Heijligers, H.J.M. (1991) Quantitative electron probe microanalysis of nitrogen.
402	Scanning, 13, 325-342.
403	Bojar, HP., Walter, F., Baumgartner, J., and Färber, G. (2010) Ammineite, CuCl ₂ (NH ₃) ₂ , a new
404	species containing an ammine complex: mineral data and crystal structure. Canadian
405	Mineralogist, 48, 1359-1371.
406	Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
407	Crystallographica, B47, 192-197.
408	Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Lyssenko, K.A., Belakovskiy, D.I., Färber,
409	G., Möhn, G., and Van, K.V. (2015) Antipinite, KNa ₃ Cu ₂ (C ₂ O ₄) ₄ , a new mineral species from
410	a guano deposit at Pabellón de Pica, Chile. Mineralogical Magazine, 79, 1111-1121.
411	Des Marais, D.J., Mitchell, J.M., Meinschein, W.G., and Hayes, J.M. (1980) The carbon isotope
412	biogeochemistry of the individual hydrocarbons in bat guano and the ecology of the
413	insectivorous bats in the region of Carlsbad, New Mexico. Geochimica et Cosmochimica
414	Acta, 44, 2075-2086.

- 415 Fleming, T. H., Nuñez R.A., and Sternberg, L.S.L. (1993) Seasonal changes in the diets of
- 416 migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis.
- 417 Oecologia 94, 72-75.
- 418 Frost, R.L, Locke, A., and Martens, W.N. (2008) Synthesis and Raman spectroscopic
- 419 characterization of the oxalate mineral wheatleyite $Na_2Cu^{2+}(C_2O_4)_2 \cdot 2H_2O$, Journal of Raman
- 420 Spectroscopy, 39, 901-908.
- 421 Frost, R.L., Palmer, S.J., Cejka, J., Sejkora, J., Plasil, J., Bahfenne, S., and Keeffe, E.C. (2011) A
- 422 Raman spectroscopic study of the different vanadate groups in solid-state compounds –
- 423 model case: mineral phases vesignieite [BaCu₃(VO₄)₂(OH)₂] and volborthite
- 424 $[Cu_3V_2O_7(OH)_2 \cdot H_2O]$. Journal of Raman Spectroscopy, 42, 1701-1710.
- 425 Frost, R.L., Scholz, R., Belotti, F.M., Lopez, A., and Theiss, F.L. (2015) A vibrational
- 426 spectroscopic study of the phosphate mineral vantasselite $Al_4(PO_4)_3(OH)_3 \cdot 9H_2O$.
- 427 Spectrochimica Acta A Molecular and Biomolecular Spectroscopy, 147, 185-192.
- 428 Frost, R.L., and Xi, Y. (2012) Vibrational spectroscopic study of the minerals cavansite and
- 429 pentagonite $Ca(V^{4+}O)Si_4O_{10} \cdot 4H_2O$. Spectrochimica Acta A Molecular and Biomolecular
- 430 Spectroscopy, 95, 263-269.
- 431 Garavelli, A., Mitolo, D., Pinto, D., and hVurro, F. (2013) Lucabindiite, (K,NH₄)As₄O₆(Cl,Br), a
- 432 new fumarole mineral from the "La Fossa" crater at Vulcano, Aeolian Islands, Italy.
- 433 American Mineralogist, 98, 470-477.
- 434 Garvie, L.A.J. (2003) Decay-induced biomineralization of the saguaro cactus (Carnegiea
- 435 gigantea). American Mineralogist, 88, 1879-1888.

- 436 Hofmann, B.A., and Bernasconi, S.M. (1998) Review of occurrences and carbon isotope
- 437 geochemistry of oxalate minerals: implications for the origin and fate of oxalate in diagenetic
- 438 and hydrothermal fluids. Chemical Geology, 149, 127-146.
- 439 Holleman, A.F., and Wiberg, E. (2001) Inorganic Chemistry. Academic Press, 613 p.
- 440 Kampf, A.R., Nash, B.P., and Loomis, T.A. (2013) Phosphovanadylite-Ca,
- 441 $Ca[V^{4+}_{4}P_2O_8(OH)_8]$ ·12H₂O, the Ca analogue of phosphovanadylite-Ba. American
- 442 Mineralogist, 97, 439-443.
- 443 Malinovskii, A., Pobedimskaya, E.A., and Belov, N.V. (1976) Crystal structure of traskite. Soviet
- 444 Physics Doklady, 21, 426-428.
- 445 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- 446 mineral species for further study. Canadian Mineralogist, 45, 1307-1324.
- 447 Mercè Bergadà, M, Villaverde, V., and Román, D. (2013) Microstratigraphy of the Magdalenian
- 448 sequence at Cendres Cave (Teulada-Moraira, Alicante, Spain): Formation and diagenesis.
- 449 Quaternary International, 315, 56-75.
- 450 O'Leary, M.H. (1988) Carbon isotopes in photosynthesis. BioScience, 38, 325-326.
- 451 Pankewitz, T., Lagutschenkov, A., Niedner-Schatteburg, G., Xantheas, S.S., and Lee, Y.T.
- 452 (2007) Infrared spectrum of $NH_4^+(H_2O)$: Evidence for mode specific fragmentation. Journal
- 453 of Chemical Physics, 126, 074307.
- 454 Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 455 microvolumes applying the model "PAP." In: Heinrich, K.F.J., and Newbury, D.E. (eds)
- 456 Electron Probe Quantitation. Plenum Press, New York, pp. 31-75.
- 457 Queen, W.L., Hwu, S., and Reighard, S. (2010) Salt-templated mesoporous solids comprised of
- 458 interlinked polyoxovanadate clusters. Inorganic Chemistry, 49, 1316-1318.

- 459 Rivera, E.R., and Smith, B.N. (1979) Crystal morphology and ¹³Carbon/¹²Carbon composition of
- 460 solid oxalate in cacti. Plant Physiology, 64, 966-970.
- 461 Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomie
- 462 Distances in Halides and Chaleogenides.
- 463 Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71,
- 464 3-8.
- 465 Schindler, M., Hawthorne, F.C., Baur, W.H. (2000): Crystal chemical aspects of vanadium:
- 466 polyhedral geometries, characteristic bond valences, and polymerization of (VO_n) polyhedra.
- 467 Chemistry of Materials, 12, 1248-1259.
- 468 Snow, M.R., Pring, A., and Allen, N. (2014) Minerals of the Wooltana Cave, Flinders Ranges,
- 469 South Australia. Transactions of the Royal Society of South Australia, 138, 214-230.
- 470 Thorpe, T.E. (1922) A Dictionary of Applied Chemistry, Volume 3. Longmans, Green, and
- 471 Company, London, 735 p.
- 472 Varriale, L., Bhalla, N., Tonge, N.M., Ellis, A.M., and Wright, T.G. (2011) Near-infrared
- 473 spectroscopy of LiNH₃: First observation of electronic spectrum. Journal of Chemical
- 474 Physics, 134, 124304.
- 475 Von Wagner, R. (1900) Manual of Chemical Technology, translated and edited by W. Crookes.
 476 Appleton and Company, New York, 968 p.
- 477 Wilson, W.E., and D.K. Miller (1974) Minerals of the Rowley mine, Mineralogical Record, 5,
- 478 10-30.
- 479 Wurster, C.M., McFarlane, D.A., and Bird, M.I. (2007) Spatial and temporal expression of
- 480 vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat
- 481 guano in the southern United States. Geochimica et Cosmochimica Acta, 71, 3302-3310.

- 482 Zheng, N., Bu, X., Wang, B., and Feng, P. (2002) Microporous and photoluminescent
- 483 chalcogenide zeolite analogs. Science, 298, 2366-2369.

485	FIGURE CAPTIONS
486	Figure 1. Rowleyite crystals (black) on mottramite (olive green) and quartz; FOV 0.56 mm
487	across.
488	
489	Figure 2. Raman spectrum of rowleyite.
490	
491	Figure 3. Infra-red spectrum of rowleyite.
492	
493	Figure 4. The rowleyite $[A_9Cl_4]^{5+}$ salt cluster coordinated by four Na atoms.
494	
495	Figure 5. (a) Ball and stick representation of $[V_4O_{16}]$ unit in rowleyite with short vanadyl bond
496	shown as thick stick. (b) Polyhedral representation of $[V_4O_{16}]$ unit with attached PO ₄ tetrahedra
497	in rowleyite.
498	
499	Figure 6. The rowleyite structure, (a) viewed slightly canted down [110] with [001] vertical and
500	(b) viewed down [111]. The salt cluster centered at $(1/8, 1/8, 1/8)$ is shown in black and linking Na
501	atoms are shown in yellow. To more clearly show all of the components of the framework, the
502	salt clusters and linking Na atoms have been omitted in the lower right portion of each projection.
503	Note that the X sites contained within the large open channels are not shown.
504	
505	Figure 7. Cages within the rowleyite framework. Small cages (red) centered at 1/8, 1/8, 1/8 host
506	the $[A_9Cl_4]^{5+}$ salt cluster. Large cages (grey) centered at 3/8, 3/8, 3/8 host the X sites.

Constituent	Mean	Range	S.D.	Probe Standard
$(NH_4)_2O$	9.47	8.56-10.72	0.84	syn. AIN
Na ₂ O	4.53	3.91-5.26	0.52	albite
K ₂ O	5.00	4.72-5.18	0.18	sanidine
P_2O_5	19.28	18.99-19.63	0.25	apatite
V_2O_5	42.23	41.01-44.22	1.23	syn. YVO ₄
As_2O_5	4.07	3.94-4.25	0.13	syn. GaAs
Cl	8.32	7.78-8.96	0.46	tugtupite
See Table 2	for comp	lete analyses based	on a combi	nation of EPMA a

507 Table 1. Analytical results for rowleyite.

508 509

510 Table 2. Chemical data for rowleyite with different hypothetical channel constituents.

511

	1	2	3	4
	EMPA	SREF + EMPA	SREF + EMPA	Column 2
		(16 H ₂ O)	(32 H ₂ O)	+ 10% (NH ₄ ,Na,K)
wt%			· · · ·	+50% (H ₂ O)
V_2O_5	42.23	34.75	31.09	31.76
VO_2		8.94	8.00	8.17
P_2O_5	19.28	15.30	13.69	13.98
As_2O_5	4.07	3.38	3.02	3.09
$(NH_4)_2O$	9.47	9.37	8.38	9.41
Na ₂ O	4.53	4.48	4.01	4.50
K ₂ O	5.00	4.96	4.44	4.99
Cl	8.32	9.11	8.15	10.29
H_2O		11.77	21.06	16.13
O=Cl		-2.06	-1.84	-2.32
Total		100	100	100
apfu				
V^{5+}		9.36	9.36	9.36
V^{4+}		2.64	2.64	2.64
P^{5+}		5.28	5.28	5.28
As^{5+}		0.72	0.72	0.72
$(\mathrm{NH_4})^+$		8.81	8.81	9.69
Na^+		3.54	3.54	3.89
K^+		2.58	2.58	2.84
Cl		6.29	6.29	7.78
H ₂ O		16	32	24
$1 - (K_p/K_c)$		-0.166 (poor)	-0.029 (excellent)	-0.055 (good)
$Density_{calc} (g \cdot cm^{-3})$		2.042	2.282	2.234

Labe	$d_{\rm obc}$		d_{calc}	Leale	hkl		Labe	$d_{\rm obs}$		d_{calc}	Leale	hkl
2.6	18.4		18.3043	49	111	-	-008	0005		2.2704	1	13 5 1
20 70	11 3		11 2091	100	220				(2 2418	2	10 10 0
31	96		9 5591	31	311		9	2 223	Į	2.2110	1	11 9 1
51	7.0		9 1 5 2 2	1	211 222		,	2.225	l	2.2232	1	1280
63	7 97		7 9260	63					(2.1503	6	1266
03 24	7 29		7.9200	34	331		9	2.1556	{	2.1372 2 1424	2	1200 1177
13	6.40		6 1716	18	122				ì	2.1424	5	1287
15	6.11		6 101/	13	322		34	2.1112	{	2.1103	6	12 0 4
0	5 30		5 3 5 0 0	15	535				ì	2.10+3	3	11 11 1
20	5.05		5.0128	7	620		7	2.0378	{	2.0338	2	11 11 1 12 10 2
30	5.05		J.0120 1 9219	/	520				(2.0152 2.0011	5 1	12 10 2 12 0 1
15	1611		4.0340	1	555		12	1 0967		2.0011	1	1600
13	4.011		4.3/01	20	444		12	1.960/		1.9813	9 11	1000
28	4.434		4.4394	20	/ 1 1		12	1.9380		1.9312	11	1482
23	4.215		4.2300	1	04Z		34	1.9319		1.9223	1	1288
10	2 000		4.12/5	1	/ 3 1					1.9118	1	15 / 1
13	3.980		3.9630	/	800					1.894/	1	12 10 6
8	3.902		3.8/33	3	/ 3 3		14	1.8742	{	1.8846	1	15/3
5	3.688		3.6609	5	751				l	1.8682	3	12 12 0
12	3.545		3.5446	l	840				(1.8585	3	11 11 7
			3.4800	l	753		12	1.8442	1	1.8428	2	14 10 0
19	3,336	{	3.3797	3	664				(1.8335	1	1731
	0.000	C	3.3235	3	931				(1.8094	2	1733
65	3.216	{	3.2358	4	844		18	1.7826	1	1.7863	1	1751
00	5.210	l	3.1864	32	771				l	1.7641	2	1577
31	3.127		3.1088	12	862					1.7506	1	1666
			3.0649	8	951					1.7219	1	13 11 7
15	2.969		2.9564	2	953					1.7094	2	14 12 2
17	2.880		2.8942	3	10 4 2				(1.7020	1	15 11 1
100	2.811		2.8023	74	880		19	1.6912	1	1.6898	9	12 12 8
22	2 701	Ş	2.7700	20	971				l	1.6827	3	1597
	2.701	l	2.7186	7	866				(1.6709	5	16 10 2
16	2 661	Ş	2.6891	3	1133		31	1.6517	{	1.6640	1	1911
10	2.001	l	2.6420	7	884				(1.6460	1	1791
14	2 502	5	2.6149	2	11 5 1					1.6350	1	1864
14	2.393	J	2.5715	1	1222				(1.6285	1	1793
14	2.519		2.5064	5	1240		16	1.6190	{	1.6179	7	1688
			2.4832	1	991				l	1.6116	3	1951
1	2 126	ſ	2.4460	1	10 8 2					1.6013	2	16 10 6
4	2.430	Ì	2.4245	6	1171		C	1 5000	ſ	1.5952	3	1795
4	2.384		2.3697	5	1173		0	1.3890	J	1.5852	3	2000
12	2.299		2.2880	1	888							

513 Table 3. Powder X-ray diffraction data (*d* in Å) for rowleyite.

514

- 517 Bruker D8 three-circle; multilayer optics; APEX-II CCD Diffractometer MoK α ($\lambda = 0.71073$ Å) / rotating anode 518 X-ray radiation / source 519 Temperature 293(2) K 520 Structural Formula $[(NH_4)_{6.74}K_{2.26}Cl_4][(V_{12}P_{5.28}As_{0.72}O_{48}] \cdot (NH_4)_{41.39}Na_{1.08}Cl_{2.23}$ 521 Space group Fd-3m Unit cell dimensions a = 31.704(14) Å 522 31867(42) Å³ 523 V 16 524 Ζ 2.17 g cm^{-3} 525 Density (for above formula) 2.20 mm^{-1} 526 Absorption coefficient 23250 527 F(000) $25 \times 20 \times 4 \ \mu m$ 528 Crystal size 529 2.13 to 27.49° θ range 530 $-41 \le h \le 41, -41 \le k \le 41, -41 \le l \le 41$ Index ranges $70994 / 1770; R_{int} = 0.138$ 531 Refls collected / unique Reflections with $F_{0} > 4\sigma F$ 532 1218 533 Completeness to $\theta = 27.49^{\circ}$ 99.9% 0.991 and 0.947 534 Max. and min. transmission Full-matrix least-squares on F^2 535 Refinement method 536 Parameters / restraints 160 / 0 537 GoF 1.032 Final *R* indices $[F_0 > 4\sigma F]$ $R_1 = 0.0400, wR_2 = 0.1032$ 538 539 *R* indices (all data) $R_1 = 0.0677, wR_2 = 0.1201$ $+0.52 / -0.48 e/A^{3}$ 540 Largest diff. peak / hole $\frac{1}{2} = \sum |F_o^2 - F_o^2(\text{mean})| / \sum [F_o^2]. \text{ GoF} = S = \{ \sum [w(F_o^2 - F_c^2)^2] / (n-p) \}^{1/2}. R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|. wR_2 = \sum |F_o^2 - F_o^2| + \sum |F_o^2| +$ 541 $= \{ \sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}; w = 1 / [\sigma^2(F_o^2) + (aP)^2 + bP] \text{ where } a \text{ is } 0.056, b \text{ is } 472 \text{ and } P \text{ is } 0.056, b \text{ is } 0.056, b \text{ is } 0.056, b \text{ is } 0.05$ 542 $[2F_{\rm c}^2 + {\rm Max}(F_{\rm o}^2, 0)]/3.$ 543 544
- 516 Table 4. Data collection and structure refinement details for rowleyite.

545	Table 5. Atom coordinates and displacement parameters ($Å^2$) for rowleyite.

546		Occ.	x/a	y/b	z/c	$U_{\rm eq}/U_{\rm iso}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
547	V1	1	0.33174(3)	0.07076(2)	0.07076(2)	0.0151(2)	0.0189(5)	0.0132(3)	0.0132(3)	0.0019(3)	0.0010(2)	0.0010(2)
548	V2	1	0.33163(3)	0.17757(2)	0.07243(2)	0.0145(2)	0.0168(4)	0.0134(3)	0.0134(3)	0.0001(3)	0.0009(2)	-0.0009(2)
549	P/As	0.880/0.120(4)	0.37518(2)	0.12482(2)	0	0.0133(3)	0.0142(4)	0.0142(4)	0.0114(5)	0.0018(3)	0.0018(3)	0.0000(5)
550	01	1	0.37541(9)	0.16469(7)	0.02906(7)	0.0179(5)	0.0200(12)	0.0175(12)	0.0162(11)	0.0006(9)	0.0023(11)	-0.0018(12)
551	O2	1	0.37495(9)	0.08414(7)	0.02705(8)	0.0196(5)	0.0198(12)	0.0195(12)	0.0196(12)	0.0028(9)	0.0048(12)	0.0013(12)
552	O3	1	0.31158(7)	0.12438(8)	0.06488(7)	0.0164(5)	0.0178(11)	0.0143(11)	0.0170(12)	0.0006(10)	0.0009(9)	-0.0009(10)
553	O4	1	0.29787(13)	0.04376(8)	0.04376(8)	0.0259(9)	0.031(2)	0.0232(13)	0.0232(13)	-0.0031(17)	-0.0002(12)	-0.0002(12)
554	05	1	0.29835(12)	0.20441(8)	0.04559(8)	0.0214(8)	0.025(2)	0.0194(12)	0.0194(12)	0.0026(15)	-0.0014(11)	0.0014(11)
555	Na	1.08(2)	0.25	0.25	0	0.0238(17)	0.0238(17)	0.0238(17)	0.0238(17)	-0.0037(12)	-0.0037(12)	0.0037(12)
556	N1/K1	0.748/0.252(10)	0.24853(8)	0.12237(12)	0.00147(8)	0.0453(15)	0.0341(15)	0.068(3)	0.0341(15)	0.0090(13)	-0.0065(13)	-0.0090(13)
557	N2/K2	0.753/0.247(13)	0.23666(15)	0.125	0.125	0.0382(18)	0.041(3)	0.037(2)	0.037(2)	-0.004(2)	0	0
558	Cl1	0.977(11)	0.19256(5)	0.19256(5)	0.05744(5)	0.0327(10)	0.0327(10)	0.0327(10)	0.0327(10)	-0.0020(7)	-0.0020(7)	0.0020(7)
559	Cl2	0.989(11)	0.18890(5)	0.06110(5)	0.06110(5)	0.0331(9)	0.0331(9)	0.0331(9)	0.0331(9)	0.0051(7)	-0.0051(7)	-0.0051(7)
560	Cl3	0.765(12)	0.39002(13)	0.125	0.125	0.0419(13)	0.050(3)	0.0376(12)	0.0376(12)	0.0048(14)	0	0
561	X1	1.23(3)	0.4587(3)	0.1927(2)	0.0573(2)	0.126(5)	0.071(6)	0.154(7)	0.154(7)	-0.046(7)	-0.019(5)	0.019(5)
562	X2	0.42(4)	0.3752(6)	-0.0552(5)	-0.0552(5)	0.066(9)	0.055(12)	0.071(11)	0.071(11)	0.042(10)	0.024(8)	0.024(8)
563	X3	1.30(8)	0.4569(11)	0.0486(16)	0.0486(16)	0.79(6)	0.22(3)	1.07(9)	1.07(9)	0.88(9)	0.24(4)	0.24(4)
564	X4	0.55(4)	0.4194(7)	0.0225(4)	0.0225(4)	0.085(10)	0.119(17)	0.067(9)	0.067(9)	0.034(9)	0.050(9)	0.050(9)
565	X5	0.91(5)	0.3741(8)	-0.0134(6)	-0.0134(6)	0.248(19)	0.25(3)	0.25(2)	0.25(2)	0.00(2)	0.052(16)	0.052(16)
566	X6	0.32(3)	0.4210(8)	0.125	0.125	0.039(10)	0.014(16)	0.052(12)	0.052(12)	0.010(14)	0	0
567	X7	0.30(3)	0.4413(6)	0.1006(6)	0.1006(6)	0.063(11)	0.014(11)	0.088(15)	0.088(15)	-0.005(15)	0.004(7)	0.004(7)
568	X8	0.83(6)	0.381(6)	-0.0535(11)	-0.099(6)	0.66(14)	1.0(4)	0.43(4)	0.53(12)	0.18(6)	-0.26(15)	0.13(6)
569	X9	0.42(4)	0.2630(10)	-0.0130(10)	-0.0130(10)	0.11(2)	0.11(2)	0.11(2)	0.11(2)	0.10(2)	-0.10(2)	-0.10(2)
570	X10	0.29(6)	0.4142(9)	-0.0858(9)	-0.0858(9)	0.07(2)	0.07(2)	0.07(2)	0.07(2)	0.003(16)	0.003(16)	0.003(16)
571	X11	0.10(3)	0.375	-0.104(2)	-0.125	0.04(3)	0.04(3)	0.03(4)	0.04(3)	0	0.00(3)	0
572	X12	0.09(3)	0.4364(17)	0.0692(12)	0.0692(12)	0.018(19)						

573

V1–O2 (×2)	1.994(3)	Na–O5 (×6)	2.555(4)
V1–O3 (×2)	1.826(3)	NaCl1 (×2)	3.154(3)
V1–O4	1.618(4)	<na–φ></na–φ>	2.705
V1-C13	3.054(3)		
		A1–O1 (×2)	2.917(4)
V2–O1 (×2)	1.996(3)	A1–O3 (×2)	2.836(3)
V2–O3 (×2)	1.818(3)	A1–O4 (×2)	3.234(4)
V2–O5	1.601(4)	A1–O5	3.281(5)
V2C13	2.997(3)	A1–O5 (×2)	3.349(4)
		A1–C11	3.354(4)
P-O1 (×2)	1.564(3)	A1–C12	3.305(4)
P-O2 (×2)	1.549(3)	<a1-φ></a1-φ>	3.147
<po></po>	1.557		
		A2–O3 (×4)	3.046(5)
<i>X</i> – <i>X</i> channel cl	ose approaches	A2C11 (×2)	3.336(3)
X2–X5	1.87(3)	$A2-Cl2(\times 2)$	3.241(3)
X2–X8	1.4(2)	<a2-φ></a2-φ>	3.167
X2–X8	2.2(3)		
X2–X10	1.85(2)	O–X approache	S
X3–X4	1.67(6)	O1–X1	2.927(4)
X3–X12	1.13(7)	O2–X3	2.91(3)
X4–X5	2.16(4)	O2–X4	2.414(3)
X4–X12	2.16(6)	O2–X5	3.35(3)
<i>X6–X</i> 7	1.27(3)	O2–X7	3.18(2)
X7–X7	2.19(6)	O2–X12	2.41(4)
X7–X12	1.42(6)	O4–X1	3.219(9)
X8–X8	0.9(6)	O4–X9	2.77(3)
X8–X8	1.45(9)		
X8–X8	1.7(3)	Cl– <i>X</i> close appr	roaches
X8–X8	2.0(3)	C13–X6	0.98(2)
X8–X10	1.53(10)	C13–X7	1.96(2)
X8–X11	1.83(10)		
X11–X11	0.92(10)		
X11–X11	1.30(15)		

575 Table 6. Selected bond distances in rowleyite.

576

Table 7. Site assignments for rowleyite (*epfu / apfu* with Z = 16).

	Site	Mult. ¹	$SREF^2$	V	Р	As	Na	NH ₄	Κ	C1		epfu ³
	V1	96g	138	6								138
	V2	96g	138	6								138
	Р	96h	103.0(5)		5.28	0.72						103.0
	Na	16c	11.9(3)				1					11
	<i>A</i> 1	96g	60.1(8)					4.49	1.51			60.1
	A2	48f	29.9(5)					2.26	0.74			29.9
	Cl1	32e	33.2(4)							2		34
	Cl2	32e	33.6(4)							2		34
	Cl3	48f	39.0(6)							2.29	0.71	38.9
	<i>X</i> 1	96g	51.8(1.2)									
	X2	96g	17.6(1.7)									
	X3	96g	55(3)									
	<i>X</i> 4	96g	22.9(1.5)									
	<i>X</i> 5	96g	38(3)									
	<i>X</i> 6	48f	6.7(8)									
	<i>X</i> 7	96g	12.6(1.2)				$\Sigma = 29$	0.3 epfu				
	X8	192i	70(5)									
	<i>X</i> 9	32e	5.9(5)									
	<i>X</i> 10	32e	4.0(9)									
	<i>X</i> 11	48f	2.1(6)									
	<i>X</i> 12	96g	3.7(1.1)									
	Σ			12		6	1	6.75	2.25	6.29	0.71	
580	¹ site 1	nultiplici	ity									
581	² refin	ed site-so	cattering (ele	ectrons	s per for	mula ur	nit)					

 $\frac{3}{3}$ assigned electrons per formula unit

583

584

586	Table 8. Bond valence analysis for the ordered sites in rowleyite. Values are in valence units
587	<i>(vu)</i> .

	$V1^1$	$V2^1$	P^2	Na	$A1^3$	$A2^3$	Σ
01		$0.59^{ imes 2\downarrow}$	$1.19^{\times 2\downarrow}$		$0.12^{\times 2\downarrow}$		1.9
02	$0.59^{ imes 2\downarrow}$		$1.24^{\times 2\downarrow}$				1.8
03	$0.93^{ imes 2\downarrow}$	$0.95^{ imes 2\downarrow}$			$0.15^{ imes 2 \downarrow}$	$0.08^{ imes 4\downarrow}$	2.1
04	1.63				$0.05^{\times 2\downarrow ightarrow}$		1.7
05		1.71		$0.13^{\times 6\downarrow}$	$\begin{array}{c} 0.04 \\ 0.04^{\times 2\downarrow \rightarrow} \end{array}$		1.9
Cl1				$0.07^{ imes 2 \downarrow}$	$0.10^{\times 3\downarrow ightarrow}$	$0.14^{\times 2\downarrow x3 \rightarrow}$	0.7
C12					$0.04^{\times 3 \rightarrow}$	$0.11^{\times 2\downarrow x3 \rightarrow}$	0.4
C13	$0.09^{\times 2 \rightarrow}$	$0.10^{\times 2 \rightarrow}$					0.3
	1 76	1 80	4 86	0.92	0.90	0.82	

Figure 1

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5977 Figure 2 14000 V-O 12000 10000 Lattice modes 8000 Counts/s 6000 4000 P-O 2000 0 200 600 800 1000 0 400 1200 1400 Raman shift (cm⁻¹)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 4

Figure 7

